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Introduction

The integration of green resources in the grid is a reason of technical and economic
challenges since the power production is highly unpredictable across any timescale.
The fluctuations in output make the renewable-oriented power producer not enough
competitive in the electricity market. Energy storage facilities not only store a large
amount of energy but also provide an efficient compensation system to mitigate power
imbalances and avoid intermittent connection with the grid.

Nowadays the high penetration of renewable energy makes storage utilities eco-
nomically relevant, and the increasing liberalization of the electricity market gives the
opportunity to use storage facilities as trading instruments. The owner of a storage
system may both sell or rent his/her facility in the market and implement operative
strategies to gain profit from the high volatility of electricity prices.

Recently, the economic-financial valuation of storage facilities has becoming a
demanding challenge for several researchers within the mathematical framework of
stochastic control. The owner of a storage facility is a sort of “controller” that se-
lects the optimal execution policy of his/her facility in order to maximise the expected
discounted cash flow subject to operational costs and physical constrains.

In this thesis we focus on hydroelectric storage facilities. Such reserve systems are
widely used in alternative energy power generation, thanks to their high capability in
quickly responding to the energetic compensation necessities, that so often occur in
the scenario of renewable energy production.

The optimal management of energy storage facilities is widely diffused in the frame-
work of control theory and different aspects are taken into consideration by means
of various mathematical tools. In particular, Thompson, Davison and Rasmussen
[TDR04; TDR09] present numerical result for a partial differential equations approach
in classical control theory. Spikes for prices dynamics are considered by adding jumps
to the usual mean-reverting process. Particular attention is paid to the operational
characteristics of the real storage systems. Zhao and Davison [ZD09] propose an opti-
mization model for pumped-storage hydroelectric facilities exposed to a constant water
inflow and deterministic dynamics for the prices. Carmona and Ludkovski [CL10] pro-
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Introduction

vide two finite horizon models for natural gas dome storage and hydroelectric pumped
storage. They construct an optimal switching model and propose a solution based on
multiple stopping problems. They also obtain an efficient simulation-based numerical
method for valuation.

Among many studies in singular stochastic control, in which the trajectories of the
admissible control strategies are not necessarily absolutely continuous with respect
the Lebesgue measure, Harrison and Taylor [HT78] consider a storage system whose
fuel fluctuations are driven by a Brownian motion that is controlled by a pair of non-
negative processes representing to cumulative injection into the storage facility and
the cumulative withdrawn from the facility. Their objective is to find such processes
in order to minimize the expected discounted costs over an infinite time horizon, sub-
ject to the non-negativity constraint on the state process. These costs are the sum of
constant proportional execution costs associated with injection and withdrawn respec-
tively and linear holding running cost. The authors prove that an optimal pair exists
and it is composed by two almost surely continuous (but non absolutely continuous
processes) and they show that the controlled state process behaves as a Brownian mo-
tion instantaneously reflected at the origin and at a positive value, unique solution of
a certain algebraic equation. Chiarolla, Ferrari and Stabile [CFS15] consider an inven-
tory model for a storable commodity whose supply purchase is subject to price and
demand uncertainty. The spot price of the commodity is driven by a general (positive)
exponential Lévy process. They aim to determine an optimal procurement policy in
order to maximise the expected discounted return obtained by meeting a future ran-
dom commodity’s demand and facing holding and ordering running costs. They obtain
necessary and sufficient first order conditions for optimality and, in the particular case
of linear holding cost and exponentially distributed demand, they are able to provide
an explicit expression for the control policy and a probabilistic representation for the
optimal return.

Our research starts from the work of Shardin and Wunderlich [SW17], Partially
observable stochastic optimal control problems for an energy storage. They consider a
hydroelectric storage system in which the energy production activity can be reversed
and the reserve can be refilled by pumping water from an underlying reserve. The
intent of the authors is to determine the charging and discharging policies in order
to exploit the high unpredictability of energy markets and manage the hydroelectric
reserve in order to buy energy from the market and load the reserve when prices are
low, and to discharge water to produce energy and sell it, when prices increase. In
particular they aim at controlling the head of the water inside the upper reservoir
by setting both the pumping and releasing rates. At each time t ≥ 0, the optimal
rates depends on the state on the current water head are they are chosen among
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Introduction

all the admissible progressively measurable stochastic process satisfying certain state
constraints.

We began to shape our model aiming at generalising their approach, overcoming the
idea of controlling the storage system through the charging and discharging rates and
introducing the possibility of acting directly on the volume of water in the reservoir, by
considering control policies whose trajectories are not necessarily absolutely continuous
with respect to the Lebesgue measure. Hence we first set the problem in the framework
of the bounded variation stochastic control policies, i.e. we assume that, at each time
t, the current volume of water inside the reservoir is considered as the difference of two
non-decreasing processes representing the cumulative amounts of water charged and
discharged up to time t, respectively.

The difficulties in dealing with the above bounded variation model emerged imme-
diately, not only in the attempt to recover the dependence of the admissible controls
class on the controlled state, but also in relation to the other characteristics of the
problem that we are going to introduce below. For these reasons, we decided to focus
the purpose of this thesis on the case of pure generation, i.e. when the owner of a
hydroelectric reserve can only produce electricity through a turbine activated by the
passage of the flow of water released from an overhead reservoir. That is, we consider
the problem of finding an optimal control strategy of hydroelectric power production
among a suitable class of monotone (non-decreasing) processes. In particular, for any
time t ≥ 0, we consider the volume of water in the reservoir as

Y y,ν
t = y − νt, t ≥ 0

where y ∈ [y, y] represents the initial amount and, at each time t, νt represents the
cumulative volume of water discharged up to time t. The instantaneous amount of
energy that can be produced by releasing fuel is given by

dEy,νt = f(Y y,ν
t )dνt,

where f is the instantaneous marginal productivity function and it represents the in-
tensity at which energy is generated by discharging from the water head corresponding
to the current volume Y y,ν

t .

As it is usual in electricity markets modelling (see e.g. [DFM15; De +17; SW17]),
we assume that energy spot market prices are described by a mean reverting pro-
cess (Xx

t )t≥0 of the Vasicek type which involves the positive probability that negative
energy prices occur. On the other hand, we take into account that the owner of a
hydroelectric facility faces instantaneous running holding costs concerning the mainte-
nance of unused water. Considering such costs described by a function h that depends
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Introduction

on the current volume at time t, our objective is to maximise the discounted expected
cash flow

J(x, y; ν) = E
[ ∫ +∞

0
e−rtXx

t f(Y y,ν
t )dνct +

∑
t≥0

e−rt[Xx
t ]+f(Y y,ν

t )∆νt+

−
∑
t≥0

e−rt[Xx
t ]−

∫ ∆νt

0
f(Y y,ν

t − z)dz −
∫ +∞

0
e−rth(Y y,ν

t )dt

]
,

by selecting an optimal control in the class of admissible policies A(y), that is the
family of all non-decreasing, left-continuous, adapted stochastic processes (νt)t≥0 such
that 0 ≤ νt ≤ y−y, for any t ≥ 0. That is, our scope is to find a control policy solution
of the optimization problem

v(x, y) := sup
ν∈A(y)

J(x, y; ν), (OC)

where v is the value function of stochastic control problem (OC).
Our model belongs to the wide class of singular stochastic optimal control problems.

In particular we deal with a finite-fuel, two-dimensional degenerate control problem on
R × [y, y], where the control policy ν does not affect the diffusion dynamics (Xx

t )t≥0.
Notice that the power productivity is a function of the controlled state process Y y,ν

t

hence the instantaneous “revenue intensity” Xx
t f(Y y,ν

t ) is state-dependent. It may be
positive or negative, according to the sign of Xx

t . So the marginal yield fails to be
monotone. The novel structure of our performance J shows that the system may react
in two different ways whenever a jump of the control processes occurs. In fact, if
the price is positive and it is convenient to discharge a quantity ∆νt instantaneously,
then the system will act with a single impulse at the highest available productivity
level f(Y y,ν

t ). Whereas, if the energy price is negative but it is still preferable to
release water rather than pay the cost of maintaining that level, then our model allows
the system to act less efficiently in order to contain the loss (negative revenue), by
producing less energy with the same discharged quantity of water. In fact, rather than
releasing the quantity ∆νt in a single impulse, the strategy splits that quantity into
sufficiently small portions, which are discharged one after the other in an infinitesimal
time interval. Such strategy is a sort of chattering policy, as noticed by Alvarez [Alv00].

The aforementioned features of our model, including the non-monotone marginal
revenue, is a novelty in the field of singular stochastic control, even compared to other
state-dependent problems treated in literature. Indeed, [Alv00] considers chattering
policies in the ambit of optimal harvesting problems and takes into account an instan-
taneous monotone (non-increasing) marginal revenue depending on the current state
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of the system. The author shows that the optimal strategy should be a reflection of
the process at a given optimal boundary by means of a chattering policy, but such
control is not in the set of the admissible controls. Song, Stockbridge and Zhu [SSZ11]
consider the harvesting problem in a random environment by introducing a switching-
regime through a continuous-time Markov chain with finite states space. They prove
a verification theorem and explicitly construct a chattering type control process that
turns out to be ε-optimal for their harvesting model. Again the monotonicity of their
marginal yield allows them to show that an admissible optimal control policy might
not exist. Similar results are obtained by Alvarez, Lungu and Øksendal [ALØ16] for
their multi-dimensional stochastic harvesting framework, involving interaction among
different populations. Even in their model, if the price per unit of each population is
state-dependent and decreasing, an admissible optimal control may not exist, but a
chattering policy might be optimal. Købila [Kob93] faces a decision problem between
hydro and thermal power generation. In a scenario with stochastic demand, they con-
sider the alternative between the two different generation possibilities by representing
the cost of introducing new hydro resources as an irreversible capital investment. The
authors aim at maximise the expected total discounted profit, where the marginal
cost of investment on hydroelectric power is considered state-dependent. Such a de-
pendence is partially overcome by approximating the problem through a sequence of
absolutely continuous controls and reformulating the profit functional in terms of such
processes. Although the problem is explicitly solved, the “chattering behaviour” seems
to be excluded from their model.

Unlike [Alv00; ALØ16; SSZ11], in our model the non-admissibility of chattering
policies is overcome by the structure of the hydroelectric production system that is
allowed to respond by an immediate release of water implemented as a chattering
policy. The possibility of acting in such an unconventional manner, as far as we
know, appears here for the first time in literature. By exploiting the properties of the
performance functional J we provide some a priori estimates for the value function
v(x, y), that allow us to highlight the regularity properties of v. As it is usual in
singular stochastic control, the strip R× [y, y], which our problem is defined on, splits
in two subsets: the inaction region C where it is never optimal exerting the control
and its complement, the action region D, where it is optimal to act instantaneously.
Heuristic arguments allow us to guess the corresponding Hamilton-Jacobi-Bellman
(HJB) equation, which turns out to be a variational inequality with a state-dependent
gradient constraint.

We prove a Verification Theorem providing sufficient conditions that characterise
the value function v among the solutions of the HJB equation. We obtain such result
without any hypothesis of monotonicity on the marginal revenue, condition that in-
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stead is crucial in [Alv00; ALØ16; SSZ11]. A similar result in a very general setting is
obtained by Davis and Zervos [DZ98], although they explicitly solve the problem only
in two specific cases which do not involve state-dependence. The Verification Theorem
sheds light on the structure of the optimal control process. In particular we show that
the optimal control is purely discontinuous and, at the first time of action, it exerts all
the available fuel with a single instantaneous jump. The hydroelectric system generates
power with its highest productivity if the price is positive at exerting time, otherwise
it behaves as if the control could be exerted in a chattering manner.

In order to explicitly solve the stochastic control problem (OC) it is necessary to
determine the first time at which discharging all the available water allows us to obtain
the maximum profit. Such optimal acting time is the solution of a suitable associated
optimal stopping problem. In particular, we consider a family of optimal stopping
problems (OSy), parametrized by the initial reserve volume y, aiming to show that,
for each (x, y) ∈ R× [y, y], the value function of the optimal control problem (OC) is
such that

v(x, y) = u(x, y)− 1

r
h(y), (vcon)

where x 7→ u(x, y) is the optimal reward function associated to the optimal stopping
time τ∗y of problem (OSy). The existence of a connection between stochastic control
problems and optimal stopping problems is a peculiarity of many results of singular
stochastic control problems, see e.g. [BK96; BC67; CH00; CH09; KS84; KS85; KS86],
among many others. However, in most works in the literature, the connection between
the value function of the optimal control problem and the optimal reward of the asso-
ciated optimal stopping problem is of “differential” type, i.e. the first derivative of the
value function in the direction of the controlled state variable coincides with the opti-
mal reward of the associated optimal stopping problem. In particular, as first noticed
in [BC67], the inaction and action regions of the optimal control problem coincide,
respectively, with the continuation and stopping regions of the associated stopping
problem. Moreover, often for problems that exhibit such type of connection, the “prin-
ciple of smooth fit” holds true, i.e. the optimal reward of the optimal stopping time
is continuously-differentiable across the boundary separating the action and inaction
regions. In many cases such property is crucial to construct the optimal control policy.

Instead, under particular hypotheses, our model gives rise to a novel connection
between the value function v of the optimal control problem and the optimal reward
u of the associated optimal stopping problem. In fact, we prove (see (vcon)) that the
value function of (OC) coincides with the difference between the optimal reward re-
lated to (OSy) and the cost of doing nothing perpetually. As far as we know, this kind
of characterisation is new in literature of works featuring state-dependence. Somehow
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similar results may be found in [DFM15; DFM18; De +17] for models not display-
ing state-dependence and in specific cases. In particular, the authors of [DFM18]
consider a two-dimensional degenerate non-convex singular stochastic control problem
for storage-consumption in markets where the price of energy is simply model by a
Brownian motion which allows for tractable fundamental solutions ψ and ϕ of the
characteristic equation related to such diffusion. They prove that the first derivative
of the value function in the direction of the controlled process can be characterised
as the optimal reward of an associated optimal stopping problem for initial inventory
levels above a certain critical value. When the parameter is below that threshold, then
the differential connection fails and, instead, the value function of the control problem
is characterised by the optimal reward of the associated family of optimal stopping
problems parametrised by the value of the initial inventory level.

We now describes the steps of our approach to the solution of (OC). For each
value of the initial reserve amount y, we solve the optimal stopping problem (OSy)
by borrowing the geometric method of Dayanik and Karatzas [DK03]. Such approach
allows us to graphically determine the optimal reward function u(·, y) through the
construction of the smallest non-negative concave majorant of a suitably defined func-
tion. In particular, for each (OSy), we are able to identify both the stopping Sy and
continuation Cy regions, as well as the optimal stopping time. Then, under suitable
assumptions, we establish the aforementioned connection (vcon).

We assume monotonicity properties, with respect to the initial amount of water y,
for the ratio between the instantaneous holding cost and the amount of energy that
may be produced by a sudden release of the available water, in both the system’s
reaction modalities (impulsive and chattering). In particular, we study two different
cases, (Rb) and (R∞), for the behaviour of such ratios when y approaches the lowest
available level y. Under assumption (Rb), we have that both ratios are decreasing and
bounded above. In this case we completely solve the problem (OC). In fact, for any
y ∈ (y, y], we show that there exists a unique positive boundary point γ+(y) separating
the continuation interval Cy and the stopping interval Sy of problem (OSy) and we prove
that it is obtained as the unique solution to a certain fixed point problem. We show
that the function y 7→ γ+(y) is positive, increasing and continuously-differentiable on
(y, y). Afterwards, we use our Verification Theorem to prove that the function u− 1

rh

actually identifies the value function of the optimal control problem (OC). We show
that such a function is a solution to the HJB equation and also that the moving
boundary separating the action and inaction regions coincides with γ+. Hence, we
find that, for any (x, y) ∈ R× (y, y], the optimal control policy consists in discharging
instantaneously all the available water reserve if the initial price x is above γ+(y).
Otherwise, it is optimal doing nothing until the price process Xx

t reaches the optimal
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positive threshold γ+(y), then suddenly releasing all the available fuel.
On the contrary, when hypothesis (Rb) is replaced by (R∞), we face the case in

which the power produced by discharging instantaneously all the available water re-
source decreases to 0 faster then the holding cost, when y is sufficiently close to the
lowest available level y. This means that the ratio between holding cost and power
produced becomes infinitely large as y approaches y. In such case the scenario be-
comes particularly challenging. By exploiting the aforementioned geometric method,
we study the family of optimal stopping problem (OSy), considering three different
ranges for the parameter y, showing when the solutions can be traced back to those
found under (Rb) and when the solutions may exhibit multiple stopping intervals. In
particular, we show that for certain values of the parameter y, the stopping region Sy
is defined as the union of two disjoint intervals [γ−(y), γ1(y)] and [γ2(y),+∞), where
γ−(y) < γ1(y) < 0 and γ2(y) > 0. Although the function y 7→ γ−(y) still represents a
negative, increasing and continuously-differentiable function, in general an analogous
result cannot be proved for y 7→ γ1(y) and y 7→ γ2(y). More specifically, the high
generality of our model characteristics and the tricky structure of the fundamental so-
lutions ψ and ϕ (associated to the infinitesimal operator L of the Vasicek’s process X)
make extremely difficult the identification of γ1 and γ2 as well-defined, continuously-
differentiable functions with suitable monotonicity properties. Despite that, in order
to depict the framework under (R∞), we provide some intuitions on the geometry of
the action and inaction regions. In particular, based on our Verification Theorem,
we make conjectures on the structure of the optimal control policy. We show that
a portion of the action region D has to be contained within the “negative half-strip”
{(x, y) ∈ R2 : x < 0, y ∈ (y, y]}. This means that there is a (understandably small)
value y0 under which it is convenient to exercise control even if the market exhibits
a negative price. Indeed, since near the minimum level y the capacity of the system
to produce energy decreases faster than the cost of inaction, it may be preferable to
discharge the volume of water available rather than waiting for successive periods of
positive prices.

The rigorous identification of the optimal control policy and the characterisation of
the value function in terms of the optimal reward u of (OSy) remains an open problem.
In particular, the state-dependence affecting both the performance functional J and
the gradient constraint of the HJB equation makes difficult to prove that u− 1

rh still
satisfies the gradient constraint inequality inside the inaction region C. However, the
relevant results obtained under (Rb) lay the foundations for a broader theory on the
connection between state-dependent singular optimal control problems and optimal
stopping problems. In particular, one of the main aims of our future research will be to
determine conditions on the fundamental characteristics of the model so as to extend
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the application of the Verification Theorem, when the structure of both action and
inaction regions exhibit additional complexities. Furthermore, the continuation of our
research will also aim to generalize the approach developed in this thesis to the wider
context of the bounded variation singular stochastic control problems, reintroducing
in our model of hydroelectric production the possibility of restoring the water level
within the reserve.

This thesis is organized as follows. In Chapter 1 we introduce the general for-
mulation of the problem, describing the starting point of our research and presenting
the market context where our hydroelectric production system is set. In Chapter 2
we obtain a priori properties of the value function v of the optimal stochastic control
problem (OC) and, following heuristic arguments, we determine the associated HJB
equation. Then we prove the Verification Theorem that characterise v among the so-
lutions of the HJB equation. In Chapter 3 we define the family of optimal stopping
problems (OSy) associated with the control problem (OC) and, through a geometric
approach we determine the solution of such stopping problems. Successively we in-
troduce two different assumptions on the model that highlight two cases. In the first
one the connection (OC)-(OSy) may be rigorously proved, whereas in the second one
the connection can only be conjectured. The thesis is completed by Appendices A, B,
C and D containing some calculations and some useful results mentioned throughout
this work.

xi



Chapter 1

Model Formulation

A hydroelectric storage system usually is composed by a sufficiently large dam
which is able to store water. Electricity is produced by releasing a specific amount of
water from the reservoir and converting it into energy power by means of a generator,
activated by the passage of the water flow through a turbine. The action of the turbine
transforms the potential energy stored in the reservoir into electricity power when a
certain quantity of water is released.

In this chapter we outline the main features of our model, specifying the initial
objectives and subsequent adaptations to a wider general theoretical context.

From now on we will consider a complete filtered probability space (Ω,F , (Ft)t≥0,P)

where the filtration (Ft)t≥0 is assumed to satisfy the usual conditions, i.e. (Ft)t≥0 is
right-continuous and F0 contains all the P-null sets of F .

1.1 Recalling Shardin & Wunderlich’s model

Our research has been inspired by the increasingly fascinating challenge of building
mathematical models to represent the peculiarities of hydroelectric storage systems and
make them functional in the context of energy markets. Our starting point has been the
paper by Anton Shardin and Ralf Wunderlich, Partially observable stochastic optimal
control problems for an energy storage [SW17]. They consider an energy storage facility
with limited capacity that faces the uncertainty of highly fluctuating energy prices.
They focus on a pumping hydroelectric system which, besides producing energy by
releasing water, has two reserves placed at different heights in such a way it is possible
to pump water from the lower reservoir to fill the overlying reservoir by means of a
pump powered by electricity. This energy is purchased in the market when prices are
sufficiently low, with the prospect of using the stored resource to produce energy in
subsequent periods of higher prices.

1



1.1 Recalling Shardin & Wunderlich’s model

The authors of [SW17] consider the water head Q, i.e. the effective height [m]

of the water above the system turbine/pump, which is regulated by the action of a
classical stochastic control process (ξt)t∈[0,T ]. Such a process describes the flow rate
of the water and it measured in [m3/s]. In particular, if ξt > 0, then at time t some
quantity of water is discharged from the upper reservoir to the lower one, if ξt < 0 then
water is pumped following the opposite direction, whereas if ξt = 0, then no operations
occur. They assume the following ordinary differential equation

dQt = − cT
A(Qt)

ξtdt, (1.1)

for the dynamics for the water head, where A(Qt) describes the cross-sectional area
of the upper reservoir at level Qt and cT is a time conversion factor. The water level
is assumed to satisfy the state constraint Qt ∈ [q, q], where q > q > 0 represent the
minimal and maximal water head, respectively. The rate flow process ξt, at any time
t, has to lie in a set of achievable values depending on the current water head, i.e.

