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Testicular cancer (TC) is one of the most treatable of all malignancies and the

management of the quality of life of these patients is increasingly important, especially

with regard to their sexuality and fertility. Survivors must overcome anxiety and fears

about reduced fertility and possible pregnancy-related risks as well as health effects in

offspring. There is thus a growing awareness of the need for reproductive counseling

of cancer survivors. Studies found a high level of sperm DNA damage in TC patients

in comparison with healthy, fertile controls, but no significant difference between these

patients and infertile patients. Sperm DNA alterations due to cancer treatment persist

from 2 to 5 years after the end of the treatment and may be influenced by both the

type of therapy and the stage of the disease. Population studies reported a slightly

reduced overall fertility of TC survivors and a more frequent use of ART than the general

population, with a success rate of around 50%. Paternity after a diagnosis of cancer is

an important issue and reproductive potential is becoming a major quality of life factor.

Sperm chromatin instability associated with genome instability is the most important

reproductive side effect related to the malignancy or its treatment. Studies investigating

the magnitude of this damage could have a considerable translational importance in the

management of cancer patients, as they could identify the time needed for the germ

cell line to repair nuclear damage and thus produce gametes with a reduced risk for the

offspring.

Keywords: sperm DNA damage, sperm chromatin, testicular cancer, reproductive outcome, fatherhood, cancer

survivors

INTRODUCTION

Spermatogenesis is the process through which undifferentiated stem cells proliferate and
differentiate into spermatozoa. It takes place in the seminiferous tubules in the testicles and
is classically divided into three stages: spermatogonial proliferation, meiosis, and spermiogenesis
(1, 2).

The mature spermatozoon’s main function is to transfer the undamaged haploid genome to
the oocyte. During the spermatogenetic process the protection of DNA is thus of considerable
importance, and it is kept safe through its sperm-specific packaging (3). This is made
possible by the binding of DNA with protamines (4–11), which collapse into a toroidal
structure and anchor to matrix-associated regions (12–14). Correct DNA-matrix structure is
required to replicate male pronuclear DNA and control nuclear integrity after fertilization,
since the nuclear matrix plays a pivotal role (15–17). This specific chromatin organization
is associated with the recruitment, integrity and function of DNA repair components (18).
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DNA strand breaks may occur as a natural consequence of
chromatin reorganization, and sperm with highly condensed
chromatin may also suffer damage. This process begins in the
nuclear matrix. The action of external nucleases causes DNA
to be degraded and released by this structural scaffold (19,
20). The DNA fragmentation process begins during epididymal
maturation and transit through the vas deferens. The luminal
fluid contains enzymes which act like nucleases, activating
an apoptosis-like mechanism that in turn triggers sperm self-
destruction if the sperm cell is damaged for some reason. Various
types of DNA strand breaks have been identified: (a) single-strand
breaks (SSBs) are probably also generated by reactive oxygen
species released from the mitochondria in damaged sperm (21–
23); (b) reversible double-strand breaks (DSBs) are probably
generated by the action of topoisomerase II (19, 24); and (c) non-
reversible DSBs are induced by the action of nucleases that enter
from the luminal fluid (18, 19, 25, 26).

These alterations may be induced by the dysregulation of
normal apoptotic mechanisms and/or by a rise in oxidative stress
due to pathological or iatrogenic factors. The apoptotic process is
a control system for the overproduction of male gametes (27–29)
through which endonucleases induce the formation of double-
strand nicks in the DNA with subsequent DNA degradation,
chromatin condensation and the formation of apoptotic bodies
(30–33).

The sperm cell has three options: (a) repair the damage,
(b) activate the apoptotic process, causing cell death, or (c)
tolerate the damage, resulting in mutations which could be
transmitted to future generations (2, 34, 35). However, mature
sperm are incapable of repairing DNA damage, as translation
and transcription activities are silenced in the later stages of
spermatogenesis (34).

Some authors have shown in animal models that the
spermatocyte can actuate various DSB repair mechanisms (36)
through non-homologous end-joining (NHEJ) and homologous
recombination (HR) (35, 36). These two mechanisms may co-
exist (36–38) but if inadequate, can introduce new mutations.
Despite all this, sperm with fragmented DNA can be fertile,
and the biological impact of an abnormal sperm chromatin
structure depends on the combined effects of the extent of DNA
or chromatin damage in the sperm and the capacity of the oocyte
to repair that damage (35, 39–42).

Clinical Implications
From a clinical perspective, sperm DNA damage, including
chromatin fragmentation, has been associated with impaired
spermatogenesis and infertility and can have negative
consequences on the reproductive process (43–46), including
recurrent pregnancy loss (RPL) (47). Various studies have
investigated the relationship between sperm DNA damage and
reproductive outcome. Studies of natural fertility highlighted
that sperm DNA damage is associated with a prolonged time to
pregnancy (48) as well as a low probability of achieving natural
pregnancy (49). Several studies also reported an association
between low pregnancy rates in ART and DNA damage (50).
Moreover, various authors found a significant correlation
between DNA fragmentation and pregnancy loss after IVF

or ICSI (OR 2.37) (51–53). Available data do not permit any
correlation to be established between chromatin integrity and
reproductive outcome, although there is a significant correlation
between fragmentation and pregnancy loss following IVF or ICSI
(54, 55), as revealed in a meta-analysis (52). Stratification of the
studies by method used to analyse DNA fragmentation produced
different results, with a stronger association found for TUNEL
(53, 56). Most studies using TUNEL reported a significant
impact on embryo development, blastocysts and pregnancy loss
for both IVF and ICSI, whereas studies using SCSA obtained
more variable results (57). This may be because the different
methods identify different aspects of DNA damage: in fact, the
alkaline Comet and TUNEL assays can directly measure the level
of sperm DNA damage, while SCSA indirectly measures the
susceptibility of DNA to damage, consequently influencing the
discovered associations with ART outcome (58, 59).

Different factors, especially leukocytospermia (60, 61),
smoking, obesity and other lifestyles (62–64), age (65, 66), male
accessory gland infections (67), varicocele (68), and neoplastic
diseases (69–72), may be correlated with increased sperm
DNA damage, with a consequent impact on male fertility.
Iatrogenic causes, above all the chemo- and radiotherapies used
to treat cancer, can also have effects on spermatogenesis and
consequently on the sperm chromatin (43, 73, 74) (Figure 1).

Cancer itself also has an important role inmale infertility, with
both direct and indirect effects on spermatogenesis. Particular
attention has been paid to the effects of testicular cancer,
the most common cancer in men of reproductive age (75),
on sperm DNA. The incidence of TC varies considerably in
different countries and in different ethnic groups, possibly in
relation to both environmental factors and genetic susceptibility,
as hypothesized in so-called testicular dysgenesis syndrome
(TDS) (76–80). Various studies have investigated the association
between the presence of persistent environmental pollutants
in serum and the risk of TC, but no strong association has
been identified (81–88). Studies of testicular cancer (70, 71)
revealed impaired sperm chromatin integrity even before any
antineoplastic treatment, with an increase in damaged DNA and
a negative correlation between chromatin damage and semen
quality (69). Despite accounting only for about 1% of all male
cancers, TC was once the main cause of death from cancer in
men of reproductive age, but advances in chemotherapy (CT)
and radiotherapy (RT) combined with surgical techniques have
produced a marked improvement in the prognosis and survival
of these patients (75, 89–92). However, treatment protocols may
have long-term effects including metabolic syndrome, vascular
and cardiac damage, secondary cancers, and infertility (93, 94).
There is also great concern about their effects on semen quality
and sperm chromatin integrity, as the high cell renewal rate
of the seminiferous epithelium makes it highly sensitive to
these treatments (72, 95, 96). The target of any antineoplastic
treatments is DNA, which becomes fragmented, leading to cell
death (72, 95).

To date, there is little literature information on
the damage suffered by sperm DNA after exposure to
antineoplastic treatments. Above all, the duration, extent
and biological significance of their effects on chromatin
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FIGURE 1 | Aetiology and pathogenesis of sperm DNA damage.

integrity and the time necessary to repair such damage
are not yet known. The aim of our paper is to review
the impact of TC and its treatment on the sperm
chromatin quality and reproductive outcome of cancer
survivors following both natural pregnancy and assisted
reproductive technology (ART). This information has
translational relevance for the management and effective
counseling of these patients with regard to their reproductive
potential.

METHODS

We conducted a review of the literature to evaluate the
relationship between testicular cancer, sperm DNA damage
and fertility. We searched the Medline (Pubmed) database
using the following search terms: “sperm DNA damage AND
testicular cancer,” “testicular cancer AND sperm DNA integrity
after therapy,” “assisted reproduction AND testicular cancer,”
“pregnancy outcome AND testicular cancer,” “fatherhood AND
testicular cancer.” Additional studies were identified from the
study reference lists. Only full-length articles published in English
between 1986 and 2018 were searched. With regard to sperm
DNA integrity, we considered only the most common methods
(TUNEL, Comet, SCSA). We found 17 studies that evaluated
pre-therapy sperm DNA integrity in TC patients and 11 that
investigated sperm DNA damage induced by antineoplastic
therapies in such patients. We also found 10 studies derived
from population-based surveys or national cancer registers and
37 suitable studies with information on the outcomes of both
natural and ART-derived pregnancies in TC patients.

CHROMATIN INTEGRITY EVALUATION

Numerous methods have been developed to evaluate sperm
DNA integrity, with the aim of establishing the degree of

chromatin condensation. These tests have been developed in
parallel with advances in ART and the increased understanding
of the importance of chromatin integrity in this context (97). The
most widely used methods for investigating sperm chromatin
integrity in testicular cancer are SCSA, TUNEL and Comet assay.

- SCSA: The sperm chromatin structure assay (SCSA) is a
cytofluorometric technique which indirectly assesses DNA
strand breaks and protamine-histone replacement defects
by measuring the resistance of sperm chromatin to the
action of denaturing agents using the dye acridine orange
(98, 99).

- TUNEL: Terminal deoxynucleotidyl transferase UTP-driven
nick end labeling, or TUNEL, detects the endogenous
DNA strand breaks in sperm through the enzyme TdT
(terminal deoxynucleotidyl transferase). It enables the
incorporation of deoxyuridine triphosphate (dUTP) in DNA
fragments deriving from single or double strand breaks to
be quantified by fluorescence microscopy or cytofluorimetry
(100–102).

- COMET ASSAY: Single cell gel electrophoresis (SCGE),
or Comet assay, enables DNA integrity to be evaluated
by visualizing strand breaks in individual cells (103). The
DNA from the nucleus of any damaged cells forms a
comet pattern with a fluorescent head and a tail whose
length and fluorescence is proportional to the number of
DNA strand breaks. The analysis is performed using a
fluorescence microscope with imaging software. This test
can be performed in both alkaline and neutral conditions:
alkaline Comet reveals both SSBs and DSBs in sperm
DNA, while neutral Comet is capable of selectively detect
DSBs (104). The Comet assay has been used for both the
in vitro evaluation of the mutagenic activity of various
chemicals on sperm (105) and in preliminary studies of
the correlation between fertility and basal sperm DNA
damage (106).
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SPERM DNA DAMAGE IN TESTICULAR
CANCER

Pre-treatment
Evenson et al. were the first to demonstrate abnormal sperm
chromatin condensation, for up to 1 one year post-orchiectomy
and before any antineoplastic treatment, in a study of 14 TC
patients (107). Fossa et al. then found a significant increase in the
percentage of non-condensed haploid sperm cells in 85 testicular
cancer patients post-orchiectomy and pre-treatment compared
with a control group. In the following years, the refinement of
methods to study chromatin integrity led to increasing interest
in sperm DNA damage, especially in testicular cancer, which
involves the sperm production site (108). However, the actual
results are hard to interpret as the available methodologies reveal
different types of nuclear damage.

Although several methods claim to identify “fragmented
DNA,” it is important to understand what each one is actually
measuring. Some tests, such as the alkaline Comet assay
and TUNEL, identify double- and single-strand DNA breaks,
while SCSA assesses the susceptibility of DNA to denaturation,
indirectly revealing possible strand breaks or protamine-histone
replacement defects (98–106).

The theory is that DNA denaturation takes place much more
easily in sites affected by single- or double-strand breaks (109,
110). This information is important in assessing the possibility
of repair, as the oocyte is capable of repairing small numbers of
SSBs, but DSBs may be more problematic (111, 112). Recently,
Comet assay has been performed under neutral condition. This
method could provide more information about the DNA breaks,
although the available evidence is still limited.

It should also be remembered that strand breaks occur
naturally during DNA supercoiling and relaxation (17–19, 23,
26). For this reason, we are presenting the published studies on
the basis of the different methods used to assess sperm chromatin
integrity in testicular cancer.

SCSA
Of the 11 literature reports using this method, seven found sperm
DNA damage in TC patients post-orchiectomy and pre-therapy,
while four did not find any difference between TC patients
and healthy, fertile controls (Table 1). One of the first studies,
dating back to 1997, found abnormal sperm chromatin in a small
caseload of TC patients post-orchiectomy and pre-treatment
compared to healthy semen donors (113). Similar results were
reported by later studies which compared TC to healthy and/or
fertile controls (69, 71, 116, 117, 119, 121) (Table 1). TC patients
showed similar sperm nuclear damage to infertile subjects. Said
et al. in particular found sperm DNA fragmentation levels to be
2-fold higher in TC patients than in healthy fertile controls (117).
Stahl et al. also found greater sperm DNA damage (17.5%) in
TC patients in comparison with a fertile age-matched population
(116). However, the percentage of sperm with fragmented DNA
fell into a moderate level of sperm DNA damage considered
compatible with achieving pregnancy (125). O’Flaherty et al. also
found high mean DFI and low chromatin compaction prior to
chemo/radiotherapy in TC patients in comparison with healthy

TABLE 1 | Studies of sperm DNA damage in testicular cancer patients after

orchiectomy and pre antineoplastic treatment, subdivided by methodology.

References N.

