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Abstract: Starting from the 2001 Thomas Friedrich’s work on Spin(9), we review some interactions
between Spin(9) and geometries related to octonions. Several topics are discussed in this respect:
explicit descriptions of the Spin(9) canonical 8-form and its analogies with quaternionic geometry
as well as the role of Spin(9) both in the classical problems of vector fields on spheres and in the
geometry of the octonionic Hopf fibration. Next, we deal with locally conformally parallel Spin(9)
manifolds in the framework of intrinsic torsion. Finally, we discuss applications of Clifford systems
and Clifford structures to Cayley–Rosenfeld planes and to three series of Grassmannians.
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1. Introduction

One of the oldest evidences of interest for the Spin(9) group in geometry goes back to the
1943 Annals of Mathematics paper by D. Montgomery and H. Samelson [1], which classifies compact
Lie groups that act transitively and effectively on spheres, and gives the following list:

SO(n), U(n), SU(n), Sp(n), Sp(n) ·U(1), Sp(n) · Sp(1), G2, Spin(7), Spin(9).

In particular, Spin(9) acts transitively on the sphere S15 through its Spin representation, and the
stabilizer of the action is a subgroup Spin(7).

In the following decade, the above groups, with the only exception of Sp(n) ·U(1), appeared in
the celebrated M. Berger theorem [2] as the list of the possible holonomy groups of irreducible,
simply connected, and non symmetric Riemannian manifolds. Next, in the decade after that,
D. Alekseevsky [3] proved that Spin(9) is the Riemannian holonomy of only symmetric spaces,
namely of the Cayley projective plane and its non-compact dual. Accordingly, Spin(9) started to be
omitted in the Berger theorem statement. Much later, a geometric proof of Berger theorem was given
by C. Olmos [4], using submanifold geometry of orbits and still referring to possible transitive actions
on spheres.

Moreover, in the last decades of the twentieth century, compact examples have been shown to
exist for almost all classes of Riemannian manifolds related to the other holonomy groups in the Berger
list. References for this are the books by S. Salamon and D. Joyce [5–7]. For these reasons, around the
year 2000, the best known feature of Spin(9) seemed to be that it was a group that had been removed
from an interesting list.
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Coming into the new millennium, since its very beginning, new interest in dealing with
different aspects of octonionic geometry appeared, and new features of structures and weakened
holonomies related to Spin(9) were pointed out. Among the references, there is, notably, the J. Baez
extensive Bulletin AMS paper on octonions [8] as well as the not less extensive discussions on his
webpage [9]. Next, and from a more specific point of view, there is the Thomas Friedrich paper on
“weak Spin(9)-structures” [10], which proposes a way of dealing with a Spin(9) structure, and this
was later recognized by A. Moroianu and U. Semmelmann [11] to fit in the broader context of Clifford
structures. Also, the M. Atiyah and J. Berndt paper in Surveys in Differential Geometry [12] shows
interesting connections with classical algebraic geometry. Coming to very recent contributions, it is
worth mentioning the work by N. Hitchin [13] based on a talk for R. Penrose’s 80th birthday, which
deals with Spin(9) in relation to further groups of interest in octonionic geometry.

The aim of the present article is to give a survey of our recent work on Spin(9) and octonionic
geometry, in part also with L. Ornea and V. Vuletescu, and mostly contained in the references [14–20].

Our initial motivation was to give a construction, as simple as possible, of the canonical octonionic
8-form ΦSpin(9) that had been defined independently through different integrals by M. Berger [21] and
by R. Brown and A. Gray [22]. Our construction of ΦSpin(9) uses the already mentioned definition of
a Spin(9)-structure proposed by Thomas Friedrich and has a strong analogy with the construction of
a Sp(2) · Sp(1)-structure in dimension 8 (see Section 3 as well as [15]). By developing our construction
of ΦSpin(9), we realized that some features of the S15 sphere can be conveniently described through
the same approach that we used. The fact that S15 is the lowest dimensional sphere that admits
more than seven global linearly independent tangent vector fields is certainly related to the Friedrich
point of view. Namely, by developing a convenient linear algebra, we were able to prove that the
full system of maximal linearly independent vector fields on any Sn sphere can be written in terms
of the unit imaginary elements in C,H,O and the complex structures that Friedrich associates with
Spin(9) (see Sections 5 and [16]). Another feature of S15 is, of course, that it represents the total
space of the octonionic Hopf fibration, whose group of symmetries is Spin(9) ⊂ SO(16). Here, the
Friedrich approach to Spin(9) allows to recognize both the non-existence of nowhere zero vertical
vector fields and some simple properties of locally conformally parallel Spin(9)-structures (here,
see Theorem 4, Section 7, and Ref. [14]). We then discuss the broader contexts of Clifford structures
and Clifford systems, that allow us to deal with the complex Cayley projective plane, whose geometry
and topology can be studied by referring to its projective algebraic model, known as the fourth Severi
variety. With similar methods, one can also study the structure and properties of the remaining two
Cayley–Rosenfeld projective planes (for all of this, see Sections 8–10, and [17,18]). Finally, Clifford
structures and Clifford systems can be studied in relation with the exceptional symmetrical spaces
of compact type as well as with some real, complex, and quaternionic Grassmannians that carry
a geometry very much related to octonions (see Sections 11 and 12, and [19,20]).

During the years of our work, we convinced ourselves that Spin(9) influences not only
16-dimensional Riemannian geometry, but also aspects related to octonions of some lower dimensional
and higher dimensional geometry. It is, in fact, our hope that the reader of this survey can share the
feeling of the beauty of Spin(9), that seems to have some role in geometry, besides being a group that
had been removed from an interesting list.

2. Preliminaries, Hopf Fibrations, and Friedrich’s Work

The multiplication involved in the algebra (O) of octonions can be defined from the one in
quaternions (H) by the Cayley–Dickson process: if x = h1 + h2e, x′ = h′1 + h′2e ∈ O, then

xx′ = (h1h′1 − h
′
2h2) + (h2h

′
1 + h′2h1)e, (1)



Axioms 2018, 7, 72 3 of 32

where h
′
1, h
′
2 are the conjugates of h′1, h′2 ∈ H. As for quaternions, the conjugation x = h1 − h2e is

related to the non-commutativity: xx′ = x′x. The associator

[x, x′, x′′] = (xx′)x′′ − x(x′x′′)

vanishes whenever two among x, x′, x′′ ∈ O are equal or conjugate. For a survey on octonions and
their applications in geometry, topology, and mathematical physics, the excellent article [8] by J. Baez
is a basic reference.

The 16-dimensional real vector space O2 decomposes into its octonionic lines,

lm
def
= {(x, mx)|x ∈ O} or l∞

def
= {(0, x)|x ∈ O},

that intersect each other only at the origin (0, 0) ∈ O2. Here, m ∈ S8 = OP1 = O∪ {∞} parametrizes
the set of octonionic lines (l), whose volume elements (νl ∈ Λ8l) allow the following canonical 8-form
on O2 = R16 to be defined:

ΦSpin(9) =
110880

π4

∫
OP1

p∗l νl dl ∈ Λ8(R16), (2)

where pl denotes the orthogonal projection O2 → l.
The definition of ΦSpin(9) through this integral was given by M. Berger [21], and here we chose

the proportionality factor in such a way to make integers and with no common factors the coefficients
of ΦSpin(9) as exterior 8-form in R16. The notation is motivated by the following:

Proposition 1. [23] The subgroup of GL(16,R) preserving ΦSpin(9) is the image of Spin(9) under its spin
representation into R16.

Thus, Spin(9) ⊂ SO(16), so that 16-dimensional oriented Riemannian manifolds are the natural
setting for Spin(9)-structures. The following definition was proposed by Th. Friedrich, [10].

Definition 1. Let (M, g) be a 16-dimensional oriented Riemannian manifold. A Spin(9) structure on M is
the datum of any of the following equivalent alternatives.

1. A rank 9 subbundle, E = E9 ⊂ End(TM), locally spanned by endomorphisms {Iα}α=1,...9 with

I2
α = Id, I∗α = Iα, and IαIβ = −IβIα for α 6= β, (3)

where I∗α denotes the adjoint of Iα.
2. A reduction,R, of the principal bundle, F (M), of orthonormal frames from SO(16) to Spin(9).

In particular, the existence of a Spin(9) structure depends only on the conformal class of the
metric g on M.

We now describe the vector bundle E9 when M is the model space (R16). Here, I1, . . . , I9 can be
chosen as generators of the Clifford algebra (Cl(9)), the endomorphisms’s algebra of its 16-dimensional
real representation, ∆9 = R16 = O2. Accordingly, unit vectors (v ∈ S8 ⊂ R9) can be viewed via the
Clifford multiplication as symmetric endomorphisms: v : ∆9 → ∆9.

