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Abstract
The classical Multinomial Logit (MNL) is a be-
havioral model for user choice. In this model, a
user is offered a slate of choices (a subset of a fi-
nite universe of n items), and selects exactly one
item from the slate, each with probability pro-
portional to its (positive) weight. Given a set
of observed slates and choices, the likelihood-
maximizing item weights are easy to learn at
scale, and easy to interpret. However, the model
fails to represent common real-world behavior.
As a result, researchers in user choice often turn
to mixtures of MNLs, which are known to ap-
proximate a large class of models of rational user
behavior. Unfortunately, the only known algo-
rithms for this problem have been heuristic in na-
ture. In this paper we give the first polynomial-
time algorithms for exact learning of uniform
mixtures of two MNLs. Interestingly, the param-
eters of the model can be learned for any n by
sampling the behavior of random users only on
slates of sizes 2 and 3; in contrast, we show that
slates of size 2 are insufficient by themselves.

1. Introduction
In this paper we study the problem of learning a uniform
mixture of two multinomial logistic models from data. Our
work is situated in the literature of discrete choice as fol-
lows. The most well-studied class of “rational” choice
behavior is the class of Random Utility Models, intro-
duced by Marschak (1960), and described below. Mix-
tures of multinomial logistic models have been widely used
in discrete choice since 1980 (Boyd & Mellman, 1980;
Cardell & Dunbar, 1980), and are of particular interest be-
cause they are known to ε-approximate any Random Util-
ity Model (McFadden & Train, 2000). However, despite a
long history of study and broad use in practice, there are
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no known polynomial-time algorithms to learn (exactly or
approximately) any non-trivial mixture of multinomial lo-
gistic models. We give the first such result: an algorithm to
learn uniform mixtures of two multinomial logistic models.
We now give a little more background.

A multinomial logistic model (usually called an MNL) over
a universe U of items provides a specific mapping from
any non-empty subset S ⊆ U to a distribution over S. The
model requires a weight function w : U → R+ that gives
a positive weight to each item in the universe. The model
then assigns probability to each u ∈ S proportional to its
weight: Pr[u | S] = w(u)/

∑
v∈S w(v).

These models are frequently employed in the setting of dis-
crete choice, in which a user must select exactly one item
from a set of alternatives. If S ⊆ U gives the alternatives,
the MNL then provides a distribution representing the like-
lihood that each item in S will be selected. Such models
are employed in many settings: selection of a piece of mu-
sic, a mode of transportation, a brand of toothpaste, and so
forth. We note in passing that the weight function may be
generalized in many ways. Rather than mapping from u to
w(u), it may instead be defined in terms of features of u (al-
lowing easy generalization to unseen objects) or in terms of
features of the particular situation (for instance depending
on properties of the user making the choice). In our work
we do not consider such generalizations; we assume that w
simply maps an item to a positive real-valued weight.

Given sufficient examples of subsets S with resulting
choices of a particular u ∈ S, it is possible to estimate the
weight function w using maximum likelihood estimation.
The estimation is convex and is easily solved at large scale
by gradient ascent methods. As a result, MNL is widely
used in practice. Furthermore, in the context of the rapid
changes underway in machine learning due to deep net-
works, it is the standard top layer of multiclass classifica-
tion networks, where it goes by the name softmax layer.

A problematic example. The definition of MNL posits
a single fixed weight function, which imposes certain re-
strictions on the behavior of the model across related sub-
sets. For example, consider a distribution of authors, each
of whom wishes to submit a paper to a conference. The
slate of available options is {ICML, CVPR}, and based on
the distribution, 60% of authors work in vision, and submit
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to CVPR. Now imagine that a new ML conference called
ICLR is introduced, so the new universe is {ICML, ICLR,
CVPR}. Here, we expect that—on each slate containing
CVPR and at least another conference—CVPR will still be
preferred by roughly 60% of the authors, and that—on each
slate containing both ICML and ICLR—a random author
will prefer ICML with roughly the same probability of pre-
ferring ICLR. These two constraints are incompatible with
an MNL. Indeed, in an MNL, for CVPR to win with prob-
ability 60% on the full slate, it must be that its weight is
60% of the total weight of the three conferences. Thus, for
ICML and ICLR to be chosen with the same probability it
must be that they have the same weight of 20%; but, if that
is the case, then the slate {ICML, CVPR} will let CVPR
win with probability 75%. This is a direct consequence of
the definition of MNL: any new alternative introduced to a
slate of options must decrease the likelihood of every other
option by the same fraction. As in the example, this may
result in undesirable restrictions in model behavior.

Mixture of MNLs. In the previous example, the issue is
that theoreticians and vision researchers represent two dis-
tinct populations. Modeling the union with a single MNL
results in the problem described above. On the other hand,
allowing a mixture of these two populations, each repre-
sented by a population-specific MNL, will result in the cor-
rect behavior: vision researchers will employ an MNL that
selects CVPR no matter what ML conferences are avail-
able, while theoreticians will employ an MNL that selects
from among whatever ML conferences are present. Intro-
ducing ICLR will now cause theoreticians to move from
100% ICML to some mixture of the two ML conferences,
while all the vision researchers who used to submit to
CVPR will continue to do so. The mixture of two MNLs
is no longer bound by the restriction that a new item in the
slate must “cannibalize” equally from all other items.