ξt ∈ [ξ(Qt), ξ(Qt)], (1.2)

with ξ(Qt) ≤ 0 and ξ(Qt) ≥ 0 are the minimum and maximum pumping and releasing
rate, respectively.

At any time t, the instantaneous power produced by discharging water at rate ξt
from the height Qt is given as in [TDR04; ZD09] by the power function

Et = c0η(Qt, ξt)(Qt −Q+)ξt, ξt ∈ (0, ξ(Qt)], (1.3)

where c0 is a constant depending on the water density and gravitational acceleration
g, Q+ is a constant representing friction losses and η is the turbine efficiency function.
If instead, ξt ∈ [ξ(Qt), 0) then the instantaneous energy consumed by pumping water
into the overlying reservoir is given by

c1(Qt +Q−)η−1
p ξt, (1.4)

where c1 is a constant involving c0 and other conversion factors, Q− is a constant
representing friction losses and ηP denotes the efficiency of the pump that the authors
suppose to be constant.

Shardin and Wunderlich assume that the spot price dynamics is described by a
mean reverting process (Xt)t≥0 and, at each time t, the instantaneous running reward
describing the profits obtained by selling power or the cost faced purchasing energy is

2



1.1 Recalling Shardin & Wunderlich’s model

given by

Π(Xt, Qt, ξt) :=


c0Xtη(Qt, ξt)(Qt −Q+)ξt, ξt ∈ (0, ξ(Qt)]

0, ξt = 0

c1Xt(Qt +Q−)η−1
p ξt, ξt ∈ [ξ(Qt), 0).

(1.5)

The classM of the admissible control processes is the set of all progressively measur-
able control policies of Markov type ξt = m(t,Xt, Qt) for any t ∈ [0, T ] with m being
a measurable function, satisfying the constraint (1.2). The authors aim to maximise
the expected total discounted cash flow over the finite1 time interval [t, T ], defined as

L(t, x, q; ξ) := Etxq
[ ∫ T

t
e−r(s−t)Π(Xs, Qs, ξs)ds+ e−r(T−t)Φ(XT , QT )

]
, (1.6)

where r > 0 denotes the discounted rate, Φ(XT , QT ) is a final reward function and
Etxq[·] is the conditional expectation given that at time t the spot price is Xt = x and
the water head is Qt = q. The value function of their optimization problem is

V (t, x, q) := sup
ξ∈M

L(t, x, q; ξ). (1.7)

As is usual in classical stochastic control theory, the authors apply the dynamic pro-
gramming principle and derive a suitable Hamilton-Jacobi-Bellman equation for the
value function V . Such differential equation turns out to be degenerate, since the
diffusion part of the state process (Xt, Qt) involves only the price component Xt and
hence it is not uniformly elliptic. They construct a candidate optimal Markov control
policy ξ∗ of threshold type, finding certain levels of the price at which the owner of
the storage facility changes his/her operational strategy. They notice that the state
process (X,Q∗) associated with the candidate optimal policy ξ∗ has a discontinuous
drift. Additionally, since their problem is degenerate the results of classical stochastic
control theory cannot be applied and thorny problems concerning the admissibility
of ξ∗ arise. The authors employ some regularisation techniques, approximating the
degenerate problem by a sequence of completely solvable problems. Despite this, the
solutions associated to the regularised problems turn out to be only nearly optimal for
their original problem.

Although the model proposed in [SW17] includes several technical aspects of hy-
droelectric production systems, their control problem is limited to the set of classical
control processes, i.e. absolutely continuous processes with respect to time. We aim

1Here we consider the finite-horizon problem to reproduce as closely as possible the model presented
in [SW17]. In the following, the infinite horizon will be considered.
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1.2 Proposal for a bounded variation approach

to extend their model by considering a wider class of admissible controls, so as to
overcome the admissibility issues arisen from their classical optimization model and to
go beyond the absolutely continuous relation in (1.1), capturing further aspects that
are not highlighted in [SW17]. Furthermore, we will introduce the maintenance costs
that the owner of a hydroelectric power plant must face and which are not taken into
consideration in the model proposed by Shardin and Wunderlich.

1.2 Proposal for a bounded variation approach

We intend to extend the model in [SW17], by enlarging the class of the feasible
hydroelectric production strategies, allowing also that the operations of the storage
system can occur with instantaneous jumps of the water amount in the reservoirs.

Let A denote the class of non-decreasing, left-continuous and adapted process
(ζt)t≥0 with ζ0 = 0 almost surely and let us consider the class of bounded variation
processes

B := {ζ : ζ = ζ+ − ζ− with ζ± ∈ A} (1.8)

and its subclass of finite-fuel bounded variation processes

B(z) := {ζ ∈ B : ζ̌∞ := ζ+
∞ + ζ−∞ ≤ z a.s.}, (1.9)

with 0 ≤ z < ∞. We recall that ζt = ζ+
t − ζ

−
t represents the minimal decomposition

of a process in ζ ∈ B and ζ̌t := ζ+
t + ζ−t is defined as its total variation. Such classes

of stochastic processes are extensively treated in the literature of stochastic control.
For more details and classical examples we refer the reader to [BSW80; KS86], among
many others.

The first step is to describe the dynamics of the power generated by the turbine
action related to the variation of water volume in the reserve. Denoting by y and y
the minimal and maximal available capacity of the upper reservoir, respectively, and
by y ∈ [y, y] the initial volume, at each time t, the volume of water into the upper
reservoir is

Y y,ν
t = y − νt = y − (ν+

t − ν
−
t ), t ≥ 0, (1.10)

where ν ∈ B(y−y), and ν+
t and ν−t represent the cumulative amount of water released

and the cumulative amount of water pumped up to time t, respectively. We define the
instantaneous variation of power exchanged in the system as

dẼt = f(Y y,ν
t )dν+

t − p(Y
y,ν
t )dν−t , (1.11)

where f and p are defined as the instantaneous marginal productivity functions. In
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particular, at each time t f(Y y,ν
t ) represents the instantaneous intensity at which

energy power is generated by depleting a certain amount of water from the current
volume level Y y,ν

t . Conversely, p(Y y,ν
t ) is the instantaneous intensity at which power

must be produced in order to increase the present volume Y y,ν
t , by pumping water

from an underlying reservoir.
We consider the spot price dynamics described by a mean-reverting diffusion pro-

cess (Xx
t )t≥0, whose characteristics will be specified in the sequel. The expected dis-

counted net present value associated with the charging/discharging storage operations
is given by

J̃(x, y; ν+, ν−) = E
[ ∫ +∞

0
e−rtXx

t f(Y y,ν
t )dν+

t −
∫ +∞

0
e−rtXx

t p(Y
y,ν
t )dν−t

−
∫ +∞

0
e−rth(Y y,ν

t )dt

]
, (1.12)

where r > 0 is the discount rate and h is the cost function. At each time t the quantity
h(Y y,ν

t ) represents the instantaneous running cost that the owner of a hydroelectric
facility incur to maintain the store at the level Y y,ν

t .
Since the beginning of our research, the maximisation of functional J̃ has shown

many technical difficulties. In fact, we deal with a problem in which both the marginal
productivity functions f and p depend on the state of the system and they affect the
performance functional J̃ in a non-standard way. As far as know, such kind of models
is an absolute novelty in the field of stochastic control theory, also in the wider class
of problems in which the control policies are allowed to be not absolutely continuous
with respect to time.

In this thesis we want to lay the foundations for the development of a theory that
can determine the suitable tools to solve this type of unconventional problems. For
this reason, we consider the case of a pure generating hydroelectric facility, allowing
the owner to only produce energy power by discharging water from the upper reservoir,
without the possibility to refill it by pumping water from an underlying resource. We
focus on the stochastic control problem for hydroelectric power production in which
the control strategies belong to a suitable subclass of finite-fuel monotone stochastic
processes. As will be clear in the following, although this problem is more tractable
than the bounded variation problem above, it exhibits several complexities and its
solution turns out to be particularly challenging.
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1.3 The model for a pure generating hydroelectric facility

1.3 The model for a pure generating hydroelectric facility

From now on, to avoid confusion with previous notations, we will always denote
by (νt)t≥0 a control policy in A, i.e. a Ft-adapted stochastic process ν whose paths
t 7→ νt(ω) are left-continuous with finite right limits2 and non-decreasing with ν0 = 0,
for almost every ω ∈ Ω. In particular, we stress that now the process

Y y,ν
t = y − νt, t ≥ 0, (1.13)

denotes the current amount of water in the reservoir at time t, νt the cumulative volume
of water released up to time t and y the initial amount of water into the reservoir. We
have that y is between y and y which are the minimal and maximal available reservoir
capacity, respectively.

Remark 1.1. In order to recover the total activity of the pumping-storage system, one

may consider the possibility of recharging water after that the reserve has gone down

below a certain threshold R and it might be assumed that this process takes place at

a deterministic (potentially constant) rate, properly defined according to the physical-

technical constraints. Therefore, the dynamics in (1.13) that describes the current

volume of water inside the reservoir may be suitably re-defined taking into consider-

ation such feature. Obviously, such dynamics would no longer be non-increasing and

these kind of problem cannot easily be adapted to the optimal control context we are

going to develop in this thesis. In particular, the monotonicity property of the process

Y y,ν
t will have a crucial role in the results we will obtain. In the perspective of future

research, these kind of problems could be consider an interesting intermediate step

between our pure generating model and the more general bounded variation context,

including also recharging activity.

1.3.1 The power dynamics

At each time t, the instantaneous variation of power produced by suddenly deplet-
ing an amount of water dνt from the current volume Y y,ν

t is given by

dEt = f(Y y,ν
t )dνt. (1.14)

We recall that f is defined as the instantaneous marginal productivity function or
-more briefly- productivity function and that f(Y y,ν

t ) represents the instantaneous
intensity of power generated with respect to the change of water volume.

2Often in the literature of stochastic analysis such processes are called by the French acronym
càglàd, i.e. “continue à gauche, limite à droite”.
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1.3 The model for a pure generating hydroelectric facility

The form of the productivity function varies according to the reservoirs shape and
especially with respect to the efficiency of the turbine that is employed in the power
production system. In general we may assume that the level of productivity is higher
for higher levels of stored water and that energy production is not allowed when the
reserve is at its minimum capacity level. We consider the following basic hypotheses
on the productivity function.

Assumption 1.2. The productivity function f ∈ C1((y, y)) is non-negative, strictly

increasing on [y, y] and it is such that f(y) = 0. Moreover, there exists M > 0 such

that

f ′(y) ≤M, ∀ y ∈ [y, y].

In the literature of hydropower modelling there exist models that consider concavity
assumption for the productivity function, often justified by the analysis of empirical
data (see e.g [Vie+15]). As noticed above, the analytical structure of productivity
function strictly depends on physical and technical features of the hydroelectric fa-
cility. Hence, for the sake of generality, we abstain from assumptions about concav-
ity/convexity property for f . Further hypotheses will be specified in the sequel of the
thesis and these will be taken in relation to the other characteristics composing our
model.

1.3.2 The prices dynamics

Let us assume now that the owner of a hydroelectric pure-generating storage facility
faces the energy markets. As properly highlighted in [Aïd15], although the peculiar-
ity of each electricity market among different countries, some common factors may
be identified and a unique substructure can be defined. In particular three different
sub-markets can be recognised. In the day-ahead market the exchanges take place one
day before the delivery, and prices and quantities are settled through public auctions.
After the spot price has been established, the final schedule for each generator is fixed.
Whenever a participant in the market is unable to deliver the specified amount in
the spot market, then his/her surplus/deficit must be adjusted by balancing mecha-
nisms. These operations take place in the imbalance market where exchanges occur
between transport system operators (TSO) and market players in order to ensure suit-
able power level in real-time. Even though the main role of buyer/seller is played by
TSOs, exchanges among market agents themselves are also allowed, they occur in the
intraday market where, according to any new update of the generation prediction, the
participants take care of their level of production and implement their strategies in
order to avoid penalties at the delivery time. The third sub-sector of energy markets is
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1.3 The model for a pure generating hydroelectric facility

represented by the forward markets within the markets participants can trade electric-
ity for future periods. These markets share many features with those related to other
storable commodities, however presenting significant differences in the term structure.
Because of the hour-to-hour activity in the day-ahead market, agents need financial
contracts for every hour of the year so as to guarantee the hedging of their generation
from the risks of electricity production.

Since the financial assets often have very short maturities in the intra-day market,
this can be thought of as the actual spot price market. However, the reference price at
which the electricity will be sold/bought is that established on the day-ahead market.
Therefore, in our model we consider the day-ahead prices as the spot structure and,
according to the existing literature (see e.g [SW17; DFM15]), we consider a Vasicek’s
process (Xx

t )t≥0 for electricity spot prices that is the unique solution of the following
stochastic differential equation{

dXx
t = a(b−Xx

t )dt+ σdWt, t ≥ 0

Xx
0 = x,

(1.15)

where x ∈ R, (Wt)t≥0 is a standard Brownian motion, σ is the volatility of the spot
prices, b and a are positive constants representing the long-term average price and the
convergence rate at which the price process reverts to its average b, respectively.

The process (Xx
t )t≥0 captures some of the principal aspects of energy prices, for

instance the mean-reverting behaviour and first of all the tendency of energy markets
to allow for negative values of spot prices. The reasons that lead to the presence of
negative prices in the electricity market are many and vary from area to area. In
[Bar+14] are collected two different aspects that may lead electricity markets to allow
for negative prices. The first aspect can be represented by the generator decision of
producing power even if there is a current low demand, in view of a later period of
higher demand. Such a strategy may be considered profitable when the round-trip of
shutting down and restarting a power plant involves costs greater than the price paid
in order to induce another participant to get the oversupply generated power. The
second aspect concerns the possibility for the power generator to obtain consistent
subsides and tax breaks that a renewable-oriented generator may collect by producing
green energy. The producer can be prepared to generate and sell power at negative
prices however receiving subsidies and covering the losses due to negative revenue.

For the sake of completeness, we recall that in the literature of energy markets
modelling there exist very general models taking into account other peculiarities of
electricity markets, for instance the presence of spikes for energy prices. Such a feature
is due to the occurrence of one (or more) upward jump quickly followed by a downward
jump in prices dynamics, mainly caused by interruptions of transmission, lack in power
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1.3 The model for a pure generating hydroelectric facility

generation and/or extreme meteorological phenomena. Barlow [Bar02] considers a non
linear transformation for a suitable Vasicek process which is able to reproduce spikes
for energy price dynamics, even if the model remains based on a pure diffusion process.
In several other studies we can find the presence of jump component in electricity price
dynamics in order to describe the “spiky nature” of the price. Among these, Geman
and Roncoroni [GR06] consider a positive process for prices considered in natural
logarithmic scale and they define it as the unique solution of a stochastic differential
equation of the form

dPt = η′(t)dt+ θ[η(t)− Pt−]dt+ σ̃dWt + s(Pt−)dJ̃t, (1.16)

where are considered the deterministic seasonal trend η(t) of the price dynamics around
which spot prices fluctuate, the mean reversion behaviour to this trend and a discon-
tinuous part reproducing the effect of spikes. The jump process is defined as

J̃t =

Nt∑
i=1

J̃i, (1.17)

where Nt is a counting process that specifies the number of jumps that occur up to
time t and Ji are independent and identically distributed random variables with a
probability density chosen within the exponential family.

Despite the presence of spikes for energy prices is a particularly interesting feature,
the intent to incorporate it into a model of stochastic optimal control goes beyond the
intentions of this thesis. Our model generalise the optimal energy production problem
when it takes place in a context where the price is described by a purely diffusive
process that capture some of the main characteristics of energy prices, first among
these the positive probability that negative prices will occur.

1.3.3 The admissible strategies

Let us now introduce one of the main features of our power production system
that, as far as we know, characterises our model as a novelty among the literature
of continuous-time stochastic optimisation of hydropower production. We endow our
power generation system with the possibility to respond to the action of a produc-
tion strategy through two different ways, depending on whether negative rather than
positive prices occur.

Among the left-continuous, non-decreasing, adapted stochastic processes in A, we
are allowed to consider as feasible control policies those processes satisfying the physical
constraints of the reservoir.
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1.3 The model for a pure generating hydroelectric facility

Definition 1.3. A process ν ∈ A is an admissible control process if

0 ≤ νt ≤ y − y, ∀t ≥ 0, a.s. (1.18)

and the set A(y) ⊂ A denotes the class of all admissible control processes.

We observe that each control in A(y) can be decomposed into its continuous part
and purely discontinuous part, i.e.

νt = νct +
∑

0≤s<t
∆νt, ∆νt := νt+ − νt, t ≥ 0. (1.19)

At each time t, when it is convenient to suddenly discharge a certain volume of water
∆νt, we assume that the power generation system can react in two different ways. The
first modality consists in release all the water mass ∆νt by exploiting the maximum
productivity available at the current water head and the resultant energy output is
given by

∆Eit = f(Y y,ν
t )∆νt. (1.20)

This strategy leads to a impulsive control of the dam. Alternatively, the same amount
of fuel ∆νt can be discharged infinitely fast but only releasing a small amount many
times in a sufficiently small interval of time. In order to understand such a unusual
control strategy, let us consider at time t a jump ∆νt and an equally spaced partition
Y y,ν
t = y0 ≤ · · · ≤ yn = Y y,ν

t −∆νt, whose any subinterval has length δ = ∆νt/n. The
amount of energy produced by implementing the above alternative strategy is given
by sum of n+ 1 contributions obtained releasing instantaneously a portion δ starting
from each partition’s node. That is,

∆Ent =

n∑
i=0

f(yi)δ =
∆νt
n

n∑
i=0

f(Y y,ν
t − iδ). (1.21)

Since the function f is regular enough, letting the partition get finer we obtain that
above sum converges to the Riemann integral

∆Ect =

∫ ∆νt

0
f(Y y,ν

t − u)du. (1.22)

According to the terminology of the existing literature (see e.g. [Alv00; SSZ11]) we
call chattering policy the above strategy. Since f is a strictly increasing function, it
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straightforward notice that, for fixed t ≥ 0∫ ∆νt

0
f(Y y,ν

t − u)du ≤ f(Y y,ν
t )∆νt, (1.23)

that is, the amount of energy produced by means of a chattering policy is lower than
that produced by an impulsive release of water. This fact may be interpretable in terms
of efficiency. When a quantity of water is instantaneously and impulsively released
from the highest available level of the reserve, the efficiency of the turbine at that
level might be considered maximal. On the other hand, when a chattering policy is
implemented, turbine efficiency may decrease from one level to the one immediately
below. The total contribution is lower than that obtained with a single impulse and
the system is affected in terms of productivity. Taking into consideration such double
effect of an instantaneous leap in hydroelectric generation, it seems convenient to apply
a chattering policy when a negative price occurs but it is still preferable to act.

1.3.4 The performance functional

The owner of a hydroelectric storage system is subject to running holding costs
concerning the maintenance, at each time t, of the unused water resource. In our
model we consider such costs depending on the water volume into the reservoir and, in
particular we suppose that the running holding costs increase with respect to the cur-
rent available amount of water. Such costs are measured by the function h, satisfying
the following hypotheses.

Assumption 1.4. The holding cost function h ∈ C1((y, y)) is non-negative, strictly-

increasing on [y, y] and such that h(y) = 0. Moreover, there exists a constant M̃ > 0

such that

h′(y) ≤ M̃, ∀ y ∈ [y, y].

An example of holding cost function can be found in [CFS15]. The authors consider
a strictly increasing, continuously differentiable, convex holding cost function. As they
notice, it is reasonable to assume that there are no holding costs when the reserve
reaches its lowest level. Even if a cost occurs when the available reserve is finished,
the same hypothesis can be maintained without loss of generality. In fact, it would
be enough to consider the function h̃(y) := h(y) − h(y) rather than h and the the
optimization problem that we are going to introduce would remain unchanged, up to
an additive constant. We highlight that contrarily to [CFS15], we do not assume any
convexity property for our cost function h.

The presence of holding costs has a significant effect on the choice of the production
strategy. Indeed, if there are no holding costs then it would be totally inconvenient
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to produce energy in periods of negative prices. Whereas in presence of a holding
cost, it may be convenient to discharge water to produce energy even if there are
negative prices, especially if the cost of maintaining the reserve at a certain current
level is greater than the expected revenue in successive periods of positive prices. For
this reason it may be convenient to structure the generation system such that it can
respond “less efficiently” to an instantaneous control action in case of negative prices.

To any control strategy ν in A(y) is associated a performance described by the
functional

J(x, y; ν) = E
[ ∫ +∞

0
e−rtXx

t f(Y y,ν
t )dνct +

∑
t≥0

e−rt[Xx
t ]+f(Y y,ν

t )∆νt+

−
∑
t≥0

e−rt[Xx
t ]−

∫ ∆νt

0
f(Y y,ν

t − z)dz −
∫ +∞

0
e−rth(Y y,ν

t )dt

]
, (1.24)

representing the expected discounted cash flow over the infinite horizon, obtained by
adopting the control policy ν, given the initial price x ∈ R and the starting water
amount y ∈ [y, y]. We notice that the performance functional J is the pure generating
“version” of the functional J̃ in (1.12). Further, the definition of J takes into account
the peculiarities of the production system when jumps in releasing water occur. The
Stieltjes integral ∫ +∞

0
e−rtXx

t f(Y y,ν
t )dνct (1.25)

represents the discounted revenue from the sale of energy produced by continuously
discharging water from the reserve. Whereas, the series

∑
t≥0

e−rt[Xx
t ]+f(Y y,ν

t )∆νt, and
∑
t≥0

e−rt[Xx
t ]−

∫ ∆νt

0
f(Y y,ν

t − z)dz, (1.26)

are the discounted revenues obtained by a sudden releasing of water when the hydro-
electric production system reacts in impulsive and chattering way, respectively.

We aim to maximise the performance functional J over all the admissible control
policies in A(y) and to find the value function

v(x, y) := sup
ν∈A(y)

J(x, y; ν), (OC)

which represents the best energy production performance that can be obtain, for given
initial price x ∈ R and starting water amount y. A control ν̄ ∈ A(y) that maximises
the functional J is called optimal for the stochastic control problem (OC).