TC pts

Controls Pre-treatment DNA

damage

TC vs. Controls

SCSA

Fossa et al. (113) 39 18 semen donors Increased

Kobayashi et al. (69) 20 12 healthy fertile Increased

Stahl et al. (114) 20 278 military conscripts NOT increased

Stahl et al. (115) 25 278 military conscripts NOT increased

O’Flaherty et al. (71) 15 21 infertile + 21 healthy

volunteers

Increased

Stahl et al. (116) 25 137 healthy fertile Increased

Said et al. (117) 39 20 healthy fertile Increased

Smit et al. (118) 52 22 healthy fertile NOT increased

O’Flaherty et al. (119) 16 11 infertile + 11 healthy

volunteers

Increased vs. healthy

McDowell et al. (120) 37 35 healthy volunteers NOT increased

Bujan et al. (121) 53 257 fertile Increased

Total 341

COMET

O’Donovan et al. (122) 13 14 healthy fertile Increased

O’Flaherty et al. (71) 15 21 infertile + 21 healthy

volunteers

Increased

Kumar et al. (104) 19 20 semen donors Increased

Total 47

TUNEL

Gandini et al. (101) 30 23 healthy + 29 infertile Increased vs. healthy

Spermon et al. (123) 22 13 healthy Increased

Stahl et al. (115) 19 24 military NOT increased

Ribeiro et al. (124) 48 50 healthy fertile NOT increased

O’Flaherty et al. (71) 15 21 infertile + 21 healthy

volunteers

Increased vs. healthy

Bujan et al. (121) 53 257 fertile NOT increased

Total 187

subjects (119). Finally, Bujan et al. found higher levels of DFI in
TC patients than in controls (121).

In contrast, Stahl et al. investigated post-orchiectomy TC
patients prior to further treatment in two studies in 2004 and
2006, finding no differences in the percentage of sperm with
DNA damage between cancer patients and the control group
(114, 115). Smit et al. also found no increase in pre-therapy
DNA damage compared with fertile men. Moreover, sperm DNA
fragmentation does not seem to be correlated with TC histotype:
no significant increase in sperm DNA fragmentation was found
between seminoma and non-seminoma patients (118).McDowell
et al. also failed to find any significant difference in TC patients,
who had a mean of 8.73% sperm DNA damage compared with
the 9.88% seen in men presenting for altruistic sperm donation
(120).

In conclusion, the majority of studies found increased,
but moderate, levels of sperm DNA damage in TC patients
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compared to healthy controls. Infertile patients used as the
control population may have comparable levels of chromatin
damage to TC patients, supporting the hypothesis that TC could
be a cause of temporary infertility by affecting semen quality.

TUNEL
Six studies used TUNEL. Of these, three found more sperm
DNA fragmentation in TC patients while the other three did
not find any differences in chromatin integrity between TC
patients and healthy controls (Table 1). Gandini et al. found
a significant increase in apoptotic sperm DNA fragmentation
in the semen samples of TC patients post-orchiectomy and in
infertile patients with oligoasthenoteratozoospermia compared
with a control group of healthy men (101). This might suggest
that major sperm DNA damage is one of the characteristics of
spermatogenetic failure and that high apoptotic fragmentation is
correlated with impaired semen parameters. In fact, this study
found a negative correlation with sperm motility and a positive
correlation with abnormal forms, predominantly affecting the
head, in TC patients. Increased sperm DNA fragmentation in
TC patients was also confirmed in a study by Spermon et al.
(123). In these patients, neoplastic proliferation seems to induce
intratesticular damage of the apoptosis control system. This
seems to be augmented by the clinical stage of the disease.
O’Flaherty et al. evaluated poor sperm chromatin quality, in
terms of an increase in single- and double-strand breaks and
decrease in the protamine level and chromatin compaction, in
advanced TC patients against control subjects (71). This study
found a non-significant trend increase in TUNEL-positive sperm
in TC patients. Chromatin damage was also found in 37% of
normozoospermic TC patients; interestingly, this damage was
comparable to that seen in the infertile group, as also found in
other studies, demonstrating that TC could be a cause of transient
qualitative sperm damage, even in the absence of significant
quantitative changes.

However, Stahl et al. (115), Ribeiro et al. (124), and Bujan
et al. (121) did not find any correlation between TC and
sperm DNA fragmentation. Stahl et al. (115) investigated
TC patients, finding a similar percentage of sperm DNA
fragmentation to that observed by Gandini et al. (101); the
two studies differed in the control group, which in Gandini’s
study consisted of healthy normozoospermic subjects and in
Stahl’s comprised subjects with various seminal characteristics,
including oligozoospermia. Ribeiro et al. also found no
differences in apoptotic DNA fragmentation between patients
with non-seminoma or seminoma and fertile men (124). The
authors identified a mean of 12.6% sperm cells with apoptotic
DNA fragmentation in the control group, 12.2% in the non-
seminoma group and 12.5% in the seminoma group. In contrast
with the previous studies, the authors suggested that as all
patients were studied after orchiectomy, removal of the affected
testis may have annulled possible effects to the remaining normal
testis. Finally, Bujan et al. evaluated sperm DNA damage in the
semen samples of 53 TC patients, finding no difference in the
percentage of sperm DNA fragmentation between patients and
controls (121).

In conclusion, half of the studies investigating the sperm of
TC patients found an increase in sperm DNA fragmentation,
with the authors suggesting disruption of the apoptotic control
equilibrium as a possible response to the disease. It is possible
that the two studies finding no differences in sperm chromatin
integrity between cases and controls was because they used
control groups with heterogeneous semen parameters, while
the third found no differences with TUNEL, but only with
SCSA.

Comet Assay
Just three studies to date have used the alkaline Comet assay.
All were performed on small caseloads and found more sperm
damage, expressed as the percentage of cells with DNA forming a
comet pattern, in patients than in controls (Table 1). O’Donovan
investigated chromatin integrity pre- and post-therapy in various
neoplastic diseases, including testicular cancer (122). This was a
pilot study on a small caseload of cancer patients, including TC
and fertile men. The author found a higher level of sperm DNA
fragmentation in TC patients than in the controls. This finding
was confirmed by O’Flaherty et al. in patients with advanced
testicular cancer, for whom semen phenotype, hormone profile
and genome integrity were investigated (126). The authors
found impaired semen parameters (sperm concentration, normal
forms, and motility), an elevated FSH serum concentration
and elevated sperm DNA damage in the TC patients in
comparison with the control group of healthy volunteers.
More recently, Kumar et al. detected increased sperm DNA
damage in 19 testicular cancers patients vs. 20 semen donors
with both alkaline and neutral COMET, with higher levels
of sperm DNA fragmentation in TC patients with abnormal
semen parameters (104). In particular, under neutral conditions,
the Authors reported a significant difference in DNA DSBs
in men presenting with testicular cancer compared to fertile
donors.

In summary, the literature comprises 17 papers that used
various methods to evaluate sperm DNA integrity post-
orchiectomy and pre-therapy in testicular cancer patients.
Three used TUNEL only, eight SCSA only and three Comet
assay only, while three used both SCSA and TUNEL to
investigate the same caseload. Eleven studies found a difference
in sperm DNA damage between TC patients and controls
using one or two methods, five found no such difference
while just one found different results with different methods
(Table 1).

These studies have various limitations, above all the limited
caseloads and use of different control groups, which could
affect the comparison of the cases and controls. The use
of normozoospermic or fertile subjects as the control group
should undoubtedly produce a low percentage of sperm DNA
fragmentation, while a control group of unselected subjects
from the general population might have a slightly higher DFI.
Furthermore, not all studies reported age (an important factor
associated with chromatin fragmentation), histotype or clinical
stage, and many did not report the clinical features. It was
therefore not possible to perform a multivariate analysis to
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identify the various parameters that might affect chromatin
integrity.

Most of the studies cited in this section found elevated
sperm DNA damage in TC patients. This could be due to
a maturation defect during spermatogenesis in the remaining
testicle after orchiectomy, but also to the impact of stress factors,
abnormal hormone production (oestrogens, human chorionic
gonadotropin) or other factors linked to the development of
testicular dysplasia (70, 101, 127). Testicular cancer can in fact
be hormonally active, with the production of β-human chorionic
gonadotropin (βhCG) and α fetoprotein (AFP), and has both
local and systemic effects, including temperature changes and
metabolic effects (128). Carcinogenesis may result in a systemic
inflammatory state and the secretion of metabolically active
cytokines can lead to damage to the germinal epithelium.
Cytokines such as interleukin 1, interleukin 6, tumor necrosis
factor α, and interferon γ may affect the hypothalamic-pituitary-
gonadal axis (128, 129). Finally, cancer can itself be associated
with malnourishment, leading to deficiencies in the vitamins and
trace elements needed for optimal gonadal function, as well as
psychological issues such as anxiety and depression. For these
reasons, cancer itself may contribute to both quantitative and
qualitative impairment of spermatogenesis, even if the literature
data are contradictory.

Post-treatment
Antineoplastic therapies are an important cause of sperm DNA
damage. Interest in the toxic effects of these therapies on
embryonic development has generally focused on the mother,
while the paternal aspect has often been underestimated. Few
studies have investigated male-mediated teratogenicity (130–
132), but above all the little information that is available provides
conflicting evidence of the sperm chromatin damage induced by
these treatments.

Radiotherapy and chemotherapy have a damaging effect on
reproductive function through both cytological and molecular
effects. The negative effects include impaired spermatogenesis,
resulting in oligozoospermia or azoospermia (72, 133), and an
increase in aneuploidies for up to 18–24 months after the end
of the therapy (134–136). Most chemotherapeutic agents are
cytotoxic for cells in a given phase of the cell cycle. Furthermore,
the testicle is one of the most radiosensitive tissues and is
vulnerable to damage from both direct radiation or, more
commonly, the scattering of radiation during the treatment of
adjacent tissues (137).

While the main aim of treatment must of course be to cure
the cancer itself, the future quality of life of TC patients must not
be overlooked, given the now excellent survival rates. In young
adults, it is important to evaluate any reproductive problems
that might arise following treatment; in particular the study of
sperm chromatin integrity, which could be an infertility factor
or even be associated with genome instability, with consequent
repercussions for any offspring.

The introduction of ICSI has significantly improved the
opportunity for paternity in TC patients. However, there is
a concern that it might increase the risk of transmitting
defective paternal genomes to the offspring. For this reason,

data concerning pre- and post-treatment sperm chromatin
integrity in cancer patients, and especially TC patients, would
have significant translational relevance in the management
of these patients, as they could be provided with adequate
counseling on their future reproductive chances. Literature
reports of the impact of antineoplastic treatments give conflicting
results, due to the small caseloads, the different treatments
investigated and above all the different methods used to
study sperm DNA damage. For this reason, as in the section
above, we will present the data according to the method
used.

SCSA
The impact of cancer treatment on spermDNA integrity has been
investigated by SCSA in 7 longitudinal studies (Table 2). There
is general accordance among these studies about the negative
impact of radiotherapy (43, 114, 115, 118, 121). Stahl et al.
reported a significant but transient increase in DFI in the first
2 years after radiotherapy, which normalized 3–5 years after
the end of the treatment (114), confirming these data in a later
study with a larger caseload (115). According to Smit et al.
RT has a higher impact on DFI than CT alone; after a follow-
up of 0.5–3.3 years (median 1.1) this study found a significant
increase in DFI in patients who had undergone RT or RT+CH
compared to those who underwent chemotherapy alone (118).
A multicentre study with 24 months’ post-treatment follow-up
found reduced chromatin compaction 6 months after the end
of radiotherapy (121). Paoli et al. confirmed these observations
in a larger caseload, reporting that RT-induced DNA damage
increased up to 6months post-RT, with a subsequent reduction at
12 and 24 months (43). Evidence of the effects of chemotherapy
is more contradictory. Several studies did not find any differences
in DNA damage post-chemotherapy (116, 118, 121). Others
even found an improvement in sperm chromatin integrity: in
2004 and 2006, Stahl et al. reported that patients undergoing
1–2 chemotherapy cycles had a significant reduction in DFI at
6 and 12–24 months from the baseline, while advanced stage
patients treated with more than two chemotherapy cycles showed
a reduction in DFI 5 years after the end of the treatment
(114, 115). The authors interpret this surprising result as a
consequence of germ cell vulnerability to chemotherapy, thus
causing the prevalent elimination of spermatogenic cells with
DNA damage. In other words, chemotherapy could induce the
removal of a subpopulation of abnormal germ cells. In contrast,
in a small caseload of patients with advanced testicular cancer
after orchiectomy, O’Flaherty et al. reported higher DNA damage
and lower chromatin compaction prior to therapy, persisting
for the entire follow-up period, in comparison with controls
(119). Paoli et al. whose results in relation to radiotherapy are
reported above, also found increased CT-induced DNA damage
at 6 months with a more marked reduction than seen with RT at
12 and 24 months post-therapy, indicating a clear improvement
in the chromatin profile at these time points (43). Their data
also indicated that sperm chromatin damage was not age- or
histotype-dependent, but was more marked in advanced stages
of TC and was also influenced by the type and intensity of
treatment.
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TABLE 2 | Post-treatment sperm DNA quality in testicular cancer patients subdivided by method used.

References N.

TC pts

Follow-up Treatment DNA integrity

SCSA

Stahl et al. (114) 74 0, 6, 12, 24, 36, and 60

months

Chemo- and

Radiotherapy

RT: increased DFI up to 2 years post-treatment;

normalization after 3–5 years

CH: reduced DFI up to 5 years post-treatment

Stahl et al. (115) 96 0, 6, 12, 24, 36, and 60

months

Chemo- and

Radiotherapy

RT: increased DFI up to 2 years post-treatment;

normalization after 3–5 years

CH: reduced DFI up to 5 years post-treatment

Stahl et al. (116) 58 Mean 3 years Chemo- and

Radiotherapy

No differences in DFI pre- and post-

treatment—DNA not affected by treatment

Smit et al. (118) 52 Range 0.5 to 3.3 years Chemo- and

Radiotherapy

RT: increased DFI against CH (mean 1.1 years)

O’Flaherty et al.

(119)

16 0, 6, 12, 18, and 24

months

Chemotherapy CH: increase in SD DFI and HDS inTC patients up

to 24 months post-therapy.

