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Abstract—We measured the impact of long-range exponentially
decaying intra-areal lateral connectivity on the scaling and
memory occupation of a distributed spiking neural network
simulator compared to that of short-range Gaussian decays.
While previous studies adopted short-range connectivity, recent
experimental neurosciences studies are pointing out the role
of longer-range intra-areal connectivity with implications on
neural simulation platforms. Two-dimensional grids of cortical
columns composed by up to 11 M point-like spiking neurons
with spike frequency adaption were connected by up to 30 G
synapses using short- and long-range connectivity models. The
MPI processes composing the distributed simulator were run
on up to 1024 hardware cores, hosted on a 64 nodes server
platform. The hardware platform was a cluster of IBM NX360
M5 16-core compute nodes, each one containing two Intel Xeon
Haswell 8-core E5-2630 v3 processors, with a clock of 2.40 G Hz,
interconnected through an InfiniBand network, equipped with 4×
QDR switches.

Keywords—cortical simulation; distributed computing; spiking
neural network; lateral synaptic connectivity; hardware/software
co-design;

I. INTRODUCTION

We present the impact of the range of intra-areal lateral

connectivity on the scaling of distributed point-like spiking

neural network simulations when run on up to 1024 software

processes (and hardware cores) for cortical models including

tens of billions of synapses. A simulation including a few

tens of billions of synapses is what is required to simulate

the activity of one cm2 of cortex at biological resolution (e.g.
54K neuron/mm2 and about 5K synapses per neuron in the

rat neocortex area [1]). The capability to scale a problem up

to such a size allows simulating an entire cortical area. Our

study focuses on the computational cost of the implementation

of connectivities, pointed out in recent studies reporting about

long range intra-areal lateral connectivity in many different

cerebral areas, from cat primary visual cortex [2], to rat

neocortex [1], [3], just as examples. For instance, in rat

neocortex, the impact of lateral connectivity on the pyramidal

cells in layer 2/3 and layer 6a, results in ∼75% of incoming

remote synapses to neurons of these layers.

Longer-range intra-areal connectivity can be modeled by

a distance-dependent exponential decay of the probability of

synaptic connection between pairs of neurons: i.e. A·exp(−r
λ ),

where r stands for the distance between neurons, λ is the

exponential decay constant and A is a normalization factor that

fixes the total number of lateral connections. Decay constants

in the range of several hundred microns are required to match

experimental results.

Previous studies considered intra-areal synaptic connections

dominated by local connectivity: e.g. [4] estimated at least

55% the fraction of local synapses, reaching also a ratio

of 75%. Such shorter-range lateral connectivity has often

been modeled with a distance dependent Gaussian decay [5]

B · exp(−r2

2σ2 ), where r stands again for distance between

neurons, σ2 is the variance that determines the lateral range

and B fixes the total number of projections. Here we present

measures about the scaling of simulations of cortical area

patches of different sizes represented by two-dimensional grids

of “cortical modules”. Each cortical module is composed of

1240 single-compartment, point-like neurons (no dendritic tree

is represented) each one receiving up to ∼2390 recurrent

synapses (instantaneous membrane potential charging) plus

those bringing external stimuli. The larger simulated cerebral

cortex tile includes 11.4 M neurons and 29.6 G total synapses.

Exponentially decaying lateral connectivity (longer-range) are

compared to a Gaussian connectivity decay (shorter-range),
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analyzing the scaling and the memory usage of our Distributed

and Plastic Spiking Neural Network simulation engine (DP-

SNN in the following).

On DPSNN, the selection of the connectomic model has

consequences due to: 1) the mapping strategy (neurons and

incoming synapses are placed on MPI processes according

to spatial contiguity) and, 2) synaptic messages exchanged

between neurons simulated on different MPI processes entail

communication tasks among those processes; the higher the

number of lateral synaptic connections and the longer the

interaction distance is, the more intensive the communication

task among processes becomes.