In fact, moving from a single MNL to a mixture of MNLs is
surprisingly powerful, as we now describe. We introduced
MNL as a particular function family mapping any S ⊂ U
to a distribution over S, based on the specification of a
weight function. We may broaden the function family by
removing the restriction that the likelihood of each item is
always proportional to its fixed weight. The Random Util-
ity Model mentioned above (Marschak, 1960) is defined,
not by a weight function, but by a distribution over value
vectors, where each value vector assigns a value to each
item of U . A user draws a value vector i.i.d. from the dis-
tribution, then behaves rationally by choosing the item of S
with maximum value. The distribution over value vectors
induces a distribution over any subset S. It is easy to show
that any Random Utility Model may be approximated arbi-
trarily closely by a mixture of MNLs (McFadden & Train,
2000). Hence, the problem of learning mixtures of MNLs
is equivalent to the problem of learning the large family of

Random Utility Models.

For this reason, mixtures of MNLs are commonly em-
ployed in discrete choice settings. Unfortunately, the model
learning is performed using heuristic techniques with no
guarantees of optimality. Other than degenerate mixtures
of a single MNL, to our knowledge, there are no results
(positive or negative) regarding optimal learning of mix-
tures of MNLs, despite these models being well-studied in
expressive power and commonly employed by practition-
ers with numerous libraries available to perform learning
by heuristic approaches. We take a first step towards reme-
dying this situation by resolving positively the question of
learning uniform mixtures of two MNLs.

Our results. Let a, b : U → R+ be two weight functions.
The uniform 2-MNL (a, b) assigns to item u in subset S ⊆
U the probability 1

2 ·
a(u)∑

v∈S a(v) + 1
2 ·

b(u)∑
v∈S b(v) . We show

the following:

• Uniqueness: If |U| ≥ 3 and 2-MNLs (a, b) and (a′, b′)
agree on every S ⊆ U satisfying |S| ≤ 3, then either
a = a′, b = b′ or a′ = b, a = b′.

• Identifiability: There is an algorithm that learns any
2-MNL (a, b) in time O(|U|).

The algorithm for identifiability builds on a reconstruction
oracle derived from the uniqueness. This oracle, when pre-
sented with any slate of size at most 3, returns the distri-
bution over items of the slate induced by the mixture. In
contrast we show that slates of size 2 alone are insufficient
for reconstruction and hence the oracle is optimal in terms
of the slate size. If the oracle can be queried adaptively, we
show an algorithm that makes O(|U|) queries, which we
show to be optimal. For the non-adaptive case, we show an
algorithm that makes O(|U|2) queries, also optimal.

Establishing the uniqueness for slates of size at most 3,
while seemingly a simple “finite” problem, turns out to be
technically challenging. The underlying question involves
studying the uniqueness of solution to a system of quartic
multivariate polynomials, derived from the unknown pa-
rameters of the mixture model. Through a series of reduc-
tions and delicate case analyses, we obtain several struc-
tural properties of this polynomial system, which we use
to prove uniqueness. The tools we develop for showing
uniqueness could be of independent interest and might have
applications in other algorithmic discrete choice settings.

Roadmap. In Section 2 we discuss related work and in
Section 3 we introduce the notation. In Section 4, we prove
lower bounds on the slate sizes that must be queried to al-
low reconstruction. In Section 5.1, we show lower bounds
on the numbers of adaptive and non-adaptive queries for
reconstruction and in Section 5.2 we show algorithms with
matching query complexity. These algorithms are based
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on the uniqueness result that we mentioned above, which
we prove in Section 6. In the Supplementary Material we
discuss relaxations of the sampling oracle (Section A), and
k-MNLs with lower bounds for their reconstruction (Sec-
tion B), and the missing proofs (Section C).

2. Related Work
Multinomial logit (MNL) was initially introduced in the
context of two-item slates by Bradley & Terry (1952), and
was then extended to its current form by Luce (1959).
However, the idea behind the formulation may be traced
back to the earlier work by Zermelo (1928) in scoring
of chess players. The extension from MNL to mixtures
of MNL (also known as mixed logit) was developed in
the choice literature jointly in 1980 by Boyd & Mellman
(1980) and Cardell & Dunbar (1980). McFadden & Train
(2000) show that mixed logit models are capable of approx-
imating any random utility model, although the construc-
tion they apply may result in mixed logits of exponential
size. Recently, Chierichetti et al. (2018) study choice mod-
els that are represented by distributions over permutations
of the items in the universe; they show a series of lower
bounds in that model. Train (2009) provides an overview
of the body of motivations for studying mixtures of multi-
nomial logits in the theory of discrete choice.

Learning of mixture models is well-studied in the machine
learning community, dating back to early work of Pear-
son (1894) in a biological setting, studying the evolution of
populations of crabs. Computational models for mixtures
may be traced back to the classical k-means clustering al-
gorithm (MacQueen, 1967), which represents data using a
mixture of clusters, each represented by a centroid. More
generally, the EM algorithm (Dempster et al., 1977) pro-
vides a heuristic to learn general forms of mixture mod-
els, with no guarantees on correctness or convergence rate.
Much literature has appeared on the related problem of
learning mixtures of Gaussians, under various separation
assumptions; see for example the papers of Kalai et al.
(2010); Moitra & Valiant (2010).