Bujan et al. (121) 53 3, 6, 12, and 24

months

Chemo- and

Radiotherapy

RT: reduced chromatin compaction to T6 post RT

CH: no DFI variation pre- and post-CH

Paoli et al. (43) 254 3, 6, 9, 12, and 24

months

Chemo- and

Radiotherapy

RT: increased DFI at 3 and 6 months, less marked

reduction at 12 and 24 against CH

CH: increased DFI at 3 and 6 months and reduction

at 12–24 months

TUNEL

Stahl et al. (115) 96 0, 6, 12, 24, 36, and 60

months

Chemo- and

Radiotherapy

RT: increased DFI up to 2 years post- treatment;

normalization after 3–5 years

CH: reduced DFI up to 5 years post-treatment

Spermon et al.

(123)

22 Range 18.4–84.8

months

Chemotherapy Chromatin condensation improved after treatment

DNA fragmentation not reduced after CH

Bujan et al. (121) 53 3, 6, 12, and 24

months

Chemo- and

Radiotherapy

No change in sperm DNA fragmentation pre- and

post-treatment

Ghezzi et al. (138) 212 0, 12, 24 months 100 BEP

54 CARB

58 surveillance

BEP: at 12 and 24 months increased post therapy

DNA damage both vs. baseline and vs. CARB.

COMET

O’Donovan (122) 13 0, 3, 6, 12 months Various antineoplastic

agents

Reduced percentage of intact sperm DNA and

chromatin condensation

O’Flaherty et al.

(126)

16 0, 6, 12, 18, and 24

months

Chemotherapy Increased sperm DNA fragmentation 6 months

post-treatment against T0, remaining elevated up to

18–24 months

RT, radiotherapy; CH, chemotherapy; BEP, Bleomycin, etoposide, cisplatin; CARB, carboplatin.

TUNEL
Several studies used TUNEL to investigate the impact of
chemotherapy and radiotherapy on TC patients (Table 2).
Stahl et al. confirmed the results they had seen with SCSA,
finding increased sperm DNA damage for 2 years post-RT with
both methods, thus indicating a correlation between the two
(115). Bujan et al. did not find any increased fragmentation
after CT or RT (121). Spermon et al. who investigated the
effects of 4 cycles of BEP in a small caseload of TC patients
against normozoospermic subjects after a mean of 48.2 months,
achieved similar results (123). These authors did not find
any difference between sperm DNA fragmentation pre- and
post-chemotherapy, but only against controls. Although sperm
nuclear quality did not reach normal levels, semen samples did
show improved chromatin condensation. In contrast, Ghezzi
et al. compared patients treated with BEP, carboplatin or
under surveillance alone, finding that BEP caused significantly

more DNA damage than one cycle carboplatin. This damage
was still detectable in BEP patients after 24 months of
follow up when compared to baseline values. This seems
to reflect the fact that more intensive chemotherapies might
have higher influence on DNA integrity and for longer
time (138).

Comet Assay
In 2005, O’Donovan evaluated chromatin integrity pre- and post-
antineoplastic therapy in various neoplastic diseases including
testicular cancer (122). This was a pilot study on a small caseload,
of whom just 13 had TC. There was a lower percentage of
intact sperm DNA (percentage head DNA intact) and chromatin
condensation after treatment in patients than in the controls.
O’Flaherty et al. obtained different results in a study of 16
post-orchiectomy TC patients who underwent BEP compared
to healthy male volunteers (126). This longitudinal study found
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that chemotherapy has a negative impact in testicular cancer
patients, with increased sperm DNA fragmentation 6 months
after the end of treatment in comparison with the baseline;
this value was still raised at 18–24 months. This study thus
demonstrated that chemotherapy can induce long-lasting DNA
damage.

In summary, a total of 11 papers used various methods
to evaluate the impact of chemo- and radiotherapy on sperm
DNA integrity in testicular cancer patients. Some of these
used more than one method (Table 2), with 5 using SCSA, 2
TUNEL, 2 Comet and 2 studies used both SCSA and TUNEL
to investigate the same caseload. We identified just one paper
which did not find any sperm DNA damage in TC patients
after chemo- or radiotherapy, but the author himself suggested
that the high inter-subject variation in the impact of the
antineoplastic treatment on chromatin integrity could affect the
results. Furthermore, the median post-therapy observation time
was about 3 years in this study (range 1–20 years) and the lack
of information on DNA integrity shortly after treatment could
cause the real impact of the therapies to be underestimated
(116). In contrast, most studies found sperm DNA to be more
sensitive to radiotherapy, which induces transient damage from 6
months after the end of the treatment but normalizes within 2–5
years. In fact, radiation induces material ionization both directly,
through excitation of the atoms making up the DNA molecule,
and indirectly, through its interaction with non-DNA molecules,
which induce the ionization of the genetic material by emitting
secondary electrons (95, 139).

Evidence for the genotoxic effect of chemotherapy on sperm is
less clear-cut than that for radiotherapy. Many chemotherapeutic
drugs penetrate the Sertoli cell barrier and damage germ cells.
Type B spermatogonia, which proliferate actively, are extremely
susceptible to cytotoxic agents; chemically stable DNA adducts
produced in the testicles can persist, inducing DNA strand
breakage during the spermatogenic process. However, type A
spermatogonia, which have little mitotic activity, are less affected
and could survive polychemotherapy if threshold cumulative
cytostatic doses are not surpassed (140).

Two studies found reduced damage after chemotherapy (114,
115), suggesting that spermatogonia with abnormal chromatin
arising from defective DNA repair mechanisms might be more
sensitive to chemotherapy (115). However, it should be stressed
that these studies involved relatively small caseloads, especially
after stratification by time since end of treatment and by type of
antineoplastic treatment. Other studies found that chemotherapy
had a negative impact on the sperm chromatin profile lasting
up to 2 years after the end of the therapy. Various components
of the chromatin structure may be modified by different
chemotherapeutic agents, thus affecting not only fragmentation
but also chromatin compaction (119). The different components
of the chromatinmay thus take different times to be repaired after
chemotherapy and the extent of sperm DNA damage may also
differ. It should also be noted that studies evaluating pre- and
post-therapy chromatin integrity are highly heterogeneous and
the results could be affected not only by the small caseloads but
also by the different methods used. TUNEL and alkaline Comet
measure the number of double or single DNA strand breaks,

while SCSA provides an indirect measure of DNA damage.
The different recovery times could also depend on the different
follow-up times used in the various studies, given that they did
not all analyse samples at the same times. Furthermore, the
literature analyzed to date reveals that sperm chromatin damage
is not age- or histotype-dependent, but appears more marked in
advanced stages of TC as well as being influenced by the type and
intensity of treatment. This could explain the divergent results on
the impact of chemotherapy on sperm DNA integrity obtained
by the different authors discussed above, and more studies are
needed to provide conclusive evidence.

PATERNITY AND TESTICULAR CANCER

The paternity of TC survivors is a particularly interesting topic.
These patients often ask about their chance of fatherhood,
the teratogenicity of their treatment or the risk of TC in
their offspring. Around 40% of patients pre-diagnosis and
50% post-diagnosis want children (141). For this reason,
the cryopreservation of semen and/or testicular tissue is of
fundamental importance in the clinical management of this
disease (142, 143). Various antineoplastic treatments can induce
mutagenic effects in both somatic cells and male germ cells at
various stages of maturation. However, we are as yet unable
to predict the extent of any genomic damage, the potential
teratogenic effect and the long term effects on fertility and
offspring outcome caused by these treatments. Studies in mouse
models have shown that cisplatin induces chromatid breaks
and fragments in spermatocytes and spermatogonia immediately
after treatment, whereas conflicting results have been reported in
relation to diploidy and disomy in treated patients (135, 144–
146). The injurious effect of chemotherapy on offspring may
be related to abnormal sperm chromatin structure. Proteome
studies (147) found up-regulation of histones and a significant
decrease in protamine in the mouse sperm head, while other
studies found increased methylation in drug-treated animals
(148, 149).

Although sperm chromatin damage has been observed to
a greater or lesser extent in TC patients, it does not seem
to be invariably correlated with a diagnosis of infertility in
the survivors of this disease. Sperm DNA mutations seem
to be associated with a lower fertility than found in the
healthy population and an increased risk of early abortion.
However, there is a lack of prospective studies in the literature
investigating the correlation between TC-induced sperm DNA
damage and reproductive outcome. This would be extremely
useful information, especially as the ever-increasing use of ART
could in theory give rise to a greater risk of selecting sperm with
damaged DNA. The available data on the in vivo and in vitro
reproductive capacity of TC survivors and the known effects on
offspring are discussed below.

Data From National Registers
Population studies, mainly originating from north European
national registers, suggest that the fertility of cancer survivors
is lower than that of the general population. Fifty percent of
post-cancer patients presented primary infertility (150). Fossa
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et al. reported that on average, cancer patients had conceived at
least one child 3–4.5 years after the end of the treatment (151).
In comparison with the general population, testicular cancer
survivors had a 33% lower probability of having a child within 5
years after diagnosis and 20% lower after more than 5 years (152);
these data were confirmed by later studies (150, 153–155).

The most recent observation comes from a study by Gunnes
et al. who found in data from Norwegian registers a reduced
probability of fatherhood (HR 0.77) and greater use of ART in
TC survivors than in the control population (155). It should be
stressed that these population studies have limitations. Studies
based on caseloads from national registers often lack details
of the type of treatment, the physical condition of individual
patients, the physical condition of neonates after the first day
of life and information on the female partner such as maternal
age, parity, smoking, and behavior during pregnancy and, above
all, many of these studies do not specify if pregnancy occurred
naturally or following ART. On the whole, they demonstrate that
male cancer survivors, including TC survivors, do have a chance
of achieving fatherhood through natural conception or assisted
reproduction despite the damage induced by the antineoplastic
treatment, even if this chance is lower than in the general
population.

Effects on Offspring
The incidence of any effects in the offspring of fathers treated
with antineoplastic therapies was not always investigated by
the various studies and the evidence in the literature is highly
contradictory. Unlike in children born tomothers with a previous
diagnosis of cancer, some Danish multicentre and register
studies did not find any increased risk of congenital or genetic
abnormalities in the children of male cancer survivors treated

with chemotherapy or radiotherapy (151, 152, 156–158) and
did not find any increased risk of perinatal death, low birth
weight or preterm birth (155). In contrast, Magelssen et al. found
an increased incidence of congenital abnormalities in firstborn
infants fathered after the cancer diagnosis, regardless of whether
or not ART was used (153). The abnormalities reported in this
study were observed after various types of treatment and up
to 15–20 years after diagnosis, even if they were not correlated
with any specific antineoplastic treatment. Data fromDanish and
Swedish registers also found that children with a paternal history
of cancer had a significantly increased risk of any congenital
abnormality (RR = 1.12, CI 95% 1.02–1.24; p = 0.018), and
especially major congenital abnormalities (RR = 1.17, CI 95%
1.05–1.31; p = 0.004), regardless of how they were conceived
(natural, ART, cryopreserved, or fresh semen), than the children
of healthy controls (159). This risk was higher among children
born within 2 years of their father’s cancer diagnosis, suggesting
that the cause is the transient effect of treatment on sperm DNA
quality. In this case too, interpretation of the data is limited by
the nature of the registers; although they report events in very
large caseloads, they cannot unequivocally trace such events back
to the impact of previous antineoplastic chemo- or radiotherapy.

Given that measurable sperm nuclear damage has been
demonstrated for both RT and CT, especially in the first 12–
24 months after the end of treatment, it is reasonable to
suppose that malformations and early abortions occurring in
this time period can probably be attributed to the effects of
the treatment on sperm DNA. This aspect should thus be
discussed openly with the patient, to enable the protection
of the patient’s future fertility through cryopreservation of
semen or testicular tissue before beginning any treatment
(Table 3A).

TABLE 3A | Summary of available data from national registers/population studies on fertility in testicular cancer survivors.

Reference Total male

cancer

patients

Fatherhood

after

diagnosis

Total use of

ART

Testicular

cancer patients

(%)

Children after TC

diagnosis (%)

Probability of

fatherhood

Risk of major

congenital

malformations in

offspring

Fossa et al. (151) 5,173 972 N/A 1854 (35.8%) 429 (23.1%) 8 and 14% after 5

and 10 years

No increased risk

Syse et al. (152) 7,127 1,731 N/A 567 (7.9%) N/A OR 0.8 after 5

yearsb
N/A

Madanat et al.

(150)

11,985 1,834 N/A 1,273 (10.6%) 366 (28.7%) RR 0.57 for first

childc
N/A

Magelssen et al.

(153)

463 142 8.4% 211 (45.6%) 72 (34.1%) 42% 10 years

post-diagnosisd
27 cases reporteda

OR = 1.8b

Stahl et al. (159) N/A 8,670 5.9% N/A N/A N/A Increased risk RR =

1.17a

Stensheim et al.

(154)

11,451 2,618 2.3% 3,511 (30.7%) 1,081 (30.8%) HR 0.74a N/A

Signorello et al.

(156)

1,128e 1,128e N/A None N/A N/A 36 cases reported.

no increased riska

Winther et al. (157) 722 722e N/A N/A N/A N/A No increased riska

Stensheim et al.

(158)

2,087 2,087e 2.6% 805 (38.6%) N/A N/A No increased riska

Gunnes et al. (155) 2,687 1,087 3.0% 734 (27.3%) 349 (47.5%) HR 0.77a No increased riska
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Data on Natural Fertility
Various studies have investigated natural fertility pre- and post-
treatment in TC survivors, with a broad range of results. Some
studies reported that 39 and 40% of TC patients achieved
paternity through natural means before starting any treatment
(160, 161) while others found a much higher pre-therapy fertility
rate of between 77.5 and 91% (141, 162, 163). This suggests
that, at least in a subgroup of patients, fertility may already be
compromised at the baseline.

After treatment, 52% of TC patients fathered a child, most
within 1 year (161). A natural pregnancy was achieved by
64% of seminoma patients treated with radiotherapy with
testicular shielding (164), although other authors (163) found
that radiotherapy was more harmful than chemotherapy,
and cumulative conception rates for patients treated with
radiotherapy were significantly lower than the rates for patients
treated with chemotherapy. Brydoy et al. found that after 2–
4 cisplatin-based chemotherapy cycles around 80% (85/106)
of TC patients fathered a child by natural conception and
the probability of fatherhood was inversely correlated with the
number of cycles (165). However, Matos et al. reported lower
natural post-therapy fertility rates, at 50% (74/150) (141). In Ping
et al.’s study, 21.9% (16/73) had conceived naturally and 26.0%
(19/73) by ART (166). The literature thus contains a wide range
of data, probably due to differences in irradiation procedures and
chemotherapy regimens; for this reason, as well as differences in
the patient cohorts and the aims of each study, the comparison of
different studies is difficult.