The impact of other biologically plausible, or experimen-

tally demonstrated, connectivity patterns is worth of investi-

gation, but is not covered by this work. One of the directions

could be the study of the effect of connectivity patterns with

local modular/clustered connection and global (inter-areal)

non-homogenoeus lateral connectivity. Such a connectivity has

been studied theoretically for network dynamical behaviors on

a small local neural network [6]. Experimentally, complex con-

nectivity has been seen mostly for across-area studies, however

see also the emerging strong evidence of local motifs [7].

The article is structured as follows: Section II describes the

main features of the simulation engine and its distributed im-

plementation; network models are summarized in Section III,

with a specific description of the different schemes adopted

for the lateral intra-area connectivity; Section IV reports the

impact of lateral connectivity on the scaling. A discussion

section closes the paper.

II. DESCRIPTION OF THE SPIKING NEURAL NETWORK

SIMULATOR

The main focus of several neural network simulation

projects is the search for a) biological correctness; b) flexibility

in biological modeling; c) scalability using commodity tech-

nology — e.g. NEST [8], [9], NEURON [10], GENESIS [11].

A second research line focuses more explicitly on computa-

tional challenges when running on commodity systems, with

varying degrees of association to specific platform ecosys-

tems [12]–[15]. Another research pathway is the development

of specialized hardware, with varying degrees of flexibility

allowed — i.e. SpiNNaker [16], BrainScaleS [17].

Instead, the DPSNN simulation engine is meant to address

two objectives: (i) quantitative assessment of requirements and

benchmarking during the development of embedded [18] and

HPC systems [19] — focusing either on network [20] or

on power efficiency [21] — and (ii) the acceleration of the

simulation of specific models in computational neuroscience

— e.g. to study slow waves in large scale cortical fields [22],

[23] in the framework of the HBP [24] project.

The simulation engine follows a mixed time- and

event-driven approach and implements synaptic spike-timing

dependent plasticity ( [25], [26]). It has been designed from the

ground up to be natively distributed and parallel, and should

not pose obstacles against distribution and parallelization on

several competing platforms. Coded as a network of C++ pro-

cesses, it is designed to be easily interfaced to both MPI and

other (custom) Software/Hardware Communication Interfaces.

In this work, the neural network is described as a two-

dimensional grid of cortical modules made up of single-

compartment, point-like neurons spatially interconnected by

a set of incoming synapses. Cortical modules are composed

of several populations of excitatory and inhibitory neurons.

Cortical layers can be modeled by a subset of those popu-

lations. Each synapse is characterized by a specific synaptic

weight and transmission delay, accounting for the axonal

arborization. The two-dimensional neural network is mapped

on a set of C++ processes interconnected with a message

passing interface. Each C++ process simulates the activity of

a cluster of neurons. The spikes generated during the neural

activity of each neuron are delivered to the target synapses

belonging to the same or to other processes. The “axonal

spikes”, that carry the information about the spiking neuron

identity and the original spike emission time, constitute the

payload of the messages. Axonal spikes are sent only toward

those C++ processes where a target synapse exists.

The knowledge of the original emission time and of the

transmission delay introduced by each synapse is neces-

sary for synaptic Spike Timing Dependent Plasticity (STDP)

management, supporting Long Term Potentiation/Depression

(LTP/LTD) of the synapses.

A. Execution flow: a mixed time and event-driven approach

Simulation undergoes two phases: 1. creation and initial-

ization of the network of neurons, of the axonal arborization

and of the synapses; 2. simulation of the neural and synaptic

dynamics.

A combined event-driven and time-driven approach has been

adopted, inspired by [27]: the dynamic of neurons and

synapses (STDP) is simulated when the event arises (event

driven integration), while the message passing conveying the

axonal spikes among processes is performed at regular time

driven steps (in the present study set to 1 ms). Simulation (see

Fig. 1) can be further decomposed into the following steps:

2.1) spike-producing neurons during the previous time-driven

simulation step are identified and the consequent contribution

to STDP is calculated; 2.2) spikes are sent through axonal

arborizations to the cluster of neurons where target synapses

exist; 2.3) inside each process, incoming axonal spikes are

queued into lists, for later usage during the time-step corre-

sponding to the synaptic delays; 2.4) synapses inject currents

into target neurons and the consequent contribution to STDP

is calculated; 2.5) neurons sort input currents coming from

recurrent and external synapses; 2.6) neurons integrate their

dynamic equation for each input current in the queue, using

an event-driven solver.