The explicit way to describe this action is by v = u + r ∈ S8 (u ∈ O, r ∈ R, uu + r2 = 1), acting on
pairs (x, x′) ∈ O2: (

x
x′

)
−→

(
r Ru

Ru −r

)(
x
x′

)
, (4)

where Ru, Ru denotes the right multiplications by u, u, respectively (cf. [24] (p. 288)).
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A basis of the standard Spin(9) structure on O2 = R16 can be written by looking at action (4) and
at the following nine vectors:

(0, 1), (0, i), (0, j), (0, k), (0, e), (0, f ), (0, g), (0, h) and (1, 0) ∈ S8 ⊂ O×R = R9,

where f = ie, g = je, and h = ke, and their products are ruled by (1). This gives the following
symmetric endomorphisms:

I1 =

(
0 Id
Id 0

)
, I2 =

(
0 −Ri

Ri 0

)
, I3 =

(
0 −Rj

Rj 0

)
,

I4 =

(
0 −Rk

Rk 0

)
, I5 =

(
0 −Re

Re 0

)
, I6 =

(
0 −R f

R f 0

)
,

I7 =

(
0 −Rg

Rg 0

)
, I8 =

(
0 −Rh

Rh 0

)
, I9 =

(
Id 0
0 − Id

)
,

(5)

where Ri, . . . , Rh are the right multiplications by the 7 unit octonions, i, . . . , h. Their spanned subspace

E9 def
= < I1, . . . , I9 >⊂ End(R16) (6)

is such that the following proposition applies.

Proposition 2. [23] The subgroup of SO(16) preserving E9 is Spin(9).

The projection O2 − {0} → OP1 associated with decomposition into the octonionic lines lm, l∞ is
a non-compact version of the octonionic Hopf fibration:

S15 → OP1 ∼= S8,

that is the unique surviving possibility when passing from quaternions to octonions from the series of
quaternionic Hopf fibrations:

S4n+3 → HPn.

Recall that the latter enter into Figure 1 that encodes prototypes of several structures of interest in
quaternionic geometry.

S4n+3 × S1

CP2n+1

T2

HPn

S3 × S1

S2

S4n+3

S1

S1

S3

Figure 1. The prototype of foliations related to locally conformally hyperkähler manifolds.

At the center of the diagram, there is the locally conformally hyperkähler Hopf manifold S4n+3× S1.
All the other manifolds are leaf spaces of foliations on them, such as the 3-Sasakian sphere S4n+3,
the positive Kähler-Einstein twistor space CP2n+1, and the positive quaternion Kähler HPn. Most of the
foliations carry similar structures on their leaves, for example, one has locally conformally hyperkähler
Hopf surfaces of S3 × S1. This prototype diagram is only an example, since, when a compact
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locally hyperkähler manifold has compact leaves on the four canonically defined vertical foliations,
our diagram still makes sense, albeit in the broader orbifold category (cf. [25]).

When n = 3, there are also the octonionic Hopf fibrations, as in Figure 2:

S15 × S1

CP7

S1 × S1

HP3

S3 × S1

S2

OP1

S7 × S1

S15

CP7

S1

HP3

S3

S2

OP1

S7

Figure 2. In the octonionic case, an additional fibration appears.

These have no arrow connecting OP1 with HP3 and CP7, since the complex and quaternionic
Hopf fibrations are not subfibrations of the octonionic one (cf. [26] as well as Theorem 4 in the following
Section 6).

Coming back to Spin(9), as the title of Th. Friedrich’s article [10] suggests, there is a scheme for
“weak Spin(9) structures” to include some possibilities besides the very restrictive holonomy Spin(9)
condition. Although the original A. Gray proposal [27] to look at “weak holonomies” was much later
shown by B. Alexandrov [28] not to produce new geometries for the series of groups quoted in the
Introduction, one can refer to the symmetries of relevant tensors to understand the possibilities for
any G-structure. We briefly recall a unified scheme that one can refer to, following the presentation of
Ref. [29].

By definition, a G-structure on an oriented Riemannian manifold (Mn) is a reduction (R ⊂ F (Mn))
of the orthonormal frame bundle to the subgroup G ⊂ SO(n). The Levi Civita connection (Z),
thought of as a 1-form on F (Mn) with values in the Lie algebra so(n), restricts to a connection onR,
decomposing with respect to the Lie algebra splitting so(n) = g⊕m, as

Z|T(R) = Z∗ ⊕ Γ.

Here, Z∗ is a connection in the principal G-bundleR, and Γ is a 1-form on Mn with values in the
associated bundleR×G m, called the intrinsic torsion of the G-structure. Of course, the condition Γ = 0
is equivalent to the inclusion Hol ⊂ G for the Riemannian holonomy, and G-structures with Γ 6= 0 are
called non-integrable.

This scheme can be used, in particular, when G is the stabilizer of some tensor η in Rn, so that
the G-structure on M defines a global tensor η, and here, Γ = ∇η can be conveniently thought of as
a section of the vector bundle:

W = T∗ ⊗m.

Accordingly, the action of G splitsW into irreducible G-components: W =W1 ⊕ · · · ⊕Wk.
A prototype of such decompositions occurs when G = U(n) ⊂ SO(2n) and yields the four

irreducible components of the so-called Gray–Hervella classification when n ≥ 3 [30]. It is a fact from
the representation theory that there are several further interesting cases that yield four irreducible
components. This occurs when G = G2 ⊂ SO(7), G = Sp(2) · Sp(1) ⊂ SO(8), G = Spin(9) ⊂ SO(16),
as computed in Refs. [31], [32] (p. 115) and [10], respectively:

W =W1 ⊕W2 ⊕W3 ⊕W4. (7)

For the mentioned four situations, the last component,W4, is the “vectorial type” one, and gives
rise to a 1-form θ on the manifold. A general theory of G-structures in this last class,W4, of typically
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locally conformally parallel G-structures, was developed in Ref. [33]. In Section 7, we revisitW4 in the
G = Spin(9) case, following Ref. [10] as well as our previous work [14].

3. The Canonical 8-Form ΦSpin(9)

The Λ2R16 space of 2-forms in R16 decomposes under Spin(9) as

Λ2R16 = Λ2
36 ⊕Λ2

84 (8)

(cf. [10] (p. 146)), where Λ2
36
∼= spin(9) and Λ2

84 = m is an orthogonal complement in Λ2 ∼= so(16).
Explicit bases of both subspaces can be written by looking at the nine generators (5) of the E9 vector
space that defines the Spin(9) structure. Namely, one has the compositions

Jαβ
def
= IαIβ,

for α < β as a basis of Λ2
36
∼= spin(9) and the compositions Jαβγ

def
= IαIβIγ for α < β < γ as a basis

of Λ2
84.
The Kähler 2-forms (ψαβ) of the complex structures Jαβ, obtained by denoting the coordinates in

O2 ∼= R16 by (1, . . . , 8, 1′, . . . , 8′) are

ψ12 = (−12 + 34 + 56− 78)− ( )′ , ψ13 = (−13− 24 + 57 + 68)− ( )′ , ψ14 = (−14 + 23 + 58− 67)− ( )′ ,

ψ15 = (−15− 26− 37− 48)− ( )′ , ψ16 = (−16 + 25− 38 + 47)− ( )′ , ψ17 = (−17 + 28 + 35− 46)− ( )′ ,

ψ18 = (−18− 27 + 36 + 45)− ( )′ , ψ23 = (−14 + 23− 58 + 67) + ( )′ , ψ24 = (13 + 24 + 57 + 68) + ( )′ ,

ψ25 = (−16 + 25 + 38− 47) + ( )′ , ψ26 = (15 + 26− 37− 48) + ( )′ , ψ27 = (18 + 27 + 36 + 45) + ( )′ ,

ψ28 = (−17 + 28− 35 + 46) + ( )′ , ψ34 = (−12 + 34− 56 + 78) + ( )′ , ψ35 = (−17− 28 + 35 + 46) + ( )′ ,

ψ36 = (−18 + 27 + 36− 45) + ( )′ , ψ37 = (+15− 26 + 37− 48) + ( )′ , ψ38 = (16 + 25 + 38 + 47) + ( )′ ,

ψ45 = (−18 + 27− 36 + 45) + ( )′ , ψ46 = (17 + 28 + 35 + 46) + ( )′ , ψ47 = (−16− 25 + 38 + 47) + ( )′ ,

ψ48 = (15− 26− 37 + 48) + ( )′ , ψ56 = (−12− 34 + 56 + 78) + ( )′ , ψ57 = (−13 + 24 + 57− 68) + ( )′ ,

ψ58 = (−14− 23 + 58 + 67) + ( )′ , ψ67 = (14 + 23 + 58 + 67) + ( )′ , ψ68 = (−13 + 24− 57 + 68) + ( )′ ,

ψ78 = (12 + 34 + 56 + 78) + ( )′ ,

(9)

where ( )′ denotes the ′ of what appears before it, for instance

ψ12 = (−12 + 34 + 56− 78)− (−1′2′ + 3′4′ + 5′6′ − 7′8′) .

Next,

ψ19 = −11′ − 22′ − 33′ − 44′ − 55′ − 66′ − 77′ − 88′ , ψ29 = −12′ + 21′ + 34′ − 43′ + 56′ − 65′ − 78′ + 87′ ,

ψ39 = −13′ − 24′ + 31′ + 42′ + 57′ + 68′ − 75′ − 86′ , ψ49 = −14′ + 23′ − 32′ + 41′ + 58′ − 67′ + 76′ − 85′ ,

ψ59 = −15′ − 26′ − 37′ − 48′ + 51′ + 62′ + 73′ + 84′ , ψ69 = −16′ + 25′ − 38′ + 47′ − 52′ + 61′ − 74′ + 83′ ,

ψ79 = −17′ + 28′ + 35′ − 46′ − 53′ + 64′ + 71′ − 82′ , ψ89 = −18′ − 27′ + 36′ + 45′ − 54′ − 63′ + 72′ + 81′ ,

. (10)

and a computation gives the following proposition.