Since among the class of admissible control policies we allows also for strategies
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whose paths t 7→ νt(ω) are not necessarily absolutely continuous with respect to the
Lebesgue measure, the continuous-time stochastic optimisation problem (OC) belongs
to the wide class of singular stochastic control problems. Moreover, due to the de-
pendence of marginal revenues on the current state of the system, we deal with a
state-dependent singular stochastic control problem.

Contrary to some other state-dependent problems (see e.g. [Alv00; SSZ11; ALØ16]),
the instantaneous marginal yield Xxf(Y y,ν) in our problem does not satisfy any mono-
tonicity property with respect to the controlled process Y y,ν , since the sign of the price
dynamics Xx may change. For the same reason the performance criterion J does not
display any monotonicity and concavity property in the controlled variable. We share
this feature with other singular stochastic control problems (see e.g. [DFM15; DFM18;
De +17]), although these models do not exhibit any state-dependence.

In conclusion, we highlight that our model falls within the class of finite-fuel two-
dimensional degenerate singular stochastic control problem, since the diffusive part
of the pair (Xx

t , Y
y,ν
t ) is not uniformly elliptic. Indeed the diffusion acts only in the

direction of the first component and the second one remains always bounded.
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Chapter 2

The Value Function of the

Stochastic Control Problem

In this chapter we first establish some a priori results about the analytical fea-
tures of the value function v, in particular we obtain preliminary information about
the regularity properties of v. Afterwards, by means of heuristic arguments we find
out a Hamilton-Jacobi-Bellman (HJB) equation associated with our stochastic control
problem (OC). Such partial differential equation has a variational inequality formula-
tion and lead us to a partition of the strip R× [y, y] in two subsets: the inaction and
action region, respectively. The main result of the chapter is the Verification Theorem
that allows us to characterise v among the solutions of the HJB equation as well as to
clearly identify the structure of the optimal control policy.

2.1 Preliminary results

Let us recall some properties of Vasicek’s diffusion that we will exploit continuously
in the sequel. The solution of the stochastic differential equation (1.15) is represented
by the diffusion X whose explicit expression is given by

Xx
t = e−at(x− b) + b+ σ

∫ t

0
e−a(t−s)dWs. (2.1)

For any fixed t ≥ 0, Xx
t is a Gaussian random variable whose expectation and variance

are given by

E[Xx
t ] = (x− b)e−at + b, V[Xx

t ] =
σ2

2a
(1− e−2at), (2.2)
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respectively. Moreover, if we consider its infinitesimal generator

L :=
1

2
σ2 d

2

dx2
+ a(b− x)

d

dx
. (2.3)

we have that, for any r > 0, the characteristic equation

[L − r]θ(x) = 0, x ∈ R, (2.4)

admits two linearly independent solutions ϕ and ψ, defined as

ϕ(x) = e
a(x−b)2

2σ2 D− r
a

(
(x− b)
σ

√
2a

)
, ψ(x) = e

a(x−b)2

2σ2 D− r
a

(
− (x− b)

σ

√
2a

)
. (2.5)

These functions are positive, continuously differentiable, decreasing and increasing,
respectively. Moreover, their analytic expressions can be represented in terms of the
parabolic cylinder function Dα of index α, whose integral representation (see e.g.
[GR14]) is given by

Dα(z) =
e−

z2

2

Γ(−α)

∫ +∞

0
e−xz−

x2

2 x−α−1dx, when Re(α) < 0,

where Γ(·) is the Euler’s Gamma function.
Moreover, if we consider the diffusion Xx starting from x at time 0 and its first

hitting time
Θx
z := inf{t > 0 : Xx

t = z} (2.6)

of z ∈ R, we have that

P(Θx
z <∞) = 1, and E[Θx

z ] <∞, ∀ x, z ∈ R. (2.7)

We recall (see e.g. [BS02]) that each diffusion satisfying (2.7)1 is called recurrent. If
in addition also (2.7)2 is satisfied, then such diffusion is said positively recurrent.

Now we consider some straightforward results that will be useful in the sequel. In
the proofs of some of these results we will use the following inequality: given m ∈ N
and l ∈ N,

(|z1 + ...+ zl|)m ≤ lm−1(|z1|m + ...+ |zl|m), zi ∈ R, i = 1, ..., l. (2.8)

Lemma 2.1. The family of r.v.’s (Xx
t )t≥0 is uniformly integrable.

Proof. Thanks to Proposition A.3 and Remark A.4 in Appendix A, in order to prove
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that the process (Xx
t )t≥0 is uniformly integrable, it suffices to show that there exists

p > 1 such that (Xx
t )t≥0 is bounded on Lp(Ω,P). Recalling the expression for Xx

t in

(2.1) and inequality (2.8), we obtain

E[|Xx
t |2] ≤ 2E

[
|e−at(x− b) + b|2 + σ2

(∫ t

0
e−a(t−s)dWs

)2]
=

= 2E
[
|e−at(x− b) + b|2 + σ2

∫ t

0
e−2a(t−s)ds

]
=

= 2|e−at(x− b) + b|2 +
σ2

a
(1− e−2at),

where the first equality follows from the well-known isometry property of the Brownian

stochastic integral (cf. e.g. pag. 188 of [Bal17]). It follows easily that we can find a

positive constant C = C(a, b, σ, x) such that

sup
t≥0

E[|Xx
t |2] < C.

Hence Xx
t turns out to be bounded on L2(Ω,P) and the uniform integrability property

follows.

Lemma 2.2. Given a real number R > 0, define

τR := inf{t ≥ 0 : |Xx
t | ≥ R}, (2.9)

i.e. the exit time of the Xx from the interval (−R,R). Then, for any T > 0, there

exists a positive constant K = K(T, a, b, σ) such that, for every p ≥ 2

P(τR < T ) ≤ K(1 + |x|p)
Rp

, (2.10)

that is, P(τR < T )→ 0 when R converges to +∞.

Proof. The process Xx
t is the unique solution to the stochastic differential equation

(1.15) with linear drift and constant diffusion coefficient. The thesis easily follows as

an immediate application of Theorem 9.1 of [Bal17]. In particular, as stated in Remark

9.3 of [Bal17], the result is a by-product of the proof of Theorem 9.1.

Lemma 2.3. Given (x, y) ∈ R× [y, y] and ν ∈ A(y), the stochastic integral

Ix,y,νt :=

∫ t

0
e−rsXx

s f(Y y,ν
s )dνcs , (2.11)
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is uniformly bounded in L2(Ω,P), for every t ≥ 0. In particular, the family of r.v.’s

(Ix,y,νt )t≥0 is uniformly integrable and

lim
t→+∞

E[Ix,y,νt ] = E
[ ∫ +∞

0
e−rsXx

s f(Y y,ν
s )dνcs

]
<∞. (2.12)

Proof. Fixed y ∈ [y, y] and ν ∈ A(y), consider the process Gy,νt :=
∫ t

0 f(Y y,ν
s )dνcs . We

observe that Gy,νt ≥ 0 and there exists a constant L > 0 such that Gy,νt ≤ L, for any

t ≥ 0. Integrating by parts in (2.11), for any t ≥ 0, we get

Ix,y,νt = Īt + Ĩt + Ît, a.s., (2.13)

with

Īt = Īt(x, y, ν) := e−rtXx
t G

y,ν
t , (2.14)

Ĩt = Ĩt(x, y, ν) :=

∫ t

0
e−rsGy,νs [(a+ r)Xx

s − ab]ds, (2.15)

Ît = Ît(x, y, ν) := −
∫ t

0
e−rsσGy,νs dWs. (2.16)

Each of the above processes are uniformly integrable, since Gy,νt is bounded for any

t ≥ 0 and (Xx
t )t≥0 is uniformly integrable. In particular, there exist a constant C =

C(a, b, r, σ, L, x) such that

sup
t≥0

E[|Īt|2] ≤ L2 sup
t≥0

E[|Xx
t |2] < C. (2.17)

Moreover, applying twice the Jensen’s inequality and considering again the inequality

(2.8), we get

E[|Ĩt|2] ≤ E
[ ∫ t

0
e−2rs(Gy,νs )2|(a+ r)Xx

s − ab|2ds
]
≤

≤ E
[
2L2

∫ t

0
e−2rs[(a+ r)2|Xx

s |2 + (ab)2]ds

]
≤

≤ C1, (2.18)

for some C1 = C1(a, b, r, σ, L.x). In conclusion, observing that Ît is a square integrable

martingale with zero mean and variance

E[Î2
t ] ≤ σ2

2r
L2 = C2, (2.19)
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and exploiting again the inequality (2.8), we obtain that (Ix,y,νt )t≥0 is bounded in

L2(Ω,P) and

E[|Ix,y,νt |2] ≤ 3(E[|Īt|2 + |Ĩt|2 + |Ît|2]) ≤ C3, (2.20)

for C3 = max{C,C1, C2}/3. Therefore, thanks to Proposition A.3 and Remark A.4 in

Appendix, it follows that (Ix,y,νt )t≥0 is uniforly integrable. Moreover, by means of the

convergence result stated in Theorem A.5 we obtain also (2.12).

Lemma 2.4. Given (x, y) ∈ R× [y, y] and ν ∈ A(y), the sums

S
x,y,ν
t :=

∑
0≤s≤t

e−rs[Xx
s ]+f(Y y,ν

s )∆νs, (2.21)

Sx,y,νt :=
∑

0≤s≤t
e−rs[Xx

s ]−
∫ s

0
f(Y y,ν

s − u)du, (2.22)

Sx,y,νt :=
∑

0≤s≤t
e−rsXx

s f(Y y,ν
s )dνcs , (2.23)

are finite in L1(Ω,P). In particular, it follows that

lim
t→+∞

E[S
x,y,ν
t ] = E

[∑
t≥0

e−rt[Xx
t ]+f(Y y,ν

t )∆νs

]
<∞, (2.24)

lim
t→+∞

E[Sx,y,νt ] = E
[∑
t≥0

e−rt[Xx
t ]−

∫ t

0
f(Y y,ν

t − u)du

]
<∞, (2.25)

lim
t→+∞

E[Sx,y,νt ] := E
[∑
t≥0

e−rtXx
t f(Y y,ν

t )dνct

]
<∞. (2.26)

Proof. The result can be proved by exploiting similar arguments to those used in the

Lemma 2.3.

Let us now consider an equivalent formulation for the performance functional J ,

as stated in the following result.

Proposition 2.5. For any (x, y) ∈ R× [y, y] and ν ∈ A(y), we have

J(x, y; ν) = xF (y) + E
[ ∫ +∞

0
e−rt{[L − r](Xx

t F (Y y,ν
t ))− h(Y y,ν

t )}dt+

+
∑
t≥0

e−rt[Xx
t ]+
{
f(Y y,ν

t )∆νt −
∫ ∆νt

0
f(y − u)du

}]
, (2.27)

where F (y) :=
∫ y
y f(u)du.
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Proof. Fixed (x, y) ∈ R × [y, y] and ν ∈ A(y), we take R > 0 such that |x| < R and

we consider τR as in Lemma 2.2. For some T > 0, we apply the Itô’s bidimensional

formula for semimartingale (see e.g. [Pro05]) to e−rtXx
t F (Y y,ν

t ) on the time interval

[0, TR], with TR = T ∧ τR. We obtain,

e−rTRXx
TR
F (Y y,ν

TR
) = xF (y) +

∫ TR

0
e−rt[L − r](Xx

t F (Y y,ν
t ))dt+

+

∫ TR

0
e−rtXx

t F (Y y,ν
t )dY y,ν

t

+

∫ TR

0
e−rtσF (Y y,ν

t )dWt +

+
∑

0≤t≤TR

e−rtXx
t {F (Y y,ν

t+ )− F (Y y,ν
t )}

−
∑

0≤t≤TR

e−rtXx
t f(Y y,ν

t )∆Y y,ν
t . (2.28)

We now recall that

dY y,ν
t = −dνt, a.s., ∀t ≥ 0, (2.29)

and notice also that

F (Y y,ν
t+ )− F (Y y,ν

t ) = −
∫ ∆νt

0
f(Y y,ν

t − u)du, a.s., ∀t ≥ 0. (2.30)

Hence, using the decomposition (1.19), we write

e−rTRXx
TR
F (Y y,ν

TR
) = xF (y) +

∫ TR

0
e−rt[L − r](Xx

t F (Y y,ν
t ))dt+

−
∫ TR

0
e−rtXx

t F (Y y,ν
t )dνct

+

∫ TR

0
e−rtσF (Y y,ν

t )dWt +

−
∑

0≤t≤TR

e−rtXx
t

∫ ∆νt

0
f(Y y,ν

t − u)du. (2.31)

Since f is bounded on [y, y], also F remains bounded on the same set and the process

Mt :=

∫ t

0
e−rsσF (Y y,ν

s )dWs, t ∈ [0, TR], (2.32)

is a zero mean square integrable martingale. Hence, taking the expectation in (2.31),
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we obtain

E[e−rTRXx
TR
F (Y y,ν

TR
)] = xF (y) + E

[ ∫ TR

0
e−rt[L − r](Xx

t F (Y y,ν
t ))dt+

−
∫ TR

0
e−rtXx

t F (Y y,ν
t )dνct

+

∫ TR

0
e−rtσF (Y y,ν

t )dWt + (2.33)

−
∑

0≤t≤TR

e−rtXx
t

∫ ∆νt

0
f(Y y,ν

t − u)du

]
.

When R converges to +∞, thanks to Lemma 2.2, TR tends to T and since

[L − r](Xx
t F (Y y,ν

t )) = (ab− (a+ r)Xx
t )F (Y y,ν

t ) (2.34)

is uniformly integrable, we get

E[e−rTXx
TF (Y y,ν

T )] = xF (y) + E
[ ∫ T

0
e−rt[L − r](Xx

t F (Y y,ν
t ))dt+

−
∫ T

0
e−rtXx

t F (Y y,ν
t )dνct

+

∫ T

0
e−rtσF (Y y,ν

t )dWt + (2.35)

−
∑

0≤t≤T
e−rtXx

t

∫ ∆νt

0
f(Y y,ν

t − u)du

]
.

Then, adding the quantity

E
[ ∑

0≤t≤T
e−rt

{
[Xx

t ]+f(Y y,ν
t )∆νt − [Xx

t ]−
∫ ∆νt

0
f(Y y,ν

t − u)du

}
−
∫ T

0
e−rth(Y y,ν

t )dt

]
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2.2 Some properties of the value function v

to both the sides in the previous equation and rearranging properly each term, we have

E
[ ∫ T

0
e−rtXx

t F (Y y,ν
t )dνct +

∑
0≤t≤T

e−rt[Xx
t ]+f(Y y,ν

t )∆νt +

−
∑

0≤t≤T
e−rt[Xx

t ]−
∫ ∆νt

0
f(Y y,ν

t − u)du+

−
∫ T

0
e−rth(Y y,ν

t )dt

]
=

= xF (y)− E
[
e−rTXx

TF (Y y,ν
T ) +

+

∫ T

0
e−rt[L − r](Xx

t F (Y y,ν
t ))dt+

−
∫ T

0
e−rth(Y y,ν

t )dt.

+
∑

0≤t≤T
e−rt[Xx

t ]+f(Y y,ν
t )∆νt +

−
∑

0≤t≤T
e−rt[Xx

t ]+
∫ ∆νt

0
f(Y y,ν

t − u)du

]
. (2.36)

In conclusion, letting T converges to +∞, by means of Lemma (2.2), Lemma (2.3) and

monotone convergence theorem we obtain the equivalent formula (2.27) for J .

2.2 Some properties of the value function v

In this section we find out some regularity properties for the value function thanks

to some a priori estimates that we are able to deduce from the value function definition

and from the structure of the performance functional J .

Proposition 2.6. There exists a constant C > 0 such that, for any (x, y) ∈ R× [y, y],

it holds

|J(x, y; ν)| ≤ C(1 + |x|), (2.37)

for any ν ∈ A(y).

Proof. Let us consider the equivalent formulation for the functional J stated in Propo-

sition 2.5. We observe that

|xF (y)− E[e−rTXx
TF (Y y,ν

T )]| ≤ f(y)(y − y)(|x|+ E[e−rT |Xx
T |]). (2.38)
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2.2 Some properties of the value function v

Moreover, if ZT := E
[ ∫ T

0 e−rt|Xx
t |dt

]
, from (2.34) it follows that

∣∣∣∣E[ ∫ T

0
e−rt{[L − r](Xx

t F (Y y,ν
t ))− h(Y y,ν

t )}dt
]∣∣∣∣ ≤

≤ 1

r
(1− e−rT )[abf(y)(y − y) + h(y)] + f(y)(y − y)(a+ r)ZT (2.39)

and further, if WT := E[
∑

0≤t≤T e
−rt|Xx

t |], we have

∣∣∣∣E[ ∑
0≤t≤T

e−rt[Xx
t ]+{f(Y y,ν

t )∆νt−
∫ ∆νt

0
f(Y y,ν

t −u)du}
]∣∣∣∣ ≤ 2f(y)(y− y)WT . (2.40)

By means of straightforward calculations we obtain that

E[|Xx
t |] =σx(t)

√
2

π
e
− µ2

x(t)

2σ2
x(t) + µx(t)

[
2Φ

(
µx(t)√
2σx(t)

)
− 1

]
≤

≤σx(t)

√
2

π
+ |µx(t)|, (2.41)

where µx(t) := E[Xx
t ], σx(t) := V[Xx

t ] and Φ is the cumulative distribution function of

a standard normal random variable. From (2.2) we notice that both µx(t) and σx(t)

are uniformly bounded with respect to t and

|µx(t)| ≤ |x|+ 2b, σx(t) ≤ σ2

2a
. (2.42)

Hence it follows that there exist two positive constants C0 and C1 such that

ZT ≤ C0(1 + |x|), WT ≤ C1(1 + |x|). (2.43)

Therefore, the right-hand side of (2.36) in proof of Proposition 2.5 can be bounded

(uniformly in time) by C(1 + |x|) for a suitable positive constant C. Hence, when T

converges to +∞ in (2.36), we obtain (2.37).

Proposition 2.7. Given y ∈ [y, y], the function x 7→ v(x, y) is non-decreasing and

convex. Moreover, there exist three constants C > 0, C1 > 0 and C2 > 0 such that,
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for any x, x′ ∈ R and y ∈ [y, y], the following hold true

−1

r
h(y) ≤ v(x, y) ≤ C(1 + |x|); (2.44)

|v(x+ x′, y)− v(x, y)| ≤ C1|x′|; (2.45)

|v(x, y + y′)− v(x, y)| ≤ C2|y′|(1 + |x|), y′ ∈ [y − y, y − y]. (2.46)

Proof. Given x1, x2 ∈ R with x1 ≤ x2, clearly

Xx1
t ≤ X

x2
t , [Xx1

t ]+ ≤ [Xx2
t ]+, [Xx1

t ]− ≥ [Xx2
t ]−, (2.47)

hold true for any t ≥ 0, almost surely. Therefore, since f is non-negative, for y ∈ [y, y],

we have J(x1, y; ν) ≤ J(x2, y; ν) for any admissible control ν ∈ A(y). Taking the

supremum over all ν ∈ A(y), it follows that v(·, y) is a non-decreasing function on R.
Convexity property for the value function in its first variable follows from the

convexity of performance functional with respect to x. Such property for J can be

established through its equivalent formulation (2.27). Indeed, given x1, x2 ∈ R and

λ ∈ [0, 1], we have Xxλ
t = λXx1

t + (1− λ)Xx2
t and [Xxλ

t ]+ ≤ λ[Xx1
t ]+ + (1− λ)[Xx2

t ]+,

where xλ = λx1 + (1− λ)x2. Therefore, fixed y ∈ [y, y], we have

J(xλ, y; ν) ≤ xλF (y) + λE
[ ∫ +∞

0
e−rt{[L − r](Xx1

t F (Y y,ν
t ))− h(Y y,ν

t )}dt
]

+

+ (1− λ)E
[ ∫ +∞

0
e−rt{[L − r](Xx2

t F (Y y,ν
t ))− h(Y y,ν

t )}dt
]

+

+ λE
[∑
t≥0

e−rt[Xx1
t ]+

{
f(Y y,ν

t )∆νt −
∫ ∆νt

0
f(y − u)du

}]
+

+ (1− λ)E
[∑
t≥0

e−rt[Xx2
t ]+

{
f(Y y,ν

t )∆νt −
∫ ∆νt

0
f(y − u)du

}]
=

= λJ(x1, y; ν) + (1− λ)J(x2, y; ν), (2.48)

for any control policy ν ∈ A(y). Again, taking the supremum over all ν ∈ A(y), we

obtain that v(·, y) is a convex function on R.
The left-hand inequality of estimate (2.44) follows by considering the control policy

ν0 ≡ 0. Indeed, such a control is obviously admissible and for x ∈ R and y ∈ [y, y] and

one has

v(x, y) ≥ J(x, y; ν0) = −
∫ +∞

0
e−rth(y)dt = −1

r
h(y). (2.49)

Whereas, the right-hand estimation of (2.44) follows directly from (2.37) since it holds
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true for any admissible control in A(y).

Now, in order to prove (2.45) we consider x′ ∈ R and observe that for t ≥ 0,

Xx+x′

t = e−atx′ +Xx
t , a.s., (2.50)

hence, fixed x ∈ R and y ∈ [y, y], we have∣∣∣∣ ∫ +∞

0
e−rt{[L − r](Xx+x′

t )− [L − r](Xx
t )}dt

∣∣∣∣ ≤ r|x′| ∫ +∞

0
e−(a+r)tdt =

r|x′|
a+ r

,

and, since |[Xx
t + e−atx′]+ − [Xx

t ]+| ≤ e−at|x′|,∣∣∣∣∑
t≥0

e−rt([Xx
t + e−atx′]+ − [Xx

t ]+)

∣∣∣∣ ≤ |x′|∑
t≥0

e−(a+r)t =
|x′|

1− e−(a+r)
.