At a slower timescale, which in the current implementation

is every second, STDP contributions are integrated in a Long

Term Plasticity and applied to each single synapse.
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Fig. 1. Execution flow of DPSNN simulator. Labels on the left identify
event- or time-driven tasks. Orange blocks are used for the inter-processes
communication tasks.

B. Distributed generation of synaptic connections

The described simulation engine exploits its parallelism also

during the creation and initialization phase of the network,

as detailed in a following section. In a given process, a set

of local neurons i = 1, .., N projects their set of synapses

j = 1, ..,M , toward their target neurons Ki,j , each synapse

characterized by individual delays Di,j and plastic weights

W i,j . Synaptic efficacies are randomly chosen from Gaussian

distributions, while synaptic delays can be generated according

to exponential or uniform distribution. The moments of the

distributions depend on the source and target populations that

each specific synapse interconnects. In addition to recurrent

synapses, the system simulates also a number of external

synapses: they represent afferent (thalamo-) cortical currents

coming from outside the simulated network.

C. Representation of spiking messages

Spike messages are defined using an Address Event Repre-

sentation (AER, [28]) including the spiking neuron identifier

and the exact spiking time. During simulation, spikes travel

from the source to the target neuron. Spikes, whose target

neurons belong to the same process, are packed in the axonal

spike message.

The arborization of this message is deferred to the target

process. Deferring as much as possible the arborization of the

“axon” reduces the communication load and unnecessary wait

barrier.

To this purpose, preparatory actions are performed during

network initialization (performed once at the beginning of the

simulation), to reduce the number of active communication

channels during the iterative simulation phase.

D. Initial construction of the connectivity infrastructure

During initialization, each process contributes to create

awareness about the subset of processes that should be listened

to during next simulation iterations. This knowledge is based

on information extracted from the locally constructed matrix

of outcoming and incoming synapses. At the end of this con-

struction phase, each “target” process should know about the

subset of “source” processes that need to communicate with

it, and should have created its database of locally incoming

axons and synapses.

A simple implementation of the construction phase can

be carried out using two steps. During the first step, each

source process informs other processes about the existence

of incoming axons and the number of incoming synapses.

A single word, the synapse counter, is communicated among

pairs of processes. Under MPI, this can be achieved by the

MPI_Alltoall() routine. This is performed once, and with

a single word payload.

The second construction step transfers the identities of

synapses to be created onto each target process. Under MPI,

the payload — a list of synapses specific for each pair in

the subset of processes to be connected — can be transferred

using a call to the MPI_Alltoallv() library function. The

number of messages depends on the lateral connectivity range

and on the distribution of cortical modules among processes,

while the cumulative load is always proportional to the total

number of synapses in the system.

The knowledge about the existence of a connection between

a pair of processes can be reused to reduce the cost of spiking

transmission during the iterations of simulation.

E. Delivery of spiking messages during the simulation phase

At each iteration, spikes are exchanged between pairs of

processes connected by the synaptic matrix. The delivery of

spiking messages can be split in two steps, with communica-

tions directed toward subsets of decreasing size.

During the first step, single word messages (spike counters)

are sent to the subset of potentially connected target processes.

On each pair of source-target process subset, the individual

spike counter informs about the actual payload — i.e. axonal

spikes — to be delivered, or about the absence of spikes to be

transmitted. The knowledge of the subset was created during

the first step of initialization (see Section II-D).
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The second step uses the spiking counter to establish a

communication channel only between pairs of processes that

actually need to transfer an axonal payload during the current

iteration. On MPI, both steps can be implemented using calls

to the MPI_Alltoallv() library function.

For two-dimensional grids of neural columns and for their

mapping on processes used in this experiment, this implemen-

tation proved to be quite efficient, as reported in Section IV,

further refined in Section V.