Proposition 3. The characteristic polynomial of the matrix ψ = (ψαβ)α,β=1,...,9 of the Kähler forms explicitly
listed in (9) and (10), reduces to

det(tI − ψ) = t9 + τ4(ψ)t5 + τ8(ψ)t .

In particular, τ2(ψ) = ∑α<β ψ2
αβ = 0, and the Spin(9)-invariant 8-form τ4(ψ) has to be

proportional to ΦSpin(9). The proportionality factor, computed by looking at any of the terms of
ΦSpin(9) and τ4(ψ) turns out to be 360.

This can be rephrased in the context of Spin(9) structures on Riemannian manifolds M16 and
gives the following two (essentially equivalent) algebraic expressions for the the 8-form, ΦSpin(9):
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Theorem 1. [34] The 8-form, ΦSpin(9), associated with the Spin(9)-structure E9 → M16 and defined by the
integral (2) coincides, up to a constant, with the global form

ΩCGM = ∑
α,β,α′ ,β′=1,...,9

ψα,β ∧ ψα,β′ ∧ ψα′ ,β ∧ ψα′ ,β′ .

Theorem 2. [15] The 8-form, ΦSpin(9), associated with the Spin(9)-structure E9 → M16 coincides, up to
a constant, with the coefficient

τ4(ψ) = ∑
1≤α1<α2<α3<α4≤9

(ψα1α2 ∧ ψα3α4 − ψα1α3 ∧ ψα2α4 + ψα1α4 ∧ ψα2α3)
2

in the characteristic polynomial

det(tI − ψ) = t9 + τ4(ψ)t5 + τ8(ψ)t ,

where ψ = (ψαβ)α,β=1,...,9 is any skew-symmetric matrix of local associated Kähler 2-forms (M). The proportionality
factor is given by

360ΦSpin(9) = τ4(ψ) .

These two expressions of ΦSpin(9) have been shown to be proportional according to the following
algebraic relation.

Proposition 4. [35] Let R[x12, . . . , x89] be the polynomial ring in the 36 variables (x12, . . . , x89), and let x be
the skew-symmetric matrix whose upper diagonal entries are x12, . . . , x89. Among the homogeneous polynomials

F = ∑
α,β,α′ ,β′=1,...,9

xα,β xα,β′ xα′ ,β xα′ ,β′ , P = ∑
α<β

x2
α,β ,

Q = τ4(x) = ∑
1≤α1<α2<α3<α4≤9

(xα1α2 xα3α4 − xα1α3 xα2α4 + xα1α4 xα2α3)
2,

the following relation holds: F = 2P2 − 4Q. Thus, since P(ψ) = 0,

ΩCGM = −4τ4(ψ).

Corollary 1. The Kähler forms of the Spin(9)-structure of O2 allow the integral (2) to be computed as

∫
OP1

p∗l νl dl =
π4

110880 · 360
τ4(ψ).

When Spin(9) is the holonomy group of the Riemannian manifold (M16), the Levi–Civita
connection (∇) preserves the E9 vector bundle, and the local sections I1, . . . , I9 of E9 induce the
Kähler forms ψαβ on M as the local curvature forms.

Corollary 2. Let M16 be a compact Riemannian manifold with holonomy Spin(9), i.e., M16 is either isometric
to the Cayley projective plane (OP2) or to any compact quotient of the Cayley hyperbolic plane (OH2). Then,
its Pontrjagin classes are given by

p1(M) = 0, p2(M) = − 45
2π4 [ΦSpin(9)], p3(M) = 0, p4(M) = − 13

256π8 [τ8(ψ)].

Proof. The Pontrjagin classes of the E9 → M vector bundle are given by

p1(E) = 0, 16π4 p2(E) = τ4(ψ) = 360[ΦSpin(9)], p3(E) = 0, 256π8 p4(E) = [τ8(ψ)].
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For a compact M with a Spin(9)-structure, the following relations hold ([10] (p. 138)):

p1(M) = 2p1(E),

p2(M) =
7
4

p2
1(E)− p2(E),

p3(M) =
1
8

(
7p3

1(E)− 12p1(E)p2(E) + 16p3(E)
)

,

p4(M) =
1

128

(
35p4

1(E)− 120p2
1(E)p2(E) + 400p1(E)p3(E)− 1664p4(E)

)
.

(11)

Thus, τ2(ψ) = τ6(ψ) = 0 gives p1(E) = p3(E) = 0, so that p1(M) = p3(M) = 0,
p2(M) = −p2(E), and p4(M) = −13p4(E).

The Pontrjagin classes of OP2 are known to be p2(OP2) = 6u and p4(OP2) = 39u2, where u is
the canonical generator of H8(OP2;Z), and Corollary 2 gives the representative forms:

u = [− 15
4π4 ΦSpin(9)] = [− 1

96π4 τ4(ψ)], u2 = [− 1
768π8 τ8(ψ)].

Remark 1. Very recently, an alternative way of writing the 8-form ΦSpin(9) in R16 was proposed by
J. Kotrbatý [36]. This is in terms of the differentials of the octonionic coordinates x, y ∈ O2. If

dx = dx1 + idx2 + jdx3 + · · ·+ hdx8, dx = dx1 − idx2 − jdx3 − · · · − hdx8,
dy = dy1 + idy2 + jdy3 + · · ·+ hdy8, dy = dy1 − idy2 − jdy3, · · · − hdy8,

consider, formally, the “octonionic 4-forms”

Ψ40 = ((dx ∧ dx) ∧ dx) ∧ dx, Ψ31 = ((dy ∧ dx) ∧ dx) ∧ dx
Ψ13 = ((dx ∧ dy) ∧ dy) ∧ dy, Ψ04 = ((dy ∧ dy) ∧ dy) ∧ dy.

Then, by defining their conjugates through

α ∧ β = (−1)kl β ∧ α,

for α ∈ Λk, β ∈ Λl , Kotrbatý shows that the real 8-form

Ψ8 = Ψ40 ∧Ψ40 + 4Ψ31 ∧Ψ31 − 5(Ψ31 ∧Ψ13 + Ψ13 ∧Ψ31) + 4Ψ13 ∧Ψ13 + Ψ04 ∧Ψ04

gives the proportionality relation ΦSpin(9) = − 1
4·6! Ψ8 and recovers the table of 702 non-zero monomials of

ΦSpin(9) in R16 from this.

4. The Analogy with Sp(2) · Sp(1)

In the previous Section we saw that the matrices I1, . . . , I9 are the starting point for the
construction of the canonical 8-form ΦSpin(9). Of course, I1, . . . , I9 are the octonionic analogues
of the classical Pauli matrices

I1 =

(
0 1
1 0

)
, I2 =

(
0 −i
i 0

)
, I3 =

(
1 0
0 −1

)
, (12)

which are defined with just the unit imaginary i ∈ C, belonging to U(2). Their compositions
(Jαβ = IαIβ), for α < β act on H ∼= C2 as multiplications on the right by unit quaternions:
J12 = Ri, J13 = Rj, J23 = Rk.

Similarly, the quaternionic analogues of the Pauli matrices are the 8× 8 real matrices:
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I1 =

(
0 Id
Id 0

)
, I2 =

(
0 −Ri

Ri 0

)
, I3 =

(
0 −Rj

Rj 0

)
,

I4 =

(
0 −Rk

Rk 0

)
, I5 =

(
Id 0
0 − Id

)
,

(13)

where Ri, Rj, andRk are the multiplication on the right on H by i, j, k.

The ten compositions Jαβ
def
= IαIβ (α < β) of these latter matrices are a basis of the term sp(2) in

the decomposition
Λ2R8 ∼= so(8) = sp(1)⊕ sp(2)⊕Λ2

15,

where sp(2) ∼= so(5). Their Kähler forms θαβ read

θ12 = −12 + 34 + 56− 78, θ13 = −13− 24 + 57 + 68, θ14 = −14 + 23 + 58− 67,

θ23 = −14 + 23− 58 + 67, θ24 = 13 + 24 + 57 + 68, θ34 = −12 + 34− 56 + 78,

θ15 = −15− 26− 37− 48, θ25 = −16 + 25 + 38− 47, θ35 = −17− 28 + 35 + 46, θ45 = −18 + 27− 36 + 45.

If θ
def
= (θαβ), it follows that

τ2(θ) = ∑
α<β

θ2
αβ = −121234− 41256− 41357 + 41368− 41278− 41467− 41458 + ? = −2ΩL (14)

where ? denotes the Hodge star of what appears before, and

ΩL = ω2
Li
+ ω2

Lj
+ ω2

Lk

is the left quaternionic 4-form on H2 = R8.

On the other hand, the matrices B =

(
B′ B′′

B′′′ B′′′′

)
∈ SO(8) which commute with each of the

involutions I1, . . . , I5 are the ones satisfying B′′ = B′′′ = 0 and B′ = B′′′′ ∈ Sp(1) ⊂ SO(4). Thus,
the subgroup preserving each of the I1, . . . , I5 is the diagonal Sp(1)∆ ⊂ SO(8). Thus, the subgroup of
SO(8) preserving the vector bundle E5 consists of matrices (B) satisfying

BIα = I ′αB,

with I1, . . . , I5 and I ′1, . . . , I ′5 bases of E5 related by a SO(5) matrix. This group is thus recognized to
be Sp(1) · Sp(2), and the following proposition applies.