With respect to mixtures of MNLs, there are many works
discussing heuristic approaches based on simulation (Train,
2009; Guevara & Ben-Akiva, 2013; Hurn et al., 2003; Ge,
2008). However, work in Computer Science is less com-
mon. Rusmevichientong et al. (2014) study a problem of
selecting products to offer in order to maximize revenue
over users defined by a mixture of MNLs. They show this
problem is NP-hard even for mixtures of 2 MNLs. Blanchet
et al. (2016) again study revenue optimization in a discrete
choice setting, and present a Markov Chain-based solution
that generalizes mixtures of MNLs. In fact, Oh & Shah
(2014) characterizes the problem of learning a 2-MNL as
“infeasible in general” given current techniques.

Recall that in our case, the oracle returns the distribution of
choosing items in a given slate; as we show in Appendix A,
this oracle can be well approximated from choice processes
by sampling. Some work on learning mixtures of MNLs as-
sume an oracle more powerful and less realistic than ours.
For instance, Oh & Shah (2014) study the problem of learn-
ing a k-MNL using an oracle that returns the relative order-
ing of a number of (disjoint and/or partially overlapping)
pairs of objects, as sampled from the same (random) MNL.
With this oracle, one can use some of the pairs to get clues
about which of the k MNLs produced a given sample, and
the remaining pairs to estimate the relative weights of their
elements in that specific MNL. Oh & Shah (2014) study
the sample complexity of this problem in various pairs-
selecting random models. Zhao et al. (2016) also study
the problem of learning a k-MNL. They focus on the nec-
essary and sufficient conditions for identifiability, but they
assume that the oracle returns the probability of observing
a particular permutation of the slate. This oracle is stronger
than both the one in (Oh & Shah, 2014) and ours. Am-
mar et al. (2014) also study learning a k-MNL, but they
introduce a requirement that the weights in each MNL be
well-separated, with each weight larger than the previous
by some multiplicative constant.

Other models that originated in machine learning and that
have been the object of active theoretical investigation in-
clude LDA-like topic models, e.g., the work of Arora et al.
(2012; 2013; 2016). The goal there is to approximate the
topics supporting the model, given samples (i.e., docu-
ments) from the model’s distribution; note that the model
cannot be queried. Another difference is that, in topic re-
construction models, the algorithm usually gets more than
one sample from the unknown topic (i.e., more than one
word per document) whereas, in our case the algorithm gets
a single sample from the unknown MNL.

3. Preliminaries
Let [n] = {1, . . . , n} be the universe of items. A slate is
any non-empty subset of [n]. An s-slate is a slate of size s.

A multinomial logit (1-MNL, or simply, MNL) model is
fully specified by a weight function a : [n] → R+, where
R+ is the set of positive real numbers. In this choice model,
given a slate T ⊆ [n], the probability that the item i ∈ T is
chosen is given by

Da
T (i) =

ai∑
j∈T aj

,

where for convenience we use ai to denote a(i). We can
think of Da

T (i) as the probability that item i wins in the
slate T . Clearly, without loss of generality,

∑n
i=1 ai = 1.

A 2-MNL A = (a, b, µ) consists of weight functions a, b
and a mixing weight µ ∈ (0, 1). Given a slate T ⊆ [n], A
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first chooses the weight function a with probability µ and b
with probability 1−µ, and then behaves as the MNL corre-
sponding to the chosen weight function. We use DAT (i) to
denote the probability that the mixture model A chooses i,
given the slate T . We drop the superscript when A is clear
from the context. If µ = 1/2, we call the mixture a uniform
2-MNL and denote it using the notation (a, b).

The goal of the learning problem is to understand the pre-
cise conditions for identifiability and unique reconstruction
of the parameters of the mixture model, i.e., the weight
functions and the mixing weight. We assume an oracle ac-
cess to A that, given a slate T and an item i, returns the
value DAT (i), i.e., the probability i wins in the slate T . The
computational quantities of interest are then the number of
queries to this oracle and the size of the slates queried.

4. Warmup
In this section we present a flavor of the reconstruction
problem by first considering the simple 1-MNL case. For
the 1-MNL case, we observe that a linear number of 2-
slate queries is sufficient to uniquely identify and learn the
weight function.

Observation 1. A 1-MNL can be reconstructed using (n−
1) 2-slate queries.

Proof. For each i ∈ [n − 1], we query the MNL using the
slate {i, n} to obtain

D{i,n}(n) =
an

ai + an
.

This, along with
∑n

i=1 ai = 1, yields a system of linear
equations in ai whose solution yields the weight function a
of the 1-MNL.

In contrast, we next show that reconstructing a 2-MNL re-
quires queries to larger slates. Specifically, we first show
that reconstructing uniform 2-MNLs needs at least 3-slate
queries.

Theorem 2. For each n ≥ 3, there exist a 1-MNL A
and two uniform 2-MNLs A(1) and A(2), such that DAT =

DA
(1)

T = DA
(2)

T = 1/|T | for each T with |T | ≤ 2, but there
is a T with |T | = 3 such that DA

(1)

T 6= DA
(2)

T .