III. NEURAL NETWORK CONFIGURATION

A. Spiking Neuron Model and Synapses

The single-compartment, point-like neurons used in this

paper are based on the Leaky Integrate and Fire (LIF)

neuron model with spike-frequency adaptation (SFA) due to

calcium- and sodium-dependent after-hyperpolarization (AHP)

currents [29]. Neuronal dynamics is described by the following

equations:

dV

dt
=

V − E

τm
− gc

c

Cm
+
∑

Jiδ(t− ti) (1)

dc

dt
= − c

τc
(2)

where V (t) represents the membrane potential and c(t) the fa-

tigue variable used to model the SFA as an activity-dependent

inhibitory current. τm is the membrane characteristic time,

Cm the membrane capacitance, E the resting potential and τc
the decay time for the fatigue variable c. gc, paired with the

membrane capacitance, determines the timescales of the cou-

pling of the fatigue (2) and membrane potential (1) equations.

For inhibitory neurons, the SFA term is set to zero. Synaptic

spikes, reaching the neuron at times ti, produce instantaneous

membrane potential changes of amplitude Ji, the weights of

activated synapses. When the membrane potential exceeds

a threshold Vθ, a spike occurs. Thereafter, the membrane

potential is reset to Vr for a refractory period τarp, whereas

the variable c is increased by the constant amount αc.

During the construction phase of the network, recurrent

synapses are established between pre- and post-synaptic neu-

rons (see Section III-B). Synaptic efficacies and delays are

randomly chosen from probabilistic distributions (see Sec-

tion II-B).

In addition to the recurrent synapses, the system simulates

also a number of external synapses: they represent afferent

(thalamo-)cortical currents coming from outside the simulated

network, collectively modeled as a Poisson process with a

given average spike frequency. The recurrent synapses plus the

external synapses yield the number of total synapses afferent

to the neuron, referred to as “total equivalent” synapses in the

following.

For all the measurements in this work, synaptic plasticity

has been disabled, to simplify the comparison between differ-

ent configurations used in the scaling analysis, ensuring higher

stability of the states of the networks.

B. Cortical Columns and their connectivity

Neurons are organized in cortical modules (mimicking

columns), each one composed of 80% excitatory and 20%

inhibitory neurons. Modules are assembled in two-dimensional

square grids, representing a cortical area slab, with a grid

step α ∼ 100 μm (inter-columnar spacing). The size of these

grids has been varied as per Table I, to perform the scalability

experiments here reported.

Each cortical module includes 1240 neurons, while the

number of synapses projected by each neuron depends on the

implemented connectivity.

The neural network connectivity is set by the user defining

the probabilistic connection law between neural populations,

spatially located in the two-dimensional grid of cortical mod-

ules. Connectivity can be varied according to the simulation

needs, leading to configurations with different numbers of

synapses per neuron. We adopted the following lateral con-

nectivity rules to evaluate the impact of different inter-module

connectivity laws:

• Gaussian connectivity — shorter range and lower num-

ber of remote synapses: considering preeminent local

connectivity with respect to lateral, the rule used to

calculate remote connectivity has been set proportional to

A · exp(−r2

2σ2 ), with A = 0.05 and σ = 100 μm being the

lateral spread of the connection probability. The remote

connectivity function is similar to that adopted by the [5]

model, although with different A and σ parameters.

In this case only ∼20% of the synapses (specifically

∼250) are remotely projected and reach modules placed

within a short distance, spanning a few steps in the

two-dimensional grid of cortical modules. The majority

of connections (∼80%) is local to the module.

• Exponential decay connectivity — longer range and

higher number of remote synapses: the connectivity

rule for remote synapses calculation is proportional to

A · exp(−r
λ ), with A = 0.03 and λ = 290 μm (the

exponential decay constant, in the range of experimental

biological values, see e.g. [1]). This turns out into an

increased number of remote connections (∼59%), i.e.
∼1400 lateral synapses per neuron. It is worth nothing

that full biological realism would require to increase

the total number of lateral connections above ∼4 K

synapses/neuron.