Therefore, by using the equivalent formulation (2.27), it follows that

|J(x+ x′, y; ν)− J(x, y; ν)| ≤ C1(1 + |x′|), (2.51)

with C1 = f(y)(y − y) max{1, r/(a + r), (1/(1 − e−(a+r)))}. Property (2.45) follows

easily taking the supremum over all ν ∈ A(y).

Now, fixed x ∈ R and given y ∈ [y, y], we first consider y′ ∈ [0, y−y] and we notice

that A(y) ⊆ A(y + y′). Hence we write

v(x, y + y′)− v(x, y) = sup
ν′∈A(y+y′)

J(x, y + y′; ν ′)− sup
ν∈A(y)

J(x, y; ν) =

= sup
ν′∈A(y+y′)

inf
ν∈A(y)

[
J(x, y + y′; ν ′)− J(x, y; ν)

]
≥

= inf
ν∈A(y)

[
J(x, y + y′; ν)− J(x, y; ν)

]
=

= inf
ν∈A(y)

E
[ ∫ +∞

0
e−rt{[L − r](Xx

t (F (Y y+y′,ν
t )− F (Y y,ν

t )))}dt+

+

∫ +∞

0
e−rt{h(Y y,ν

t )− h(Y y+y′,ν
t )}dt+

+
∑
t≥0

e−rt[Xx
t ]+
{

(f(Y y+y′,ν
t )− f(Y y,ν

t ))∆νt +

−
∫ ∆νt

0
(f(Y y+y′,ν

t − u)− f(Y y,ν
t − u))du

}]
. (2.52)

We recall that both f and h are continuously differentiable on (y, y) with their first

derivatives bounded on [y, y]. In particular these functions are both Lipschitz-continuous
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on [y, y] and there exist two positive constants Lf and Lh such that

|f(Y y+y′,ν
t )− f(Y y,ν

t ))| ≤ Lfy′, |h(Y y+y′,ν
t )− h(Y y,ν

t ))| ≤ Lhy′.

Furthermore, we have

F (Y y+y′,ν
t )− F (Y y,ν

t ) =

∫ Y y+y′,ν
t

Y y,νt

f(z)dz =

∫ y′

0
f(Y y,ν

t + u)du ≤ f(y)y′,

and considering (2.34), we write

[L − r](Xx
t (F (Y y+y′,ν

t )− F (Y y,ν
t ))) ≥ −f(y)y′|ab− (a+ r)Xx

t |.

Hence, exploiting again the integrability property of |Xx
t | and (2.41)-(2.42), we can

find a positive constant C ′2 such that

v(x, y + y′)− v(x, y) ≥ −C ′2(1 + |x|)y′ (2.53)

On the other hand, given ε > 0, there exists a control policy ν ′ε ∈ A(y+ y′) such that

v(x, y + y′) ≤ J(x, y + y′; ν ′ε) + ε, (2.54)

and

v(x, y + y′)− v(x, y) ≤ J(x, y + y′; ν ′ε)− sup
ν∈A(y)

J(x, y, ν) + ε =

= inf
ν∈A(y)

[
J(x, y + y′; ν ′ε)− J(x, y; ν)

]
+ ε ≤

≤ J(x, y + y′; ν ′ε)− J(x, y; ν̄ε) + ε, (2.55)

where ν̄ε is defined as

ν̄εt :=

0 t ≤ τy(ε),

ν ′εt − y′ t > τy(ε)
(2.56)

with τy(ε) := inf{t ≥ 0 : ν ′εt ≥ y′}, with the convention that τy(ε) = +∞ if {t ≥ 0 :

ν ′εt ≥ y′} = ∅. We easily observe that ν̄ε belongs to the class of admissible controls

A(y). Indeed the process ν̄ε is non-negative, càglàd and it is such that ν̄εt ≤ y− y, for
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2.2 Some properties of the value function v

any t ≥ 0. Hence, in (2.55) we have

v(x, y + y′)− v(x, y) ≤ E
[ ∫ τy(ε)

0
e−rt{[L − r](Xx

t (F (Y y+y′,ν′ε

t )− F (y))}dt+

+

∫ τy(ε)

0
e−rt{h(y)− h(Y y+y′,ν′ε

t )}dt+

+
∑

t≤τy(ε)

e−rt[Xx
t ]+
{

(f(Y y+y′,ν′ε

t )∆ν ′
ε
t +

−
∫ ∆ν′t

ε

0
f(Y y+y′,ν′ε

t − u)du

}]
+ ε ≤

≤ E
[
y′f(y)

∫ +∞

0
e−rt{ab+ (a+ r)|Xx

t |}dt+

+ Lh
∫ τy(ε)

0
e−rt|ν ′εt − y′|dt+ 2f(y)y′

∑
t≥0

e−rt[Xx
t ]+
]

+ ε ≤

≤ y′f(y)E
[ ∫ +∞

0
e−rt{ab+ (a+ r)|Xx

t |}dt+

+ 2y′E
[
Lh

r
(1− e−rτy(ε)) + f(y)′

∑
t≥0

e−rt|Xx
t |
]

+ ε. (2.57)

Hence, thanks to (2.41)-(2.42), we find C ′′2 > 0 such that

v(x, y + y′)− v(x, y) ≤ C ′′2 (1 + |x|)y′ + ε. (2.58)

Observing that (2.58) holds for any ε > 0 and combining it with the inequality (2.53),

we can find a constant C2 > 0 such that (2.46) holds for y ∈ [y, y] and y′ ∈ [0, y − y].

The same argument can be used to prove the previous estimates when y′ belongs

to [y − y′, 0]. We simply switch the role of the class of admissible control A(y) with

that of A(y + y′) in the above computations.

We recall that, given an open set O ⊂ R2, the functions space W 1,∞
loc (O) denotes

the Sobolev space of the functions with weak derivatives locally bounded on O (see

Appendix B). The previous estimates provide us with a first result about the regularity

of the value function v.

Proposition 2.8. The function v belongs to the Sobolev space W 1,∞
loc (R × (y, y)). In

particular, there exist two positive constants C1 and C2 such that

|vx(x, y)| ≤ C1, |v(x, y)|+ |vy(x, y)| ≤ C2(1 + |x|), (2.59)

26



2.3 The Hamilton-Jacobi-Bellman equation

a.e. in R× (y, y).

Proof. From properties (2.45)-(2.46) in Proposition 2.7 easily follows that v is locally

Lipschitz continuous on R× (y, y). Hence, thanks to the characterisation provided by

Proposition B.2 in Appendix B, we have that v ∈ W 1,∞
loc (R× (y, y)) and both its first

weak derivatives vx and vy are locally bounded. Moreover, thanks to Theorem B.3 in

Appendix B, we have that v is a.e. differentiable and its first weak derivatives coincide

with the classic ones, almost everywhere. Therefore, letting |x′| and y′ converge to 0

in (2.45) and (2.46), we obtain that (2.59) hold almost everywhere in R× (y, y).

Remark 2.9. The results previously proved are intended to provide an idea of the

regularity properties that can be expected for the value function. Nevertheless, these

also have a value from the application point of view. For instance, Proposition 2.6

guarantees that, fixed the initial position (x, y), the performance associated to each

admissible energy production strategy is bounded. In particular, property (2.44) in

Proposition 2.7 says that the value associated at the best performance is finite and, as

shown in (2.49), it is at least equal to the perpetual inaction. Furthermore, properties

(2.45) in Proposition 2.7 says that the variation of the value associated to the best

performance with respect to the variation of the initial price is always bounded and,

similarly, property (2.46) guarantees that the change in value of the optimal production

policy with respect to a variation of the initial amount of water into the reservoir

increases at most linearly with respect the initial price x.

2.3 The Hamilton-Jacobi-Bellman equation

The model studied in this thesis consists in a singular stochastic control problem

and, as it is usual for this kind of problems, we expect that the value function v solves

a suitable partial differential equation of Hamilton-Jacobi-Bellman type. We present

an heuristic discussion in order to obtain the equation associated with our stochastic

control problem (OC).

Fixed (x, y) ∈ R × [y, y] and ν ∈ A(y), by assuming that v satisfies sufficient
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2.3 The Hamilton-Jacobi-Bellman equation

regularity properties to apply the Itô’s formula to e−rtv(Xx
t , Y

y,ν
t ), we formally obtain

v(x, y) = E
[
e−rT v(Xx

T , Y
y,ν
T )−

∫ T

0
e−rt[L − r]v(Xx

t , Y
y,ν
t )dt+

−
∫ T

0
e−rtvy(X

x
t , Y

y,ν
t )dY y,ν

t +

−
∑

0≤t≤T
e−rt{v(Xx

t , Y
y,ν
t+ )− v(Xx

t , Y
y,ν
t )− vy(Xx

t , Y
y,ν
t )∆Y y,ν

t }
]
.

Then, using the decomposition (1.19), writing

v(Xx
t , Y

y,ν
t+ )− v(Xx

t , Y
y,ν
t ) = −

∫ ∆νt

0
vy(X

x
t , Y

y,ν
t − u)du, a.s., ∀t ≥ 0, (2.60)

and assuming that e−rT v(Xx
T , Y

y,ν
T ) converges to 0 when T → +∞, we get

v(x, y) = E
[
−
∫ +∞

0
e−rt[L − r]v(Xx

t , Y
y,ν
t )dt+ (2.61)

+

∫ +∞

0
e−rtvy(X

x
t , Y

y,ν
t )dνct + (2.62)

+
∑
t≥0

e−rt
∫ ∆νt

0
vy(X

x
t , Y

y,ν
t − u)du

]
. (2.63)

Therefore, if v is such that

[L − r]v(x, y)− h(y) ≤ 0, (2.64)

xf(y) + [x]+f ′(y)(y − y)− vy(x, y) ≤ 0, (2.65)

for any (x, y) ∈ R× [y, y], it follows that

v(x, y) ≥ E
[
−
∫ +∞

0
e−rth(Y y,ν

t )dt+

+

∫ +∞

0
e−rtXx

t f(Y y,ν
t )dνct +

+

∫ +∞

0
e−rt[Xx

t ]+f ′(Y y,ν
t )(Y y,ν

t − y)dνct +

+
∑
t≥0

e−rtXx
t

∫ ∆νt

0
f(Y y,ν

t − u)du+

+
∑
t≥0

e−rt[Xx
t ]+

∫ ∆νt

0
f ′(Y y,ν

t − u)(Y y,ν
t − y − u)du

]
. (2.66)
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2.3 The Hamilton-Jacobi-Bellman equation

Integrating by parts the last term,

v(x, y) ≥ E
[
−
∫ +∞

0
e−rth(Y y,ν

t )dt+

+

∫ +∞

0
e−rtXx

t f(Y y,ν
t )dνct +

+

∫ +∞

0
e−rt[Xx

t ]+f ′(Y y,ν
t )(Y y,ν

t − y)dνct +

+
∑
t≥0

e−rtXx
t

∫ ∆νt

0
f(Y y,ν

t − u)du+

+
∑
t≥0

e−rt[Xx
t ]+{f(Y y,ν

t )(Y y,ν
t − y)− f(Y y,ν

t+ )(Y y,ν
t+ − y)}+

−
∑
t≥0

e−rt[Xx
t ]+

∫ ∆νt

0
f(Y y,ν

t − u)

]
. (2.67)

Now, rearranging properly the terms we get

v(x, y) ≥ E
[
−
∫ +∞

0
e−rth(Y y,ν

t )dt+ (2.68)

+

∫ +∞

0
e−rtXx

t f(Y y,ν
t )dνct + (2.69)

+

∫ +∞

0
e−rt[Xx

t ]+f ′(Y y,ν
t )(Y y,ν

t − y)dνct + (2.70)

−
∑
t≥0

e−rt[Xx
t ]−

∫ ∆νt

0
f(Y y,ν

t − u)du+ (2.71)

+
∑
t≥0

e−rt[Xx
t ]+f(Y y,ν

t )∆νt + (2.72)

+
∑
t≥0

e−rt[Xx
t ]+{(Y y,ν

t+ − y)(f(Y y,ν
t )− f(Y y,ν

t+ ))}
]
≥ (2.73)

≥ J(x, y; ν), (2.74)

since (2.70) and (2.73) are non-negative.

We observe that if ν is an optimal control, i.e. v(x, y) = J(x, y; ν), we must have

that both integrals in (2.70) and (2.73) vanish. Since the function f is positive, contin-

uously differentiable and strictly increasing on (y, y], the integrand in (2.70) is positive

and the integral equals 0 if and only if either the control ν is purely discontinuous, i.e.

νc ≡ 0 a.s., or Y y,ν
t = y for any t > 0, which means that ν remains constant after an

initial instantaneous jump ∆ν0 = y− y. Furthermore we notice that the sum in (2.73)

equals 0 if, for any time t ≥ 0, either f(Y y,ν
t ) = f(Y y,ν

t+ ) which means that the control
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2.3 The Hamilton-Jacobi-Bellman equation

ν doesn’t act, or if Y y,ν
t+ = y, i.e. at time t the control acts with a single jump using

all the possible fuel and pushing the process Y y,ν to its lower bound.

Let us now consider the strip R× [y, y] divided in two disjoint regions: the inaction

(continuation) region C, within the optimal strategy is doing nothing and its comple-

ment D, the action (discharging) region, where it is convenient to activate the control

policy, generating power and selling it in the energy market.

Fixed (x, y) ∈ D, in light of previous arguments the optimal policy is discharging

instantaneously all the possible water, obtaining the value

v(x, y) = [x]+f(y)(y − y)− [x]−
∫ y−y

0
f(y − u)du. (2.75)

Considering the first derivative with respect to y, we have

vy(x, y) = xf(y) + [x]+f ′(y)(y − y), (2.76)

and it follows that in (2.65) we have equality.

On the other hand, if we consider (x, y) in the inaction region C, we can pick a

sufficiently small δ > 0 in order to remain within the continuation region at least during

the time interval (0, δ). Therefore, exploiting the approach of dynamic programming

principle, the optimal value associated with doing nothing before leaving C can be

formally written as

v(x, y) = E
[
e−rδv(Xx

δ , y)−
∫ δ

0
e−rth(y)dt

]
. (2.77)

Applying the Itô’s formula to e−rtv(Xx
t , y) on (0, δ), we get

v(x, y) = E
[
v(x, y) +

∫ δ

0
e−rt[L − r]v(Xx

t , y)dt−
∫ δ

0
e−rth(y)dt

]
, (2.78)

dividing by δ and letting δ converge to 0 we obtain

[L − r]v(x, y)− h(y) = 0, (2.79)

hence in (2.64) we have equality.

Therefore, getting together condition (2.64)-(2.65) and (2.79)-(2.76), we expect

that the value function v solves of the Hamilton-Jacobi-Bellman equation

max{[L − r]v(x, y)− h(y), xf(y) + [x]+f ′(y)(y − y)− vy(x, y)} = 0, (HJB)
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2.4 The Verification Theorem

for a.e. (x, y) ∈ R× (y, y], associated with the boundary condition

v(x, y) = 0, ∀x ∈ R. (2.80)

We notice that the partial differential equation (HJB) turns out to be a variational

inequality involving a degenerate second order elliptic equation subject to a state-

dependent gradient constraint.

2.4 The Verification Theorem

In this section we establish a verification approach that rigorously confirm what

we guessed through the previous heuristic arguments. In particular, we provide some

sufficient conditions which allows us to identify the value function v among the solu-

tions of the equation (HJB). Moreover, the Verification Theorem that we prove below

gives us fundamental information about the structure of the optimal control policy.

Such information will be particularly useful in sequel to explicitly solve our singular

stochastic control problem (OC).

To the best of our knowledge, general verification results are rare in the literature of

state-dependent singular optimal control whose marginal revenue does not satisfy any

monotonicity condition. In fact, Song, Stockbridge and Zhu [SSZ11] provide sufficient

conditions to identify the value function of their optimal harvesting problem among the

solutions of a suitable HJB equation by exploiting a crucial monotonicity property of

their instantaneous marginal yield. A similar result is obtained by Alvarez, Lungu and

Øksendal [ALØ16] in a multidimensional harvesting problem with interaction between

different populations. They consider a multidimensional state-dependent marginal

yield whose each component is non-increasing with respect to each component of the

controlled state variable. Davis and Zervos [DZ98] prove a very general verification

result for state-dependent singular control problems, by employing the generalised

Meyer-Itô change of variable formula with local times, although they explicitly apply

such result to solve two special cases which do not exhibit state-dependence of the

instantaneous marginal yield.

Theorem 2.10 (Verification Theorem). Let w : R × [y, y] → R be a function in

C2(R× [y, y]) solution to (HJB) and such that

w(x, y) = 0, ∀x ∈ R, (2.81)
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and

lim
t→+∞

E[e−rtw(Xx
t , Y

y,ν
t )] = 0. (2.82)

Then, it follows that w(x, y) ≥ v(x, y) for all (x, y) ∈ R× [y, y].

Moreover, consider the inaction region

C = {(x, y) ∈ R× (y, y] : [L − r]w(x, y)− h(y) = 0}, (2.83)

and assume that there exists a control ν̄ ∈ A(y) such that satisfies the following property

almost surely:

ν̄ct = 0, ∀t ≥ 0 (ν̄ purely discontinuous), (2.84)

(Xx
t , Y

y,ν̄
t ) ∈ C ∪ (R× {y}), for almost every t ≥ 0, (2.85)

and for any t ≥ 0 such that ∆ν̄t 6= 0, holds

w(Xx
t , Y

y,ν̄
t ) = w(Xx

t , Y
y,ν̄
t+ ) + [Xx

t ]+f(Y y,ν̄
t )∆ν̄t − [Xx

t ]−
∫ ∆ν̄t

0
f(Y y,ν̄

t − u)du, (2.86)

Then, it follows that the control ν̄ is optimal for the stochastic control problem (OC)

and w(x, y) = v(x, y), for all (x, y) ∈ R× [y, y].

Proof. Fixed (x, y) ∈ R× [y, y] and ν ∈ A(y), we consider R > 0 such that |x| < R and

define τR ad in Lemma 2.2. For some T > 0, we apply the bidimensional Itô’s formula

for semimartingale to the function e−rtw(Xx
t , Y

y,ν
t ) on the time interval [0, TR], with

TR = T ∧ τR. Hence,

w(x, y) = e−rTRw(Xx
TR
, Y y,ν

TR
)−

∫ TR

0
e−rt[L − r]w(Xx

t , Y
y,ν
t )dt+

−
∫ TR

0
e−rtwy(X

x
t , Y

y,ν
t )dY y,ν

t −
∫ TR

0
σe−rtwx(Xx

t , Y
y,ν
t )dWt +

−
∑

0≤t≤TR

e−rt{w(Xx
t , Y

y,ν
t+ )− w(Xx

t , Y
y,ν
t )− wy(Xx

t , Y
y,ν
t )∆Y y,ν

t }.(2.87)

Recalling (2.60), we get

w(x, y) = e−rTRw(Xx
TR
, Y y,ν

TR
)−

∫ TR

0
e−rt[L − r]w(Xx

t , Y
y,ν
t )dt+

+

∫ TR

0
e−rtwy(X

x
t , Y

y,ν
t )dνt −

∫ TR

0
σe−rtwx(Xx

t , Y
y,ν
t )dWt +

−
∑

0≤t≤TR

e−rt
{
−
∫ ∆νt

0
wy(X

x
t , Y

y,ν
t − u)du+ wy(X

x
t , Y

y,ν
t )∆νt

}
.
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and, since the function wx is locally bounded on R× [y, y], it follows that the process

Mt :=

∫ t∧τR

0
σe−rswx(Xx

s , Y
y,ν
s )dWs (2.88)

is a square integrable martingale. Since w is a solution of (HJB), taking the expectation

and using the decomposition (1.19), we obtain

w(x, y) = E
[
e−rTRw(Xx

TR
, Y y,ν

TR
)−

∫ TR

0
e−rt[L − r]w(Xx

t , Y
y,ν
t )dt+

+

∫ TR

0
e−rtwy(X

x
t , Y

y,ν
t )dνct +

∑
0≤t≤TR

e−rt
∫ ∆νt

0
wy(X

x
t , Y

y,ν
t − u)du

]
≥

≥ E
[
e−rTRw(Xx

TR
, Y y,ν

TR
)−

∫ TR

0
e−rth(Y y,ν

t )dt+

∫ TR

0
e−rtXx

t f(Y y,ν
t )dνct +

+

∫ TR

0
e−rt[Xx

t ]f ′(Y y,ν
t )(Y y,ν

t − y)dνct +

+
∑

0≤t≤TR

e−rtXx
t

∫ ∆νt

0
f(Y y,ν

t − u)du+

+
∑

0≤t≤TR

e−rt[Xx
t ]+

∫ ∆νt

0
f ′(Y y,ν

t − u)(Y y,ν
t − y − u)du

]
.

Thanks to Lemma 2.2, passing to the limit for R → +∞, we have that TR = T ∧ τR
approaches T and

w(x, y) ≥ E
[
e−rTw(Xx

T , Y
y,ν
T )−

∫ T

0
e−rth(Y y,ν

t )dt+

∫ T

0
e−rtXx

t f(Y y,ν
t )dνct +

+

∫ T

0
e−rt[Xx

t ]f ′(Y y,ν
t )(Y y,ν

t − y)dνct +

+
∑

0≤t≤T
e−rtXx

t

∫ ∆νt

0
f(Y y,ν

t − u)du+

+
∑

0≤t≤T
e−rt[Xx

t ]+
∫ ∆νt

0
f ′(Y y,ν

t − u)(Y y,ν
t − y − u)du

]
. (2.89)

Hence, integrating by parts as in the heuristic discussion and letting T converges to

+∞, thanks to (2.82) and Lemma (2.4), we obtain

w(x, y) ≥ J(x, y; ν). (2.90)

Moreover, due to the arbitrariness of ν ∈ A(y), we get w(x, y) ≥ v(x, y) for any
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(x, y) ∈ R× [y, y].