Proof. Note that each item in T has the same chance of
winning. Therefore, the 1-MNL with a constant weight
function a satisfies Da

T (i) = 1/|T | for i ∈ T .

Given some real number t > 1, we define two uniform 2-
MNLs A(1) = (a(1), b(1)),A(2) = (a(2), b(2)) such that
DA

(1)

T (i) = DA
(2)

T (i) = 1/|T | for each |T | ≤ 2, and such
that there exists a 3-slate T such thatDA

(1)

T (i) 6= DA
(2)

T (i).

The weight functions are defined as:

• a(1)
1 = a

(1)
2 = t, b(1)

1 = b
(1)
2 = 1/t, and a(1)

i = b
(1)
i =

1 for each i ∈ {3, . . . , n} and
• a(2)

1 = b
(2)
2 = t, b(2)

1 = a
(2)
2 = 1/t, and a(2)

i = b
(2)
i =

1 for each i ∈ {3, . . . , n}.

We begin with the statement about 2-slates. Let T = {i, j}.
If {i, j} ∩ {1, 2} = ∅, then both A(1) and A(2) clearly in-
duce the uniform distribution on T . If T = {1, 2} then,
since the mixture is uniform, the probability that 1 gets se-
lected is 1/2 with A(1) and is 1

2 ·
t

t+1/t + 1
2 ·

1/t
t+1/t = 1

2

with A(2). Finally, if T = {1, i} or T = {2, i}, for
some i ∈ {3, . . . , n}, then the probability of selecting i
is equal, with both A(1) and A(2), to 1

2
1

1+t + 1
2

1
1+1/t =

1
2

1
1+t + 1

2
t

t+1 = 1
2 .

On the other hand, consider the 3-slate T = {1, 2, i}, for
any i ∈ {3, . . . , n}. In this case, we have DA

(1)

T (i) =
1
2 ·

1
2t+1 + 1

2 ·
1

2/t+1 = 1
2 − O

(
1
t

)
, while DA

(2)

T (i) = 1
2 ·

1
t+1+1/t + 1

2 ·
1

t+1+1/t = O
(

1
t

)
. Thus, limt→∞DA

(1)

T (i)−
DA

(2)

T (i) = 1
2 .

We next consider non-uniform 2-MNLs and show that even
3-slates are not enough for unique reconstruction. For ease
of exposition, we will use a weight function where exactly
one of the weights is zero; this can be easily modified so
that the construction has only positive weights.

Theorem 3. For each n ≥ 3, there exists two 2-MNLsA(1)

and A(2), each with mixing weight 2/3 such that DA
(1)

T =

DA
(2)

T for each T with |T | ≤ 3, but there is a T with |T | =
4 such that DA

(1)

T 6= DA
(2)

T .

Proof. For i ∈ [2], let A(i) = (a(i), b(i), 2/3). Let a(i)
j =

b
(i)
j = 1 for j ∈ [n] \ {1}. Let a(1)

1 = 4/9, a(2)
1 = 64

and b(1)
1 = 4, b(1)

1 = 0. For both the 2-MNLs, the mixing
weight µ = 2/3.

By the definition of a(·) and b(·), all the slates that do not
contain item 1 will have their winner chosen uniformly at
random, i.e., DA

(1)

T (i) = DA
(2)

T (i) = 1/|T | for each i ∈
T ⊆ [n] \ {1}.

We now focus on 2- and 3-slates T, T 3 1. For each i ∈ [2],
by construction, DA

(i)

T (j) = DA
(i)

T (j′) for any j, j′ 6= 1.
Moreover,

• if |T | = 2, then DA
(1)

T (1) = 2
3 ·

4/9
4/9+1 + 1

3 ·
64

64+1 =

8
15 = 2

3 ·
4

4+1 + 1
3 ·

0
0+1 = DA

(2)

T (1);

• if |T | = 3, then DA
(1)

T (1) = 2
3 ·

4/9
4/9+2 + 1

3 ·
64

64+2 =

4
9 = 2

3 ·
4

4+2 + 1
3 ·

0
0+2 = DA

(2)

T (1).
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On the other hand, if T = {1, 2, 3, 4}, then DA
(1)

T (1) =
2
3 ·

4/9
4/9+3 + 1

3 ·
64

64+3 = 840
2077 6=

8
21 = 2

3 ·
4

4+3 + 1
3 ·

0
0+3 =

DA
(2)

T (1).

In the next sections we complement these lower bounds by
developing an algorithm for learning uniform 2-MNLs that
uses 2-slate and 3-slate queries.

5. Learning 2-MNLs
In this section we obtain algorithms to learn 2-MNLs using
only 2-slate and 3-slate queries, complementing the slate-
size lower bound in Theorem 2. Our algorithms use O(n)
adaptive queries or O(n2) non-adaptive queries; we will
also show these query bounds are optimal for any algorithm
that uses constant-sized slates.

5.1. Query Lower Bounds

To illustrate our algorithms better, we first present query
lower bounds for adaptive and non-adaptive algorithms. In
particular we ask how many slates of bounded size must be
examined to reconstruct the weights of a 2-MNL. We show
that any adaptive (resp., non-adaptive) algorithm querying
only slates of constant size has to perform at least Ω(n)
(resp., Ω(n2)) queries to reconstruct.