For both studied connectivities, a local connection proba-

bility of 80% (producing about 990 local synapses) has been

adopted. For classical short-range configuration, the domi-

nance of local synapses enables mean-field theory prediction

of the dynamical regime of the modules, that perceive the

influence of remote modules as small perturbations. In sum-

mary, the average number of projected synapses per neuron

is ∼2390 for the longer-range exponential connectivity while

for the Gaussian connectivity is ∼1240.

In both systems, a cut-off has been set in the synapses

generation, limiting the projection to the subset of modules

with connection probability greater than 1/1000. This turns out
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into stencils of projected connections centered on the source

module. A 7×7 stencil is generated in the first case (Gaussian)

and a 21 × 21 in the second case (exponential decay). They

are marked in green and orange in Fig. 2.

For each connectivity scheme, measurements were taken

on different problem sizes obtained varying the dimension

of the grid of modules and, once fixed the problem size,

distributing it over a span of MPI processes to evaluate the

scaling behaviour.

We selected three grid dimensions: 24 × 24, 48 × 48 and

96×96 (see Table I). For a columnar spacing of few hundreds

of microns, they can be considered representative of interesting

biological cortical slab dimensions. The number of processes

over which each network size is distributed varied from a

minimum, bounded by memory, and a maximum, bounded

by communication (or HPC platform constraints).

Using the Gaussian shorter-range connectivity, an exten-

sive campaign of measures has been conducted, spanning

over the three configurations above described. The impact

of longer-range exponential decay interconnects has been

evaluated on the 24× 24 and 48× 48 configurations.

C. Toward biological modeling

The network size and execution speed reached in the

reported scaling experiments makes this engine a valuable

candidate tool for the acceleration of large-scale simulations.

Here, we report a preliminary example of usage in a specific

case of our interest: the modeling of cortical Slow Wave

Activity (SWA). To this purpose, we use a three-dimensional

variant of the two-dimensional model [30]. The development

of the variant and its biological meaning will be presented in a

forthcoming publication (preliminary info in [31]). Snapshots

of an exemplary propagating wave are reported in Fig. 3.

Simulations express delta rhythms, the main feature of SWA,

Fig. 2. Example of Gaussian (green) and exponential longer-range (orange)
connectivity in a grid composed by 24×24 cortical modules: total number of
synapses (in thousands) projected by excitatory neurons located in the column
marked in grey. Inhibitory neurons project only local connections.

Fig. 3. Four snapshot of a slow wave propagating on a 48×48 grid of cortical
modules spaced at 400 μm, with a connection probability exponentially
decaying with λ = 240 μm.

Fig. 4. Power spectral density of a population of excitatory neurons showing
a high quantity of energy in delta band (< 4 Hz).

as shown in their power spectral density (Fig. 4). The model

includes 2.9 M neurons projecting 3.2 G synapses arranged

in a grid of 48 × 48 cortical modules, spaced at 400 μm,

with a connection probability exponentially decaying with λ
= 240 μm. However, the focus of this paper is on the parallel

and distributed computing aspects of the engine development

and the cost of longer-range lateral connectivity. Papers tar-

geting biological realism are currently under preparation in

cooperation with the partners of the WaveScalES experiment

in the Human Brain Project.

D. Normalized simulation Cost per Synaptic Event

Different network sizes and connectivity models have been

used in this scaling analysis. This results in heterogeneous

measures of the elapsed time due to different numbers of

projected synapses and to the different firing rates of resulting

models. For example, the observed firing rate is ∼7.5 Hz for

the shorter range connectivity, and in the range between 32 and

38 Hz for the longer range one (all other parameters being kept

constant). However, a direct comparison is possible converting

the execution time into a simulation cost per synaptic event.

This normalized cost is computed dividing the elapsed time
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per simulated second of activity by the number of synapses

and by their mean firing rate. In this way, a simple comparison

among different simulated configurations is possible: measures

from different simulations can be compared on the same plot.

Our simulations include two kind of synapses: recurrent — i.e.
projected by simulated neurons — and synapses bringing an

external stimulus. Summing the number of events generated

by recurrent and external synapses, in the following we can

normalize the cost to the total number of equivalent synaptic

events.