Proposition 5. Let M8 be an 8-dimensional oriented Riemannian manifold, and let E5 be a vector subbundle
of End(TM), locally spanned by self dual anti-commuting involutions (I1, . . . , I5) and related, on open sets
covering M, by functions giving SO(5) matrices. Then, the datum of such an E5 is equivalent to an (left) almost
quaternion Hermitian structure on M, i.e., to a Sp(2) · Sp(1)-structure on M.

In the above discussions, we looked at the standard U(2) and Sp(1) · Sp(2)-structures on R4 and
R8, through the decompositions of the 2-forms

so(4) = u(1)⊕ so(3)⊕Λ2
2 , so(8) = sp(1)⊕ sp(2)⊕Λ2

15,

and the orthonormal frames in the so(3) and sp(2) components, respectively. The last components, Λ2
2 and

Λ2
15, describe all of the similar structures on the linear spaces R4 and R8. Thus, such decompositions give

rise to the SO(4)/U(2) and SO(8)/Sp(1) · Sp(2) spaces—the spaces of all possible structures in the
two cases.
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To summarize (cf, [37]),

Corollary 3. The actions

(
x
x′

)
−→

(
r Ru

Ru −r

)(
x
x′

)
, when u, x, x′ ∈ C,H,O (and, in any case,

r ∈ R and r2 + uu = 1) generate the groups U(2), Sp(2) · Sp(1), Spin(9) of symmetries of the Hopf fibrations

S3 −→ S2, S7 −→ S4, S15 −→ S8.

The corresponding G-structures on the Riemannian manifolds M4, M8, M16 can be described through
E ⊂ End TM vector subbundles of ranks 3, 5, 9, respectively. Any such E is locally generated by the
self-dual involutions Iα satisfying IαIβ = −IβIα for α 6= β and related, on open neighborhoods covering M,
by functions that give matrices in SO(3), SO(5), and SO(9).

5. Vector Fields on Spheres

An application of Spin(9) structures is the possibility of writing a maximal orthonormal system
of tangent vector fields on spheres of any dimension. Here, we outline this construction only on some
“low-dimensional” cases (in fact. up to the S511 sphere), referring, for the general case, to the linear
algebra formalism developed in Ref. [16].

Recall that the identifications R2n = Cn, R4n = Hn and R8n = On allow to act on the normal
vector field of the unit sphere by the imaginary units of C,H,O, giving 1, 3, and 7 tangent orthonormal
vector fields on S2n−1, S4n−1, and S8n−1. These are, in fact, a maximal system of linearly independent
vector fields on Sm−1 ⊂ Rm, provided the (even) dimension (m) of the ambient space is not divisible
by 16. The maximal number (σ(m)) of linearly independent vector fields on any Sm−1 is well-known
to be expressed as

σ(m) = 2p + 8q− 1

where σ(m) + 1 = 2p + 8q is the Hurwitz–Radon number, referring to the decomposition

m = (2k + 1)2p16q, where 0 ≤ p ≤ 3, (15)

(cf. Ref. [16] for further information and references on this classical subject).
Table 1 lists some of the lowest dimensional Sm−1 ⊂ Rm spheres that admit a maximal number

σ(m) > 7 of linearly independent vector fields.

Table 1. Some Sm−1 spheres with more than seven vector fields.

m− 1 15 31 47 63 79 95 111 127 143 159 175 191 . . . 255 . . . 511 . . .

σ(m) 8 9 8 11 8 9 8 15 8 9 8 11 . . . 16 . . . 17 . . .

The first of them is S15 ⊂ R16, which is acted on by Spin(9) ⊂ SO(16). To write the eight vector
fields on S15, it is convenient to look at the involutions I1, . . . , I9 and at the eight complex structures
(J1, . . . , J8) on R16:

Jα
def
= IαI9 : R16 −→ R16 , α = 1, . . . , 8.

Denote by
N

def
= (x, y)

def
= (x1, . . . , x8, y1, . . . , y8)

the (outward) unit normal vector field of S15 ⊂ R16. Then, the following proposition applies.
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Proposition 6. The vector fields

J1N =(−y1,−y2,−y3,−y4,−y5,−y6,−y7,−y8, x1, x2, x3, x4, x5, x6, x7, x8),

J2N =(−y2, y1, y4,−y3, y6,−y5,−y8, y7,−x2, x1, x4,−x3, x6,−x5,−x8, x7),

J3N =(−y3,−y4, y1, y2, y7, y8,−y5,−y6,−x3,−x4, x1, x2, x7, x8,−x5,−x6),

J4N =(−y4, y3,−y2, y1, y8,−y7, y6,−y5,−x4, x3,−x2, x1, x8,−x7, x6,−x5),

J5N =(−y5,−y6,−y7,−y8, y1, y2, y3, y4,−x5,−x6,−x7,−x8, x1, x2, x3, x4),

J6N =(−y6, y5,−y8, y7,−y2, y1,−y4, y3,−x6, x5,−x8, x7,−x2, x1,−x4, x3),

J7N =(−y7, y8, y5,−y6,−y3, y4, y1,−y2,−x7, x8, x5,−x6,−x3, x4, x1,−x2),

J8N =(−y8,−y7, y6, y5,−y4,−y3, y2, y1,−x8,−x7, x6, x5,−x4,−x3, x2, x1)

(16)

are tangent to S15 and orthonormal.

Indeed, by fixing any β, 1 ≤ β ≤ 9 and considering the 8 complex structures IαIβ with α 6= β,
the eight vector fields (IαIβN) are still tangential to S15 and orthonormal.

Although it is well-known that C,H, and O are the only normed algebras over R, to move to
a higher dimension, it is convenient to consider the algebra S of sedenions, obtained from O through
the Cayley–Dickson process. By denoting the canonical basis of S over R by 1, e1, . . . , e15, one can
write a multiplication table (cf. Ref. [16]). An example of divisors of the zero in S is given by
(e2 − e11)(e7 + e14) = 0.

The following remark helps in higher dimensions. Consider the Sm−1 ⊂ Rm sphere,
and decompose m as m = (2k + 1)2p16q, where p ∈ {0, 1, 2, 3}. First, observe that a vector field
(B) that is tangential to the S2p16q−1 ⊂ R2p16q

sphere induces a vector field

(B, . . . , B)︸ ︷︷ ︸
2k+1 times

(17)

that is tangential to the S(2k+1)2p16q−1 sphere. Thus, assume in what follows that k = 0, i.e., m = 2p16q.
Whenever we extend a vector field in this way, we call the vector field given by (17) the diagonal
extension of B.

If q = 0, that is, if m is not divisible by 16, the vector fields on Sm−1 are given by the complex,
quaternionic, or octonionic multiplication for p = 1, 2, or 3 respectively, so that the Spin(9) contribution
occurs when q ≥ 1, that is, m = 16l, and we can denote the coordinates in R16l by (s1, . . . , sl),
where each sα, for α = 1, . . . , l, belongs to the sedenions (S), and can thus be identified with a pair
((xα, yα)) of octonions.

The unit (outward) normal vector field (N) of S16l−1 can be denoted by using the sedenions:

N
def
= (s1, . . . , sl) where ‖s1‖2 + · · ·+ ‖sl‖2 = 1.

Therefore, we can think of N as an element of Sl = O2l = R16l .
Whenever l = 2, 4, or 8, denoted by D, the following automorphism of Sl = O2l applies.

D : ((x1, y1), . . . , (xl , yl)) −→ ((x1,−y1), . . . , (xl ,−yl)). (18)

We refer to D as a conjugation, due to its similarity to that in ∗-algebras.
Moreover, it is convenient to use the following formal notations:
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N = (s1, s2)
def
= s1 + is2 ∈ S31, (19)

N = (s1, s2, s3, s4)
def
= s1 + is2 + js3 + ks4 ∈ S63, (20)

N = (s1, s2, s3, s4, s5, s6, s7, s8)
def
= s1 + is2 + js3 + ks4 + es5 + f s6 + gs7 + hs8 ∈ S127, (21)

which allow us to define left multiplications (L) in the sedenionic spaces S2, S4, and S8 (like in C, H,
and O), as follows.

If l = 2, the left multiplication is

Li(s1, s2)
def
= − s2 + is1, (22)

whereas, if l = 4, we define

Li(s1, . . . , s4)
def
= − s2 + is1 − js4 + ks3,

Lj(s1, . . . , s4)
def
= − s3 + is4 + js1 − ks2,

Lk(s1, . . . , s4)
def
= − s4 − is3 + js2 + ks1,

(23)

and finally, if l = 8, we define

Li(s1, . . . , s8)
def
= − s2 + is1 − js4 + ks3 − es6 + f s5 + gs8 − hs7,

Lj(s1, . . . , s8)
def
= − s3 + is4 + js1 − ks2 − es7 − f s8 + gs5 + hs6,

Lk(s1, . . . , s8)
def
= − s4 − is3 + js2 + ks1 − es8 + f s7 − gs6 + hs5,

Le(s1, . . . , s8)
def
= − s5 + is6 + js7 + ks6 + es1 − f s2 − gs3 − hs4,

L f (s1, . . . , s8)
def
= − s6 − is5 + js8 − ks7 + es2 + f s1 + gs4 − hs3,

Lg(s1, . . . , s8)
def
= − s7 − is8 − js5 + ks6 + es3 − f s4 + gs1 + hs2,

Lh(s1, . . . , s8)
def
= − s8 + is7 − js6 − ks5 + es4 + f s3 − gs2 + hs1.