Theorem 4. Any algorithm for 2-MNL that queries using
c-slates needs Ω(n/c) queries to reconstruct; the query
lower bound for non-adaptive algorithms is Ω(n2/c2).

Proof. Let i, j be two distinct items in [n] chosen u.a.r.
We will construct two different uniform 2-MNLs, A(i) =
(a(i), b(i)) for i ∈ [2], as follows. Let each MNL give a
weight of 1 to each item except for i and j. Let a(1)

i =

a
(1)
j = 2, b(1)

i = b
(1)
j = 1, and a

(2)
i = b

(2)
j = 2,

a
(2)
j = b

(2)
i = 1.

If an algorithm performs no query to a slate containing both
items i and j, then it cannot distinguish between A(1) and
A(2), and is therefore unable to learn the weights of the
MNLs. Indeed, for any slate S ⊆ [n] \ {i, j}, we have
that DA

(1)

S = DA
(2)

S , DA
(1)

{i}∪S = DA
(2)

{i}∪S , and DA
(1)

{j}∪S =

DA
(2)

{j}∪S .

Any algorithm performing queries to slates of size at most c
will need to perform Ω(n/c) queries to query at least once
item i with constant probability. This proves the adaptive
lower bound. In the non-adaptive case, observe that each
query performed by the algorithm will cover at most

(
c
2

)
different pairs. Since we need the algorithm to query i and
j together to distinguish between A(1) and A(2), and since
there are

(
n
2

)
many pairs of items, the algorithm will need to

perform Ω(n2/c2) queries to succeed with constant proba-
bility.

5.2. Adaptive and Non-Adaptive Algorithms

We now present adaptive and non-adaptive algorithms that
match the above query complexity and slate lower bounds.
Our algorithms are based on a reduction to the 3-item uni-
verse case that we will present in Section 6. This constant-
time algorithm uniquely reconstructs the weights of a 2-
MNL on a universe of size 3, given the winning probabil-
ities for all subsets of sizes 2 and 3, of the 3 items, i.e.,
using a total of 4 queries. For the remainder of this section
we will refer to this as the 3-items algorithm.

The main idea behind the algorithms is to invoke the 3-
items algorithm on chosen 3-slates and “patch” the weights
returned by this algorithm to construct the weight func-
tions a and b. However, one has to be careful given
the lower bound construction in Theorem 4. For exam-
ple, consider a naive algorithm that chooses the 3-slates
{1, n − 1, n}, {2, n − 1, n}, . . . , {n − 2, n − 1, n}. Note
that the items n − 1 and n − 2 are fixed in all the slates
that are queried and hence, if the two special items {i, j}
of the lower bound construction do not satisfy {i, j}∩{n−
1, n} 6= ∅, that items i and j will never be queried together.
From the lower bound construction, the algorithm will fail
since it will be unable to tell whether items i and j have
their larger weight in the same of the two MNLs, or in dif-
ferent MNLs. To circumvent this, one has to get hold of a
pair of items that have different behavior in the mixture and
use them as “anchors” to infer the weights of the remaining
items.

We first present the algorithm that uses adaptive queries.

Theorem 5. We can reconstruct the weights of a uniform
2-MNL using O(n) adaptive queries with 2- and 3-slates.

Proof. Let Mn be an arbitrary pairing of the items in [n] \
{1}, if n is odd. If n is even, let Mn = Mn−1 ∪ {{2, n}}.
Clearly, |Mn| = dn/2e.

We run the 3-items algorithm on each of the triples
{1, i, j}, for all {i, j} ∈ Mn. Since each call to the 3-
items algorithm performs at most 4 queries, this will cost
at most (n/2) · 4 + O(1) = 2n + O(1) queries. For a
given {i, j} ∈Mn, and for x ∈ {1, i, j}, let ax({i, j}) and
bx({i, j}) be the weights of x in a and b, as returned by
the 3-items algorithm when run on {1, i, j}. We abbreviate
ax = ax({i, j}), bx = bx({i, j}).

Suppose the algorithm finds that for any two distinct items
s, t ∈ [n], it holds that as/at = bs/bt, i.e., all the items
have the same ratio in both the components of the mixture.
This means that the 2-MNL is actually a 1-MNL and hence
Observation 1 completes the argument.
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Otherwise, there is a triple {1, i, j} that contains two dis-
tinct items s, t such that, wlog, as/at > bs/bt. We use this
pair of items as “anchors” to infer the rest of the weights.
Indeed, we run the 3-items algorithm on each triple {s, t, i}
for each i ∈ [n] \ {s, t}. For x ∈ {i, s, t}, let ax({i}) and
bx({i}) be the weights of x in a and b, as returned by the
3-items algorithm when run on the triple {s, t, i}. This step
uses at most 4n+O(1) queries.

We then reorder the a({i}), b({i}) weights it returns on
{s, t, i} so that as({i})/at({i}) > bs({i})/bt({i}). Then,
we set ai = ai({i}) · as/as({i}) and bi = bi({i}) ·
bs/bs({i}). Given the guarantees of the 3-item algorithm,
it is easy to see that the 2-MNL is correctly reconstructed
(up to normalization).