E. Hardware Platform

We run the simulations on a partition of 64 IBM nodes

(1024 cores) of the GALILEO server platform, provided

at the CINECA [32] supercomputing center. Each 16-core

computational node contains two Intel Xeon Haswell 8-core

E5-2630 v3 processors, with a clock of 2.40 GHz. All nodes

are interconnected through an InfiniBand network, equipped

with 4× QDR switches. Due to the specific configuration of

the server platform, no hyper-threading is allowed. Therefore,

in all following measures, the number of cores corresponds

exactly to the number of MPI processes launched on a

computational node at each execution.

IV. RESULTS

A. Scaling for shorter range Gaussian connectivity

We collected wall clock execution times simulating different

problem sizes (detailed in Table I), spanning from 1 to 1024

MPI processes (or, equivalently, hardware cores). Fig. 5 is

about the strong scaling of the execution time per synaptic

event. The black dotted line is the ideal scaling: doubling the

resources, the execution time should halve. For the 24 × 24
grid (0.9 G recurrent synapses and 1.2 G total equivalent

synapses) the time scales from 275 ns per synaptic event, using

a single core, down to 4.09 ns per event using 96 cores. The

corresponding speed-up is 67.3 times, losing ∼30% compared

to the ideal (96 times). For the 48× 48 grid (3.5 G recurrent,

5 G equivalent synapses) the speed-up is 54.2 times (ideal

96 times). For the 96 × 96 grid (14.2 G recurrent/ 20.4 G

equivalent synapses) the speed-up is 10.8 times (in this case

16 times would be the ideal).

Figure 6 reports six curves of weak scaling: constant

workload per core, while increasing the number of resources

and the problem size by up to 16 times. The weak scaling

efficiency ranges from 72% (for a workload of 110.7 M

synapses per core) down to 54% (when only 13.8 M synapses

per core are allocated). Ideal weak scaling (100% efficiency)

would produce horizontal lines. Three points per workload are

reported: indeed, data have been extracted from the run times

of the three configurations 24× 24, 48× 48, 96× 96 used for

strong scaling analysis.

In our experience main factors affecting the scaling are

collective communications and timing jitter of individual

processes due to both operating system interruptions and

fluctuations in local workload [18].

B. Impact of longer range exponential decay connectivity

Fig. 7 compares the impact of shorter and longer lateral

connectivity on the strong scaling behaviour. Circles represent

measurements for the Gaussian decay while diamonds involve

the longer range exponential one.

The introduction of longer range connectivity increases

the simulation cost per synaptic event, with a slow-down

between 1.9 and 2.3 times, (see Fig. 8). The actual elapsed

simulation time increased up to 16.6 times for the exponential

longer-range connectivity due to the combined effect produced

by: (i) the number of synapses projected by each neuron is

higher (by a factor of 1.65), (ii) the firing rates expressed by

Fig. 5. Strong scaling for Gaussian connectivity model: the measures are
expressed in elapsed time per equivalent synaptic event.

Fig. 6. Weak scaling for Gaussian connectivity model.

Fig. 7. Impact of lateral connectivity: the graph compares the execution time
per synaptic event for the configurations with Gaussian connectivity (shorter
range, lower number of synapses - circles) and the one with exponential
connectivity (longer range, higher number of synapses - diamonds).
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TABLE I
PROBLEM SIZES FOR THE COMPARISON OF SIMULATOR PERFORMANCE APPLIED TO EXPONENTIAL (LONGER-RANGE) AND GAUSSIAN

(SHORTER-RANGE) CONNECTIVITY.

