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Abstract

medicine. Furthermore, Molecular Dynamics (MD) earned a great importance in aiding genome research. Sequencing studies of cancer have allowed to detect and 
characterize mutated genes that drive tumorigenesis. As a complementary approach, from a biophysical perspective, MD simulations, executed on HPC architectures, 
have permitted to investigate the role played by pathological mutations on the molecular mechanism of activation.

Big Data Next-Generation Sequencing for translational 
research

associated with disease, response to treatment, or future patient 
prognosis. Whole Genome Sequencing (WGS) is a genomics technique 
that allows to detect all types of genetic variations (single nucleotide 

powerful feature joined to the maps of genetic variation in populations 

thus enabling the integration of diagnosis, genetic counselling into 
treatment decision-making. In 2015 Taylor et al. extensively applied 
whole-genome sequencing as tool for diagnosis of genetic disorders in 
routine clinical practice on 500 patients (including 156 independent 

evidence of pathogenicity in 21% of cases (33/156) using several analysis 
strategies that improved the accuracy of variant calling and detection 
rates. More in general WGS provides a picture of the whole landscape 
of driver mutation and mutational signature in diseases. Several HPC 
bioinformatic pipelines have been developed to characterize and 
prioritize genetics variant [2-3].

 Whole-exome sequencing (WES) is a genomic technique for 
sequencing all of the protein-coding genes in a genome (also known 
as the exome) [4-5]. It has been applied to cancer and rare diseases to 
identify both the actionable somatic variants in the coding regions and 

for known disease phenotypes [6]. WES has been also applied for 
diagnosis of young patients without all spectrum of symptoms [7] and 
prenatal diagnosis [8]. Furthermore, detecting the causative mutation 
can suggest how to modify the treatment and prevent more invasive 

l trials.
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Targeted-exome sequencing (TES) is a genomic technique for which 
a subset of genes or regions of the genome are isolated and sequenced. 

genomic ranges of interest and enables sequencing at much higher 

tools to detect mutations in genes or genomic regions that are known 
or suspected to be associated to the disease of interest; the panel can be 

sensitive approach for the analysis of the cancer genome. It eliminates 
in short time much of the background noise generated by WES, since 

ideal tool for translational medicine and clinical settings.

RNA sequencing (RNA-Seq) is a sequencing technique able to 
reveal the presence and quantity of RNA in a biological sample at a 

to analyse the continuously changing cellular transcriptome. It has 
been extensively applied to patients to identify the molecular bases of 
many biological processes and diseases, including cancer [11-12]. In 

a better comprehension of the molecular mechanisms underlying 
prognosis and drug sensitivity. It addresses several aspects of the 

genes and transcripts, alternative splicing and polyadenylation, fusion 
genes and trans-splicing, post-transcriptional events, etc.) [13-17].

a big-data secure repository for storing, cataloguing and querying 
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cancer genome ‘omics https://
tcga-data.nci.nih.gov) cancer genome sequences, alignments, mutation 
information and molecular changes in cancer genome datasets, such as 

community. Another two available big-data resources on cancer are 
the Cancer Cell Line Encyclopedia (CCLE) [19] and the Genomics of 
Drug Sensitivity in Cancer [20]. As translational immediate impact on 
precision medicine, link among genomic biomarkers and drug sensitivity 
in hundreds of cancer cell lines are available for patients. With particular 

reference to CCLE, a big-data HPC analysis has been extensively 
performed on 935 paired-end RNA-seq experiments downloaded 
from CCLE repository, aiming at addressing novel putative cell-line 

fusion detection algorithms have been applied to the CCLE dataset in 
order to provide in silico a reliable consensus result set of about 1,700 
predicted novel fusion gene candidates in all the human malignant 
cell lines. Such results, querieble on gene fusion database web portal 
(Ligea - http://hpc-bioinformatics.cineca.it/fusion) could represent 

Figure 1.
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the starting point for detecting in wet lab novel cancer biomarkers and 

Ligea portal are shown.

(GTEx), tumor (TCGA) and cancer cell line (CCLE) tissues provide 

to translate information contained in the big-data bioinformatics 

of HPC in bioinformatics and computational biology is essential to 
reach these goals in a reasonable time.

ChIP-seq is a sequencing technique that combines chromatin 
immunoprecipitation (ChIP) with massively parallel DNA sequencing. 
It is a powerful method to identify genome-wide DNA binding sites for 
transcription factors and other proteins. Furthermore, it can be used to 
precisely map global binding sites for any protein of interest [22-24].

and epigenetic carcinogenesis, or any other disease related to 

[26], chromatin remodeling and microRNAs that act as regulatory 

interactions between genomic and environmental conditions [28]; they 

case of pancreatic ductal adenocarcinoma (PDAC) subtypes the study of 
epigenomic landscapes integrated with data of Chip-seq and RNAseq has 
allowed to predict aggressiveness and survival in some subtype of PADC 
[29], thus providing potential new markers and therapeutic targets.

Metagenomics is a sequencing technique that allows to study the 
genetic material recovered directly from environmental samples. It has 
been extensively applied to characterize virus genome heterogeneity, 
without in vitro replication biases, in the microbial community present 
in the clinical samples. High-throughput pyrosequencing has been 

virus directly in nasopharyngeal swabs in the context of the microbial 
community [30-33].

metagenomic research area: the study of human microbiome, 

is a major player in the immune system, since researchers believes that 
immune reactions are closely linked to the distribution of microbial 
communities throughout a person’s life [34].

Structural characterization of pathogenic mutations
Historically, the HPC role in Medicine is even precedent to the 

NGS revolution, starting in the ‘90 with the availability of accurate in 
silico
proteins in aqueous environment and then nucleic acids and membrane 
proteins). 

HPC, in particular, has been widely applied in cancer research 
with Molecular Dynamics simulations characterizing cancer related 
proteins [35-38]; evaluating the impact of somatic mutations or the 
activity of anticancer drugs [39-42]. MD has been also applied for the 
characterization of viral proteins [43-44].

non synonymous SNPs obtained by NGS and microarray-based 
platforms, has increased the need for in silico methods capable to 
provide information at atomic level on the structural and dynamic 
alterations produced in mutated proteins. MD simulation is routinely 
complemented by other complementary methods such as Homology 
modelling, Molecular docking, and Drug Design. Application of these 
methods has become a standard tool in human genome research, since 
they proved to be able to rationalize the impact of pathogenic mutations 
[45-47].

questions about structural properties and long-range dynamics of 
protein and nucleic acids, thus allowing the formulation of rational 
hypothesis of clinical data [48-51]. In (Figure 2) location of clinically 
relevant tubulin cofactor D (TBCD) variants and MD simulations 
results showing the structural perturbation induced by the Ala586Val 
clinically observed substitution.

Figure 2. (a) Location of disease-associated amino acid substitutions in tubulin cofactor 
D (TBCD). The three variants described in 45-46 have the lateral chain highlighted in 
pink. (b) Ala586 is a buried residue located in a region of α helices. (c) MD simulations 
performed to investigate the structural perturbation induced by the Ala586Val substitution 

of their relative orientation
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