The total number of queries used in the algorithm is at most
6n+O(1).

We next present a non-adaptive algorithm. As the lower
bound in Theorem 4 suggests, the difficulty arises specif-
ically due to the possible existence of very many pairs of
items having exactly the same ratio of weights in the two
MNLs; this may be viewed as a form of degeneracy. We
present the algorithm below.

Theorem 6. We can reconstruct the weights of a uniform
2-MNL on n items with O(n2) non-adaptive queries with
2- and 3-slates.

Proof. We run the 3-items algorithm on the slate {1, i, j}
for each {i, j} ∈

(
[n]\{1}

2

)
. As in the proof of Theorem 5,

if there are no pairs such that as/at 6= bs/bt, then the 2-
MNL is actually a 1-MNL and Observation 1 can be used
to reconstruct.

Otherwise, we can identify two items s, t such that as/at 6=
bs/bt. It must be that either a1/as 6= b1/bs or a1/at 6=
b1/bt (indeed, if a1/as = b1/bs and a1/at = b1/bt, then
as/at = bs/bt). Suppose, wlog, that a1/as 6= b1/bs. This
allows us to obtain the weights of items 1 and s. Moreover,
for each i ∈ [n] \ {1, s}, the 3-items algorithm has been
run on {1, s, i}. Therefore, we can compute the weights of
item i, as in the proof of Theorem 5, hence reconstructing
the 2-MNL.

The non-adaptive algorithm that we described performs
4
(
n−1

2

)
= 2n2 −O(n) queries.

Note that if noise is added to the weights, or if the MNL’s
are otherwise guaranteed to have no equiweighted items for
any triple, then the linear-time bound will also apply in the
non-adaptive case.

6. Learning a 2-MNL on a 3-Item Universe
In this section we focus our attention on a universe of size
3, i.e., n = 3. As we saw before, our algorithms use this as
a building block to work for all n.

At first glance, this problem is apparently simple, for ex-
ample, there are only four unknowns in a uniform 2-MNL
on n = 3 and there are five known free quantities (one
free winning probability from each of the three 2-slates,
and two free winning probabilities from the 3-slate) to pos-
sibly pin down the unknowns. However, such arguments
can be deceptive and fallacious.1 The number of unknowns
and the number of available quantities do not have a sim-
ple relationship since the system, as we will see, is non-
linear. Furthermore, the uniqueness of the solution, given
the known quantities, is not obvious and establishing it is
crucial to solving the reconstruction problem. Trying to
do this through automatic symbolic methods quickly runs
into computational issues, as we found. This forces an ana-
lytic approach to study the multivariate polynomial system,
which also yields interesting insights into the structure of
the system implied by the uniform 2-MNL.

To make the exposition simpler, let the items of the universe
be indexed by {i, j, k}. Again, without loss of generality,
ai + aj + ak = 1 = bi + bj + bk. Note that

D{x,y}(x) =
1

2

(
ax

ax + ay
+

bx
bx + by

)
,

D{x,y,z}(x) =
ax + bx

2
,

for {x, y, z} = {i, j, k}.

In this section we show that the sequence of functions D =(
D{i,j,k}(·), D{i,j}(·), D{j,k}(·), D{i,k}(·)

)
uniquely de-

termines ai, aj , ak, bi, bj , bk (up to reordering) and present
an algorithm to find them. As we saw in Section 5, this im-
plies we can reconstruct the 2-MNL by querying 2-slates
and 3-slates. This proof of uniqueness requires a few steps
that we will sketch out now as a roadmap of this section.
We first introduce some key notions. We say the uniform
2-MNL ((ai, aj , ak), (bi, bj , bk)) is consistent with D, if it
gives the same winning probabilities as D.

Definition 7 (Equiweightedness). For a given triple
{i, j, k} such that ai +aj +ak = 1 = bi + bj + bk, and for
` ∈ {i, j, k}, we say the item ` is equiweighted if a` = b`.

1To appreciate how misleading the problem difficulty can be,
the case of non-uniform 2-MNL is only marginally more com-
plex (i.e., it has only one extra unknown representing the mixing
weight), but we do not currently know how to solve uniqueness in
this case. In fact, as we proved in Theorem 3, queries on 2-slates
and 3-slates are not sufficient to reconstruct the weights of a non-
uniform 2-MNL on n = 3 elements, regardless of the facts that
those slates give 5 known quantities, and that there are exactly 5
unknowns in a non-uniform 2-MNL.
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We begin by showing in Lemma 8 how to find two items
of {i, j, k} that are ordered consistently in a and b. Next,
in Lemma 9, we extend this analysis to find items that are
equiweighted. From here, we perform a delicate case anal-
ysis.

If all the items are equiweighted, then the 2-MNL is ac-
tually a 1-MNL, which we recover via Observation 1. If
exactly one item is equiweighted (Section 6.2), we prove
uniqueness in Lemma 10. We then proceed to the hardest
case (Section 6.3) in which no item is equiweighted. Per
Lemma 8 we may order the items {i, j, k}, and the weights
a, b, such that aj > bj and ak > bk. Lemma 11 then shows
a bijection from aj to ak, and another bijection from ak to
aj . The remainder of the proof proceeds by contradiction.
Corollary 12 employs the form of the bijections to develop
ordering constraints on the weights of items of two hypoth-
esized distinct 2-MNLs generating the same slate proba-
bilities. Theorem 13 then shows that the existence of two
distinct 2-MNLs yields a contradiction.