Grid Columns Neurons Number of Synapses MPI Procs
Gaussian Connectivity Exponential Connectivity Min Max
Recurrent Total Recurrent Total

24× 24 576 0.7 M 0.9 G 1.2 G 1.5 G 1.8 G 1 64
48× 48 2304 2.9 M 3.5 G 5.0 G 5.9 G 7.4 G 4 256
96× 96 9216 11.4 M 14.2 G 20.4 G 23.4 G 29.6 G 64 1024

Fig. 8. Time per simulated synaptic event increased between 1.9 and 2.3
times on changing the decay of connection probability from the shorter range
Gaussian scheme to the longer range exponential one.

the model is between 4.3 and 5.0 times higher and (iii) the

higher cost of longer range communication and demultiplexing

neural spiking messages. Point (iii) should be well estimated

by the slow-down of the normalized simulation cost per

synaptic event. The execution of longer range connectivity on

96 cores reached about 83% for the 48× 48 (5.9 G recurrent

synapses) and 79% of the ideal scaling for the 24 × 24 case

(1.5 G recurrent synapses).

C. Memory cost per synapse

We measured the total amount of memory allocated and

divided it by the number of represented synapses. With no

plasticity, each synapse should cost 12 Byte. Peak memory

usage is observed at the end of initialization, when each

synapse is represented at both the source and target process.

Afterwards, memory is released on the source process. The

forecast of minimum peak cost is therefore 24 Byte/synapse

for static synapses. Fig. 9 shows the maximum memory

footprint for different networks sizes and projection ranges,

distributed over different numbers of MPI processes. The

values are in the range between 26 and 34 Byte per synapse.

We observed that the growing cost for higher number of MPI

processes is mainly due to the memory allocated by the MPI

libraries.

V. DISCUSSION

Recent experimental results suggest the need of supporting

long range lateral connectivity in neural simulation of cortical

areas — e.g. modeled by simple exponential decay of the

connection probability — with layer to layer specific decay

constants, in the order of several hundreds of microns. A

Fig. 9. Memory occupation in byte per synapse for different configurations
in the two connectivity systems

distributed spiking neural network simulation engine (DPSNN)

has been applied to two-dimensional grids of neural columns

spaced at 100 μm connected using two schemes.

The longer-range connectivity model corresponds to an

exponential connectivity decay (λ = 290 μm) and to the

projection of approximately ∼2390 synapses per neuron. The

performance of the engine is compared to that obtained

with a shorter range Gaussian decay of connectivity, with

a decay constant of the order of the columnar spacing and

a lower number of synapses per neuron (∼1240). The im-

pact of longer-range intra-areal exponential connectivity is

indeed observable: it increases the simulation cost per synaptic

event between 1.9 and 2.3 times compared to traditional

shorter-range. The trends of the scaling are quite similar for

the two studied connectivities. Notwithstanding the slow-down

due to longer range connectivity, the engine demonstrates

the ability to simulated large grids of neural columns (up to

96 × 96), containing a total of up to 11.4 M LIF neurons

with spike-frequency adaptation, and representing up to 30 G

equivalent synapses on a 1024 core execution platform, with

a memory occupation always below 35 Byte/synapse. This

is enough to simulate, on clusters of moderate size, cortical

slabs with long-range intra-areal lateral interconnect, enabling

the modeling of cortical slow waves, a first objective of our

team.

A second objective of DPSNN is to support the hardware-

software co-design of architectures dedicated to neural sim-

ulation. In perspective, we note that more detailed biolog-

ical simulations of cortical areas could require further ex-

tensions of lateral connectivity models and the support of

more complex connection motifs at different spatial scales.

A further element in future whole brain simulations will be

the co-design with white matter inter-areal connectome, which
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brings sparser connections at system scale. A balance between

approaches focalizing on sparse connectivity like [33] and

those considering spatial localization (like the one adopted

by DPSNN) will have to be carefully addressed for efficient

multiscale simulations of the whole brain. The results here

presented, combined with previous experiences related to jitter

of execution times of individual processes and the impact of

collective communications when profiling DPSNN execution

on distributed platforms, jointly suggest the utility of designing

improved hierarchical communication infrastructures for spik-

ing messages, mechanisms of synchronization of computing

nodes and dedicated hardware accelerators. The improvements

should consider requirements imposed by biological connec-

tivity, at least for those engines that adopt mapping strategies

of neurons and incoming synapses based on spatial contiguity.

In such a context, DPSNN can be used to measure the impact

of improved designs of execution platforms.
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