(24)

Note that, in all three cases, l = 2, 4, and 8, and the vector fields Li(N), . . . ,Lh(N) are tangential
to S31, S63, and S127, respectively.

We can now write the maximal systems of vector fields on S31, S63, and S127, as follows.

Case p = 1

For S31, whose maximal number of tangent vector fields is nine, we obtain eight vector fields by
writing the unit normal vector field as N = (s1, s2) = (x1, y1, x2, y2) ∈ S31 ⊂ S2, where x1, y1, x2, y2 ∈ O,
and repeating Formula (16) for each pair ((x1, y1), (x2, y2)):

J1N = (J1s1, J1s2) = (−y1
1,−y1

2, . . . ,−y1
7,−y1

8, x1
1, x1

2, . . . , x1
7, x1

8,−y2
1,−y2

2, . . . ,−y2
7,−y2

8, x2
1, x2

2, . . . , x2
7, x2

8),

J2N = (J2s1, J2s2) = (−y1
2, y1

1, . . . ,−y1
8, y1

7,−x1
2, x1

1, · · · − x1
8, x1

7,−y2
2, y2

1, . . . ,−y2
8, y2

7,−x2
2, x2

1, . . . ,−x2
8, x2

7),

J3N = (J3s1, J3s2) = (−y1
3,−y1

4, . . . ,−y1
5,−y1

6,−x1
3,−x1

4, . . . ,−x1
5,−x1

6,−y2
3,−y2

4, . . . ,−y2
5,−y2

6,−x2
3,−x2

4, . . . ,−x2
5,−x2

6),

J4N = (J4s1, J4s2) = (−y1
4, y1

3, . . . , y1
6,−y1

5,−x1
4, x1

3, . . . , x1
6,−x1

5,−y2
4, y2

3, . . . , y2
6,−y2

5,−x2
4, x2

3, . . . , x2
6,−x2

5),

J5N = (J5s1, J5s2) = (−y1
5,−y1

6, . . . , y1
3, y1

4,−x1
5,−x1

6, . . . , x1
3, x1

4,−y2
5,−y2

6, . . . , y2
3, y2

4,−x2
5,−x2

6, . . . , x2
3, x2

4),

J6N = (J6s1, J6s2) = (−y1
6, y1

5, . . . ,−y1
4, y1

3,−x1
6, x1

5, . . . ,−x1
4, x1

3,−y2
6, y2

5, . . . ,−y2
4, y2

3,−x2
6, x2

5, . . . ,−x2
4, x2

3),

J7N = (J7s1, J7s2) = (−y1
7, y1

8, . . . , y1
1,−y1

2,−x1
7, x1

8, . . . , x1
1,−x1

2,−y2
7, y2

8, . . . , y2
1,−y2

2,−x2
7, x2

8, . . . , x2
1,−x2

2),

J8N = (J8s1, J8s2) = (−y1
8,−y1

7, . . . , y1
2, y1

1,−x1
8,−x1

7, . . . , x1
2, x1

1,−y2
8,−y2

7, . . . , y2
2, y2

1,−x2
8,−x2

7, . . . , x2
2, x2

1).

(25)

A ninth orthonormal vector field, completing the maximal system, is found by the formal left
multiplication (22) and the D automorphism (18):

D(Li N) = D(−s2, s1) = (−x2, y2, x1,−y1). (26)
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Case p = 2

The S63 sphere has a maximal number of 11 orthonormal vector fields. The normal vector field is,
in this case, given by N = (s1, . . . , s4) = (x1, y1, . . . , x4, y4) ∈ S63 ⊂ S4, and eight vector fields arise as
JαN, for α = 1, . . . , 8. Three other vector fields are again given by the formal left multiplications (23)
and the D automorphism in (18):

D(Li N) = (−x2, y2, x1,−y1,−x4, y4, x3,−y3),

D(LjN) = (−x3, y3, x4,−y4, x1,−y1,−x2, y2),

D(Lk N) = (−x4, y4,−x3, y3, x2,−y2, x1,−y1).

(27)

Case p = 3

The S127 sphere has a maximal number of 15 orthonormal vector fields. Eight of them are still
given by JαN for α = 1, . . . , 8, whereas the formal left multiplications given in (24) yield the seven
tangent vector fields (D(LαN)), for α ∈ {i, . . . , h}.

The S255 sphere

To write a system of 16 orthonormal vector fields on S255 ⊂ R256, decompose

R256 = R16 ⊕ · · · ⊕R16 (28)

into sixteen components. The unit outward normal vector field is

N = (s1, . . . , s16),

where s1, . . . , s16 are sedenions.
The matrices in M16(R) which give the complex structures J1, . . . , J8 act on N not only separately

on each of the 16-dimensional components of (28), but also formally on the (column) 16-ples of
sedenions (s1, . . . , s16)T . Based on which of the two actions of the same matrices are considered in
R256, we use the notations

J1, . . . , J8 or block(J1), . . . , block(J8),

in both cases being all complex structures on R256. The following 16 vector fields are obtained:

J1N , . . . , J8N , (29)

D(block(J1)N) , . . . , D(block(J8)N) , (30)

where D is defined in Formula (18). The level 1 vector fields and level 2 vector fields are the ones given by
(29) and (30), respectively. Then, the following proposition applies.

Proposition 7. Formulas (29) and (30) give a maximal system of 16 orthonormal tangent vector fields on S255.

Proof. Denote sedenions as pairs sα def
= (xα, yα) of octonions. The unit normal vector field is

N = (s1, . . . , s16) = (x1, y1, . . . , x16, y16) ∈ S255, (31)

and one gets the following tangent vectors that can be easily checked to be orthonormal:
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J1N = (J1s1, . . . , J1s16) = (−y1, x1, . . . ,−y16, x16),

J2N = (J2s1, . . . , J2s16) = (Riy1, Rix1, . . . , Riy16, Rix16),

J3N = (J3s1, . . . , J3s16) = (Rjy1, Rjx1, . . . , Rjy16, Rjx16),

J4N = (J4s1, . . . , J4s16) = (Rky1, Rkx1, . . . , Rky16, Rkx16),

J5N = (J5s1, . . . , J5s16) = (Rey1, Rex1, . . . , Rey16, Rex16),

J6N = (J6s1, . . . , J6s16) = (R f y1, R f x1, . . . , R f y16, R f x16),

J7N = (J7s1, . . . , J7s16) = (Rgy1, Rgx1, . . . , Rgy16, Rgx16),

J8N = (J8s1, . . . , J8s16) = (Rhy1, Rhx1, . . . , Rhy16, Rhx16).

(32)

Moreover, one obtains eight further vector fields which can be similarly verified to be orthonormal.

D(block(J1)N) = D(−s9,−s10,−s11,−s12,−s13,−s14,−s15,−s16, s1, s2, s3, s4, s5, s6, s7, s8),

D(block(J2)N) = D(−s10, s9, s12,−s11, s14,−s13,−s16, s15,−s2, s1, s4,−s3, s6,−s5,−s8, s7),

D(block(J3)N) = D(−s11,−s12, s9, s10, s15, s16,−s13,−s14,−s3,−s4, s1, s2, s7, s8,−s5,−s6),

D(block(J4)N) = D(−s12, s11,−s10, s9, s16,−s15, s14,−s13,−s4, s3,−s2, s1, s8,−s7, s6,−s5),

D(block(J5)N) = D(−s13,−s14,−s15,−s16, s9, s10, s11, s12,−s5,−s6,−s7,−s8, s1, s2, s3, s4),

D(block(J6)N) = D(−s14, s13,−s16, s15,−s10, s9,−s12, s11,−s6, s5,−s8, s7,−s2, s1,−s4, s3),

D(block(J7)N) = D(−s15, s16, s13,−s14,−s11, s12, s9,−s10,−s7, s8, s5,−s6,−s3, s4, s1,−s2),

D(block(J8)N) = D(−s16,−s15, s14, s13,−s12,−s11, s10, s9,−s8,−s7, s6, s5,−s4,−s3, s2, s1),

(33)

To see that each JαN vector is orthogonal to each D(block(Jβ)N), for α, β = 1, . . . , 8, look at
the matrix representations of Ri, . . . , Rh and write the octonionic coordinates as xλ = hλ

1 + hλ
2 e,

yµ = kµ
1 + kµ

2 e. Then, the scalar product < JαN, D(block(Jβ)N) > can be computed with Formula (1)
to obtain the product of the octonions. For example, recall from Formula (32) that

J8N = (y1h, x1h, . . . , y8h, x8h, y9h, x9h, . . . , y16h, x16h),

so that the computation of < J8N, D(block(J1)N) > gives rise to pairs of terms like in

< J8N, D(block(J1)N) >= <(−(Rhy1)x9 − (Rhx9)y1 + . . . ) =

= <(−kk1
2h

9
1 − h

9
2kk1

1 − kh9
2k

1
1 − k

1
2kh9

1 + . . . ).

To conclude, observe that the real part (<) of the sums of each of the corresponding underlined
terms is zero. This is due to the identity (<(hh′h′′) = <(h′h′′h)), that holds for all h, h′, h′′ ∈ H.

More generally, the following proposition applies.