Data on ART
TC survivors seem to resort to ART more frequently than
the general population, with around three times the number
of pregnancies resulting from ART (154, 155). Lass et al.
hypothesized that the improvement in treatments and in the life
expectancy of cancer patients would lead to a greater number
of patients being offered the chance of semen cryopreservation
for use in ART (167). Kelleher et al. studied 833 patients with
different types of cancer (37% with TC) who had cryopreserved
their semen, finding that 7.7% (64 patients) had used it for
various assisted reproduction techniques, achieving a total of 29
pregnancies (168). In contrast, Chung et al., who also studied
patients with different types of cancer (including 42 with TC),
reported that just 4.7% (6/127 patients) had used cryopreserved
semen, resulting in two pregnancies, one by IVF and one using
ICSI (169). Agarwal et al. (170) and Schmidt et al. (171) found
higher success rates with ART, with respectively 4/9 TC patients
and 34/67 cancer patients (predominantly TC and Hodgkin’s
disease) achieving at least one child born following ART with
fresh or frozen semen. Magelssen et al. reported that 14/29 TC
patients had conceived at least one healthy child, while two
pregnancies had ended in spontaneous abortion (172). Later
studies found excellent pregnancy rates (above 50%) in the
partners of patients who had undergone semen cryopreservation
for various cancers, especially TC (173, 174). In contrast, Crha
et al. reported a somewhat lower success rate, at 29.5% (175).

Ping et al. (176), Freour et al. (177), and Bizet et al. (178)
all studied large caseloads of post-treatment cancer patients, but

these included few TC patients. These authors reported a lower
pregnancy rate following ART. Botchan et al. reported the use
of ART in 70/682 patients who had cryobanked semen prior
to cancer treatment, achieving 36 to-term pregnancies (179).
The previously cited study by Ping et al. (166) analyzed the
reproductive outcome of 117 TC patients post-treatment, finding
that 19 (26%) of the 73 patients attempting fatherhood had
been successful through ART with fresh semen (11 patients)
or cryobanked semen (8 patients), similar to the results of a
later study by Gil et al. (180). Zakova et al. (181) found a
higher pregnancy rate, at 47% (16/34 patients), and better results
were also reported by Molnar et al. (182) (57%; 4/7 patients).
Sonnenburg et al. (183) reported live births with ART in 82%
(9/11) of the couples that used banked semen, while Garcia
et al. (184) found live birth rates in cancer patients and cancer-
free infertile patients similar to the previous studies (Table 3B).
Finally, in a recent systematic review, Ferrari et al. (185) reported
that, with a relatively low use (8%) of cryobanked semen samples,
the cumulative percentage of couples achieving pregnancy by
ART was around 49%.

All these studies show that ART is a valid option for patients
who are unable to achieve a natural pregnancy. Although some
authors have hypothesized an additional risk of adverse effects in
the offspring after ART in these patients, this suspicion must be
confirmed by further study (186). The limitations of these studies
include the diversity of their caseloads and the different ART
methods used, which could influence the published results. In
fact, although some caseloads were relatively large, they generally
included survivors of different types of cancer in different organs,
which could affect the reproductive axis (and hence fertility)
in different ways. Furthermore, it is not always possible to
extrapolate the data for TC patients alone, who in some cases
amount to just a few individuals. Finally, since the oocyte has an
essential role in maintaining genome integrity and in reducing
the transmission of new mutations and chromosomal structural
aberrations to the offspring (187–189), another confounding
factor is that the clinical data of the female partners, which could
influence the outcome of ART, is often unreported.

CONCLUSIONS

Pre-therapy Sperm DNA Damage
Most papers found a high level of sperm DNA damage in TC
patients in comparison with healthy, fertile controls but no
significant difference between TC patients and infertile patients.
However, it should be stressed that these studies have various
limitations which affect the comparison of the cases and controls
and make it difficult to interpret the results.

Post-therapy Sperm DNA Damage
Some literature reports of treatment-induced sperm DNA
changes indicated increased chromatin damage for up to 2 years
after the end of the treatment. Such damage is more marked in
advanced stages, suggesting that sperm from patients with more
invasive TC is more vulnerable to antineoplastic treatments.

Post-therapy DNA damage is also influenced by the treatment
type and dose. The spermatogenic line seems to be more sensitive
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TABLE 4 | Summary of evidence and future suggestions.

Sperm DNA

damage

• Higher pre-treatment sperm DNA damage in TC patients in comparison with healthy, fertile controls but without significant differences

between TC and infertile patients.

• Sperm DNA damage detected for up to 2 years after the end of the treatment. Such damage is more marked in advanced stages and is

also influenced by the treatment type and dose.

Fatherhood

chance

• Population studies report a reduced (about 25% lower) reproductive capacity in cancer survivors than in the general population, regardless

of the tumor type.

• Studies of cohorts of TC survivors report a wide range of natural paternity rates (20–80%). However, due to heterogeneity, these data are

difficult to evaluate.

• TC survivors resort to ART more frequently than the general population.

• ART, including the use of cryobanked sperm, has a success rate of around 50%, especially with more advanced techniques (ICSI).

Congenital

anomalies

• Most authors did not find any increased risk of major anomalies (congenital or genetic abnormalities, perinatal death, low birth weight,

preterm birth) in the children of male cancer survivors treated with chemotherapy or radiotherapy.

• A few authors found an increased risk of congenital abnormalities, at their peak in children born within 2 years of their father’s cancer

diagnosis.

• Several authors reported miscarriages, but did not compare rates against cancer-free patients.

Future

suggestions

• Negative effects on sperm DNA structure which may affect the reproductive capacity of TC patients make adequate counseling essential

before beginning any potentially genotoxic treatment.

• Clinicians should also discuss post-treatment fertility as well as sperm cryopreservation strategies and the possible future use of ART.

• More high quality studies with adequate follow ups are needed to confirm previous observations of sperm DNA damage.

• Further studies investigating the extent of this damage might identify the time needed for the germ cell line to repair nuclear damage

and thus produce gametes with a reduced risk for the offspring.

to radiotherapy than to chemotherapy. However, the various
studies do identify negative effects of both TC and its treatments
on the DNA structure which could affect the reproductive
capacity of TC patients.

All these aspects should be discussed with the patient during
counseling before beginning any potentially genotoxic treatment,
to enable the protection of the patient’s future fertility, if desired,
through cryopreservation of undamaged semen or testicular
tissue.

In any case, additional studies with a greater statistical power
are needed to confirm the effects and persistence of sperm
DNA damage. Specifically, further characterization of the type of
damage seems necessary, in order to establish more precisely its
correlation with reproductive outcomes.

Fatherhood
Population studies reveal that north European cancer survivors
have an overall reproductive capacity about 24–30% lower than
that of the general population, regardless of the tumor type. Some
studies found that TC survivors had a 33% lower probability
of having a child within 5 years after diagnosis and 20%
lower after more than 5 years. The main limitation of these
studies is that they investigate cancer registers. Although these
registers enable large caseloads to be studied, they include all
types of cancer, and it is not always possible to extrapolate
data for TC survivors alone: data pertaining to the fertility
of these subjects vary considerably according to the tumor
site. Furthermore, they do not include important information
which might influence both patient and couple fertility, such
as type of treatment, physical condition of individual patients
and of the neonates, and information on the female partner
such as maternal age, parity, smoking, and behavior during
pregnancy.

Studies of cohorts of TC survivors report conflicting evidence
in relation to natural paternity, with rates ranging from 20 to

80%. Moreover, although they demonstrate that paternity for
TC patients is possible, these studies are difficult to compare
due to their inclusion of different treatment types, age of onset,
and above all sample size. TC survivors seem to resort to ART
more frequently than the general population, with around three
times the number of pregnancies resulting from ART. In fact,
ART has increased the chance of fatherhood for these patients,
including through the use of cryobanked sperm. The studies
included in this review demonstrate a success rate of around
50%, especially with more advanced techniques (ICSI); again,
however, their analysis is limited by their different treatment
types and the inconsistent presence of data on the female
partner.

Congenital Anomalies
There are contradictory reports of the incidence of any effects
in the offspring of fathers treated with antineoplastic therapies.
Most authors did not find any increased risk of congenital
or genetic abnormalities, perinatal death, low birth weight or
preterm birth in the children of male cancer survivors treated
with chemotherapy, or radiotherapy. However, others reported
an increased risk of congenital abnormalities, at their peak in
children born within 2 years of their father’s cancer diagnosis.
This suggests that they are caused by the effect of the treatment on
sperm DNA quality, as highlighted by sperm chromatin studies
(Table 4).

In conclusion, oncofertility is a highly interesting field,
especially in TC survivors, as the marked improvement in
prognosis in recent decades has caused attention to shift
to quality of life and reproductive health. Sperm chromatin
damage associated with genome instability is the most important
reproductive side effect related to themalignancy or its treatment.
Studies investigating the extent of this damage could have a
considerable translational importance in the management of
cancer patients, as they could identify the time needed for
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the germ cell line to repair nuclear damage and thus produce
gametes with a reduced risk for the offspring. However, given
the ambiguity of the results of the studies reported in the
literature to date, further studies with a greater statistical power
are needed.

AUTHOR CONTRIBUTIONS

DP and FP conceived the work, identified the articles, and wrote
the paper. FL and AL revised the paper critically and gave final
approval. All authors read and approved the final manuscript.

FUNDING

This work was supported by a grant from the Italian Ministry
of Education and Research (MIUR-PRIN 2015- 2015XSNA83-
002) and the University of Rome La Sapienza Faculty of
Medicine.

ACKNOWLEDGMENTS

The authors wish to thankMarie-HélèneHayles for her assistance
in the English translation of the manuscript.

REFERENCES

1. Dimitriadis F, Tsiampali C, Chaliasos N, Tsounapi P, Takenaka A, Sofikitis

N. The Sertoli cell as the orchestra conductor of spermatogenesis:

spermatogenic cells dance to the tune of testosterone. Hormones (2015)

14:479–03. doi: 10.14310/horm.2002.1633

2. Gunes S, Al-SadaanM, Agarwal A. Spermatogenesis, DNA damage andDNA

repair mechanisms in male infertility. Reprod Biomed. (2015) 31:309–19.

doi: 10.1016/j.rbmo.2015.06.010

3. Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics

during spermiogenesis. Biochim Biophys Acta (2014) 1839:155–68.

doi: 10.1016/j.bbagrm.2013.08.004

4. Steger K, Pauls K, Klonisch T, Franke FE, Bergmann M. Expression

of protamine-1 and−2 mRNA during human spermiogenesis. Mol Hum

Reprod. (2000) 6:219–25. doi: 10.1093/molehr/6.3.219

5. Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition

nuclear proteins in spermiogenesis. Chromosoma (2003) 111:483–8.

doi: 10.1007/s00412-002-0227-z

6. Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JBM, Carrell DT. DNA

integrity is compromised in protamine-deficient human sperm. J Androl.

(2005) 26:741–8. doi: 10.2164/jandrol.05063

7. Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol.

(2007) 8:227. doi: 10.1186/gb-2007-8-9-227

8. Castillo J, Simon L, de Mateo S, Lewis S, Oliva R. Protamine/DNA ratios and

DNA damage in native and density gradient centrifuged sperm from infertile

patients. J Androl. (2011) 32:324–32. doi: 10.2164/jandrol.110.011015

9. De Mateo S, Ramos L, de Boer P, Meistrich M, Oliva R. Protamine

2 precursors and processing. Protein Pept Lett. (2011) 18:778–85.

doi: 10.2174/092986611795713998

10. Oliva R, Castillo J. Proteomics and the genetics of sperm chromatin

condensation. Asian J Androl. (2011) 13:24–30. doi: 10.1038/aja.2010.65

11. Grassetti D, Paoli D, Gallo M, D’Ambrosio A, Lombardo F, Lenzi A,

Gandini L. Protamine-1 and−2 polymorphisms and gene expression in

male infertility: an Italian study. J Endocrinol Invest. (2012) 35:882–8.

doi: 10.3275/8111

12. Ward WS. Deoxyribonucleic acid loop domain tertiary structure

in mammalian spermatozoa. Biol Reprod. (1993) 48:1193–201.

doi: 10.1095/biolreprod48.6.1193

13. WardWS. Regulating DNA supercoiling: sperm points the way. Biol Reprod.

(2011) 84:841–3. doi: 10.1095/biolreprod.111.090951

14. Kramer JA, Krawetz SA. Nuclear matrix interactions within the sperm

genome. J Biol Chem. (1996) 271:11619–22. doi: 10.1074/jbc.271.20.11619

15. Sotolongo B, Ward WS. DNA loop domain organization: the three-

dimensional genomic code. J Cell Biochem Suppl. (2000) 35(Suppl.):23–6.

doi: 10.1002/1097-4644(2000)79:35%3C23::AID-JCB1122%3E3.0.CO;2-N

16. Ward WS. Function of sperm chromatin structural elements in

fertilization and development. Mol Hum Reprod. (2010) 16:30–6.

doi: 10.1093/molehr/gap080

17. Gawecka JE, Ribas-Maynou J, Benet J, Ward WS. A model for the control of

DNA integrity by the sperm nuclear matrix. Asian J Androl. (2015) 17:610–5.

doi: 10.4103/1008-682X.153853

18. Ribas-Maynou J, Gawecka JE, Benet J, Ward WS. Double-stranded DNA

breaks hidden in the neutral Comet assay suggest a role of the sperm nuclear

matrix in DNA integrity maintenance. Mol Hum Reprod. (2014) 20:330–40.

doi: 10.1093/molehr/gat090

19. Shaman JA, Prisztoka R, Ward WS. Topoisomerase IIB and an extracellular

nuclease interact to digest sperm DNA in an apoptotic-like manner. Biol

Reprod. (2006) 75:741–8. doi: 10.1095/biolreprod.106.055178

20. De Campos-Nebel M, Larripa I, González-Cid M. Topoisomerase II-

mediated DNA damage is differently repaired during the cell cycle by non-

homologous end joining and homologous recombination. PLoS ONE (2010)