On the other hand, fixed (x, y) ∈ R × (y, y] and T > 0, we now consider a con-

trol ν̄ ∈ A(y) satisfying the properties (2.84)-(2.86). Hence, considering again the

decomposition (1.19) and letting R tends to +∞ in (2.87), we obtain

w(x, y) = E
[
e−rTw(Xx

T , Y
y,ν̄
T )−

∫ T

0
e−rt[L − r]w(Xx

t , Y
y,ν̄
t )dt+

+

∫ T

0
e−rtwy(X

x
t , Y

y,ν̄
t )dν̄ct +

∑
0≤t≤T

e−rt{w(Xx
t , Y

y,ν̄
t )− w(Xx

t , Y
y,ν̄
t+ )}

]
=

= E
[
e−rTw(Xx

T , Y
y,ν̄
T )−

∫ T

0
e−rt[L − r]w(Xx

t , Y
y,ν̄
t )dt+

+
∑

0≤t≤T
e−rt{[Xx

t ]+f(Y y,ν̄
t )∆ν̄t − [Xx

t ]−
∫ ∆ν̄t

0
f(Y y,ν̄

t − u)du}], (2.91)

since the ν̄ is purely discontinuous (cf. (2.84)) and the condition (2.86) holds. More-

over, we observe that the complementary set of C∪(R×{y}) coincides with discharging

region D and, from condition (2.85), it follows that

λ({t ∈ [0, T ] : (Xx
t , Y

y,ν̄
t ) ∈ D}) = 0, ∀T > 0, (2.92)

where λ(·) represents the Lebesgue measure on (0,+∞).Therefore, recalling also that

w satisfies the boundary condition (2.81) and that h(y) = 0, we get

∫ T

0
e−rt[L − r]w(Xx

t , Y
y,ν̄
t )dt = (2.93)

=

∫ T

0
e−rt1{t∈[0,T ]:(Xx

t ,Y
y,ν̄
t )∈C}[L − r]w(Xx

t , Y
y,ν̄
t )dt+ (2.94)

+

∫ T

0
e−rt1{t∈[0,T ]:(Xx

t ,Y
y,ν̄
t )∈(R×{y})[L − r]w(Xx

t , y)dt = (2.95)

=

∫ T

0
e−rt1{t∈[0,T ]:(Xx

t ,Y
y,ν̄
t )∈C}h(Y y,ν̄

t )dt+ (2.96)

+

∫ T

0
e−rt1{t∈[0,T ]:(Xx

t ,Y
y,ν̄
t )∈(R×{y})h(y)dt = (2.97)

=

∫ T

0
e−rth(Y y,ν̄

t )dt. (2.98)
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Hence, in (2.91) we have

w(x, y) = E
[
e−rTw(Xx

T , Y
y,ν̄
T )−

∫ T

0
e−rth(Y y,ν̄

t )dt+

+
∑

0≤t≤T
e−rt{[Xx

t ]+f(Y y,ν̄
t )∆ν̄t − [Xx

t ]−
∫ ∆ν̄t

0
f(Y y,ν̄

t − u)du}
]
.(2.99)

Letting T converges to +∞, we obtain

w(x, y) = E
[∑
t≥0

e−rt{[Xx
t ]+f(Y y,ν̄

t )∆ν̄t − [Xx
t ]−

∫ ∆ν̄t

0
f(Y y,ν̄

t − u)du}+

−
∫ +∞

0
e−rth(Y y,ν̄

t )dt

]
= J(x, y; ν̄). (2.100)

Hence, we have that the control ν̄ is such that w(x, y) = v(x, y), i.e. it is optimal for

optimal control problem (OC).

Remark 2.11. In general, it is not always guaranteed that the value function v as-

sociated to the an optimal control problem is a C2 solution of the equation (HJB).

However, the conditions of Verification Theorem can be weakened. In particular, as in

Chapter VIII (section VIII.4) of [FS06], Theorem 2.10 holds for functions w satisfying

the following more general conditions,

w ∈ Cp(R× [y, y]) ∩ C1(R× (y, y)), w ∈ C2(C) and wx ∈W 1,∞
loc (R× (y, y)),

where Cp is the set of polynomial growth functions. Indeed, under these conditions one

can define a sequence {wn}n∈N such that wn ∈ C∞(R2) and converges to w uniformly

on the compact subsets of R2 as well as its first derivatives (wn)x and (wn)y converge

uniformly to wx and wy. Therefore, one can apply the Itô’s rule for semimartingale

to the regular function wn obtaining the result. Afterwards, thanks to the conditions

required for w, one obtains the same conclusions when n→ +∞.
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Chapter 3

The Associated Optimal Stopping

Problem

The existence of a connection between optimal control problems and optimal stop-

ping problems is a feature highlighted by numerous studies in the wide theory of sin-

gular stochastic optimal control. In particular, Bather and Chernoff [BC67] were the

first to establish such correspondence for a specific problem of spaceship controlling.

They noticed that the region of inaction of the control problem should coincide with

the continuation region of the stopping problem. In particular, the authors found out

that the optimal reward function for stopping problem should be the first derivative

of the value function associated with the optimal control.

The equivalence optimal control - optimal stopping and the aforementioned “differ-

ential” connection between value function and optimal stopping reward was later for-

malised in a one-dimensional context by Karatzas and Shreve [KS84; KS85] and widely

developed by many others for singular stochastic control problems which, among vari-

ous technical features, satisfy some convexity/concavity properties of the performance

functional with respect to the controlled variable. In particular, in [KS84], the au-

thors faced the problem of optimally tracking a Brownian motion by a non-decreasing

process and they found that the optimal control policy is pushing instantaneously the

state process at the boundary separating action and inaction regions, whenever the

starting position is within the action region. Afterwards, the optimal process acts only

when the controlled state is on the boundary, exerting only the sufficient control to

avoid a crossing of the controlled Brownian motion inside the interior of the action

region. This means that the optimal control policy behaves like the local time of the

controlled process at the optimal boundary.
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3.1 A family of optimal stopping problems (OSy)

The Verification Theorem proved in Chapter 2 suggests that in our framework the

aforementioned control policy does not be optimal. Contrarily, the best performance is

obtained through a purely discontinuous control of bang-bang type, i.e. whenever the

optimal control policy acts, it exerts all the available reserve through an instantaneous

single jump. Therefore, the problem that naturally arise is establishing when to exert

the control and these lead us to believe that a connection between optimal control

problem and optimal stopping still holds also for non-convex singular stochastic control

problem which exhibit state-dependence of the instantaneous marginal revenue, even

if such connection cannot be thought in its classical differential meaning.

In this chapter we properly define a parametrised family of optimal stopping prob-

lem (OSy), associated with our singular stochastic control problem (OC) and we show

when the latter can be completely solved by considering such connection. We prove

that, under particular assumptions on the ratio between instantaneous holding costs

and power produced by immediate water release, the value function of the optimal

control can be obtained by the optimal reward associated with (OSy). Contrarily,

although we are always able to solve the associated stopping problems (OSy), the con-

nection between the solutions of such problems with the solution of (OC) cannot be

always rigorously proved. In particular, if alternative hypothesis for above ratio are

considered, (OSy) may exhibit disconnected stopping regions and the characterisation

of the corresponding moving boundaries for (OC) can be only conjectured, due to

the high generality of our model and the complex structure of (OSy). For such open

problem, by providing some considerations about the shape of the action and inaction

regions and constructing a candidate optimal control process, we aim at doing the

groundwork for future research whose first scope will be establishing some suitable

conditions to confirm the actual optimality of such control and to characterise the

associated value in terms of the optimal reward of (OSy).

3.1 A family of optimal stopping problems (OSy)

Let us consider the parametric family of one-dimensional optimal stopping prob-

lems: given y ∈ (y, y], find τ∗y = τ∗y (x, y) ≥ 0 such that

E[e−rτ
∗
y g(Xx

τ∗y
, y)] = sup

τ≥0
E[e−rτg(Xx

τ , y)], (OSy)
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where the supremum is taken over all the F-stopping times τ and the running reward

function g : R× (y, y]→ R is defined as

g(x, y) := xF (y) + [x]+L(y) +
1

r
h(y), (3.1)

recalling that F (y) =
∫ y
y f(z)dz and defining L(y) :=

∫ y
y f
′(z)(z − y)dz.

When τ∗y there exists, we call it an optimal stopping time for (OSy) and we define

u(x, y) := E[e−rτ
∗
y g(Xx

τ∗y
, y)] (3.2)

as the optimal expected reward associated with (OSy) and corresponding to τ∗y .

Before dealing with the stopping problems (OSy), we observe that F (y) repre-

sents the energy power produced by discharging instantaneously all the available water

through a chattering policy. Whereas,

F (y) + L(y) =

∫ y

y
[f(z) + f ′(z)(z − y)]dz =

=

∫ y

y
[f(z)(z − y)]′dz = f(y)(y − y), (3.3)

is the energy power obtained releasing by instantaneously all the available fuel by

means of an impulsive strategy.

Let us introduce the following further assumptions for the cost and productivity

functions.

Assumption 3.1. Consider the productivity function f and the holding cost function

h such that, for every
h′(y)

h(y)
<
f(y)

F (y)
, y ∈ (y, y], (3.4)

and
h′(y)

h(y)
<

f(y) + l(y)

F (y) + L(y)
, y ∈ (y, y], (3.5)

where l(y) := L′(y) = f ′(y)(y − y).

Remark 3.2. We highlight that assumptions (3.4) and (3.5) are equivalent to say that,

at each initial amount y, the infinitesimal percentage variation in holding costs is al-

ways lower than that related to the amount of energy produced by discharging instan-

taneously all the available water resource, for both the response mode of the electric

production system (chattering or single impulse). We note that these assumption are
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3.1 A family of optimal stopping problems (OSy)

sufficient to say that the ratios

h(y)

F (y)
and

h(y)

F (y) + L(y)
, (3.6)

between holding costs and the power produced are both decreasing.

In the following we will consider two different behaviours as the water reserve ap-

proaches its minimal physical boundary. We will first assume that the ratio between

the instantaneous holding cost and the amount of energy that can be produced in-

stantaneously remains bounded on [y, y]. In particular, we assume that there exists a

constant 0 < C ≤ ab such that

lim
y→y

h(y)

F (y)
= C. (Rb)

Afterwards, we will face an alternative situation, in which f and h are such that the

amount of energy produced by discharging completely the water reserve vanishes faster

then than holding costs, so as both the ratios become infinitely large near y, i.e.

lim
y→y

h(y)

F (y)
= lim

y→y

h(y)

F (y) + L(y)
= +∞, (R∞)

The influence of the above different assumptions on the problem’s nature is closely

related to the following function A−, A+ : (y, y] 7→ R, that we define as

A−(y) :=
1

(a+ r)

[
ab− h(y)

F (y)

]
and A+(y) :=

1

(a+ r)

[
ab− h(y)

F (y) + L(y)

]
. (3.7)

In particular, the following result is a direct consequence of the previous hypotheses.

Lemma 3.3. Let f and h satisfy Assumptions 1.2, 1.4 and 3.1. Then, the functions

A+ and A− are both increasing. Moreover,

(i) if (Rb) holds, then

A+(y) > A−(y) > 0, ∀y ∈ (y, y] and lim
y→y

A+(y) ≥ lim
y→y

A−(y) ≥ 0, (3.8)

(ii) if (R∞) holds, then

A+(y) > A−(y), ∀y ∈ (y, y] and lim
y→y

A−(y) = lim
y→y

A+(y) = −∞. (3.9)
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3.2 A geometric approach

Proof. Considering the derivatives of A− and A+ we get

d

dy
A−(y) = − 1

(a+ r)

[
h′(y)F (y)− h(y)f(y)

F 2(y)

]
and

d

dy
A+(y) = − 1

(a+ r)

[
h′(y)[F (y) + L(y)]− h(y)[f(y) + l(y)]

[F (y) + L(y)]2

]
and since (3.4) and (3.5) hold true for any y ∈ (y, y], it follows that A+ and A− are

both strictly increasing. Hence, (3.8) and (3.9) immediately follow from the definition

of A+ and A− and from (Rb) and (R∞), respectively.

Remark 3.4. Consider condition (Rb). The dependence of the choice for the constant

C on the parameters a and b could appears particularly restrictive. As shown by

Lemma 3.3, this condition is sufficient to guarantee that both A− and A+ are positive

on [y, y] and this fact will be crucial to completely solve the problem (OC). Indeed, if

one consider C > ab, the problem may be traced back to the more challenging context

concerning the connection (OC)-(OSy) under the hypothesis (R∞).

3.2 A geometric approach

Dealing with the parametrized family of optimal stopping problems defined in the

previous section is particularly non-trivial since, as the parameter y changes, the nature

of the solutions of the associated optimal stopping problem varies significantly.

We solve the optimal stopping problem using a geometric approach inspired by the

results of Dayanik and Karatzas [DK03]. In particular, for any problem (OSy), we

construct the associated optimal reward function u(·, y) by considering the smallest

non-negative concave majorant of a certain function H(·, y) that we properly define

below.

Now we show some properties of the optimal reward function u(·, y) that can be

deduced directly from the analytic properties of g(·, y) and from the features of X.

Moreover, in order to set the geometric method we resort to some results proved in

[DK03] and listed in Appendix C, adapting their notations to our parametrised optimal

stopping problem.

Proposition 3.5. Given y ∈ (y, y], we have u(x, y) < +∞ for all x ∈ R. Moreover,

the function x 7→ u(x, y) is convex on R.

Proof. In order to prove that the optimal reward function is finite it suffices to show
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3.2 A geometric approach

that hypotheses of Proposition 5.10 in [DK03] (see Proposition C.1 in Appendix C)

are satisfied, i.e. it is sufficient to show that, for any y ∈ (y, y], both the limits

ly−∞ := lim
x→−∞

[g(x, y)]+

ϕ(x)
, ly+∞ := lim

x→+∞

[g(x, y)]+

ψ(x)
(3.10)

are finite.

Fixed y ∈ (y, y], we observe that [g(x, y)]+ grows linearly when x increases to +∞
and also that it is identically zero for x ≤ − h(y)

rF (y) . Moreover, thanks to the asymptotic

estimates for parabolic cylinder functions stated in [GST06], we obtain that

ψ(x) ≈ e
x2

2

[ √
2π

Γ(r/a)
x
r
a
−1 + cos

(
rπ

a

)
e−

x2

2 x−
r
a

]
(1 +O(x−2)), (3.11)

for x→ +∞ and

ϕ(x) ≈ e
x2

2

[ √
2π

Γ(r/a)
(−x)

r
a
−1 + cos

(
rπ

a

)
e−

x2

2 (−x)−
r
a

]
(1 +O((−x)−2)), (3.12)

when x → −∞. Hence, ψ(x) and ϕ(x) increase exponentially to +∞ when x ap-

proaches respectively ±∞ and we obtain that

ly−∞ = ly+∞ = 0. (3.13)

Furthermore, for any fixed y, the function g(·, y) is convex since it is represented by

the union of two straight lines joined at origin with different slopes. In particular

the slope of g(·, y) on (−∞, 0] is lower than its slope on the positive axis. Hence,

convexity of the optimal reward u(·, y) follows immediately from convexity of running

reward g(·, y). Indeed, if x1, x2 ∈ R, λ ∈ (0, 1) and xλ = λx1 + (1 − λ)x2, we recall

that Xxλ
t = λXx1

t + (1− λ)Xx2
t and, if τ ≥ 0 is an arbitrary stopping time, we get

E[e−rτg(Xxλ
t , y)] ≤ λE[e−rτg(Xx1

t , y)] + (1− λ)E[e−rτg(Xx2
t , y)] (3.14)

≤ λu(x1, y) + (1− λ)u(x2, y). (3.15)

We obtain the convexity property of the optimal reward u(·, y) just taking the supre-

mum over all the non-negative stropping time τ .

Let us now consider the function

G(x) := −ϕ(x)

ψ(x)
, x ∈ R. (3.16)
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3.2 A geometric approach

In light of the properties of ψ and ϕ, the function G is negative, continuously differ-

entiable and strictly increasing on R. As a consequence, its inverse function G−1 is

well-defined, differentiable and increasing. Hence, if we consider the function

H(z, y) :=


g(G−1(z),y)
ψ(G−1(z))

z < 0,

0, z = 0,
(3.17)

we can restate Proposition 5.12 of [DK03] (see Proposition C.2 in Appendix C) as

follows.

Proposition 3.6. Fixed y ∈ (y, y], let W (·, y) be the smallest non-negative concave

majorant of H(·, y) on (−∞, 0]. Then the optimal reward function for (OSy) is given

by

u(x, y) = ψ(x)W (G(x), y), x ∈ R. (3.18)

Furthermore, W (0, y) = ly(+∞) = 0 and W (·, y) is continuous at 0.

Moreover, if we consider the continuation and the stopping regions for each optimal

stopping problem (OSy), defined as

Cy = {x ∈ R : u(x, y) > g(x, y)} and Sy = {x ∈ R : u(x, y) = g(x, y)}, (3.19)

respectively, the following result provides that the stopping region for the optimal

stopping problem (OSy) is the inverse image under G of the set of contact points of

W and H.

Proposition 3.7. Fixed y ∈ (y, y], we have Sy = G−1(S̃y), where S̃y := {z ∈ (−∞, 0] :

W (z, y) = H(z, y)} and the stopping time

τ∗y (x) := inf{t ≥ 0 : Xx
t ∈ Sy} (3.20)

is optimal for the problem (OSy).

Proof. The result follows immediately from Remark 5.2 and Proposition 5.13 of [DK03]

(see Remark C.3 and Proposition C.4 in Apprendix C) since, for any y ∈ (y, y], the

running reward g(·, y) is continuous and (3.13) holds true.

Thanks to the previous result, solving the optimal stopping problem is equivalent

to finding the smallest non-negative concave majorant of H(·, y). In literature there are

many applications of the geometric approach of [DK03]. In the paper itself the authors
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3.2 A geometric approach

face with some optimal stopping problems showing the equivalence between the results

obtained by their theory and those previously achieved by means of other techniques.

Another example is given in [DFM18]. The authors study the problem mentioned at

the beginning of the chapter, exploiting the geometric approach to solve problem of

optimal stopping for a Brownian motion, for which the inverse of the auxiliary function

G has a closed-form expression.

Contrary to the above examples, in our problem the inverse function G−1 cannot

be explicitly calculated and finding the solutions to (OSy) turns out to be more chal-

lenging. We have to exploit the (implicit) properties of both running reward g(·, y)

and function G in order to find out the analytics features of H(·, y). In particular,

fixed y ∈ (y, y], if x 6= 0 and z = G(x), then g(·, y) is twice-continuously differentiable

at x, H(·, y) is twice-continuously differentiable at z and, as calculated in Appendix

D.1, we have

Hz(z, y) =
1

G′(x)
·
[(

g

ψ

)
x

(x, y)

]
(3.21)

and

Hzz(z, y) =
1

G′(x)
· 2ψ(x)

σ2W (ψ,ϕ)S′(x)
· [L − r]g(x, y), (3.22)

respectively. The function S′(·) is the density of the scale function and the constant

W (ψ,ϕ) is the Wronskian associated with the diffusion X. Since G is increasing and

ψ(·), S′(·) and W (ψ,ϕ) are positive, it follows that

Hz(z, y) ·
(
g

ψ

)
x

(x, y) ≥ 0 and Hzz(z, y) · [L − r]g(x, y) ≥ 0 (3.23)

whether z = G(x).

The geometry of H is closely related to the values of A+ and A− and, in order

to understand completely the properties of H(·, y) and to identify the structure of its

non-negative concave majorant W (·, y), we repeatedly resort to (3.23)1 and (3.23)2.

In particular, fixed y ∈ (y, y], let us consider the function

Φ(x, y) :=

(
g

ψ

)
x

(x, y) =
gx(x, y)ψ(x)− g(x, y)ψ′(x)

ψ2(x)
, (3.24)

and notice that Φ(·, y) is continuously differentiable everywhere except at 0, where

Φ has a jump discontinuity. Obviously, the sign of Φ(·, y) depends on the sign of its
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numerator

NΦ(x, y) :=

F (y)ψ(x)− [F (y)x+ h(y)
r ]ψ′(x), x < 0,

(F (y) + L(y))ψ(x)− [(F (y) + L(y))x+ h(y)
r ]ψ′(x), x > 0,

(3.25)

and it is positive for x ≤ − h(y)
rF (y) , since g(x, y) is non-positive for such values of x and ψ

is positive and increasing on R. In addition, we also notice that NΦ(·, y) is decreasing

for x > − h(y)
rf(y) , since its first derivative is given by

(NΦ)x(x, y) :=

−[F (y)x+ h(y)
r ]ψ′′(x), x < 0,

−[(F (y) + L(y))x+ h(y)
r ]ψ′′(x), x > 0,

(3.26)

and ψ′′ > 0 on R.
Moreover, adding to the asymptotic approximation for ψ given by (3.11), the approx-

imation for its first derivative

ψ′(x) ≈ e
x2

2

[ √
2π

Γ( ra + 1)
x
r
a + cos

(
(r + a)π

a

)
e−

x2

2 x−
r
a
−1

]
(1 +O(x−2)), (3.27)

we obtain that

lim
x→+∞

NΦ(x, y) = lim
x→+∞

(F (y) + L(y))ψ′(x)

[
ψ(x)

ψ′(x)
−
(
x+

h(y)

r(F (y) + L(y))

)]
= −∞,

(3.28)

since

lim
x→+∞

ψ′(x) = +∞ and lim
x→+∞

ψ(x)

ψ′(x)
= 0. (3.29)

Therefore, it is clear that the structure of the sets withinH(·, y) is increasing/decreasing

and the existence of local maxima/minima depends on the sign of NΦ(·, y) close to

the origin 0. Let us consider the right-hand and left-hand limits of NΦ(·, y) at 0

NΦ(0−, y) := lim
x→0−

NΦ(x, y) = F (y)ψ(0)− h(y)

r
ψ′(0) (3.30)

and

NΦ(0+, y) := lim
x→0+

NΦ(x, y) = (F (y) + L(y))ψ(0)− h(y)

r
ψ′(0). (3.31)
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3.2 A geometric approach

Hence, recalling that ψ solves [L − r]ψ(x) = 0 for any x ∈ R, we have

NΦ(0−, y) =
F (y)

r

[
rψ(0)− h(y)

F (y)
ψ′(0)

]
=

=
F (y)

r

[
1

2
σ2ψ′′(0) + abψ′(0)− h(y)

F (y)
ψ′(0)

]
=

=
F (y)

r

[
1

2
σ2ψ′′(0) + (a+ r)A−(y)ψ′(0)

]
. (3.32)

and also that

NΦ(0+, y) =
F (y) + L(y)

r

[
rψ(0)− h(y)

F (y) + L(y)
ψ′(0)

]
=

=
F (y) + L(y)

r

[
1

2
σ2ψ′′(0) + abψ′(0)− h(y)

F (y) + L(y)
ψ′(0)

]
=

=
F (y) + L(y)

r

[
1

2
σ2ψ′′(0) + (a+ r)A+(y)ψ′(0)

]
. (3.33)

That is, the behaviour of N(·, y) around the origin depends on both A− and A+. In

the following, by studying different cases, we explicitly show such dependence.