Proposition 8. Fix any β, 1 ≤ β ≤ 9, consider the eight complex structures IαIβ, with α 6= β, defined on
R256 = R16 ⊕ · · · ⊕R16 by acting with the corresponding matrices on the listed 16-dimensional components,
that is, the diagonal extension of IαIβ. Also, consider the further eight complex structures D(block(IαIβ)) for
α 6= β, defined by the same matrices that now act on the column matrix of sedenions ((s1, . . . s16)T). Then,

{IαIβN, D(block(IαIβ)N)}α 6=β

is a maximal system of 16 orthonormal tangent vector fields on S255.

The m = 2 · 162 dimension, that is, the S511 sphere, is the lowest dimensional case where the last
ingredient of our construction enters. To define the additional vector field here, we need to extend the
formal left multiplication defined by Formula (22). Consider the decomposition
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R2·162
= R162 ⊕R162

and denote the elements in R162
by s1, s2. Using the notation

N = (s1, s2)
def
= s1 + is2 ∈ S2·162−1 , (34)

a formal left multiplication (Li in R2·162
) can be defined with Formula (22). It can then be expected

that D(Li N) is orthogonal to {JαN, D(block(Jα)N)}α=1,...,8, but this is not the case. In fact, D(Li N)

appears to be orthogonal to the first eight vector fields but not to the second ones.
To make things work, we need to extend not only Li, but also the D conjugation. To this aim,

the elements sα ∈ R162
are split into (xα, yα) where xα, yα ∈ R162/2, and the conjugation D2 is defined

on R162
using Formula (18):

D2 : ((x1, y1), (x2, y2)) −→ ((x1,−y1), (x2,−y2)). (35)

The additional vector field is then D(D2(Li N)), and the following theorem applies.

Theorem 3. A maximal orthonormal system of tangent vector fields on S2·162−1 is given by the following
8 · 2 + 1 vector fields:

J1N , . . . , J8N ,

D(block(J1)N) , . . . , D(block(J8)N) ,

D(D2(Li N)).

(36)

6. Back to the Octonionic Hopf Fibration

As we saw in the previous Section, S15 is the lowest dimensional sphere with more than seven
linearly independent vector fields. There are further features that distinguish S15 among spheres.
For example, S15 is the only sphere that admits three homogeneous Einstein metrics, and it is the only
sphere that appears as a regular orbit in three cohomogeneity actions on projective spaces, namely, of
SU(8), Sp(4), and Spin(9) on CP8, HP4, and OP2, respectively (see Refs. [38,39]). All of these features
can be traced back to the transitive action of Spin(9) on the octonionic Hopf fibration S15 → S8. The
following theorem applies.

Theorem 4. Any global vector field on S15 which is tangent to the fibers of the octonionic Hopf fibration
S15 → S8 has at least one zero.

Proof. For any (x, y) ∈ S15 ⊂ O2 = R16, we already denoted by

N = (x, y) = (x1, . . . , x8, y1, . . . , y8)

the (outward) unit normal vector field of S15 in R16. After identifying the tangent spaces T(x,y)(R16)

with R16, it can be noted that the I1, . . . , I9 involutions define the following sections of T(R16)|S15
:

I1N = (y1, y2, y3, y4, y5, y6, y7, y8, x1, x2, x3, x4, x5, x6, x7, x8),

I2N = (y2,−y1,−y4, y3,−y6, y5, y8,−y7,−x2, x1, x4,−x3, x6,−x5,−x8, x7),

I3N = (y3, y4,−y1,−y2,−y7,−y8, y5, y6,−x3,−x4, x1, x2, x7, x8,−x5,−x6),

I4N = (y4,−y3, y2,−y1,−y8, y7,−y6, y5,−x4, x3,−x2, x1, x8,−x7, x6,−x5),

I5N = (y5, y6, y7, y8,−y1,−y2,−y3,−y4,−x5,−x6,−x7,−x8, x1, x2, x3, x4),

I6N = (y6,−y5, y8,−y7, y2,−y1, y4,−y3,−x6, x5,−x8, x7,−x2, x1,−x4, x3),

I7N = (y7,−y8,−y5, y6, y3,−y4,−y1, y2,−x7, x8, x5,−x6,−x3, x4, x1,−x2),

I8N = (y8, y7,−y6,−y5, y4, y3,−y2,−y1,−x8,−x7, x6, x5,−x4,−x3, x2, x1),

I9N = (x1, x2, x3, x4, x5, x6, x7, x8,−y1,−y2,−y3,−y4,−y5,−y6,−y7,−y8).

(37)
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Their span,
EN

def
= < I1N, . . . , I9N >,

is, at any point, a nine-plane in R16 that is not tangential to the S15 sphere. Observe that the
nine-plane EN is invariant under Spin(9). This is certainly the case for the single vector field N,
since Spin(9) ⊂ SO(16). On the other hand, the endomorphisms Iα rotate under the Spin(9) action
inside their E9 ⊂ End(R16) vector bundle.

Next, note that EN contains N:

N = λ1I1N + λ2I2N + · · ·+ λ8I8N + λ9I9N,

where the coefficients λα are computed from (37) in terms of the inner products of vectors,

~x = (x1, . . . , x8), ~y = (y1, . . . , y8) ∈ R8,

and of the right translations, Ri, . . . , Rh, as follows:

λ1 = 2~x ·~y, λ2 = −2~x · ~Riy, . . . , λ8 = −2~x · ~Rhy, λ9 = |~x|2 − |~y|2.

In particular, at points with ~x =~0, that is, on the octonionic line l∞, the I1N, . . . , I9N vector fields
are orthogonal to the S7 ⊂ l∞ unit sphere. The latter is the fiber of the Hopf fibration S15 → S8 over the
north pole ((0, . . . , 0, 1) ∈ S8), and the mentioned orthogonality of this fiber (S7) is immediate from (37)
for I1N, . . . , I8N.

Also, at these points, we have I9N = N, so I9N is orthogonal to the S7 fiber as well. Now,
the invariance of the octonionic Hopf fibration under Spin(9) shows that all its fibers are characterized
as being orthogonal to the vector fields I1N, . . . , I9N in R16.

Now, assume that X is a vertical vector field of S15 → S8. From the previous characterization,
we have the following orthogonality relations in R16:

〈X, IαN〉 = 0, for α = 1, . . . , 9,

and it follows that 〈IαX, N〉 = 0. However, from the definition of a Spin(9) structure, it can be
observed that if α 6= β, then 〈IαX, IβX〉 = 0. Thus, if X is a nowhere zero vertical vector field,
we obtain, in this way, nine pairwise orthogonal vector fields (I1X, . . . , I9X) that are all tangent to S15.
However, S15 is known to admit, at most, eight linearly independent vector fields. Thus, X cannot be
vertical and nowhere zero.

One gets, as a consequence, the following alternative proof of a result, established in Ref. [26].

Corollary 4. The octonionic Hopf fibration S15 → S8 does not admit any S1 subfibration.

Proof. In fact, any S1 subfibration would give rise to a real line sub-bundle (L ⊂ Tvert(S15)) of the
vertical sub-bundle of T(S15). This line bundle (L) is necessarily trivial, due to the vanishing of its first
Stiefel–Whitney class, w1(L) ∈ H1(S15;Z2) = 0. It follows that L would admit a nowhere zero section
and thus, a global, vertical, nowhere zero vector field.

7. Locally Conformally Parallel Spin(9) Manifolds

Let G ⊂ SO(d). Recall that a locally conformally parallel G-structure on a manifold Md is the datum
of a Riemannian metric (g) on M, a covering U = {Uα}α∈A of M, and for each α ∈ A, a metric gα

defined on Uα which has holonomy contained in G such that the restriction of g to each Uα is conformal
to gα:
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g|Uα
= e fα gα

for some smooth map ( fα) defined on Uα.
Some of the possible cases here are

• G = U(n), where we have the locally conformally Kähler metrics;
• G = Sp(n) · Sp(1), yielding the locally conformally quaternion Kähler metrics;
• G = Spin(9), which is the case we are dealing with.

In any of the cases above, for each overlapping Uα ∩Uβ, the functions fα, fβ differ by a constant:

fα − fβ = ctα,β on Uα ∩Uβ.

This implies that d fα = d fβ on Uα ∩Uβ 6= ∅, hence defining a global, closed 1-form that is usually
denoted by θ and called the Lee form. Its metric dual with respect to g is denoted by N as

N = θ]

and is called the Lee vector field.
The G = U(n) case of locally conformally Kähler metrics has been extensively studied in the last

decades (see, for instance, Ref. [40]).
When G is chosen to be Sp(n) or Sp(n) · Sp(1), there are close relations to 3-Sasakian geometry

(see Ref. [25] or the surveys [41,42]). Finally, locally conformally parallel G2 and Spin(7) structures
were studied in Ref. [43], and they relate to nearly parallel SU(3) and G2 geometries, respectively.

As mentioned in the Introduction, the holonomy of Spin(9) is only possible on manifolds that are
either flat or locally isometric to OP2 or to the hyperbolic Cayley plane OH2. Weakened holonomy
conditions give rise to several classes of Spin(9) structures (cf. Ref. [10] and Section 2). One of these
classes is that of vectorial type structures (see Refs. [33] and [10] (p. 148)). According to the following
Definition and the following Remark, this class fits into the locally conformally parallel scheme.

Definition 2. [33] A Spin(9) structure is of the vectorial type if Γ lives in P0.