5:e12541. doi: 10.1371/journal.pone.0012541

21. Aitken RJ, BakerMA.Oxidative stress andmale reproductive biology.Reprod

Fertil Dev. (2004) 16:581–8. doi: 10.1071/RD03089

22. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human

spermatozoa.Mol Hum Reprod. (2010) 16:3–13. doi: 10.1093/molehr/gap059

23. Smith TB, De Iuliis GN, Lord T, Aitken RJ. The senescence-accelerated

mouse prone 8 as a model for oxidative stress and impaired DNA

repair in the male germ line. Reproduction (2013) 146:253–62.

doi: 10.1530/REP-13-0186

24. McPherson SM, Longo FJ. Nicking of rat spermatid and spermatozoa DNA:

possible involvement of DNA topoisomerase II.Dev Biol. (1993) 158:122–30.

doi: 10.1006/dbio.1993.1173

25. Boaz SM, Dominguez K, Shaman JA, Ward WS. Mouse spermatozoa

contain a nuclease that is activated by pretreatment with EGTA and

subsequent calcium incubation. J Cell Biochem. (2008) 103:1636–45.

doi: 10.1002/jcb.21549

26. Dominguez K, Ward WS. A novel nuclease activity that is activated

by Ca(2+) chelated to EGTA. Syst Biol Reprod Med. (2009) 55:193–9.

doi: 10.3109/19396360903234052

27. Blanco-Rodriguez J, Martinez-Garcia C. Induction of apoptotic cell death

in the seminiferous tubule of the adult rat testis: assessment of the

germ cell types that exhibit the ability to enter apoptosis after hormone

suppression by oestradiol treatment. Int J Androl. (1996) 19:237–47.

doi: 10.1111/j.1365-2605.1996.tb00468.x

28. Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P. An early and massive

wave of germinal cell apoptosis is required for the development of functional

spermatogenesis. EMBO J. (1997) 16:2262–70. doi: 10.1093/emboj/16.9.2262

29. Sakkas D, Seli E, Bizzaro D, Tarozzi N, Manicardi GC. Abnormal

spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear

remodelling during spermatogenesis. Reprod Biomed. (2003) 7:428–32.

doi: 10.1016/S1472-6483(10)61886-X

30. Odorisio T, Rodriguez TA, Evans EP, Clarke AR, Burgoyne PS. The

meiotic checkpoint monitoring synapsis eliminates spermatocytes

via p53-independent apoptosis. Nat Genet. (1998) 18:257–61.

doi: 10.1038/ng0398-257

31. Sakkas D, Moffatt O, Manicardi GC, Mariethoz E, Tarozzi N, Bizzaro

D. Nature of DNA damage in ejaculated human spermatozoa and

the possible involvement of apoptosis. Biol Reprod. (2002) 66:1061–7.

doi: 10.1095/biolreprod66.4.1061

32. Sotolongo B, Huang TTF, Isenberger E, Ward WS. An endogenous

nuclease in hamster, mouse, and human spermatozoa cleaves

Frontiers in Endocrinology | www.frontiersin.org 13 September 2018 | Volume 9 | Article 506

https://doi.org/10.14310/horm.2002.1633
https://doi.org/10.1016/j.rbmo.2015.06.010
https://doi.org/10.1016/j.bbagrm.2013.08.004
https://doi.org/10.1093/molehr/6.3.219
https://doi.org/10.1007/s00412-002-0227-z
https://doi.org/10.2164/jandrol.05063
https://doi.org/10.1186/gb-2007-8-9-227
https://doi.org/10.2164/jandrol.110.011015
https://doi.org/10.2174/092986611795713998
https://doi.org/10.1038/aja.2010.65
https://doi.org/10.3275/8111
https://doi.org/10.1095/biolreprod48.6.1193
https://doi.org/10.1095/biolreprod.111.090951
https://doi.org/10.1074/jbc.271.20.11619
https://doi.org/10.1002/1097-4644(2000)79:35%3C23::AID-JCB1122%3E3.0.CO;2-N
https://doi.org/10.1093/molehr/gap080
https://doi.org/10.4103/1008-682X.153853
https://doi.org/10.1093/molehr/gat090
https://doi.org/10.1095/biolreprod.106.055178
https://doi.org/10.1371/journal.pone.0012541
https://doi.org/10.1071/RD03089
https://doi.org/10.1093/molehr/gap059
https://doi.org/10.1530/REP-13-0186
https://doi.org/10.1006/dbio.1993.1173
https://doi.org/10.1002/jcb.21549
https://doi.org/10.3109/19396360903234052
https://doi.org/10.1111/j.1365-2605.1996.tb00468.x
https://doi.org/10.1093/emboj/16.9.2262
https://doi.org/10.1016/S1472-6483(10)61886-X
https://doi.org/10.1038/ng0398-257
https://doi.org/10.1095/biolreprod66.4.1061
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Paoli et al. Sperm DNA and Testicular Cancer

DNA into loop-sized fragments. J Androl. (2005) 26:272–80.

doi: 10.1002/j.1939-4640.2005.tb01095.x

33. Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C,

et al. Investigation on the origin of sperm DNA fragmentation: role of

apoptosis, immaturity and oxidative stress. Mol Med. (2015) 21:109–22.

doi: 10.2119/molmed.2014.00158

34. Leduc F, Nkoma GB, Boissonneault G. Spermiogenesis and DNA repair: a

possible etiology of human infertility and genetic disorders. Syst Biol Reprod

Med. (2008) 54:3–10. doi: 10.1080/19396360701876823

35. Gonzalez-Marin C, Gosalvez J, Roy R. Types, causes, detection and repair of

DNA fragmentation in animal and human sperm cells. Int J Mol Sci. (2012)

13:14026–52. doi: 10.3390/ijms131114026

36. Ahmed EA, de Boer P, Philippens MEP, Kal HB, de Rooij DG. Parp1-XRCC1

and the repair of DNA double strand breaks in mouse round spermatids.

Mutat Res. (2010) 683:84–90. doi: 10.1016/j.mrfmmm.2009.10.011

37. Ahmed EA, van der Vaart A, Barten A, Kal HB, Chen J, Lou Z, et al.

Differences in DNA double strand breaks repair in male germ cell types:

lessons learned from a differential expression of Mdc1 and 53BP1. DNA

Repair (2007) 6:1243–54. doi: 10.1016/j.dnarep.2007.02.011

38. Lu LY, Yu X. CHFR is important for the survival of male premeiotic germ

cells. Cell Cycle (2015) 14:3454–60. doi: 10.1080/15384101.2015.1093701

39. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human

embryo development is related to sperm DNA fragmentation. Hum Reprod.

(2004) 19:611–5. doi: 10.1093/humrep/deh127

40. Borini A, Tarozzi N, Bizzaro D, Bonu MA, Fava L, Flamigni C, et al.

Sperm DNA fragmentation: paternal effect on early post-implantation

embryo development in ART. Hum Reprod. (2006) 21:2876–81.

doi: 10.1093/humrep/del251

41. Menezo YJ, Russo G, Tosti E, El Mouatassim S, Benkhalifa M. Expression

profile of genes coding for DNA repair in human oocytes using pangenomic

microarrays, with a special focus on ROS linked decays. J Assist Reprod Genet.

(2007) 24:513–20. doi: 10.1007/s10815-007-9167-0

42. Zidi-Jrah I, Hajlaoui A, Mougou-Zerelli S, Kammoun M, Meniaoui

I, Sallem A, et al. Relationship between sperm aneuploidy, sperm

DNA integrity, chromatin packaging, traditional semen parameters,

and recurrent pregnancy loss. Fertil Steril. (2016) 105:58–64.

doi: 10.1016/j.fertnstert.2015.09.041

43. Paoli D, Gallo M, Rizzo F, Spano M, Leter G, Lombardo F, et al.

Testicular cancer and sperm DNA damage: short- and long-term

effects of antineoplastic treatment. Andrology (2015) 3:122–128.

doi: 10.1111/j.2047-2927.2014.00250.x

44. Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between

two markers of sperm DNA integrity, DNA denaturation and DNA

fragmentation, in fertile and infertile men. Fertil Steril. (2001) 75:674–7.

doi: 10.1016/S0015-0282(00)01796-9

45. Suganuma R, Yanagimachi R, Meistrich ML. Decline in fertility of mouse

sperm with abnormal chromatin during epididymal passage as revealed by

ICSI. Hum Reprod. (2005) 20:3101–8. doi: 10.1093/humrep/dei169

46. Lewis SE, Aitken RJ. DNA damage to spermatozoa has impacts

on fertilization and pregnancy. Cell Tissue Res. (2005) 322:33–41.

doi: 10.1007/s00441-005-1097-5

47. Carlini T, Paoli D, Pelloni M, Faja F, Dal Lago A, Lombardo F, et al. Sperm

DNA fragmentation in Italian couples with recurrent pregnancy loss. Reprod

Biomed. (2017) 34:58–65. doi: 10.1016/j.rbmo.2016.09.014

48. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter

G. Sperm chromatin damage impairs human fertility. The Danish

First Pregnancy Planner Study Team. Fertil Steril. (2000) 73:43–50.

doi: 10.1016/S0015-0282(99)00462-8

49. Bungum M, Spano M, Humaidan P, Eleuteri P, Rescia M, Giwercman A.

Sperm chromatin structure assay parameters measured after density gradient

centrifugation are not predictive for the outcome of ART. Hum Reprod.

(2008) 23:4–10. doi: 10.1093/humrep/dem353

50. Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst

Biol Reprod Med. (2011) 57:78–85. doi: 10.3109/19396368.2010.515704

51. Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is

associated with an increased risk of pregnancy loss after IVF and ICSI:

systematic review and meta-analysis. Hum Reprod. (2008) 23:2663–8.

doi: 10.1093/humrep/den321

52. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S,

et al. The effect of sperm DNA fragmentation on miscarriage rates: a

systematic review and meta-analysis. Hum Reprod. (2012) 27:2908–17.

doi: 10.1093/humrep/des261

53. Simon L, Zini A, Dyachenko A, Ciampi A, Carrell DT. A systematic review

and meta-analysis to determine the effect of sperm DNA damage on in vitro

fertilization and intracytoplasmic sperm injection outcome. Asian J Androl.

(2017) 19:80–90. doi: 10.4103/1008-682X.182822

54. The Practice Committee of the American Society for ReproductiveMedicine.

The clinical utility of sperm DNA integrity testing: a guideline. Fertil Steril.

(2013) 99:673–77. doi: 10.1016/j.fertnstert.2012.12.049

55. The Practice Committee of the American Society for ReproductiveMedicine.

Diagnostic evaluation of the infertile male: a committee opinion. Fertil Steril.

(2015) 103:e18–25. doi: 10.1016/j.fertnstert.2014.12.103

56. Zhao J, Zhang Q, Wang Y, Li Y. Whether sperm deoxyribonucleic

acid fragmentation has an effect on pregnancy and miscarriage after

in vitro fertilization/intracytoplasmic sperm injection: a systematic

review and meta-analysis. Fertil Steril. (2014) 102:998–1005.e8.

doi: 10.1016/j.fertnstert.2014.06.033

57. Tamburrino L, Marchiani S, Montoya M, Elia Marino F, Natali I, Cambi M,

et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J

Androl. (2012) 14:24–31. doi: 10.1038/aja.2011.59

58. Simon L, Liu L, Murphy K, Ge S, Hotaling J, Aston KI, Emery B, et al.

Comparative analysis of three sperm DNA damage assays and sperm nuclear

protein content in couples undergoing assisted reproduction treatment.

Hum Reprod. (2014) 29:904–17. doi: 10.1093/humrep/deu040

59. Asmarinah, Syauqy A, Umar LA, Lestari SW, Mansyur E, Hestiantoro

A, et al. Sperm chromatin maturity and integrity correlated to zygote

development in ICSI program. Syst Biol Reprod Med. (2016) 62:309–16.

doi: 10.1080/19396368.2016.1210695

60. Alvarez JG, Sharma RK, Ollero M, Saleh RA, Lopez MC, Thomas AJJ, et al.

Increased DNA damage in sperm from leukocytospermic semen samples

as determined by the sperm chromatin structure assay. Fertil Steril. (2002)

78:319–29. doi: 10.1016/S0015-0282(02)03201-6

61. Agarwal A, Mulgund A, Alshahrani S, Assidi M, Abuzenadah AM, Sharma

R, et al. Reactive oxygen species and sperm DNA damage in infertile men

presenting with low level leukocytospermia. Reprod Biol Endocrinol. (2014)

12:126. doi: 10.1186/1477-7827-12-126

62. Pourmasumi S, Sabeti P, Rahiminia T, Mangoli E, Tabibnejad N, Talebi AR.

The etiologies of DNA abnormalities in male infertility: an assessment and

review. Int J Reprod Biomed. (2017) 15:331–44. doi: 10.29252/ijrm.15.6.331

63. Arabi M. Nicotinic infertility: assessing DNA and plasma membrane

integrity of human spermatozoa. Andrologia (2004) 36:305–10.

doi: 10.1111/j.1439-0272.2004.00623.x

64. Elshal MF, El-Sayed IH, Elsaied MA, El-Masry SA, Kumosani TA. Sperm

head defects and disturbances in spermatozoal chromatin and DNA

integrities in idiopathic infertile subjects: association with cigarette smoking.

Clin Biochem. (2009) 42:589–94. doi: 10.1016/j.clinbiochem.2008.11.012

65. de la Rochebrochard E, Thonneau P. Paternal age and maternal age are risk

factors formiscarriage; results of amulticentre European study.HumReprod.