The convexity and concavity sets of H(·, y) can be identified by means of (3.23)2.

Indeed, if x 6= 0 and z = G(x) we have that H(·, y) is twice-differentiable at z and

Hzz(z, y) > 0 if and only if

[L − r]g(x, y) > 0. (3.34)

By means of immediate calculations, we notice that for x < 0,

[L − r]g(x, y) = a(b− x)F (y)− r[xF (y) +
1

r
h(y)] =

= F (y)[ab− (a+ r)x]− h(y) =

= (a+ r)F (y)[A−(y)− x], (3.35)

whereas, for x > 0,

[L − r]g(x, y) = a(b− x)(F (y) + L(y))− r[x(F (y) + L(y)) +
1

r
h(y)] =

= (F (y) + L(y))[ab− (a+ r)x]− h(y) =

= (a+ r)(F (y) + L(y))[A+(y)− x], (3.36)

and it follows that [L − r]g(x, y) > 0 if and only if x < min{A−(y), 0} or 0 < x <

max{A+(y), 0}. Moreover, introducing the following definitions that will be widely
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3.3 The solution of (OSy) under (Rb)

used in the sequel

zy−k := G(−k(y)), z0 := G(0), zy
A− := G(A−(y)), zy

A+ := G(A+(y)), (3.37)

we notice that

H(z, y) < 0, z < zy−k and H(z, y) ≥ 0, z ≥ zy−k. (3.38)

and we can summarise the information obtained from above calculation as follows:

H(·, y) is strictly convex on (−∞,min{zy
A− , z0}) and (z0,max{z0, z

y
A+}) (3.39)

H(·, y) is strictly concave on (min{zy
A− , z0}, z0) and (max{z0, z

y
A+}, 0]. (3.40)

In the following sections we will study the optimal stopping (OSy) under the two

different hypotheses (Rb) and (R∞). Moreover, under (R∞), we will consider a further

subdivision on sub-cases and, for each of them, we will describe in detail the analytic

properties of the function H(·, y) by exploiting the above calculations.

3.3 The solution of (OSy) under (Rb)

In this section, by means of the geometric approach previously presented, we com-

pletely solve the optimal stopping problem (OSy) under the assumption (Rb). Af-

terwards, resorting to Verification Theorem, we identify the connection between the

parametrized family (OSy) and the optimal control problem (OC). In particular, start-

ing from the optimal stopping time for (OSy), we construct the optimal control policy

for (OC) and we prove that the associate value function v coincides with

w(x, y) =

u(x, y)− 1
rh(y), on R× (y, y],

0, on R× {y}
(3.41)

Moreover, we show that there exists a unique moving boundary separating the ac-

tion and inaction regions for (OC) and that it is identified by means of the optimal

boundaries for (OSy).

As stated in Lemma 3.3, under the additional hypothesis (Rb), we have that

A+(y) > A−(y) > 0 and, recalling the notation indroduced in (3.37), we have z0 <

zy
A− < zy

A+ . Hence, from (3.39)-(3.40), we obtain that H(·, y) is strictly convex on the

intervals (−∞, z0) and (z0, z
y
A+) and strictly concave on (zy

A+ , 0].
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Recalling the expressions (3.32) and (3.33) for the left-side and right-side limits of

NΦ(·, y) at 0, we notice that

NΦ(0+, y) > NΦ(0−, y) ≥ 0. (3.42)

Therefore, NΦ(·, y) remains positive on (−∞, 0), the function Φ(·, y) is positive on

the same set and H(·, y) is increasing on (−∞, z0). On the other hand, we also have

that NΦ(·, y) is positive within a right-hand neighbourhood of 0 and decreases to −∞
when x approaches +∞. Hence, H(·, y) increases in such right-hand neighbourhood of

0 until it reaches its maximum in a certain point zy
γ+ > z0 after which H(·, y) decreases

to 0 when z approaches 0. We easily observe that

NΦ(A+(y), y) =
F (y) + L(y)

r

[
rψ(A+(y))−

(
rA+(y) +

h(y)

F (y) + L(y)

)
ψ′(A+(y))

]
=

=
F (y) + L(y)

r

[
rψ(A+(y))− a(b−A+(y))ψ′(A+(y))

]
=

=
σ2

2

F (y) + L(y)

r
ψ′′(A+(y)) > 0, (3.43)

and it follows that zy
γ+ > zy

A+ , since from (3.43) we have Hz(z
y
A+ , y) > 0. Moreover,

we observe that the maximum point zy
γ+ is unique, since H(·, y) is strictly concave on

(zy
A+ , 0) and, as depicted on Figure 3.1, the smallest non-negative concave majorant

W (·, y) for H(·, y) is given by

W (z, y) =

H(zy
γ+ , y), z < zy

γ+ ,

H(z, y), zy
γ+ ≤ z ≤ 0,

(3.44)

that is, W (·, y) coincides with H(·, y) on (zy
A+ , 0], whereas it is constant and equal to

H(zy
γ+ , y) on (−∞, zy

γ+ ].

In particular, if for any fixed y ∈ (y, y] we define

γ+(y) := G−1(zy
γ+), (3.45)

thanks to Proposition 3.6, we have that the optimal reward for the stopping problem

(OSy) is given by

u(x, y) =


g(γ+(y),y)
ψ(γ+(y))

ψ(x), x < γ+(y),

g(x, y), x ≥ γ+(y).
(3.46)

and for γ+ we have the following result,

47



3.3 The solution of (OSy) under (Rb)

z0zy
γ+zy

A+
z0zy−k

W (z, y)

H(z, y)

Figure 3.1: Picture of H(·, y) and its concave majorant W (·, y) under (Rb)

Proposition 3.8. Given y ∈ (y, y], γ+(y) is the unique solution to the fixed point

problem,
ψ(x)

ψ′(x)
− x =

h(y)

r(F (y) + L(y))
, x ≥ A+(y). (FPy+)

Moreover, the function y 7→ γ+(y) is positive, increasing and belongs to C1((y, y)).

Proof. First of all, we observe that for any (x, y) ∈ (0,+∞)× (y, y] we have

NΦ(x, y) = (F (y) + L(y))ψ(x)− [(F (y) + L(y))x+
1

r
h(y)]ψ′(x), (3.47)

it is continuously differentiable with respect to both its variables. Morever, fixed

y ∈ (y, y], as argued in previous calculations, we have that γ+(y) is the unique solution

of NΦ(x, y) = 0, i.e.

NΦ(γ+(y), y) = (F (y) + L(y))

[
ψ(γ+(y))−

(
γ+(y) +

h(y)

r(F (y) + L(y))

)
ψ′(γ+(y))

]
=

= (F (y) + L(y))ψ′(γ+(y))

[
ψ(γ+(y))

ψ′(γ+(y))
−
(
γ+(y) +

h(y)

r(F (y) + L(y))

)]
= 0,

and immediately it follows that γ+(y) solves (FPy+), since F + L is positive and ψ in-

creasing. Moreover, recalling thatNΦ(·, y) is decreasing, we have thatNΦx(γ+(y), y) <

0 and thanks to the implicit function theorem, the function y 7→ γ(y) is continuously

differentiable on (y, y).

The sign of γ+ easily follows, since G−1 is increasing and z0 < zy
A+ < zy

γ+ for any
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y ∈ (y, y]. Moreover, γ+ is increasing on y ∈ [y, y]. Indeed, we have that

(γ+)′(y) = −NΦy(γ
+(y), y)

NΦx(γ+(y), y)
> 0, (3.48)

since NΦx(γ+(y), y) < 0 and

NΦy(γ
+(y), y) = (f(y) + l(y))ψ′(γ+(y))

[
ψ(γ+(y))

ψ′(γ+(y))
−
(
γ+(y) +

h′(y)

r(f(y) + l(y))

)]
>

> (f(y) + l(y))ψ′(γ+(y))

[
ψ(γ+(y))

ψ′(γ+(y))
−
(
γ+(y) +

h(y)

r(F (y) + L(y))

)]
= 0,

where the inequality follows from (3.5) in Assumption 3.1.

Now, thanks to Proposition 3.7, we can identify the stopping region for (OSy) as

the inverse image of the contact set of W (·, y), i.e. Sy = G−1([zy
γ+ , 0]) = [γ+(y),+∞)

and the optimal stopping time for (OSy) is given by the first entry time of the process

X inside Sy, i.e.
τ∗y = inf{t ≥ 0 : Xx

t ≥ γ+(y)}. (3.49)

We observe that, due to the recurrence property of the process X, the stopping time

τ∗y <∞, a.s..

3.3.1 The solution of (OC) under (Rb)

We now show that the solutions of the family of optimal stopping problems (OSy)

allow us to identify the solution of the optimal control problem (OC). We start pro-

viding the following regularity result for the function w in (3.41).

Proposition 3.9. The function w ∈ C1(R× (y, y))∩C(R× [y, y]) and wxx ∈ L∞loc(R×
[y, y]). Moreover, there exists a constant C > 0 such that

|w(x, y)| ≤ C(1 + |x|), ∀(x, y) ∈ R× [y, y]. (3.50)

Proof. The continuity of w on R× (y, y] follows directly from the continuity of u and

h. Moreover, for any x ≥ γ+(y) we have that w coincides with g− 1
rh and in particular

one has

lim
y→y

w(x, y) = lim
y→y

[
g(x, y)− 1

r
h(y)

]
= 0. (3.51)
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On the other hand, for x < γ+(y), y ∈ (y, y], we have

w(x, y) =
g(γ+(y), y)

ψ(γ+(y))
ψ(x)− 1

r
h(y), (3.52)

and we obtain

−1

r
h(y) ≤ w(x, y) ≤ g(γ+(y), y)− 1

r
h(y) = γ+(y)(F (y) + L(y)), (3.53)

where the right-hand bound follows from the monotonicity of ψ and the left-hand

inequality follows since u is non-negative. Hence, letting y converges to y, we obtain

(3.51) and the continuity of w is extended to the whole R× [y, y].

The regularity properties of w follows from regularity of u and h. Indeed, as said

above, for any x ≥ γ+(y), y ∈ (y, y), w coincides with g − 1
rh and both g and h are

therein continuously differentiable.

On the other hand, for x < γ+(y), y ∈ (y, y), the expression for w is (3.52) and

its everywhere differentiable with respect to both its variables, since g is differentiable

sufficiently far from the origin, γ+ ∈ C1((y, y)) and positive and ψ ∈ C2(R).

We notice also that both wx and wy are continuous everywhere and also along the

boundary γ+(y). Indeed,

wx(x, y) =


g(γ+(y),y)
ψ(γ+(y))

ψ′(x), x < γ+(y), y ∈ (y, y]

F (y) + L(y), x ≥ γ+(y), y ∈ (y, y]
(3.54)

and the equality
g(γ+(y), y)

ψ(γ+(y))
ψ′(γ+(y)) = F (y) + L(y),

easily follows since γ+(y) solves (FPy+) and g(γ+(y)) = (F (y) + L(y))γ+(y) + 1
rh(y).

For the first partial derivatives with respect to y we have

wy(x, y) = x(f(y) + l(y)) +
1

r
h′(y), x ≥ γ+(y), y ∈ (y, y]

whereas, for x < γ+(y), y ∈ (y, y],

wy(x, y) = ψ(x)

[
gx(γ+(y), y)ψ(γ+(y))− g(γ+(y), y)ψ′(γ+(y)

ψ2(γ+(y))
(γ+)′(y)+

gy(γ
+(y), y)

ψ(γ+(y))

]
,
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and, again thanks to (FPy+),

gx(γ+(y), y)ψ(γ+(y))− g(γ+(y), y)ψ′(γ+(y)) =

= (F (y) + L(y))ψ′(γ+(y))

[
ψ(γ+(y))

ψ′(γ+(y))
−
(
γ+(y) +

h(y)

r(F (y) + L(y))

)]
= 0.

Hence,

wy(x, y) = ψ(x)
gy(γ

+(y), y)

ψ(γ+(y))
=

ψ(x)

ψ(γ+(y))

[
(f(y) + l(y))γ+(x) +

1

r
h′(y)

]
(3.55)

and continuity for wy at the boundary γ+(y) easily follows.

Furthermore, we note that for any y, the map x 7→ w(x, y) is linear for x ≥ γ+(y),

hence wxx ≡ 0. On the other hand, we have that the second derivative is

wxx(x, y) =
g(γ+(y), y)

ψ(γ+(y))
ψ′′(x), x < γ+(y), y ∈ (y, y] (3.56)

and it is continuous and bounded on every compact subsets of R× [y, y].

In order to show the sublinear growth (3.50), it suffices noticing that x 7→ w(·, y) is

a straight line for x ≥ γ+(y), y ∈ (y, y].Whereas, if x < γ+(y), y ∈ (y, y], the chain of

inequalities (3.53) holds true. Hence, recalling that γ+, F, L and h are all continuous on

[y, y], we find a constant C1 > 0 such that |w(x, y)| ≤ C1 for all x < γ+(y), y ∈ (y, y]

and (3.50) easily follows for any (x, y) ∈ R× [y, y].

The previous proposition guarantees the sufficient regularity to show that w is

a solution of (HJB) in the weak sense of Remark 2.11. In particular, we have the

following result.

Proposition 3.10. The function w solves the Hamilton-Jacobi-Bellman equation (HJB).

Moreover, w(x, y) = 0, for any x ∈ R.

Proof. Fix x ≥ γ+(y) and y ∈ (y, y]. We have that w(x, y) = x(F (y) + L(y)) and

recalling the definition of A+ in (3.7), we obtain

[L − r]w(x, y) = (F (y) + L(y))[L − r](x) =

= (F (y) + L(y))(a(b− x)− rx) =

= (F (y) + L(y))(ab− (a+ r)x) =

= (a+ r)(F (y) + L(y))(A+(y)− x) + h(y) < h(y),
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3.3 The solution of (OSy) under (Rb)

since x ≥ γ+(y) > A+(y) for any y ∈ [y, y]. It follows that

[L − r]w(x, y)− h(y) < 0, x ≥ γ+(y), y ∈ (y, y]. (3.57)

On the other hand we have that wy(x, y) = x(f(y) + l(y)). Hence, recalling that

F ′(y) = f(y), L′(y) = l(y) = f ′(y)(y − y) and x ≥ γ+(y) > 0, we obtain

wy(x, y) = x(f(y) + f ′(y)(y − y)) = xf(y) + [x]+f ′(y)(y − y). (3.58)

Therefore, from (3.57) and (3.58) we obtain that w satisfies the (HJB), for a.e. x ≥
γ+(y), y ∈ (y, y].

On the other hand, consider x < γ+(y) and y ∈ (y, y]. We have

w(x, y) =
g(γ+(y), y)

ψ(γ+(y))
ψ(x)− 1

r
h(y).

Recalling that ψ solves [L − r]ψ(x) = 0, we directly obtain that

[L − r]w(x, y)− h(y) = 0. (3.59)

Now it remains only to prove that w satisfies

wy(x, y) > xf(y) + [x]+f ′(y)(y − y). (3.60)

From (3.55) we recall that

wy(x, y) = ψ(x)
gy(γ

+(y), y)

ψ(γ+(y))
=

ψ(x)

ψ(γ+(y))

[
(f(y) + l(y))γ+(x) +

1

r
h′(y)

]
, (3.61)

and it is clear that to prove (3.60), it is sufficient to show that, for any y ∈ (y, y], the

function M(·, y), defined as

M(x, y) =
gy(x, y)

ψ(x)
(3.62)

is increasing on (−∞, γ+(y)]. Indeed, in this case we would obtain

wy(x, y) > ψ(x)
gy(x, y)

ψ(x)
= xf(y) + [x]+f ′(y)(y − y), (3.63)

for any x < γ+(y) y ∈ (y, y]. We notice that M(·, y) is continuous on R and it is
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everywhere differentiable except at the origin 0. In particular its derivative

Mx(x, y) =
gyx(x, y)ψ(x)− gy(x, y)ψ′(x)

ψ2(x)
, (3.64)

has a jump discontinuity at 0. Fixed y ∈ (y, y], we consider the numerator of Mx(·, y),

N(x, y) :=

f(y)ψ(x)− [f(y)x+ h′(y)
r ]ψ′(x), x < 0,

(f(y) + l(y))ψ(x)− [(f(y) + l(y))x+ h′(y)
r ]ψ′(x), x > 0,

(3.65)

and we observe that it is non-increasing, since its first derivative

Nx(x, y) :=

−[f(y)x+ h′(y)
r ]ψ′′(x), x < 0,

−[(f(y) + l(y))x+ h′(y)
r ]ψ′′(x), x > 0,

(3.66)

is everywhere non-positive. In particular we that N(x, y) > 0 for x ≤ − h′(y)
rf(y) and also

that

N(0+, y) > N(0−, y) =
f(y)

r

[
rψ(0)− h′(y)

f(y)
ψ′(0)

]
=

=
f(y)

r

[
1

2
σ2ψ′′(0) + abψ′(0)− h′(y)

f(y)
ψ′(0)

]
=

=
f(y)

r

[
1

2
σ2ψ′′(0) +

(
ab− h′(y)

f(y)

)
ψ′(0)

]
, (3.67)

where N(0+, y) and N(0+, y) are the right-hand and left-hand limit of N(·, y) at 0,

respectively. We observe that, by virtue of (3.4) in Assumption 3.1, we have

N(0+, y) > N(0−, y) >
f(y)

r

[
1

2
σ2ψ′′(0) +

(
ab− h(y)

F (y)

)
ψ′(0)

]
=

=
f(y)

r

[
1

2
σ2ψ′′(0) + (a+ r)A−(y)ψ′(0)

]
> 0. (3.68)

Moreover also N(γ+(y), y) > 0. Indeed, since γ+(y) solves (FPy+), it follows that

(F (y) + L(y))ψ(γ+(y))−
[
(F (y) + L(y))γ+(y) +

h(y)

r

]
ψ′(γ+(y)) = 0. (3.69)
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Differentiating (3.69) with respect to y, we obtain

(f(y) + l(y))ψ(γ+(y))−
[
(f(y) + l(y))γ+(y) +

h′(y)

r

]
ψ′(γ+(y))

−
[
(F (y) + L(y))γ+(y) +

h(y)

r

]
ψ′′(γ+(y))(γ+)′(y) = 0

Hence, recalling the definition of N(·, y), we get

N(γ+(y), y) = (f(y) + l(y))ψ(γ+(y))−
[
(f(y) + l(y))γ+(y) +

h′(y)

r

]
ψ′(γ+(y)) =

=

[
(F (y) + L(y))γ+(y) +

h(y)

r

]
ψ′′(γ+(y))(γ+)′(y) > 0, (3.70)

since all the quantities within the square bracket are positive, ψ′′ > 0 and γ+ > 0 and

increasing. Collecting all the information above, we obtain that the numerator N(x, y)

is positive for all x ≤ γ+(y), hence the function M(x, y) is increasing for x ≤ γ+(y)

and (3.60) follows.

Therefore, summing up the expressions (3.57), (3.58), (3.59) and (3.60), we can

confirm that the function w solves

max{[L − r]w(x, y)− h(y), xf(y) + [x]+f ′(y)(y − y)− wy(x, y)} = 0, (3.71)

for a.e. (x, y) ∈ R × (y, y]. The boundary condition w(x, y) = 0 is guaranteed by the

definition and the continuity of w.

In conclusion, we provide an optimal control policy and we show that w actually

identifies the value function v of the optimal control problem (OC).

Proposition 3.11. For any y ∈ (y, y], recall the stopping time τ∗y in (3.49) and

consider the control process ν∗ defined as

ν∗t :=

0, t ≤ τ∗y ,

y − y, t > τ∗y .
(3.72)

Then ν∗ ∈ A(y) is optimal for the control problem (OC) and

v(x, y) = w(x, y), ∀ (x, y) ∈ R× [y, y], (3.73)

i.e., the function w identifies the value function v associated with (OC).
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Proof. The results proved in Proposition 3.9 and Proposition 3.10 provide that the

function w in (3.41) solves (HJB) and satisfies the boundary condition w(x, y) = 0.

Moreover, the sublinear growth property guarantees that condition (2.82) in Verifica-

tion Theorem holds true. Indeed,

lim
t→+∞

E[e−rt|w(Xx
t , Y

y
t )|] ≤ lim

t→+∞
E[e−rtC(1 + |Xx

t |)] = E[ lim
t→+∞

e−rtC(1 + |Xx
t |)] = 0,

since (Xx
t )t≥0 is uniformly integrable. Therefore, in order to prove that ν∗ is optimal

for (OC) and also that the associated value function v is identified by w, it is sufficient

to show that ν∗ satisfies the condition (2.84)-(2.86) of Verification Theorem.