Remark 2. In Refs. [10,33], the class of locally conformally parallel Spin(9) structures has been identified and
studied under the name Spin(9) structures of vectorial type. Now, we outline now a proof that, for Spin(9)
structures, the vectorial type is equivalent to the locally conformally parallel type. As already mentioned
in Section 2, the splitting of the Levi–Civita connection, viewed as a connection in the principal bundle of
orthonormal frames on M is

Z = Z∗ ⊕ Γ

where Z∗ is the connection of Spin(9)-frames in the induced bundle, and Γ is its orthogonal complement. Thus,
Γ is a 1-form with values in the orthogonal complement m in the splitting of Lie algebras so(16) = spin(9)⊕m,
and under the identification Λ2

84 = m = Λ3(E9) (cf. the beginning of Section 3), Γ can be seen as a 1-form with
values in Λ3(E9). Under the action of Spin(9), the space Λ1(M)⊗Λ3(E) decomposes as a direct sum of four
irreducible components:

Λ1(M)⊗Λ3(E) = P0 ⊕ P1 ⊕ P2 ⊕ P3,

and looking at all the possible direct sums, this yields 16 types of Spin(9) structure. Component P0 identifies
with Λ1(M), and thus, with the componentW4 in Formula (7).

Now, let (M16, g) be a Riemannian manifold endowed with a Spin(9) structure of the vectorial
type. Let Γ be as above, and let Φ be its Spin(9)-invariant 8-form. Now, Γ = 0 implies that the
holonomy of M is contained in Spin(9) (cf. Ref. [10] (p. 21)).
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From Ref. [33] (p. 5), we know that the following relations hold:

dΦ = θ ∧Φ, dθ = 0. (38)

Let (M, g̃) be the Riemannian universal cover of (M, g), and let Φ̃, θ̃ be the lifts of Φ and θ

respectively. Then, relations (38) also hold for Φ̃ and θ̃. Since M̃ is simply connected, θ̃ = d f for some
f : M̃→ R. Then, by defining g0

def
= e− f g̃ and Φ0

def
= e−4 f Φ̃, we have dΦ0 = 0, that is, the θ-factor of Φ0

is zero. Hence, g0 has holonomy contained in Spin(9), and on the other hand, it is locally conformal
to g. Thus, M can be covered by open subsets on which the metric is conformal to a metric with
holonomy in Spin(9).

The conformal flatness of metrics with Spin(9) holonomy has the following consequences
(cf. Ref. [14] for the proofs).

Theorem 5. Let M16 be a compact manifold that is equipped with a locally, non globally, conformally parallel
Spin(9) metric g. Then,

1. The Riemannian universal covering (M̃, g̃) of M is conformally equivalent to the euclidean R16 \ {0},
the Riemannian cone over S15, and M is locally isometric to S15 ×R up to its homotheties.

2. M is equipped with a canonical 8-dimensional foliation.
3. If all the leaves of F are compact, then M fibers over the orbifold O8 are finitely covered by S8, and all

fibers are finitely covered by S7 × S1.

Theorem 6. Let (M, g) be a compact Riemannian manifold. Then, (M, g) is locally, non globally, conformally
parallel Spin(9) if and only if the following three properties are satisfied:

1. M is the total space of a fiber bundle M π−→ S1
r , where π is a Riemannian submersion over a circle of

radius r.
2. The fibers of π are spherical space forms (S15/K), where K is a finite subgroup of Spin(9).
3. The structure group of π is contained in the normalizer of K in Spin(9).

8. Clifford Systems and Clifford Structures

The self dual anti-commuting involutions I1, . . . , I9 that define the standard Spin(9)-structure
on R16 are an example of a Clifford system. The definition, formalized in 1981 by D. Ferus, H. Karcher,
and H. F. Münzner, in their study of isometric hypersurfaces of spheres [44], is the following.

Definition 3. A Clifford system on the Euclidean vector space RN is the datum

Cm = (P0, . . . , Pm)

of a (m + 1)-ple of symmetric endomorphisms Pα such that

P2
α = Id for all α, PαPβ = −PβPα for all α 6= β.

A Clifford system on RN is said to be irreducible if RN is not a direct sum of two positive dimensional
subspaces that are invariant under all the Pα.

From the representation theory of Clifford algebras, it is recognized (cf. Refs. [44] (p. 483)
and [45] (p. 163)) that RN admits an irreducible Clifford system (C = (P0, . . . , Pm)) if and only if
N = 2δ(m), where δ(m) is given as in the following Table 2.

Uniqueness can be discussed as follows. Given, on RN , two Clifford systems (Cm = (P0, . . . , Pm)

and C′m = (P′0, . . . , P′m)), they are said to be equivalent if A ∈ O(N) exists such that P′α = AtPα A for
all α. Then, for m 6≡ 0 mod 4, there is a unique equivalence class of irreducible Clifford systems,
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and for m ≡ 0 mod 4, there are two, which are classified by the two possible values of the trace
tr (P0P1 . . . Pm) = ±2δ(m).

Table 2. Clifford systems.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . . 8 + h

δ(m) 1 2 4 4 8 8 8 8 16 32 64 64 128 128 128 128 . . . 16δ(h)

In Ref. [18], we outlined the following inductive construction for the irreducible Clifford
systems on real Euclidean vector spaces (RN), taking, as starting the point, the basic Clifford systems
(C1, C2, C4, C8) associated with structures given by U(1), U(2), Sp(2) · Sp(1), and Spin(9). All the cases
appearing in Tables 2 and 3 make sense in the natural context of Riemannian manifolds. We get the
following theorem (see Ref. [18] for details).

Theorem 7. (Procedure to write new Clifford systems from old). Let Cm = (P0, P1, . . . , Pm) be the last
(or unique) Clifford system in RN . Then, the first (or unique) Clifford system,

Cm+1 = (Q0, Q1, . . . , Qm, Qm+1),

in R2N has, respectively, the following first and last endomorphisms:

Q0 =

(
0 Id

Id 0

)
, Qm+1 =

(
Id 0
0 − Id

)
,

where the blocks are N × N. The remaining matrices are

Qα =

(
0 −P0α

P0α 0

)
(α = 1, . . . , m).

Here, P0α are the complex structures given by P0Pα compositions in the Clifford system Cm. When the
complex structures (P0α) can be viewed as (possibly block-wise) right multiplications by some of the unit
quaternions (i, j, k) or unit octonions (i, j, k, e, f , g, h), and if the dimension permits it, further similarly defined
endomorphisms (Qβ) can be added by using some others among i, j, k or i, j, k, e, f , g, h.

Table 3. Clifford systems Cm and G-structures on Riemannian manifolds (MN).

m 1 2 3 4 5 6 7 8 9 10 11 12

N 2 4 8 8 16 16 16 16 32 64 128 128

G U(1) U(2) Sp(1)3 Sp(2)Sp(1) SU(4)Sp(1) Spin(7)U(1) Spin(8) Spin(9) Spin(10) Spin(11) Spin(12) Spin(13)

The notion of an even Clifford structure, a kind of unifying notion proposed by A Moroianu and
U. Semmelmann [11], is instead given by the following datum on a Riemannian manifold ((M, g)).

Definition 4. An even Clifford structure on (M, g) is a real oriented Euclidean vector bundle (E, h),
together with an algebra bundle morphism (ϕ : Cl0(E)→ End(TM)) which maps Λ2E into skew-symmetric
endomorphisms.

By definition, a Clifford system always gives rise to an even Clifford structure, but there are some
even Clifford structures on manifolds that cannot be constructed, even locally, from Clifford systems.
An example of this is given by a Spin(7) structure on any oriented 8-dimensional Riemannian manifold
as a consequence of the following observations (cf. Ref. [15] for further details).
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Proposition 9. Let Cm = {P0, . . . , Pm) be a Clifford system in Rn. The compositions Jαβ
def
= PαPβ for α < β,

and Jαβγ
def
= PαPβPγ for α < β < γ, are linearly independent complex structures on Rn.

Proof. It can be easily recognized that Jαβ and Jαβγ are complex structures. On the other hand, for any
α = 0, . . . , m, it can be observed that tr(P∗α Pα) = 1, and for α < β, tr(P∗α Pβ) = 0, so that the Pα are
orthonormal and symmetric. By a similar argument, tr(J∗αβ Jαβ) = 1 and tr(J∗αβ Jγδ) = tr(PβPαPγPδ) = 0
if γ or δ equals α or β. Also, for α 6= γ and β 6= δ, the J∗αβ Jγδ is the composition of the skew-symmetric
Jβαγ and the symmetric Pδ, and as such, its trace is necessarily zero. Similar arguments show that the
Jαβγ for α < β < γ are orthonormal.

Corollary 5. The Spin(7)-structures on R8 cannot be defined through Clifford system C6.

Proof. For any choice of such a Clifford system, C6 = (P0, . . . P6) in R8, the complex structures Jαβγ

for α < β < γ give rise to 35 linearly independent skew-symmetric endomorphisms, contradicting the
decomposition of 2-forms in R8 under Spin(7):

Λ2R8 = Λ2
7 ⊕Λ2

21. (39)

Nevertheless, the right multiplications by i, j, k, e, f , g, h ∈ O span the E7 ⊂ End−R8 vector bundle,
and this identifies Spin(7) structures among the even Clifford structures.

The following Sections present further examples of such essential Clifford structures, i.e., Clifford
structures not coming from Clifford systems.

On Riemannian manifolds ((M, g)), it is natural to consider the following class of even
Clifford structures.