In Appendix 6.4, we discuss the algorithmic implications
of the uniqueness result. In particular, we show that the
weights of a uniform 2-MNL on 3 elements can be found
efficiently if one has access to the sequence of functions
D. Finally, in Appendix A, we show that, under a mild
separation assumption on the weights, having access to a
sample oracle (instead of to the exact winning probabilities
in D) is still sufficient for polynomial-time reconstruction.

6.1. Ordering and Equiweightedness of Items

We start by proving two technical statements that allow us
to evaluate the relation between a` and b`, for ` ∈ {i, j, k},
using just the winning probabilities on the subslates of
{i, j, k}. The first result allows us to pinpoint the two items
in {i, j, k} that order their a and bweights in the same man-
ner.

Given x, y ∈ {i, j, k}, x 6= y, define the predicate
Px,y

∆
= [D{x,y}(x) ·D{x,y,z}(y) ≥ D{x,y}(y) ·D{x,y,z}(x)].

Lemma 8. (ax−bx) ·(ay−by) ≥ 0 iff Px,z∧Py,z , i.e., the
relative ordering of ax, bx matches the relative ordering of
ay, by iff Px,z ∧ Py,z .

The next statement characterizes equiweighted items in
terms of the predicates, which will allow us to identify
equiweighted items, if any.
Lemma 9. z is equiweighted iff Px,y ∧Py,x ∧Pz,x ∧Pz,y .

Note that obtaining the weight of an equiweighted item
i is trivial: indeed, if i is equiweighted, then ai =
bi = D{i,j,k}(i). Now, if two items of {i, j, k} are equi-
weighted, then all of them are equiweighted, and there-
fore the 2-MNL is indeed a 1-MNL and can be learned
using Observation 1. In the following we consider the

remaining two cases: when {i, j, k} contains exactly one
equiweighted item and when no item in {i, j, k} is equi-
weighted.

6.2. Uniqueness if Exactly One Item is Equiweighted

We now show that if there is a single equiweighted item in
{i, j, k}, then the uniqueness follows.
Lemma 10. Suppose i is the only equiweighted item of
{i, j, k}. Then, there is a unique 2-MNL A (up to reorder-
ing) that is consistent with D.

6.3. Uniqueness With No Equiweighted Items

We now consider the remaining case where no item in
{i, j, k} is equiweighted, i.e., ai 6= bi, aj 6= bj , and
ak 6= bk. Lemma 8 can be used to find the two indices
in {i, j, k} that order the weights in the two MNLs in the
same manner. We assume wlog that the two indices are
j, k, i.e., we assume that (aj − bj)(ak− bk) > 0. Wlog, by
reordering, we also assume that aj > bj and ak > bk.

The first result in this section relates the value of aj to the
value of ak and vice versa.
Lemma 11. Suppose that ((ai, aj , ak), (bi, bj , bk)) is con-
sistent with D. Suppose further that the functions in D sat-
isfy Pj,i ∧ Pk,i, Pi,k ∧ Pj,k, and Pi,j ∧ Pk,j .2 Then,

aj =

(
D{i,j}(j)+

D{i,j}(j)D{i,j,k}(i)−D{i,j}(i)D{i,j,k}(j)

ak −D{i,j,k}(k)

)
· (1− ak)

∆
= fj(ak), (1)

and

ak=

(
D{i,k}(k)+

D{i,k}(k)D{i,j,k}(i)−D{i,k}(i)D{i,j,k}(k)

aj −D{i,j,k}(j)

)
· (1− aj)

∆
= fk(aj). (2)

Moreover, fj(ak) is decreasing for ak ∈ (D{i,j,k}(k), 1),
and fk(aj) is decreasing for aj ∈ (D{i,j,k}(j), 1).

Proof. Let us consider the expression for D{i,j}(j):

1

2

aj
ai + aj

+
1

2

bj
bi + bj

= D{i,j}(j). (3)

Using D{i,j,k}(j) = (aj + bj)/2, (3) can be rewritten as

aj(ak−bk)

2
=D{i,j}(j)(1−ak)(1−bk)−D{i,j,k}(j)(1−ak).

(4)
Since ak 6= bk, we can divide (4) by ak − bk to obtain

1

2
aj = (1− ak)

D{i,j}(j)(1− bk)−D{i,j,k}(j)
ak − bk

. (5)

2By Lemmas 8 and 9, this is equivalent to requiring each com-
patible solution ((ai, aj , ak), (bi, bj , bk)), with aj ≥ bj , to sat-
isfy aj > bj and ak > bk.
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Now, we use 2(D{i,j,k}(k)−bk) = 2
(

1
2ak + 1

2bk − bk
)

=
ak − bk in (5) to obtain (1). The derivation of (2) is analo-
gous.

For the monotonicity claim, recall that Pj,i ⇐⇒
[D{i,j}(j)D{i,j,k}(i) − D{i,j}(i)D{i,j,k}(j) ≥ 0]. Thus
by our Pj,i assumption, the numerator of the fraction
in (1) is non-negative (see Lemma 8). For any ak ∈
(D{i,j,k}(k), 1), the denominator of that fraction is posi-
tive, and it increases with ak. Since D{i,j}(j) is also posi-
tive, fj(ak) decreases as ak increase. The monotonicity of
fj(ak) can be proved symmetrically.