(2002) 17:1649–1656. doi: 10.1093/humrep/17.6.1649

66. Wyrobek AJ, Eskenazi B, Young S, Arnheim N, Tiemann-Boege I, Jabs EW,

et al. Advancing age has differential effects on DNA damage, chromatin

integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci

USA. (2006) 103:9601–06. doi: 10.1073/pnas.0506468103

67. La Vignera S, Condorelli R, D’Agata R, Vicari E, Calogero AE. Semen

alterations and flow-citometry evaluation in patients with male accessory

gland infections. J Endocrinol Invest. (2012) 35:219–23. doi: 10.3275/7924

68. Roque M, Esteves SC. Effect of varicocele repair on sperm DNA

fragmentation: a review. Int Urol Nephrol. (2018) 50:583–603.

doi: 10.1007/s11255-018-1839-4

69. Kobayashi H, Larson K, Sharma RK, Nelson DR, Evenson DP, Toma

H, et al. DNA damage in patients with untreated cancer as measured

by the sperm chromatin structure assay. Fertil Steril. (2001) 75:469–75.

doi: 10.1016/S0015-0282(00)01740-4

70. Gandini L, Lombardo F, Salacone P, Paoli D, Anselmo AP, Culasso F, et al.

Testicular cancer and Hodgkin’s disease: evaluation of semen quality. Hum

Reprod. (2003) 18:796–801. doi: 10.1093/humrep/deg163

Frontiers in Endocrinology | www.frontiersin.org 14 September 2018 | Volume 9 | Article 506

https://doi.org/10.1002/j.1939-4640.2005.tb01095.x
https://doi.org/10.2119/molmed.2014.00158
https://doi.org/10.1080/19396360701876823
https://doi.org/10.3390/ijms131114026
https://doi.org/10.1016/j.mrfmmm.2009.10.011
https://doi.org/10.1016/j.dnarep.2007.02.011
https://doi.org/10.1080/15384101.2015.1093701
https://doi.org/10.1093/humrep/deh127
https://doi.org/10.1093/humrep/del251
https://doi.org/10.1007/s10815-007-9167-0
https://doi.org/10.1016/j.fertnstert.2015.09.041
https://doi.org/10.1111/j.2047-2927.2014.00250.x
https://doi.org/10.1016/S0015-0282(00)01796-9
https://doi.org/10.1093/humrep/dei169
https://doi.org/10.1007/s00441-005-1097-5
https://doi.org/10.1016/j.rbmo.2016.09.014
https://doi.org/10.1016/S0015-0282(99)00462-8
https://doi.org/10.1093/humrep/dem353
https://doi.org/10.3109/19396368.2010.515704
https://doi.org/10.1093/humrep/den321
https://doi.org/10.1093/humrep/des261
https://doi.org/10.4103/1008-682X.182822
https://doi.org/10.1016/j.fertnstert.2012.12.049
https://doi.org/10.1016/j.fertnstert.2014.12.103
https://doi.org/10.1016/j.fertnstert.2014.06.033
https://doi.org/10.1038/aja.2011.59
https://doi.org/10.1093/humrep/deu040
https://doi.org/10.1080/19396368.2016.1210695
https://doi.org/10.1016/S0015-0282(02)03201-6
https://doi.org/10.1186/1477-7827-12-126
https://doi.org/10.29252/ijrm.15.6.331
https://doi.org/10.1111/j.1439-0272.2004.00623.x
https://doi.org/10.1016/j.clinbiochem.2008.11.012
https://doi.org/10.1093/humrep/17.6.1649
https://doi.org/10.1073/pnas.0506468103
https://doi.org/10.3275/7924
https://doi.org/10.1007/s11255-018-1839-4
https://doi.org/10.1016/S0015-0282(00)01740-4
https://doi.org/10.1093/humrep/deg163
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Paoli et al. Sperm DNA and Testicular Cancer

71. O’Flaherty C, Vaisheva F, Hales BF, Chan P, Robaire B. Characterization of

sperm chromatin quality in testicular cancer and Hodgkin’s lymphoma

patients prior to chemotherapy. Hum Reprod. (2008) 23:1044–52.

doi: 10.1093/humrep/den081

72. Meistrich ML. Effects of chemotherapy and radiotherapy on

spermatogenesis in humans. Fertil Steril. (2013) 100:1180–86.

doi: 10.1016/j.fertnstert.2013.08.010

73. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin,

impact on reproductive outcome, and analysis. Fertil Steril. (2010) 93:1027–

36. doi: 10.1016/j.fertnstert.2009.10.046

74. Schulte RT, Ohl DA, Sigman M, Smith GD. Sperm DNA damage in male

infertility: etiologies, assays, and outcomes. J Assist Reprod Genet. (2010)

27:3–12. doi: 10.1007/s10815-009-9359-x

75. Rajpert-De Meyts E, McGlynn KA, Okamoto K, Jewett MAS,

Bokemeyer C. Testicular germ cell tumours. Lancet (2016) 387:1762–74.

doi: 10.1016/S0140-6736(15)00991-5

76. Morrish DW, Venner PM, Siy O, Barron G, Bhardwaj D, Outhet D.

Mechanisms of endocrine dysfunction in patients with testicular cancer. J

Natl Cancer Inst. (1990) 82:412–8. doi: 10.1093/jnci/82.5.412

77. Sharpe RM, Skakkebaek NE. Are oestrogens involved in falling sperm counts

and disorders of the male reproductive tract? Lancet (1993) 341:1392–5.

doi: 10.1016/0140-6736(93)90953-E

78. Jensen TK, Toppari J, Keiding N, Skakkebaek NE. Do environmental

estrogens contribute to the decline in male reproductive health? Clin Chem.

(1995) 41:1896–901.

79. Skakkebaek NE. Trends in male reproductive health. Environmental aspects.

Adv Exp Med Biol. (1998) 444:1–4. doi: 10.1007/978-1-4899-0089-0_1

80. Skakkebaek NE, Rajpert-De Meyts E, Jorgensen N, Carlsen E,

Petersen PM, Giwercman A, et al. Germ cell cancer and disorders of

spermatogenesis: an environmental connection? APMIS (1998) 106:3–11.

doi: 10.1111/j.1699-0463.1998.tb01314.x

81. Biggs ML, Davis MD, Eaton DL, Weiss NS, Barr DB, Doody DR, et al. Serum

organochlorine pesticide residues and risk of testicular germ cell carcinoma:

a population-based case-control study. Cancer Epidemiol Biomarkers Prev.

(2008) 17:2012–8. doi: 10.1158/1055-9965.EPI-08-0032

82. Hardell L, van Bavel B, Lindstrom G, Carlberg M, Dreifaldt AC,

Wijkstrom H, et al. Increased concentrations of polychlorinated biphenyls,

hexachlorobenzene, and chlordanes in mothers of men with testicular

cancer. Environ Health Perspect. (2003) 111:930–4. doi: 10.1289/ehp.5816

83. Hardell L, Van Bavel B, Lindstrom G, Carlberg M, Eriksson M,

Dreifaldt AC, et al. Concentrations of polychlorinated biphenyls in

blood and the risk for testicular cancer. Int J Androl. (2004) 27:282–90.

doi: 10.1111/j.1365-2605.2004.00489.x

84. Hardell L, Bavel B, Lindstrom G, Eriksson M, Carlberg M. In utero exposure

to persistent organic pollutants in relation to testicular cancer risk. Int J

Androl. (2006) 29:228–34. doi: 10.1111/j.1365-2605.2005.00622.x

85. McGlynn KA, Quraishi SM, Graubard BI, Weber J-P, Rubertone M V,

Erickson RL. Persistent organochlorine pesticides and risk of testicular germ

cell tumors. J Natl Cancer Inst. (2008) 100:663–71. doi: 10.1093/jnci/djn101

86. McGlynn KA, Quraishi SM, Graubard BI, Weber J-P, Rubertone

M V, Erickson RL. Polychlorinated biphenyls and risk of

testicular germ cell tumors. Cancer Res. (2009) 69:1901–9.

doi: 10.1158/0008-5472.CAN-08-3935

87. Purdue MP, Engel LS, Langseth H, Needham LL, Andersen A, Barr DB, et al.

Prediagnostic serum concentrations of organochlorine compounds and risk

of testicular germ cell tumors. Environ Health Perspect. (2009) 117:1514–9.

doi: 10.1289/ehp.0800359

88. Paoli D, Giannandrea F, Gallo M, Turci R, Cattaruzza MS, Lombardo F,

et al. Exposure to polychlorinated biphenyls and hexachlorobenzene, semen

quality and testicular cancer risk. J Endocrinol Invest. (2015) 38:745–52.

doi: 10.1007/s40618-015-0251-5

89. AIRTUM Working Group. Italian cancer figures, report 2014: Prevalence

and cure of cancer in Italy. Epidemiol Prev. (2014) 38:1–122. Available online

at: http://www.epiprev.it/pubblicazione/epidemiol-prev-2014-38-6-suppl1

90. Crocetti E. [Numbers. Testis cancer is the most frequent neoplasia among

young men]. Epidemiol Prev. (2009) 33:145.

91. Dal Maso L, Guzzinati S, Buzzoni C, Capocaccia R, Serraino D, Caldarella A,

et al. Long-term survival, prevalence, and cure of cancer: a population-based

estimation for 818 902 Italian patients and 26 cancer types. Ann Oncol Off J

Eur Soc Med Oncol. (2014) 25:2251–60. doi: 10.1093/annonc/mdu383

92. Trabert B, Chen J, Devesa SS, Bray F, McGlynn KA. International patterns

and trends in testicular cancer incidence, overall and by histologic subtype,

1973-2007. Andrology (2015) 3:4–12. doi: 10.1111/andr.293

93. Hanna NH, Einhorn LH. Testicular cancer–discoveries and updates. N Engl

J Med. (2014) 371:2005–16. doi: 10.1056/NEJMra1407550

94. Looijenga LHJ, Stoop H, Biermann K. Testicular cancer:

biology and biomarkers. Virchows Arch. (2014) 464:301–13.

doi: 10.1007/s00428-013-1522-1

95. Gandini L, Sgro P, Lombardo F, Paoli D, Culasso F, Toselli L, et al. Effect of

chemo- or radiotherapy on sperm parameters of testicular cancer patients.

Hum Reprod. (2006) 21:2882–9. doi: 10.1093/humrep/del167

96. Meistrich ML. Male gonadal toxicity. Pediatr Blood Cancer (2009) 53:261–6.

doi: 10.1002/pbc.22004

97. Lewis SE, Aitken RJ, Conner SJ, Iuliis GD, Evenson DP, Henkel R, et al. The

impact of sperm DNA damage in assisted conception and beyond: recent

advances in diagnosis and treatment. Reprod Biomed. (2013) 27:325–37.

doi: 10.1016/j.rbmo.2013.06.014

98. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K,

et al. Utility of the sperm chromatin structure assay as a diagnostic and

prognostic tool in the human fertility clinic.HumReprod. (1999) 14:1039–49.

doi: 10.1093/humrep/14.4.1039

99. Agarwal A, Said TM. Role of sperm chromatin abnormalities and

DNA damage in male infertility. Hum Reprod. (2003) 9:331–45.

doi: 10.1093/humupd/dmg027

100. GorczycaW, Traganos F, Jesionowska H, Darzynkiewicz Z. Presence of DNA

strand breaks and increased sensitivity of DNA in situ to denaturation in

abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell

Res. (1993) 207:202–5. doi: 10.1006/excr.1993.1182

101. Gandini L, Lombardo F, Paoli D, Caponecchia L, Familiari G, Verlengia C,

et al. Study of apoptotic DNA fragmentation in human spermatozoa. Hum

Reprod. (2000) 15:830–9. doi: 10.1093/humrep/15.4.830

102. Muratori M, Forti G, Baldi E. Comparing flow cytometry and fluorescence

microscopy for analyzing human sperm DNA fragmentation by TUNEL

labeling. Cytometry A (2008) 73:785–7. doi: 10.1002/cyto.a.20615

103. Singh NP, Danner DB, Tice RR, McCoy MT, Collins GD, Schneider EL.

Abundant alkali-sensitive sites in DNA of human andmouse sperm. Exp Cell

Res. (1989) 184:461–70. doi: 10.1016/0014-4827(89)90344-3

104. Kumar K, Lewis S, Vinci S, Riera-Escamilla A, Fino MG, Tamburrino L, et al.

Evaluation of sperm DNA quality in men presenting with testicular cancer

and lymphoma using alkaline and neutral Comet assays. Andrology (2018)

6:230–35. doi: 10.1111/andr.12429

105. Anderson D, Dobrzynska MM, Yu TW, Gandini L, Cordelli E, Spano M.

DNA integrity in human sperm. Teratog Carcinog Mutagen (1997) 17:97–

102.

106. Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W. A comparison

of baseline and induced DNA damage in human spermatozoa from fertile

and infertile men, using a modified comet assay. Mol Hum Reprod. (1996)

2:613–9. doi: 10.1093/molehr/2.8.613

107. Evenson DP, Klein FA, Whitmore WF, Melamed MR. Flow cytometric

evaluation of sperm from patients with testicular carcinoma. J Urol. (1984)

132:1220–5. doi: 10.1016/S0022-5347(17)50109-3

108. Fossa SD, Melvik JE, Juul NO, Pettersen EO, Theodorsen L. DNA flow

cytometry in sperm cells from unilaterally orchiectomized patients with

testicular cancer before further treatment. Cytometry (1989) 10:345–50.

doi: 10.1002/cyto.990100315

109. Sailer BL, Jost LK, Evenson DP. Mammalian sperm DNA susceptibility to

in situ denaturation associated with the presence of DNA strand breaks

as measured by the terminal deoxynucleotidyl transferase assay. J Androl.

(1995) 16:80–7.