From the definition of ν∗ follows that it is admissible and purely discontinuous,

indeed ν∗0 = 0, and it increases only at τ∗y , through a single jump and exerting all the

available fuel. To prove condition (2.85), we observe that given (x, y) ∈ R× (y, y],

(Xx
t , Y

y,ν∗

t ) = (Xx
t , y), ∀ t ≤ τ∗y . (3.74)

Moreover, applying Dynkin’s formula1 we obtain

E[e−rτ
∗
yw(Xτ∗y , y)] = w(x, y) + E

[ ∫ τ∗y

0
e−rt[L − r]w(Xx

t , y)dt

]
, (3.75)

Hence,

E
[
e−rτ

∗
y

(
u(Xτ∗y , y)− 1

r
h(y)

)]
= u(x, y)− 1

r
h(y) + E

[ ∫ τ∗y

0
e−rt[L − r]w(Xx

t , y)dt

]
.

Rearranging properly the terms involving h, we write

E
[

1

r
h(y)(e−rτ

∗
y − 1)

]
= −E

[ ∫ τ∗y

0
e−rth(y)dt

]
(3.76)

and recalling that u(Xτ∗y , y) = g(Xτ∗y , y) a.s., we obtain

E[e−rτ
∗
y g(Xτ∗y , y)] = u(x, y) + E

[ ∫ τ∗y

0
e−rt{[L − r]w(Xx

t , y)− h(y)}dt
]
. (3.77)

As shown in Proposition 3.10, w solves (HJB) and in general one has [L− r]w(x, y)−
h(y) ≤ 0. But, since τ∗y is optimal for (OSy) and u(·, y) is the associated optimal

1We recall that Dynkin’s formula holds since X is positively recurrent and E[τ∗y ] <∞.
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reward, it necessarily holds

[L − r]w(Xx
t , y)− h(y) = 0, a.s., (3.78)

for almost every t ≤ τ∗y . In conclusion, noticing also that

(Xx
t , Y

y,ν∗

t ) = (Xx
t , y), ∀t > τ∗y , (3.79)

we obtain that (Xx
t , Y

y,ν∗

t ) ∈ C ∩ (R × {y}), for almost every t ≥ 0. Furthermore, we

have that the control ∆ν∗t 6= 0 if and only if t = τ∗y and to prove that (2.86) holds true

it suffices to show that

w(Xτ∗y , y) = [Xτ∗y ]+f(y)(y − y)− [Xτ∗y ]−
∫ y−y

0
f(y − u)du, a.s. (3.80)

This follows easily from the definition of w. Indeed, recalling that τ∗y < ∞, a.s., it
follows that Xx

τ∗y
= γ+(y) > 0 and for any y ∈ (y, y], we have

w(γ+(y), y) = g(γ+(y), y)− 1

r
h(y) = γ+(y)(F (y) + L(y)), (3.81)

and, simply observing that

F (y) + L(y) =

∫ y

y
{f(u) + f ′(u)(u− y)}du =

=

∫ y

y
[f(u)(u− y)]′du = f(y)(y − y),

we obtain (3.80).

The previous result shows that, given the initial position (x, y), the optimal control

policy consists in instantly discharging the entire available water reserve as soon as

the price process Xx hits the positive threshold γ+(y). Additionally, the identification

between the value function v(x, y) related to such optimal control with w(x, y), implies

that v satisfies

[L − r]v(x, y)− h(y) = 0, x < γ+(y), y ∈ (y, y],

xf(y) + [x]+f ′(y)(y − y)− vy(x, y) < 0, x < γ+(y), y ∈ (y, y],

[L − r]v(x, y)− h(y) < 0, x ≥ γ+(y), y ∈ (y, y],

xf(y) + [x]+f ′(y)(y − y)− vy(x, y) = 0, x ≥ γ+(y), y ∈ (y, y].

(3.82)
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Hence, as depicted on Figure 3.2, we obtain that the action (discharging) and inaction

region are given by

D = {(x, y) ∈ R× (y, y] : x ≥ γ+(y)}, (3.83)

C = {(x, y) ∈ R× (y, y] : x < γ+(y)}, (3.84)

respectively and the function y 7→ γ+(y) represents the boundary separating these

regions.

x

y

0

y

y

γ+C

D(x, y)

t 7→ Xx
t

Figure 3.2: An example of optimal boundary for (OC) under (Rb). Starting from
(x, y), the process Xx

t diffuses along the horizontal line until reaching γ+(y). At that
hitting time, the control ν̄ is exerted by a jump ∆ν̄ = y − y, leading the state process
Y y,ν̄
t at the lower bound y.

3.4 The solution of (OSy) under (R∞)

In this section we face the parametrized family of optimal stopping problems (OSy)

assuming that condition (R∞) is verified, instead of (Rb).

The structure of the solutions of the optimal stopping problems changes drastically

according to the values assumed by the parameter y. In particular we show that the

connection between the optimal reward u(·, y) and the value function v for optimal

control problem (OC) can no longer easily be proved. We highlight that, for certain

values of the parameter y, the stopping problem (OSy) exhibits disconnected stopping
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intervals Sy and the identification of the optimal moving boundaries of (OC), starting

from those of (OSy) becomes more challenging.

By means of the geometrical approach, we study case-by-case all the possible geo-

metric configurations for H(·, y) and, taking into account the relevance of A+(y) and

A−(y), we graphically identify its smallest non-negative concave majorant W (·, y).

We consider the values y1, y2, y∗ and y∗ in (y, y] such that

A+(y1) = A−(y2) = − σ2

2(a+ r)

ψ′′(0)

ψ′(0)
and A+(y∗) = A−(y∗) = 0, (3.85)

respectively.

It is worth noticing that a priori it is not clear if each of such points there exists. In

order to present a general framework as detailed as possible, we can firstly consider

the upper level y such that
h(y)

F (y)
< ab. (3.86)

This condition guarantees that A+(y) > A−(y) > 0 and the points defined above exist

within (y, y) and, due to the monotonicity of both A− and A+, they are unique. In

particular and we have that

y < y1 < y∗ < y2 < y∗ < y. (3.87)

Any alternative situation can be easily traced back to such more detailed framework.

In the following subsections we distinguish three cases. First of all, we start by

solving the optimal stopping problems (OSy) when these are associated with the initial

reserve level y belonging to the overhead range [y2, y]. After, we consider the param-

eter y within an intermediate range (y1, y2), highlighting similarities and differences

between solutions obtained in this case and those in the previous one. In conclusion

we show the peculiarities of the problem when the starting level of the water reserve

is in the lower range (y, y1].

3.4.1 Case 1

Let us consider the starting amount of water reserve y within the interval [y2, y].

For such values of y, the solution to each optimal stopping problem (OSy) is analogous

to the one obtained under condition (Rb). Indeed, for any fixed y ∈ [y2, y], we have

A+(y) > A−(y) ≥ − σ2

2(a+ r)

ψ′′(0)

ψ(0)
. (3.88)

58



3.4 The solution of (OSy) under (R∞)

z0zy
γ+zy

A+
z0zy

A−zy−k

W (z, y)

H(z, y)

Figure 3.3: Picture of H(·, y) and its concave majorant W (·, y) for y ∈ [y2, y
∗).

In particular, recalling the definition of y2 and y∗ in (3.85), we get

A−(y) < 0 < A+(y) if y ∈ [y2, y
∗) and A+(y) > A−(y) ≥ 0 if y ∈ [y∗, y], (3.89)

and also

zy
A− < z0 < zy

A+ , if y ∈ [y2, y
∗) and z0 ≤ zyA− < zy

A+ , if y ∈ [y∗, y]. (3.90)

As when (Rb) holds, (3.88) implies that both NΦ(0−, y) and NΦ(0+, y) are positive

and there exist a point zy
γ+ > zy

A+ such that H(·, y) is increasing on (−∞, zy
γ+) and

decreasing on (zy
γ+ , 0].

Concerning the convexity/concavity intervals, we have two possible configurations.

Indeed, from (3.39)-(3.40), if y ∈ [y∗, y] then H(·, y) is strictly convex on the intervals

(−∞, z0) and (z0, z
y
A+) and strictly concave on (zy

A+ , 0]. Then, the structure is totally

analogous to the situation under (Rb) and it is depicted in Figure 3.1.

Otherwise, if [y2, y
∗) then H(·, y) is strictly convex on (−∞, zy

A−) and (z0, z
y
A+) and

strictly concave on (zy
A− , z0) and (zy

A+ , 0]. This situation is represented in Figure 3.3.

Obviously, both the situations exhibit strict concavity of H(·, y) on (zy
A+ , 0] and the

maximum point zy
γ+ is unique.

Hence, for any fixed y ∈ [y2, y], as depicted on Figure 3.1 and Figure 3.3, the

smallest non-negative concave majorant W (·, y) is

W (z, y) =

H(zy
γ+ , y), z < zy

γ+ ,

H(z, y), zy
γ+ ≤ z ≤ 0,

(3.91)
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and both optimal reward function u(·, y) and optimal stopping time τ∗y are identified

by (3.46) and (3.49), respectively. In particular, for any y ∈ [y2, y], can be identify

the boundary point γ+(y) = G−1(zy
γ+) as the unique solution of (FPy+) and γ+(·) is a

positive, increasing and once-continuously differentiable function on (y2, y).

3.4.2 Case 2

Now we deal with the case y ∈ (y1, y2). For such values of y the quantities A−(y)

and A+(y) are such that

A−(y) < − σ2

2(a+ r)

ψ′′(0)

ψ(0)
< A+(y). (3.92)

In particular, the convexity/concavity sets of H(·, y) are specifically identified by con-

sidering the following facts

A−(y) < A+(y) < 0, if y ∈ (y1, y∗), and A−(y) < 0 < A+(y) if y ∈ [y∗, y2),

(3.93)

and also that

zy
A− < zy

A+ < z0 if y ∈ (y1, y∗) and zy
A− < z0 < zy

A+ if y ∈ [y∗, y2). (3.94)

Indeed, from (3.39)-(3.40), if y ∈ [y∗, y2) then H(·, y) is strictly convex on (−∞, zy
A−)

and (z0, z
y
A+) and strictly concave on (zy

A− , z0) and (zy
A+ , 0]. Otherwise, if (y1, y∗)

then H(·, y) is strictly convex on (−∞, zy
A−) and and strictly concave on (zy

A− , z0) and

(z0, 0].

Contrary to the previous case, considering facts in (3.92) and the expressions (3.32)

and (3.33), we observe that

NΦ(0−, y) < 0 < NΦ(0+, y), (3.95)

hence NΦ(·, y) is positive for x ≤ −k(y), it decreases and achieves negative value

within a left-hand neighbourhood of 0. Additionally, since NΦ(0+, y) > 0, in a right-

hand neighbourhood of 0, NΦ(·, y) is positive and monotonically decreases to −∞
for large value of x. As a consequence, there exist two values zy

γ− and zy
γ+ , with

zy
γ− < z0 < zy

γ+ , such that H(·, y) is increasing on (−∞, zy
γ−)∪(z0, z

y
γ+) and decreasing

on (zy
γ− , z0) ∪ (zy

γ+ , 0). It is therefore clear that H(·, y) has two local maxima at zy
γ−

and zy
γ+ , respectively. Furthermore, through a totally similar argument to the one used
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3.4 The solution of (OSy) under (R∞)

in (3.43), we have that zy
γ− > zy

A− and zy
γ+ > zy

A+ and these local maximum points

are unique since H(·, y) is strictly concave on both (zy
A− , z0) and (zy

A+ , 0]. Moreover

γ+(y) still solves the fixed point problem (FPy+) and for

γ−(y) := G−1(zy
γ−), y ∈ (y1, y2), (3.96)

holds the following result that is analogous to Proposition 3.8 and can be proved

similarly.

Proposition 3.12. Given y ∈ (y1, y2), γ−(y) is the unique solution to the fixed point

problem,
ψ(x)

ψ′(x)
− x =

h(y)

rF (y)
, A−(y) ≤ x < 0. (FPy−)

Moreover, the function y 7→ γ−(y) is negative, increasing and belongs to C1((y1, y2)).

The specific geometry of the concave majorantW (·, y) depends on the values of the

local maxima of H(·, y). Indeed, as depicted in Figure 3.4a and Figure 3.5a, when the

local maximum H(zy
γ+ , y) is greater than the local maximum H(zy

γ− , y), it is clear that

the function W (·, y) still maintains the same geometric structure of cases previously

studied. In particular, W (·, y) coincides with H(·, y) on (zy
γ+ , 0] and it is constant and

equal to H(zy
γ+ , y) for z < zy

γ+ . It follows that the optimal reward function u(·, y) is

still represented by (3.46) and the optimal stopping τ∗y is given by (3.49).

Alternatively, if y ∈ (y1, y2) is such that H(zy
γ− , y) ≥ H(zy

γ+ , y), the shape of the

smallest non-negative concave majorant W (·, y) changes significantly. Indeed, if for

any fixed parameter y ∈ (y1, y2) we define

Lξ(z, y) := H(ξ, y) +Hz(ξ, y)(z − ξ), z ≤ 0, (3.97)

as the tangent line of H(·, y) at ξ ∈ (−∞, z0) ∪ (z0, 0], then there exist zyγ1 ∈ (zy
γ− , z0)

and zyγ2 ∈ (zy
γ+ , 0] such that the straight line Lz

y
γ1 (z, y) := H(zyγ1 , y)+Hz(z

y
γ1 , y)(z−zyγ1)

is tangent toH(·, y) at both zyγ1 and z
y
γ2 (cf. Figure 3.6a and Figure 3.7a). In particular,

the pair (zyγ1 , z
y
γ2) solves the equations system

H(z2,y)−H(z1,y)
z2−z1 = Hz(z2, y),

H(z2,y)−H(z1,y)
z2−z1 = Hz(z2, y),

(3.98)

with z1 ∈ (zy
A− , z0) and z2 ∈ (zy

A+ , 0]. Moreover, due to the strict concavity of H(·, y)

on both (zy
A− , z0) and (zy

A+ , 0], zyγ1 and zyγ2 are unique on the sub-intervals within these
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z0zy
γ+zy

A+
z0zy

γ−zy
A−zy−k

W (z, y)

H(z, y)

Figure 3.4a: Picture of H(·, y) and its concave majorant W (·, y) when y ∈ [y∗, y2) is
such that H(zy

γ− , y) < H(zy
γ+ , y).

z0zy
γ+

z0zy
γ−zy

A−zy−k

W (z; y)

H(z; y)

Figure 3.5a: Picture of H(·, y) and its concave majorant W (·, y) when y ∈ (y1, y∗) is
such that H(zy

γ− , y) < H(zy
γ+ , y).
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3.4 The solution of (OSy) under (R∞)

points are respectively identified.

Therefore, as depicted in Figure 3.6a and Figure 3.7a, the smallest non-negative con-

cave majorant for H(·, y) is given by

W (z, y) =



H(zy
γ− , y), z < zy

γ− ,

H(z, y), zy
γ− ≤ z ≤ z

y
γ1 ,

Lz
y
γ1 (z, y), zyγ1 < z < zyγ2 ,

H(z, y), zyγ2 ≤ z ≤ 0,

(3.99)

i.e., W (·, y) coincides with H(·, y) on [zy
γ− , z

y
γ1 ]∪ [zy

γ+ , 0], it is equal to the tangent line

segment Lz
y
γ1 (z, y) on (zyγ1 , z

y
γ2) and it is constant on (−∞, zy

γ−). Now, if we rewrite the

equation of the straight line Lz
y
γ1 (z, y) by considering the tangency condition (3.98),

we obtain

Lz
y
γ1 (z, y) = H(zyγ2

, y)
z − zyγ1

zyγ2 − z
y
γ1

+H(zyγ1
, y)

zyγ2 − z
zyγ2 − z

y
γ1

. (3.100)

Defining

γ1(y) := G−1(zyγ1
), and γ2(y) := G−1(zyγ2

), (3.101)

thanks to Proposition 3.6, for any fixed y ∈ (y1, y2) such that H(zy
γ− , y) ≥ H(zy

γ+ , y),

we get that the optimal reward for the stopping problem (OSy) is u(·, y) ≡ ũ(·, y),

where ũ(·, y) is defined by

ũ(x, y) =



g(γ−(y),y)
ψ(γ−(y))

ψ(x), x < γ−(y),

g(x, y), γ−(y) ≤ x ≤ γ1(y),

g(γ1(y), y) Λ1(γ2(y),x)
Λ1(γ2(y),γ1(y)) + g(γ2(y), y) Λ1(x,γ1(y))

Λ1(γ2(y),γ1(y)) , γ1(y) < x < γ2(y),

g(x, y), x ≥ γ2(y),

(3.102)

where the function Λ1, Λ2 : R2 → R are defined as

Λ1(ξ, η) = ψ(ξ)ϕ(η)− ψ(η)ϕ(ξ), and Λ2(ξ, η) = ψ′(ξ)ϕ(η)− ψ(η)ϕ′(ξ). (3.103)

Moreover, thanks to Proposition 3.7, the stopping region is given by

Sy = G−1([zy
γ− , z

y
γ1

] ∪ [zyγ2
, 0]) = [γ−(y), γ1(y)] ∪ [γ2(y),+∞), (3.104)
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z0zyγ2zy
γ+zy

A+
z0zyγ1zy

γ−zy
A−zy−k

W (z, y)

H(z, y)

Figure 3.6a: Picture of H(·, y) and its concave majorant W (·, y) for y ∈ [y∗, y2) such
that H(zy

γ− , y) ≥ H(zy
γ+ , y)

z0zyγ2zy
γ+

z0zyγ1zy
γ−zy

A−zy−k

W (z, y)

H(z, y)

Figure 3.7a: Picture of H(·, y) and its concave majorant W (·, y) for y ∈ (y1, y∗) such
that H(zy

γ− , y) ≥ H(zy
γ+ , y).
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3.4 The solution of (OSy) under (R∞)

and, if we consider the stopping times

τ2
y := inf{t ≥ 0 : Xx

t ≥ γ2(y)} and τ−y := inf{t ≥ 0 : Xx
t ∈ [γ−(y), γ1(y)]},

(3.105)

then the first entry time of the process X inside Sy, i.e.

σ∗y := τ2
y ∧ τ−y , (3.106)

is optimal for stopping problem (OSy).

3.4.3 Case 3

In this subsection we investigate the last case, considering the starting water reserve

within the lowest range y ∈ (y, y1]. For such values of y we have,

A−(y) < A+(y) ≤ − σ2

2(a+ r)

ψ′′(0)

ψ(0)
. (3.107)

In particular, A−(y) and A+(y) are both negative and zy
A− < zy

A+ < z0 holds. In light

of Lemma (3.39)-(3.40), H(·, y) is strictly convex on (−∞, zy
A−) and strictly concave

on the intervals (zy
A− , z0) and (z0, 0]. Moreover, since (3.107) holds, we have that

NΦ(0−, y) < NΦ(0+, y) ≤ 0, (3.108)

henceNΦ(·, y) is positive for x ≤ −k(y), it decreases and achieves negative value within

a sufficiently small left-hand neighbourhood of 0. In addition, contrary to the cases

studied in previous sections, also NΦ(0+, y) < 0 and in a right-hand neighbourhood

of 0 we have that NΦ(·, y) is negative and monotonically decreases to −∞ for large

value of x. Therefore, there exists zy
γ− < z0 such H(·, y) is increasing on (−∞, zy

γ−)

and decreasing on (zy
γ− , 0]. Furthermore, as for the other cases, we can show that the

local maximum point zy
γ− < z0 is such that zy

A− < zy
γ− < z0 and it is also the unique,

since the H(·, y) is strictly concave on (zy
A− , z0).

As shown in Figure 3.8, even though H(·, y) is concave on both the intervals

(zy
A− , z0) and (z0, 0], this property is not preserved on the union of these sets. Indeed,

given ε1 > 0 and ε2 > 0, we always have that Hz(z0 − ε1, y) < Hz(z0 + ε2, y) < 0,

hence the slopes of tangent lines at the point on the left-hand side of z0 is steeper than

ones of the tangent lines on the right-side and a “convex gap” clearly occurs around

z0. Hence, in order to define the concave majorant W (·, y) we have to remove this
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z0zyγ2
z0zyγ1zy

γ−zy
A−zy−k

W (z, y)

H(z, y)

Figure 3.8: Picture of H(·, y) and its concave majorant W (·, y) for y ∈ (y, y1].

gap again identifying a unique zyγ1 ∈ (zy
A− , z0) and a unique zyγ2 ∈ (z0, 0] such that

the straight line connecting (zyγ1 , H(zyγ1 , y)) and (zyγ2 , H(zyγ2 , y)) is tangent to H(·, y)

at both zyγ1 and zyγ2 . Therefore, as depicted in Figure (3.8), the majorant W (·, y) has

the same geometrical structure of latter situation in Case 2. Moreover, for any fixed

y ∈ (y, y1], the optimal stopping time for (OSy) is given by σ∗y defined in (3.106) and

the associated optimal reward function is ũ(·, y) in (3.102).

3.5 A discussion on the solution of (OC) under (R∞)

In previous section, for any y ∈ (y, y], exploiting the geometric approach, we found

out the solution to each corresponding optimal stopping problem (OSy), when hypoth-

esis (R∞) holds, i.e. when we assume that the ratio between the instantaneous holding

costs and the power produced by instantaneous water reserve depletion becomes in-

finitely large close to y.

We essentially depicted two different structures for the solutions to (OSy). When

the parameter y is sufficiently far from y, we always identify a unique maximum point

forH(·, y) and, by means of the inverse image G−1 of the contact set {z ≤ 0 : H(z, y) =

W (z, y)}, we are able to recognise a single connected (unbounded above) stopping

region Sy. In particular, as when (Rb) holds, we characterise the left-hand positive

boundary point γ+(y) as the unique solution of the fixed point problem (FPy+) and we

find out a well-defined continuously differentiable increasing function y 7→ γ+(y).

Conversely, when y < y2, there exist two local maximum points zy
γ− and zy

γ+ for

H(·, y) and, depending on the values of H(·, y) at these points, the solutions to (OSy)

may exhibit disconnected stopping regions. In particular, for y such that H(zy
γ− , y) ≥
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3.5 A discussion on the solution of (OC) under (R∞)

H(zy
γ+ , y), we discover the existence of three values γ−(y) < γ1(y) < 0 and γ2(y) > 0

such that

Sy = [γ−(y), γ1(y)] ∪ [γ2(y),+∞), (3.109)

i.e. the stopping region associated with (OSy) is identified as the union of two disjoint

connected components.