We then get the following consequence relating the order-
ings of the aj’s, bj’s, ak’s, and bk’s.
Corollary 12. Suppose the functions in D satisfy Pj,i ∧
Pk,i ∧ Pi,k ∧ Pj,k ∧ Pi,j ∧ Pk,j . Then, if ((a′i, a

′
j , a
′
k),

(b′i, b
′
j , b
′
k)) 6= ((a′′i , a

′′
j , a
′′
k), (b′′i , b

′′
j , b
′′
k)) are weights con-

sistent with D and assuming wlog that a′j ≥ b′j , a′′j ≥ b′′j , it
must hold that either:

• a′j > a′′j > b′′j > b′j and a′′k > a′k > b′k > b′′k , or
• a′′j > a′j > b′j > b′′j and a′k > a′′k > b′′k > b′k.

Proof. By the properties of the functions in D, and Lem-
mas 8 and 9, we must have a′j > b′j , a′′j > b′′j , a′k > b′k and
a′′k > b′′k . Thus, max(b′j , b

′′
j ) < D{i,j,k}(j) < min(a′j , a

′′
j ).

Suppose that a′j = a′′j . Then, by Lemma 11, it must be
that a′k = fk(a′j) and a′′k = fk(a′′j ), and thus a′k = a′′k .
By the consistency of the D{i,j,k}(j) winning probability,
it must also hold that b′j = b′′j and b′k = b′′k . Therefore,
((a′i, a

′
j , a
′
k), (b′i, b

′
j , b
′
k)) = ((a′′i , a

′′
j , a
′′
k), (b′′i , b

′′
j , b
′′
k)),

and we get a contradiction.

Otherwise we have two cases.

• If a′j > a′′j , then a′k = fk(a′j) < fk(a′′j ) = a′′k , by
the decreasing property of fk(·) proved in Lemma 11.
Then, by the consistency of the winning probabilities
D{i,j,k}(j) and D{i,j,k}(k), we must have a′j + b′j =
a′′j + b′′j and a′k + b′k = a′′k + b′′k . Thus, b′j < b′′j and
b′k > b′′k .

• If a′j < a′′j , then symmetrically we get a′k = fk(a′j) >
fk(a′′j ) = a′′k , and b′j > b′′j and b′k < b′′k .

We are now ready to prove uniqueness in the no equi-
weighted items case.
Theorem 13. Suppose the functions in D satisfy Pj,i ∧
Pk,i ∧ Pi,k ∧ Pj,k ∧ Pi,j ∧ Pk,j . Then, there is a unique
((ai, aj , ak), (bi, bj , bk)), up to reordering, consistent with
D.

6.4. Reconstructing the Weights

Having established the uniqueness of a 2-MNL given D,
we show how to determine its weights. First, observe that,

having access to the functions in D, we can write down
a system of polynomial inequalities having the unknown
weights of the 2-MNL A as its solution:

ai
ai+aj

+ bi
bi+bj

= 2DA
{i,j}(i)

ai
ai+ak

+ bi
bi+bk

= 2DA
{i,k}(i)

aj

aj+ak
+

bj
bj+bk

= 2DA
{j,k}(j)

ai
ai+aj+ak

+ bi
bi+bj+bk

= 2DA
{i,j,k}(i)

aj

ai+aj+ak
+

bj
bi+bj+bk

= 2DA
{i,j,k}(j)

ai + aj + ak = 1
bi + bj + bk = 1
ai, aj , ak, bi, bj , bk > 0

(6)

For a given choice of D, the system can be solved in
constant (but very large) time using, e.g., Buchberger’s
algorithm (Buchberger, 1976) for computing the Gröbner
Bases. Thus, we get the following.

Theorem 14. There is a constant-time algorithm that given
the D induced by a 2-MNL on a universe of size 3, infers
the unique 2-MNL consistent with D.

From a practical perspective, computing the weights using
the Gröbner bases of the system is computationally expen-
sive. However, one could use Lemmas 8 and 9 to obtain, in
a very efficient manner, the relative ordering and the equi-
weightedness of the 3 items. Then, if there are 3 equi-
weighted items, the solution can be computed efficiently
using Observation 1. If there is exactly 1 equiweighted
item, then the solution can be obtained using the proof of
Lemma 10. Otherwise, there are no equiweighted items,
and one could use a one-dimensional grid search suggested
by the bijections of Lemma 11.

7. Conclusions
In this paper, we have proposed the first algorithm for
(provably) learning exactly uniform mixtures of two multi-
nomial logits over a universe of n items. Our algorithms
run in time O(n) for adaptive queries, and in time O(n2)
for non-adaptive queries; we have shown that our algo-
rithms are optimal, query-wise, in the class of algorithms
that perform queries to slates of constant size.

There are significant technical challenges in extending our
methods to either non-uniform mixtures or mixtures of
more than two components, but parts of our proof structure
do generalize. We hope that the existence of our algorithm
is a first step towards finding more general provable results
for this important problem.
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