110. Aravindan GR, Bjordahl J, Jost LK, Evenson DP. Susceptibility of human

sperm to in situ DNA denaturation is strongly correlated with DNA strand

breaks identified by single-cell electrophoresis. Exp Cell Res. (1997) 236:231–

7. doi: 10.1006/excr.1997.3719

111. Agarwal S, Tafel AA, Kanaar R. DNA double-strand break repair

and chromosome translocations. DNA Repair (2006) 5:1075–81.

doi: 10.1016/j.dnarep.2006.05.029

Frontiers in Endocrinology | www.frontiersin.org 15 September 2018 | Volume 9 | Article 506

https://doi.org/10.1093/humrep/den081
https://doi.org/10.1016/j.fertnstert.2013.08.010
https://doi.org/10.1016/j.fertnstert.2009.10.046
https://doi.org/10.1007/s10815-009-9359-x
https://doi.org/10.1016/S0140-6736(15)00991-5
https://doi.org/10.1093/jnci/82.5.412
https://doi.org/10.1016/0140-6736(93)90953-E
https://doi.org/10.1007/978-1-4899-0089-0_1
https://doi.org/10.1111/j.1699-0463.1998.tb01314.x
https://doi.org/10.1158/1055-9965.EPI-08-0032
https://doi.org/10.1289/ehp.5816
https://doi.org/10.1111/j.1365-2605.2004.00489.x
https://doi.org/10.1111/j.1365-2605.2005.00622.x
https://doi.org/10.1093/jnci/djn101
https://doi.org/10.1158/0008-5472.CAN-08-3935
https://doi.org/10.1289/ehp.0800359
https://doi.org/10.1007/s40618-015-0251-5
http://www.epiprev.it/pubblicazione/epidemiol-prev-2014-38-6-suppl1
https://doi.org/10.1093/annonc/mdu383
https://doi.org/10.1111/andr.293
https://doi.org/10.1056/NEJMra1407550
https://doi.org/10.1007/s00428-013-1522-1
https://doi.org/10.1093/humrep/del167
https://doi.org/10.1002/pbc.22004
https://doi.org/10.1016/j.rbmo.2013.06.014
https://doi.org/10.1093/humrep/14.4.1039
https://doi.org/10.1093/humupd/dmg027
https://doi.org/10.1006/excr.1993.1182
https://doi.org/10.1093/humrep/15.4.830
https://doi.org/10.1002/cyto.a.20615
https://doi.org/10.1016/0014-4827(89)90344-3
https://doi.org/10.1111/andr.12429
https://doi.org/10.1093/molehr/2.8.613
https://doi.org/10.1016/S0022-5347(17)50109-3
https://doi.org/10.1002/cyto.990100315
https://doi.org/10.1006/excr.1997.3719
https://doi.org/10.1016/j.dnarep.2006.05.029
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Paoli et al. Sperm DNA and Testicular Cancer

112. Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P. DNA

double-strand break repair in parental chromatin of mouse zygotes, the

first cell cycle as an origin of de novo mutation. Hum Mol Genet. (2008)

17:1922–37. doi: 10.1093/hmg/ddn090
113. Fossa SD, De Angelis P, Kraggerud SM, Evenson D, Theodorsen L, Clausen

OP. Prediction of posttreatment spermatogenesis in patients with testicular

cancer by flow cytometric sperm chromatin structure assay. Cytometry

(1997) 30:192–6.
114. Stahl O, Eberhard J, Jepson K, Spano M, Cwikiel M, Cavallin-Stahl E,

et al. The impact of testicular carcinoma and its treatment on sperm DNA

integrity. Cancer (2004) 100:1137–44. doi: 10.1002/cncr.20068
115. Stahl O, Eberhard J, Jepson K, Spano M, Cwikiel M, Cavallin-Stahl E, et al.

Sperm DNA integrity in testicular cancer patients. Hum Reprod. (2006)

21:3199–205. doi: 10.1093/humrep/del292
116. Stahl O, Eberhard J, Cavallin-Stahl E, Jepson K, Friberg B, Tingsmark C, et al.

Sperm DNA integrity in cancer patients: the effect of disease and treatment.

Int J Androl. (2009) 32:695–703. doi: 10.1111/j.1365-2605.2008.00933.x
117. Said TM, Tellez S, Evenson DP, Del Valle AP. Assessment of sperm

quality, DNA integrity and cryopreservation protocols in men diagnosed

with testicular and systemic malignancies. Andrologia (2009) 41:377–82.

doi: 10.1111/j.1439-0272.2009.00941.x
118. Smit M, van Casteren NJ, Wildhagen MF, Romijn JC, Dohle GR. Sperm

DNA integrity in cancer patients before and after cytotoxic treatment. Hum

Reprod. (2010) 25:1877–83. doi: 10.1093/humrep/deq104
119. O’Flaherty CM, Chan PT, Hales BF, Robaire B. Sperm chromatin structure

components are differentially repaired in cancer survivors. J Androl. (2012)

33:629–36. doi: 10.2164/jandrol.111.015388
120. McDowell S, Harrison K, Kroon B, Ford E, Yazdani A. Sperm DNA

fragmentation in men with malignancy. Fertil Steril. (2013) 99:1862–6.

doi: 10.1016/j.fertnstert.2013.02.015
121. Bujan L, Walschaerts M, Moinard N, Hennebicq S, Saias J, Brugnon

F, et al. Impact of chemotherapy and radiotherapy for testicular

germ cell tumors on spermatogenesis and sperm DNA: a multicenter

prospective study from the CECOS network. Fertil Steril. (2013) 100:673–80.

doi: 10.1016/j.fertnstert.2013.05.018
122. O’DonovanM. An evaluation of chromatin condensation and DNA integrity

in the spermatozoa of men with cancer before and after therapy. Andrologia

(2005) 37:83–90. doi: 10.1111/j.1439-0272.2005.00658.x
123. Spermon JR, Ramos L, Wetzels AMM, Sweep CGJ, Braat DDM,

Kiemeney LA, et al. Sperm integrity pre- and post-chemotherapy in

men with testicular germ cell cancer. Hum Reprod. (2006) 21:1781–6.

doi: 10.1093/humrep/del084
124. Ribeiro TM, Bertolla RP, Spaine DM, Fraietta R, Ortiz V, Cedenho AP. Sperm

nuclear apoptotic DNA fragmentation in men with testicular cancer. Fertil

Steril. (2008) 90:1782–6. doi: 10.1016/j.fertnstert.2007.08.012

125. Evenson DP, Wixon R. Clinical aspects of sperm DNA fragmentation

detection and male infertility. Theriogenology (2006) 65:979–91.

doi: 10.1016/j.theriogenology.2005.09.011

126. O’Flaherty C, Hales BF, Chan P, Robaire B. Impact of chemotherapeutics

and advanced testicular cancer or Hodgkin lymphoma on sperm

deoxyribonucleic acid integrity. Fertil Steril. (2010) 94:1374–9.

doi: 10.1016/j.fertnstert.2009.05.068

127. de Bruin D, de Jong IJ, Arts EG, Nuver J, Dullaart RPF, Sluiter

WJ, et al. Semen quality in men with disseminated testicular

cancer: relation with human chorionic gonadotropin beta-subunit

and pituitary gonadal hormones. Fertil Steril. (2009) 91:2481–6.

doi: 10.1016/j.fertnstert.2008.03.016

128. Ho GT, Gardner H, DeWolf WC, Loughlin KR, Morgentaler A. Influence of

testicular carcinoma on ipsilateral spermatogenesis. J Urol. (1992) 148:821–5.

doi: 10.1016/S0022-5347(17)36732-0

129. Ostrowski KA, Walsh TJ. Infertility with testicular cancer. Urol Clin North

Am. (2015) 42:409–20. doi: 10.1016/j.ucl.2015.05.003

130. Wyrobek AJ. Methods and concepts in detecting abnormal reproductive

outcomes of paternal origin. Reprod Toxicol. (1993) 7(Suppl. 1):3–16.

doi: 10.1016/0890-6238(93)90064-E

131. Anderson D, Jenkinson PC, Edwards AJ, Hughes JA, Brinkworth MH.

Commentary: paternal legacies. Teratog Carcinog Mutagen (1999) 19:105–8.

132. Brinkworth MH, Nieschlag E. Association of cyclophosphamide-

induced male-mediated, foetal abnormalities with reduced

paternal germ-cell apoptosis. Mutat Res. (2000) 447:149–54.

doi: 10.1016/S0027-5107(99)00189-X

133. Trost LW, Brannigan RE. Oncofertility and the male cancer patient.

Curr Treat Options Oncol. (2012) 13:146–60. doi: 10.1007/s11864-012-

0191-7
134. Martin RH, Ernst S, Rademaker A, Barclay L, Ko E, Summers

N. Analysis of sperm chromosome complements before, during,

and after chemotherapy. Cancer Genet Cytogenet (1999) 108:133–6.

doi: 10.1016/S0165-4608(98)00125-3
135. De Mas P, Daudin M, Vincent MC, Bourrouillou G, Calvas P, Mieusset R,

et al. Increased aneuploidy in spermatozoa from testicular tumour patients

after chemotherapy with cisplatin, etoposide and bleomycin. Hum Reprod.

(2001) 16:1204–8. doi: 10.1093/humrep/16.6.1204

136. Tempest HG, Ko E, Chan P, Robaire B, Rademaker A, Martin RH. Sperm

aneuploidy frequencies analysed before and after chemotherapy in testicular

cancer and Hodgkin’s lymphoma patients. Hum Reprod. (2008) 23:251–8.

doi: 10.1093/humrep/dem389

137. Bieri S, Rouzaud M, Miralbell R. Seminoma of the testis: is scrotal shielding

necessary when radiotherapy is limited to the para-aortic nodes? Radiother

Oncol. (1999) 50:349–53. doi: 10.1016/S0167-8140(99)00023-7

138. Ghezzi M, Berretta M, Bottacin A, Palego P, Sartini B, Cosci I, et al. Impact of

Bep or carboplatin chemotherapy on testicular function and sperm nucleus

of subjects with testicular germ cell tumor. Front Pharmacol. (2016) 7:122.

doi: 10.3389/fphar.2016.00122

139. Coogle JE. Biological Effect of Radiation. 2nd ed. London: Taylor & Francis

1983.

140. Trottmann M, Becker AJ, Stadler T, Straub J, Soljanik I, Schlenker B,

et al. Semen quality in men with malignant diseases before and after

therapy and the role of cryopreservation. Eur Urol. (2007) 52:355–67.

doi: 10.1016/j.eururo.2007.03.085

141. Matos E, Skrbinc B, Zakotnik B. Fertility in patients treated for testicular

cancer. J Cancer Surviv. (2010) 4:274–8. doi: 10.1007/s11764-010-0135-9

142. Coccia PF, Pappo AS, Altman J, Bhatia S, Borinstein SC, Flynn J, et al.

Adolescent and young adult oncology, version 2.2014. J Natl Compr Canc

Netw. (2014) 12:21–32. doi: 10.6004/jnccn.2014.0004

143. Moss JL, Choi AW, Fitzgerald Keeter MK, Brannigan RE. Male

adolescent fertility preservation. Fertil Steril. (2016) 105:267–73.

doi: 10.1016/j.fertnstert.2015.12.002

144. Martin RH, Ernst S, Rademaker A, Barclay L, Ko E, Summers N.

Chromosomal abnormalities in sperm from testicular cancer patients

before and after chemotherapy. Hum Genet. (1997) 99:214–18.

doi: 10.1007/s004390050342

145. Thomas C, Cans C, Pelletier R, De Robertis C, Hazzouri M, Sele B, et al.

No long-term increase in sperm aneuploidy rates after anticancer therapy:

sperm fluorescence in situ hybridization analysis in 26 patients treated

for testicular cancer or lymphoma. Clin Cancer Res. (2004) 10:6535–543.

doi: 10.1158/1078-0432.CCR-04-0582

146. Delbes G, Hales BF, Robaire B. Effects of the chemotherapy cocktail used to

treat testicular cancer on sperm chromatin integrity. J Androl. (2007) 28:241.

doi: 10.2164/jandrol.106.001487

147. Maselli J, Hales BF, Chan P, Robaire B. Exposure to bleomycin, etoposide, and

cis-platinum alters rat sperm chromatin integrity and sperm head protein

profile. Biol Reprod. (2012) 86:166. doi: 10.1095/biolreprod.111.098616

148. ChanD, Delbes G, LandryM, Robaire B, Trasler JM. Epigenetic alterations in

sperm DNA associated with testicular cancer treatment. Toxicol Sci. (2012)

125:532–43. doi: 10.1093/toxsci/kfr307

149. Liu M, Maselli J, Hales BF, Robaire B. The effects of chemotherapy with

bleomycin, etoposide, and cis-platinum on telomeres in rat male germ cells.

Andrology (2015) 3:1104–12. doi: 10.1111/andr.12102

150. Madanat LMS, Malila N, Dyba T, Hakulinen T, Sankila R, Boice JDJ, et al.

Probability of parenthood after early onset cancer: a population-based study.

Int J Cancer (2008) 123:2891–8. doi: 10.1002/ijc.23842

151. Fossa SD, Magelssen H, Melve K, Jacobsen AB, Langmark F, Skjaerven R.

Parenthood in survivors after adulthood cancer and perinatal health in their

offspring: a preliminary report. J Natl Cancer Inst Monogr. (2005) 34:77–82.

doi: 10.1093/jncimonographs/lgi019

152. Syse A, Kravdal O, Tretli S. Parenthood after cancer - a population-based

study. Psychooncology (2007) 16:920–7. doi: 10.1002/pon.1154

153. Magelssen H, Melve KK, Skjaerven R, Fossa SD. Parenthood probability

and pregnancy outcome in patients with a cancer diagnosis during

adolescence and young adulthood. Hum Reprod. (2008) 23:178–86.

doi: 10.1093/humrep/dem362

Frontiers in Endocrinology | www.frontiersin.org 16 September 2018 | Volume 9 | Article 506

https://doi.org/10.1093/hmg/ddn090
https://doi.org/10.1002/cncr.20068
https://doi.org/10.1093/humrep/del292
https://doi.org/10.1111/j.1365-2605.2008.00933.x
https://doi.org/10.1111/j.1439-0272.2009.00941.x
https://doi.org/10.1093/humrep/deq104
https://doi.org/10.2164/jandrol.111.015388
https://doi.org/10.1016/j.fertnstert.2013.02.015
https://doi.org/10.1016/j.fertnstert.2013.05.018
https://doi.org/10.1111/j.1439-0272.2005.00658.x
https://doi.org/10.1093/humrep/del084
https://doi.org/10.1016/j.fertnstert.2007.08.012
https://doi.org/10.1016/j.theriogenology.2005.09.011
https://doi.org/10.1016/j.fertnstert.2009.05.068
https://doi.org/10.1016/j.fertnstert.2008.03.016
https://doi.org/10.1016/S0022-5347(17)36732-0
https://doi.org/10.1016/j.ucl.2015.05.003
https://doi.org/10.1016/0890-6238(93)90064-E
https://doi.org/10.1016/S0027-5107(99)00189-X
https://doi.org/10.1007/s11864-012-0191-7
https://doi.org/10.1016/S0165-4608(98)00125-3
https://doi.org/10.1093/humrep/16.6.1204
https://doi.org/10.1093/humrep/dem389
https://doi.org/10.1016/S0167-8140(99)00023-7
https://doi.org/10.3389/fphar.2016.00122
https://doi.org/10.1016/j.eururo.2007.03.085
https://doi.org/10.1007/s11764-010-0135-9
https://doi.org/10.6004/jnccn.2014.0004
https://doi.org/10.1016/j.fertnstert.2015.12.002
https://doi.org/10.1007/s004390050342
https://doi.org/10.1158/1078-0432.CCR-04-0582
https://doi.org/10.2164/jandrol.106.001487
https://doi.org/10.1095/biolreprod.111.098616
https://doi.org/10.1093/toxsci/kfr307
https://doi.org/10.1111/andr.12102
https://doi.org/10.1002/ijc.23842
https://doi.org/10.1093/jncimonographs/lgi019
https://doi.org/10.1002/pon.1154
https://doi.org/10.1093/humrep/dem362
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Paoli et al. Sperm DNA and Testicular Cancer