The first problem that naturally arise is the identification of the range of parameters

y within the stopping set of the corresponding problem (OSy) is disconnected. We

showed that for any y ∈ (y, y1], due to the “convexity gap” depicted on Figure 3.8,

we always obtain the existence of two disjoint connected components for Sy and Cy,
respectively. Moreover, we observe that

lim
y→y−2

NΦ(0−, y) = lim
y→y−2

F (y)

r

[
1

2
σ2ψ′′(0) + (a+ r)A−(y)ψ′(0)

]
= 0, (3.110)

and NΦ(0+, y2) > 0. Hence, in light of arguments previously used, when y is suffi-

ciently close to y2, the function H(·, y) has a unique positive global maximum point

and, for such values of y, we identify a unique connected stopping region Sy. There-

fore, we expect that the “transition” from two stopping intervals regime for (OSy) to

single interval regime takes place inside the range (y1, y2). Nevertheless, we can only

conjecture that such transition occurs “monotonically”, i.e. that there exists a unique

value y0 ∈ (y1, y2) such that

H(zy0

γ− , y0) = H(zy0

γ+ , y0) (3.111)

and

H(zy
γ− , y) < H(zy

γ+ , y), y0 < y < y2,

H(zy
γ− , y) > H(zy

γ+ , y), y1 < y < y0. (3.112)

Clearly, if do not exist sufficient conditions that rigorously confirm the above con-

jecture, it becomes particularly difficult identifying the action region D and the in-

action region C related to optimal control problem (OC) starting from the stop-

ping/continuation regions of (OSy).

Additionally, even if there exists a unique y0 ∈ (y1, y2) such that (3.111) and (3.112)

hold, in general it is not possible to determine the differentiability and monotonicity

properties for the boundaries of D. Indeed, for any y ∈ (y, y0], the boundary points

γ1(y) and γ2(y) for (OSy) are identified taking into account the tangency condition
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3.5 A discussion on the solution of (OC) under (R∞)

(3.98). In particular, as explicitly calculated in Appendix D.2, γ1(y) < 0 and γ2(y) > 0

solve the equations systemg(x1, y)Λ2(x1,x2)
Λ1(x1,x2) − g(x2, y)Λ2(x1,x1)

Λ1(x1,x2) = gx(x1, y),

g(x1, y)Λ2(x2,x2)
Λ1(x1,x2) − g(x2, y)Λ2(x2,x1)

Λ1(x1,x2) = gx(x2, y),
(Sy12)

and managing Λ1 and Λ2 is particularly tricky, since these functions are defined in

terms of the fundamental solutions ψ and ϕ whose tractability is challenging (also

numerically), due to their intricate analytic expressions. Therefore, in the general

framework within our model is inserted, it cannot be rigorously proved that system

(Sy12) implicitly defines two continuously differentiable functions y 7→ γ1(y) and y 7→
γ2(y).

By virtue of above considerations, establishing a rigorous connection between the

parametrized family of optimal control (OSy) and the optimal control problem (OC)

remains an open problem when multiple boundaries may occur. In particular, the

future research will be focused on identifying some suitable conditions for both the

productivity function f and the holding costs function h, in order to completely depict

the geometry of both action region and inaction region for (OC) and also to confirm

the characterisation of the value function v in terms of the optimal reward ũ.

However, in order to provide an idea of (OC)-(OSy) connection also under (R∞),

we assume that the functions γ1 and γ2 there exist and that these are continuously

differentiable on (y, y0). We observe that for stopping problem (OSy0), one has that

(3.111) holds true, therefore the tangent line to the graph ofH(·, y0) at both zy0
γ1 and zy0

γ2

is a horizontal segment. It follows that the tangency points zy0
γ1 and zy0

γ2 must coincide

with the local maximum points for H(·, y0) on (zy0

A− , z0) and (zy0

A+ , 0), respectively. It

means that

γ−(y0) = γ1(y0), and γ+(y0) = γ2(y0). (3.113)

On the other hand, when y approaches y, the graphs of function H(·, y) tend to flatten

out on the z-axis and the quantity

∆NΦ(0, y) := NΦ(0+, y)−NΦ(0−, y) = L(y)ψ(0)

vanishes. This fact lead us to guess that the “convex gap” tends to disappear close to

y and, as a consequence, it follows that

lim
y→y

γ1(y) = lim
y→y

γ2(y) = 0. (3.114)
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Therefore, we are sufficiently allowed to believe that γ1 decreases on (y, y0) until it

meets γ− at y0 and γ2 increases on the same interval until it encounters γ+ at y0.

Regarding the behaviour of γ−, when y approaches y we observe that

lim
y→y

γ−(y) = −∞. (3.115)

Indeed, recalling that γ−(y) solves (FPy−) and also that (R∞) holds, one has

lim
y→y

[
ψ(γ−(y))

ψ′(γ−(y))
− γ−(y)

]
= lim

y→y

h(y)

rF (y)
= +∞, (3.116)

and we would obtain a contradiction, if the limit of γ−(y) for y converging to y were

finite.

Therefore, among all reasonable shapes for D and C for (OC), in Figure 3.9 we

draft a possible configuration for the partition of the strip R× [y, y] into the inaction

(continuation) C and the action (discharging) D regions, respectively obtained from

the continuation Cy and stopping interval Sy associated with the family of optimal

stopping problems (OSy).

x

y

0

y0

y

y

γ−

γ1

γ2

γ+C

D

D

Figure 3.9: A picture of the conjectured partition of R× [y, y] into the action region D
and inaction region C. Notice how disconnected stopping interval for (OSy) may lead
to multiple optimal moving boundaries for (OC).

We notice that, contrarily to the case (Rb), a portion of discharging region is con-

tained on the negative half-strip. This can be explained as follows: whenever the
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productivity capability decreases faster then the inaction costs, it is natural expect

that, for an initial amount y of water reserve sufficiently low (y < y0) and a starting

price x within the negative range [γ−(y), γ1(y)], its preferable to release instanta-

neously such reserve and sell produced power at negative price rather than waiting for

a future positive price. The production system responds to such control policy as if

it was exerted chattering way, i.e. releasing a small amount of water many times in a

sufficiently small interval of time. This power generation modality allows the producer

to reduce the loss caused by selling power at negative price.

In general, taking in mind the configuration depicted on Figure 3.9, if we define

γ̃(y) :=

γ2(y), y ∈ [y, y0],

γ+(y), y ∈ (y0, y],
(3.117)

and generalise the values of γ− and γ1 to the extended real line R ∪ {±∞}, i.e.

γ−(y) = γ1(y) = −∞, y ∈ (y0, y), (3.118)

then, the natural candidate to be the optimal control policy for (OC) is given by

ν̄t :=

0, t ≤ τ∗,

y − y, t > τ∗,
(3.119)

where τ∗ := τ− ∧ τ+ and

τ− := inf{t ≥ 0 : Xx
t ∈ [γ−(y), γ1(y)]} and τ+ := inf{t ≥ 0 : Xx

t ≥ γ̃(y)},
(3.120)

considering the convention inf ∅ = +∞. In conclusion, even though we naturally expect

that the candidate value function v associated to the above optimal policy is given by

v(x, y) = ũ(x, y)− 1

r
h(y), (3.121)

the objective of future research will be also to establish whether such function still

solves the Hamilton-Jacobi-Bellman equation (HJB). In particular, it will be neces-

sary to identify the general conditions on the model that guarantee the validity of the

above heuristic discussion and consequently confirm the connection between the opti-

mal state-dependent singular stochastic control problem (OC) and the parametrized

family of optimal stopping problems (OSy).
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Conclusions

In this thesis, we considered a singular stochastic control problem for hydroelectric

power production in an energy market that allows for prices that may reach negative

values with positive probability.

We proposed a hydroelectric production system that is able to react in two different

modes when it is convenient to produce energy through an instantaneous release of

water. In particular, we endowed the system with the possibility of producing “less

efficiently” when negative prices appear in the market but it is still preferable to

produce instantaneously rather than waiting for positive prices.

We defined a novel optimisation problem whose performance functional that we

aim to maximise among a suitable class of non-decreasing control policies, exhibits a

state-dependent instantaneous marginal revenue whose sign is directly affected by the

sign of the prices dynamics.

We proved the Verification Theorem, allowing to characterise the value function

of our singular stochastic control problem (OC) among the solutions of the associated

variational inequality with state-dependent gradient constraint (HJB). The Verifica-

tion Theorem provided us also with a clear description of the optimal control as a

purely discontinuous process that, at the first time of action, exerts all the available

fuel with a single instantaneous jump.

Under assumption (Rb), we identified the value function of (OC) in terms of the

optimal reward function of the associated family of optimal stopping problems (OSy),

explicitly solved by a geometric approach. We identified a unique positive boundary

γ+, separating the action and inaction regions and we showed that the optimal strategy

consists in completely discharge the water reservoir as soon as the price dynamics

reaches values grater or equal such optimal threshold. Under assumption (R∞), we

highlighted the difficulties that arise in this case and, based on the solutions of (OSy),

we provided some intuitions on the tricky structure of the action and inaction regions

as well as on the nature of the candidate optimal control policy.
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Our future research will start from these difficulties, trying to determine the suffi-

cient conditions on our model in order to overcome these complexities and to be able

to apply the verification approach even in this more complicated case. In particular,

we will focus on the properties that the characteristics of the model should satisfied in

order to prove that the connection (OC)-(OSy) still holds.

The results obtained in this thesis represents a springboard to the generalisation

of our approach to the bounded variation formulation, which aims at reproducing the

features of hydroelectric power systems endowed with the double production-storage

functionality that makes these systems extremely competitive in the markets of renew-

able resources.
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Appendix

A Uniform integrability

In this first appendix, we report a list of some definitions and well-known results

that are used in the development of the thesis. Further details can be found in [Bal17]

and references therein. In particular, for the proofs of the following results one can

refer to [Nev64].

Definition A.1. Given p ≥ 1, a stochastic process (Xt)t≥0 is bounded in the Lebesgue’s

space Lp(Ω,P) if

sup
t≥0

E[|Xt|p] <∞. (A.1)

Definition A.2. A family of random variables H is uniformly integrable if

lim
c→+∞

sup
X∈H

E[|X|1{|X|>c}] = 0. (A.2)

For a uniformly integral family of r.v.’s the following characterisation holds.

Proposition A.3. A family H ⊂ L1(Ω,P) is uniformly integrable if and only if there

exists a positive increasing convex function m : [0,+∞)→ R such that

lim
x→+∞

m(x)

x
= +∞ and sup

X∈H
E[m(|X|)] <∞. (A.3)

Remark A.4. IfH is bounded in Lp(Ω,P) for some p > 1 then it is uniformly integrable.

It suffices to consider m(x) = |x|p in Proposition A.3.

The concept of uniform integrability provides the following extension of the Lebesgue’s

theorem of dominated convergence.

Theorem A.5. Let (Xn)n be a sequence of r.v.’s converging a.s. to X. The r.v. X is

integrable and the convergence takes place in L1(Ω,P) if and only if (Xn)n is uniformly

integrable.
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B The Sobolev space W 1,∞
loc

B The Sobolev space W 1,∞
loc

In this appendix we just mention the notion of weak derivative and the definition of

the Sobolev space of functions with locally bounded first weak derivatives. For general

definitions and further details one can refer to [Bre10; EG15; Eva10], among many

others books on measure theory and functional analysis.

Definition B.1. Let O ⊂ R2 an open set. A function v : O → R belongs to the

Sobolev space W 1,∞
loc (O) if v ∈ L∞(O) and there exist two functions vx, vy ∈ L∞loc(O)

such that ∫
O
v(x, y)ξx(x, y)dxdy = −

∫
O
vx(x, y)ξ(x, y)dxdy, (B.1)

and ∫
O
v(x, y)ξy(x, y)dxdy = −

∫
O
vy(x, y)ξ(x, y)dxdy, (B.2)

for every ξ ∈ C∞c (O), i.e. ξ in the space of infinitely differentiable functions with

compact support in O. The functions ux and uy are called the weak partial derivatives

of u and Dv = (vx, vy) denotes the weak gradient of v.

We recall the following characterisation ofW 1,∞
loc , proved in Theorem 4.5 of [EG15].

Proposition B.2. Let O ⊂ R2 an open set. A function v ∈ W 1,∞
loc (O) if and only if

v is locally Lipschitz continuous on O.

Moreover, the following result shows the connection between weak partial deriva-

tives and the partial derivatives in the usual sense. For a proof see page 295 of Evans’

book [Eva10].

Theorem B.3 (Differentiability almost everywhere). Assume v ∈ W 1,∞
loc (O). Then u

is differentiable a.e. in O, and its gradient equals its weak gradient a.e.

We recall that the above result is also known as Rademacher’s Theorem.

C Some results of [DK03]

The geometric method widely exploited in solving the optimal stopping problems

(OSy) is based on the approach developed in On the optimal stopping problem for

one-dimensional diffusion by Dayanik and Karatzas [DK03]. The authors offer a new

characterisation of excessive functions for one-dimensional regular diffusion processes
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in terms of a generalised concept of concavity. In particular, they provide a character-

isation for the expected optimal reward function of the optimal stopping problem as

the smallest nonnegative concave majorant of the running reward function.

Consider a diffusion X with state space I = (a, b) with −∞ ≤ a < b ≤ +∞ and

assume that X is regular in (a, b), i.e. if the process X starts from x, then it reaches

a point y with positive probability, for any x and y in (a, b) (cf. e.g. [BS02]). Define

the optimal expected reward function

u(x) := sup
τ≥0

E[e−rtg(Xx
τ )], (C.1)

with τ ≥ 0 an F-stopping time, r a positive constant and g(·) the running reward

function.

In this appendix we collect part of the results of Subsection 5.2 of [DK03], where

both the boundaries a and b are assumed to be natural for X, i.e. a and b cannot

be reached in finite time (cf. e.g. [BS02]). Assume also that g is bounded on every

compact subset of (a, b). The following results hold true.

Proposition C.1 (Proposition 5.10 of [DK03]). We have either u ≡ +∞ in (a, b), or

u(x) < +∞ for all x ∈ (a, b). Moreover, u(x) <∞ for every x ∈ (a, b), if and only if

la := lim sup
x→a+

[g(x)]+

ϕ(x)
and lb := lim sup

x→b−

[g(x)]+

ψ(x)
(C.2)

are both finite.

Assuming that the quantities la and lb are finite and considering the functions

G̃(x) :=
ψ(x)

ϕ(x)
and G(x) := −ϕ(x)

ψ(x)
, (C.3)

then one has the following characterisation.

Proposition C.2 (Proposition 5.12 of [DK03]). Let W̃ : [0,+∞) → R and W :

(−∞, 0]→ R be the smallest non-negative concave majorants of the functions

H̃(z) :=


g(G̃−1(z))

ϕ(G̃−1(z))
, z > 0,

la, z = 0,
(C.4)
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and

H(z) :=


g(G−1(z))
ϕ(G−1(z))

, z < 0,

lb, z = 0,
(C.5)

respectively. Then u(x) = ϕ(x)W̃ (G̃(x)) = ψ(x)W (G(x)), for every x ∈ (a, b). Fur-

thermore, W̃ (0) = la, W (0) = lb and W̃ (·) and W (·) are continuous at 0.

Remark C.3 (cf. Remark 5.2 of [DK03]). GivenW andH as in Proposition C.2, defined

on (−∞, 0]. If S := {x ∈ (a, b) : u(x) = g(x)} and S̃ := {z ∈ (−∞, 0) : W (z) = H(z)},
then S = G−1(S̃).

Furthermore, if we consider the stopping time

τ∗ := inf{t ≥ 0 : Xt ∈ S}, (C.6)

then we have the following result.

Proposition C.4 (Proposition 5.13 of [DK03]). The optimal reward function u is

continuous on (a, b). If g : (a, b) → R is continuous, and la = lb = 0, then τ∗ is an

optimal stopping time.

D Some calculations in Chapter 3

In this appendix we report some calculations that we omitted in Chapter 3. In the

following we exploit some concepts related to diffusion processes (e.g. scale function,

Wronskian etc.). For the sake of brevity we leave out details that are extensively

treated in Chapter 2 of [BS02].

D.1 The derivatives Hz(·, y) and Hzz(·, y)

Fixed y ∈ (y, y], we have

H(z, y) :=
g(G−1(z), y)

ψ(G−1(z))
, z ∈ G(R) (D.1)

where G as in (C.3) and ψ, ϕ are the linearly independent fundamental solutions

defined in (2.5). We have

G′(x) = −ϕ
′(x)ψ(x)− ϕ(x)ψ(x)

ψ2(x)
=
S′(x)W (ψ,ϕ)

ψ2(x)
, (D.2)
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where S′(x) are the density of the scale function associated with the diffusion X and

W (ψ,ϕ) :=
ψ′(x)

S′(x)
ϕ(x)− ϕ′(x)

S′(x)
ψ(x). (D.3)

is the positive constant Wronskian of ψ and ϕ. If g(·, y) is differentiable in x and

z = G(x), we have that H(·, y) is differentiable in z and

Hz(z, y) =
1

G′(x)
·
(
g

ψ

)
x

(x, y), and Hzz(z, y) =
1

G′(x)
·
[

1

G′(x)
·
(
g

ψ

)
x

(x, y)

]
x

,

with (
g

ψ

)
x

(x, y) =
gx(x, y)ψ(x)− g(x, y)ψ′(x)

ψ2(x)
. (D.4)

Moreover,[
1

G′(x)
·
(
g

ψ

)
x

(x, y)

]
x

=

[
gx(x, y)ψ(x)− g(x, y)ψ′(x)

S′(x)W (ψ,ϕ)

]
x

=

=
1

W (ψ,ϕ)(S′(x))2
[S′(x)(gxx(x, y)ψ(x)− g(x, y)ψ′′(x))] +

− 1

W (ψ,ϕ)(S′(x))2
[S′′(x)(gx(x, y)ψ(x)− g(x, y)ψ′(x))].

Recalling that the functions S and ψ satisfy

LS(x) =
1

2
σ2S′′(x) + a(b− x)S′(x) = 0, x ∈ R

[L − r]ψ(x) =
1

2
σ2ψ′′(x) + a(b− x)ψ′(x)− rψ(x) = 0, x ∈ R

then we can write[
1

G′(x)
·
(
g

ψ

)
x

(x, y)

]
x

=
2

σ2W (ψ,ϕ)S′(x)

[
1

2
σ2(gxx(x, y)ψ(x)− g(x, y)ψ′′(x))

]
+

+
2

σ2W (ψ,ϕ)S′(x)

[
a(b− x)(gx(x, y)ψ(x)− g(x, y)ψ′(x))

]
=

=
2ψ(x)

σ2W (ψ,ϕ)S′(x)

[
1

2
σ2gxx(x, y) + a(b− x)gx(x, y)− rg(x, y)

]
=

=
2ψ(x)

σ2W (ψ,ϕ)S′(x)
[L − r]g(x, y). (D.5)

In conclusion, for any x ∈ R and z = G(x), we have

Hzz(z, y) =
1

G′(x)
· 2ψ(x)

σ2W (ψ,ϕ)S′(x)
[L − r]g(x, y). (D.6)
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D.2 The boundary points γ1(y) and γ2(y)

Recalling (3.21), we have that

Hz(z
y
γi , y) =

gx(γi(y), y)ψ(γi(y))− g(γi(y), y)ψ′(γi(y))

ψ′(γi(y))ϕ(γi(y))− ψ(γi(y))ϕ′(γi(y))
, i = 1, 2 (D.7)

and observing that

zyγ2
− zyγ1

= G(γ2(y))−G(γ1(y)) =
ψ(γ2(y))ϕ(γ1(y))− ψ(γ1(y))ϕ(γ2(y))

ψ(γ2(y))ψ(γ1(y))
, (D.8)

it follows that

Hz(z
y
γ2 , y)−Hz(z

y
γ1 , y)

zyγ2 − z
y
γ1

=
ψ(γ2(y))ϕ(γ1(y))− ψ(γ1(y))ϕ(γ2(y))

ψ(γ2(y))ϕ(γ1(y))− ψ(γ1(y))ϕ(γ2(y))
. (D.9)

Hence, solving system (3.98) is equivalent to find γ1(y) < 0 and γ2(y) > 0 such that

simultaneously solve

ψ(γ2(y))ϕ(γ1(y))− ψ(γ1(y))ϕ(γ2(y))

ψ(γ2(y))ϕ(γ1(y))− ψ(γ1(y))ϕ(γ2(y))
=
gx(γ1(y), y)ψ(γ1(y))− g(γ1(y), y)ψ′(γ1(y))

ψ′(γ1(y))ϕ(γ1(y))− ψ(γ1(y))ϕ′(γ1(y))
,

and

ψ(γ2(y))ϕ(γ1(y))− ψ(γ1(y))ϕ(γ2(y))

ψ(γ2(y))ϕ(γ1(y))− ψ(γ1(y))ϕ(γ2(y))
=
gx(γ2(y), y)ψ(γ2(y))− g(γ2(y), y)ψ′(γ2(y))

ψ′(γ2(y))ϕ(γ2(y))− ψ(γ2(y))ϕ′(γ2(y))
.

Now, by means of easy algebra and recalling the definition of Λ1 and Λ2 in (3.103), we

obtain that the pair (γ1(y), γ1(y)) solves both the following equations

g(γ1(y), y)
Λ2(γ1(y), γ2(y))

Λ1(γ1(y), γ2(y))
− g(γ2(y), y)

Λ2(γ1(y), γ1(y))

Λ1(γ1(y), γ2(y))
= gx(γ1(y), y), (D.10)

and

g(γ1(y), y)
Λ2(γ2(y), γ2(y))

Λ1(γ1(y), γ2(y))
− g(γ2(y), y)

Λ2(γ2(y), γ1(y))

Λ1(γ1(y), γ2(y))
= gx(γ2(y), y). (D.11)
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