154. StensheimH, Cvancarova M, Moller B, Fossa SD. Pregnancy after adolescent

and adult cancer: a population-based matched cohort study. Int J Cancer

(2011) 129:1225–36. doi: 10.1002/ijc.26045
155. GunnesMW, Lie RT, Bjorge T, Ghaderi S, Ruud E, Syse A, et al. Reproduction

and marriage among male survivors of cancer in childhood, adolescence and

young adulthood: a national cohort study. Br J Cancer (2016) 114:348–56.

doi: 10.1038/bjc.2015.455
156. Signorello LB, Mulvihill JJ, Green DM, Munro HM, Stovall M, Weathers

RE, et al. Congenital anomalies in the children of cancer survivors: a report

from the childhood cancer survivor study. J Clin Oncol. (2012) 30:239–45.

doi: 10.1200/JCO.2011.37.2938
157. Winther JF, Olsen JH, Wu H, Shyr Y, Mulvihill JJ, Stovall M, et al. Genetic

disease in the children of Danish survivors of childhood and adolescent

cancer. J Clin Oncol. (2012) 30:27–33. doi: 10.1200/JCO.2011.35.0504
158. Stensheim H, Klungsoyr K, Skjaerven R, Grotmol T, Fossa SD. Birth

outcomes among offspring of adult cancer survivors: a population-based

study. Int J Cancer (2013) 133:2696–705. doi: 10.1002/ijc.28292
159. Stahl O, Boyd HA, Giwercman A, Lindholm M, Jensen A, Kjaer SK, et al.

Risk of birth abnormalities in the offspring of men with a history of cancer:

a cohort study using Danish and Swedish national registries. J Natl Cancer

Inst. (2011) 103:398–406. doi: 10.1093/jnci/djq550
160. Hartmann JT, Albrecht C, Schmoll HJ, Kuczyk MA, Kollmannsberger

C, Bokemeyer C. Long-term effects on sexual function and fertility

after treatment of testicular cancer. Br J Cancer (1999) 80:801–7.

doi: 10.1038/sj.bjc.6690424
161. Girasole CR, Cookson MS, Smith JAJ, Ivey BS, Roth BJ, Chang SS. Sperm

banking: use and outcomes in patients treated for testicular cancer. BJU Int.

(2007) 99:33–6. doi: 10.1111/j.1464-410X.2006.06537.x
162. Spermon JR, Kiemeney LALM, Meuleman EJH, Ramos L, Wetzels AMM,

Witjes JA. Fertility in men with testicular germ cell tumors. Fertil Steril.

(2003) 79(Suppl. 3):1543–49. doi: 10.1016/S0015-0282(03)00335-2
163. Huyghe E, Matsuda T, Daudin M, Chevreau C, Bachaud J-M, Plante P, et al.

Fertility after testicular cancer treatments: results of a largemulticenter study.

Cancer (2004) 100:732–7. doi: 10.1002/cncr.11950
164. Nalesnik JG, Sabanegh ES Jr, Eng TY, Buchholz TA. Fertility in men after

treatment for stage 1 and 2A seminoma. Am J Clin Oncol. (2004) 27:584–8.

doi: 10.1097/01.coc.0000135736.18493.dd
165. Brydoy M, Fossa SD, Klepp O, Bremnes RM, Wist EA, Wentzel-Larsen T,

et al. Paternity and testicular function among testicular cancer survivors

treated with two to four cycles of cisplatin-based chemotherapy. Eur Urol.

(2010) 58:134–140. doi: 10.1016/j.eururo.2010.03.041
166. Ping P, Gu B-H, Li P, Huang Y-R, Li Z. Fertility outcome of patients

with testicular tumor: before and after treatment. Asian J Androl. (2014)

16:107–11. doi: 10.4103/1008-682X.122194

167. Lass A, Akagbosu F, Brinsden P. Sperm banking and assisted reproduction

treatment for couples following cancer treatment of the male partner. Hum

Reprod. (2001) 7:370–7. doi: 10.1093/humupd/7.4.370

168. Kelleher S,Wishart SM, Liu PY, Turner L, Di Pierro I, Conway AJ, et al. Long-

term outcomes of elective human sperm cryostorage. Hum Reprod. (2001)

16:2632–9. doi: 10.1093/humrep/16.12.2632

169. Chung K, Irani J, Knee G, Efymow B, Blasco L, Patrizio P. Sperm

cryopreservation for male patients with cancer: an epidemiological analysis

at the University of Pennsylvania. Eur J Obstet Gynecol Reprod Biol. (2004)

113(Suppl.):S7–11. doi: 10.1016/j.ejogrb.2003.11.024

170. Agarwal A, Ranganathan P, Kattal N, Pasqualotto F, Hallak J, Khayal S,

et al. Fertility after cancer: a prospective review of assisted reproductive

outcome with banked semen specimens. Fertil Steril. (2004) 81:342–8.

doi: 10.1016/j.fertnstert.2003.07.021

171. Schmidt KLT, Larsen E, Bangsboll S, Meinertz H, Carlsen E, Andersen

AN. Assisted reproduction in male cancer survivors: fertility treatment

and outcome in 67 couples. Hum Reprod. (2004) 19:2806–10.

doi: 10.1093/humrep/deh518

172. Magelssen H, Haugen TB, von During V, Melve KK, Sandstad B,

Fossa SD. Twenty years experience with semen cryopreservation in

testicular cancer patients: who needs it? Eur Urol. (2005) 48:779–85.

doi: 10.1016/j.eururo.2005.05.002

173. van Casteren NJ, van Santbrink EJP, van Inzen W, Romijn JC,

Dohle GR. Use rate and assisted reproduction technologies outcome

of cryopreserved semen from 629 cancer patients. Fertil Steril. (2008)

90:2245–50. doi: 10.1016/j.fertnstert.2007.10.055

174. Hourvitz A, Goldschlag DE, Davis OK, Gosden LV, Palermo GD, Rosenwaks

Z. Intracytoplasmic sperm injection (ICSI) using cryopreserved sperm from

men with malignant neoplasm yields high pregnancy rates. Fertil Steril.

(2008) 90:557–63. doi: 10.1016/j.fertnstert.2007.03.002
175. Crha I, Ventruba P, Zakova J, Huser M, Kubesova B, Hudecek R, et al.

Survival and infertility treatment in male cancer patients after sperm

banking. Fertil Steril. (2009) 91:2344–8. doi: 10.1016/j.fertnstert.2008.03.053
176. Ping P, ZhuW-B, Zhang X-Z, Yao K-S, Xu P, Huang Y-R, Li Z. Sperm banking

for male reproductive preservation: a 6-year retrospective multi-centre study

in China. Asian J Androl. (2010) 12:356–62. doi: 10.1038/aja.2010.12
177. Freour T, Mirallie S, Jean M, Barriere P. Sperm banking and assisted

reproductive outcome in men with cancer: a 10 years’ experience. Int J Clin

Oncol. (2012) 17:598–603. doi: 10.1007/s10147-011-0330-3

178. Bizet P, Saias-Magnan J, Jouve E, Grillo JM, Karsenty G, Metzler-

Guillemain C, et al. Sperm cryopreservation before cancer treatment:

a 15-year monocentric experience. Reprod Biomed. (2012) 24:321–30.

doi: 10.1016/j.rbmo.2011.11.015

179. Botchan A, Karpol S, Lehavi O, Paz G, Kleiman SE, Yogev L, Yavetz H,

et al. Preservation of sperm of cancer patients: extent of use and pregnancy

outcome in a tertiary infertility center. Asian J Androl. (2013) 15:382–6.

doi: 10.1038/aja.2013.3

180. Gil T, Sideris S, Aoun F, van Velthoven R, Sirtaine N, Paesmans M,

et al. Testicular germ cell tumor: short and long-term side effects

of treatment among survivors. Mol Clin Oncol. (2016) 5:258–64.

doi: 10.3892/mco.2016.960

181. Zakova J, Lousova E, Ventruba P, Crha I, Pochopova H, Vinklarkova J,

et al. Sperm cryopreservation before testicular cancer treatment and its

subsequent utilization for the treatment of infertility. Sci World J. (2014)

2014:575978. doi: 10.1155/2014/575978

182. Molnar Z, Berta E, Benyo M, Poka R, Kassai Z, Flasko T, et al. Fertility of

testicular cancer patients after anticancer treatment–experience of 11 years.

Pharmazie (2014) 69:437–441. doi: 10.1691/ph.2014.3912R

183. Sonnenburg DW, BramesMJ, Case-Eads S, Einhorn LH. Utilization of sperm

banking and barriers to its use in testicular cancer patients. Support Care

Cancer (2015) 23:2763–8. doi: 10.1007/s00520-015-2641-9

184. Garcia A, Herrero MB, Holzer H, Tulandi T, Chan P. Assisted reproductive

outcomes of male cancer survivors. J Cancer Surviv. (2015) 9:208–14.

doi: 10.1007/s11764-014-0398-7

185. Ferrari S, Paffoni A, Filippi F, Busnelli A, Vegetti W, Somigliana E.

Sperm cryopreservation and reproductive outcome in male cancer

patients: a systematic review. Reprod Biomed. (2016) 33:29–38.

doi: 10.1016/j.rbmo.2016.04.002

186. Dohle GR. Male infertility in cancer patients: review of the literature. Int J

Urol. (2010) 17:327–31. doi: 10.1111/j.1442-2042.2010.02484.x

187. Meseguer M, Santiso R, Garrido N, Garcia-Herrero S, Remohi J,

Fernandez JL. Effect of sperm DNA fragmentation on pregnancy

outcome depends on oocyte quality. Fertil Steril. (2011) 95:124–8.

doi: 10.1016/j.fertnstert.2010.05.055

188. Marchetti F, Bishop J, Gingerich J, Wyrobek AJ. Meiotic interstrand DNA

damage escapes paternal repair and causes chromosomal aberrations in the

zygote by maternal misrepair. Sci Rep. (2015) 5:7689. doi: 10.1038/srep07689

189. Gavriliouk D, Aitken RJ. Damage to sperm DNA mediated by

reactive oxygen species: its impact on human reproduction and the

health trajectory of offspring. Adv Exp Med Biol. (2015) 868:23–47

doi: 10.1007/978-3-319-18881-2_2

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer PC and handling Editor declared their shared affiliation.

Copyright © 2018 Paoli, Pallotti, Lenzi and Lombardo. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Endocrinology | www.frontiersin.org 17 September 2018 | Volume 9 | Article 506

https://doi.org/10.1002/ijc.26045
https://doi.org/10.1038/bjc.2015.455
https://doi.org/10.1200/JCO.2011.37.2938
https://doi.org/10.1200/JCO.2011.35.0504
https://doi.org/10.1002/ijc.28292
https://doi.org/10.1093/jnci/djq550
https://doi.org/10.1038/sj.bjc.6690424
https://doi.org/10.1111/j.1464-410X.2006.06537.x
https://doi.org/10.1016/S0015-0282(03)00335-2
https://doi.org/10.1002/cncr.11950
https://doi.org/10.1097/01.coc.0000135736.18493.dd
https://doi.org/10.1016/j.eururo.2010.03.041
https://doi.org/10.4103/1008-682X.122194
https://doi.org/10.1093/humupd/7.4.370
https://doi.org/10.1093/humrep/16.12.2632
https://doi.org/10.1016/j.ejogrb.2003.11.024
https://doi.org/10.1016/j.fertnstert.2003.07.021
https://doi.org/10.1093/humrep/deh518
https://doi.org/10.1016/j.eururo.2005.05.002
https://doi.org/10.1016/j.fertnstert.2007.10.055
https://doi.org/10.1016/j.fertnstert.2007.03.002
https://doi.org/10.1016/j.fertnstert.2008.03.053
https://doi.org/10.1038/aja.2010.12
https://doi.org/10.1007/s10147-011-0330-3
https://doi.org/10.1016/j.rbmo.2011.11.015
https://doi.org/10.1038/aja.2013.3
https://doi.org/10.3892/mco.2016.960
https://doi.org/10.1155/2014/575978
https://doi.org/10.1691/ph.2014.3912R
https://doi.org/10.1007/s00520-015-2641-9
https://doi.org/10.1007/s11764-014-0398-7
https://doi.org/10.1016/j.rbmo.2016.04.002
https://doi.org/10.1111/j.1442-2042.2010.02484.x
https://doi.org/10.1016/j.fertnstert.2010.05.055
https://doi.org/10.1038/srep07689
https://doi.org/10.1007/978-3-319-18881-2_2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles

	Fatherhood and Sperm DNA Damage in Testicular Cancer Patients
	Introduction
	Clinical Implications

	Methods
	Chromatin Integrity Evaluation
	Sperm Dna Damage In Testicular Cancer
	Pre-treatment
	SCSA
	TUNEL
	Comet Assay

	Post-treatment
	SCSA
	TUNEL
	Comet Assay


	Paternity and Testicular Cancer
	Data From National Registers
	Effects on Offspring
	Data on Natural Fertility
	Data on ART

	Conclusions
	Pre-therapy Sperm DNA Damage
	Post-therapy Sperm DNA Damage
	Fatherhood
	Congenital Anomalies

	Author Contributions
	Funding
	Acknowledgments
	References