Definition 5. The even Clifford structure Er on (M, g) is said to be parallel if a metric connection (∇E) exists
on E such that ϕ is connection preserving, i.e.,

ϕ(∇E
Xσ) = ∇g

X ϕ(σ)

for every tangent vector X ∈ TM and section σ of Cl0E, and where ∇g is the Levi–Civita connection.

Table 4 summarizes the non-flat, parallel, even Clifford structure, as classified in Ref. [11].
The non-compact duals of the appearing symmetric spaces have to be added. A good part of the listed
manifolds appear in the following sections.

Table 4. Parallel, non-flat, even Clifford structures (cf. Ref. [11]).

r Type of Er M Dimension of M

2 Kähler 2m, m ≥ 1
3 projective if M 6= HPq quaternion Kähler (qK) 4q, q ≥ 1
4 projective if M 6= HPq+ ×HPq− product of two qK 4(q+ + q−)

5 qK 8
6 projective if M non-spin Kähler 8
7 Spin(7) holonomy 8
8 projective if M non-spin Riemannian 8

5 Gr2(Hn+2) 8n
6 projective for n odd Gr4(Cn+4) 8n
8 projective for n odd Gr8(Rn+8) 8n

9 F II 16
10 E III 32
12 E VI 64
16 E VIII 128
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9. The Complex Cayley Projective Plane

This section deals with

E III = E6/Spin(10) ·U(1) ∼= V78
16 ⊂ CP26,

the second, after the Cayley projective plane (F II), of the exceptional symmetric spaces appearing in
Table 4.

A remarkable feature of E III, one of the two exceptional Hermitian symmetric spaces of compact
type, is its model as a smooth projective algebraic variety of complex dimension 16 and degree
78, the so-called fourth Severi variety V78

16 ⊂ CP26. This name was proposed by F. Zak [46], who
classified the smooth projective algebraic varieties (Vn) in a CPN that, in spite of their critical dimension
(n = 2

3 (N − 2)), are unable to fill CPN through their chords.
On the other hand, E III admits a construction that is very similar to the one of the Cayley

projective plane (F II). One can, in fact, look at the complex octonionic Hermitian matrices

Z =

 c1 x1 x2

x̄1 c2 x3

x̄2 x̄3 c3

 ∈ Herm3(C⊗O) ≡ C27, cα ∈ C; xα ∈ C⊗O,

which are acted on by E6 with three orbits on CP26. The closed one consists of Z matrices of rank one,

Z2 = (trace Z)Z,

and, as such, can be thought as (virtual) “projectors on complex octonionic lines in (C⊗O)3”; thus,
they are points of the complex projective Cayley plane E III = E6/Spin(10) ·U(1) ⊂ CP26.

The projective algebraic geometry of E III ⊂ CP26 was studied in detail in Ref. [47]. Similarly to
Corollary 5, we have the following proposition.

Proposition 10. The complex space C16 does not admit any family of ten endomorphisms (P0, . . . , P9) that
satisfies the properties of a Clifford system and is compatible with respect to the standard Hermitian scalar
product g.

Proof. The family P0, . . . , P9 would define (after multiplying each of them by i) a representation of
the complex Clifford algebra Cl10

∼= C(32) (the order 32 complex matrix algebra) on the C16 vector
space.

Note, however, that the Euclidean space R32 admits the Clifford system C9 (cf. Table 2).
The parallel, even Clifford structure on E III can be defined through the following one, here described
on the C16 model space.

For this, observe that spin(10) ⊂ su(16) is generated as a Lie algebra by spin(9) and u(1), with u(1)
spanned by (

i Id8 0
0 −i Id8

)
=

(
i Id8 0

0 i Id8

)
·
(

Id8 0
0 − Id8

)
= I0 · I9 = J09

where I0 = I is a complex structure of C16, and I1, . . . , I9 are the octonionic Pauli matrices.
The rank 10 even Clifford structure on C16 is then given by the vector bundle

E10 =< I0 > ⊕ < I1, . . . , I9 >=< I > ⊕ < I1, . . . , I9 >⊂ End(TM),

and
spin(10) = lie{J09, J19, . . . , J89} = span{Jαβ = Iα ◦ Iβ}0≤α<β≤9.
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We get the following theorem (cf. Proposition 3 and Theorem 4).

Theorem 8. [17] Let E10 be the even Clifford structure on E III. In accordance with the previous notations,
the characteristic polynomials

t10 + τ2(ψ)t8 + τ4(ψ)t6 + . . .

of the matrix
ψ = (ψαβ) ∈ Λ2 ⊗ so(10)

of Kähler 2-forms of the Jαβ give:

(i) τ2(ψ) = −3ω2 where ω is the Kähler 2-form of E III;
(ii) [τ4(ψ)] ∈ H8 is the primitive generator of the cohomology ring H∗(E III;R).

In analogy with the Spin(9) situation (Section 3), τ4(ψ) = ΦSpin(10)·U(1) is called the canonical
8-form on E III.

Moreover, the following theorem applies.

Theorem 9. Let ω be the Kähler form, and let ΦSpin(10) = τ4(ψ) be the previously defined 8-form on E III.
Then:

(i) The de Rham cohomology algebra H∗(E III) is generated by (the classes of) ω ∈ Λ2 and ΦSpin(10) ∈ Λ8.

(ii) By looking at E III as the fourth Severi variety (V78
16 ⊂ CP26), the de Rham dual of the basis represented in

H8(E III;Z) by the forms ( 1
(2π)4 ΦSpin(10),

1
(2π)4 ω4) is given by the pair of algebraic cycles

(
CP4 + 3(CP4)′, CP4 + 5(CP4)′

)
,

where CP4, (CP4)′ are maximal linear subspaces that belong to the two different families ruling a totally
geodesic, non-singular, quadric Q8 contained in V78

16 .

10. Cayley–Rosenfeld Planes

Besides the real and the complex Cayley projective planes F II and E III, there are two further
exceptional symmetric spaces of compact type, that are usually referred to as the Cayley–Rosenfeld
projective planes, namely, the “projective plane over the quaternionic octonions”:

E VI = E7/Spin(12) · Sp(1) = (H⊗O)P2,

and the “projective plane over the octonionic octonions”:

E VIII = E8/Spin(16)+ = (O⊗O)P2.

By referring to the inclusions O ↪→ C⊗O ↪→ H⊗O ↪→ O⊗O, it can be observed that the
projective geometry of these four projective planes, which is notably present on the first two steps,
becomes weaker at the third and fourth Cayley–Rosenfeld projective planes (cf. Ref. [8]). However,
the dimensions of these four exceptional symmetric spaces are coherent with this terminology.
According to Table 4, these four spaces have the highest possible ranks for non-flat, parallel,
even Clifford structures.

The following Table 5 summarizes the even Clifford structures on the four Cayley–Rosenfeld
planes. Only the one on F II is given by a Clifford system; the other three are essential. Concerning
the cohomology generators, the one in dimension 8 can also be constructed for E VI and E VIII via
the fourth coefficient (τ4(ψ)) of the matrices (ψ) of Kähler 2-forms that are associated with the even
Clifford structures that we are now listing.
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Table 5. Even Clifford structures on the Cayley–Rosenfeld projective planes.

Model Symm. Space Even Clifford Structure Cohomology Gen.

R16 F II E9 =< I1, . . . , I9 > in H8

C16 E III E10 < I > ⊕ < I1, . . . , I9 > in H2, H8

H16 E VI E12 =< I, J,K > ⊕ < I1, . . . , I9 > in H4, H8, H12

O16 E VIII E16 =< I, . . . ,H > ⊕ < I1, . . . , I9 > in H8, H12, H16, H20

Remark 3. The matrices of the Kähler 2-forms that are associated with the even Clifford structures go through

spin(9) ⊂ spin(10) ⊂ spin(12) ⊂ spin(16),

and the last Lie algebra decomposes as

spin(16) = so(16) = spin(9)⊕Λ2
84.

By recalling the identification (1 ≤ α < β < γ ≤ 9)

Λ2
84 =< Jαβγ = IαIβIγ >

(cf. the observation after (8) as well as [18]), this identification takes back the even Clifford structure of the
128-dimensional Cayley–Rosenfeld plane (E VIII) to the Spin(9)-structures that we started with.

11. Exceptional Symmetric Spaces

A good number of symmetric spaces that appear in Table 4 belong to the list of exceptional
Riemannian symmetric spaces of compact type,

E I, E II, E III, E IV, E V, E VI, E VII, E VIII, E IX, F I, F II, G I,

that are part of the E. Cartan classification. Among them, the two exceptional Hermitian symmetric spaces,

E III =
E6

Spin(10) ·U(1)
and E VII =

E7

E6 ·U(1)
,

are Kähler and therefore, are equipped with a non-flat, parallel, even Clifford structure of rank r = 2.
Next, the five Wolf spaces

E II =
E6

SU(6) · Sp(1)
, E VI =

E7

Spin(12) · Sp(1)
, E IX =

E8

E7 · Sp(1)
,

F I =
F4

Sp(3) · Sp(1)
, G I =

G2

SO(4)
,

which are examples of positive quaternion Kähler manifolds, carry a rank of r = 3 in a non-flat, parallel,
Clifford structure.

Thus, seven of the twelve exceptional, compact type, Riemannian symmetric spaces of are either
Kähler or quaternion Kähler. Accordingly, one of their de Rham cohomology generators is represented
by a Kähler or quaternion Kähler form, and any further cohomology generators can be viewed as
primitive in the sense of the Lefschetz decomposition.

As seen in the previous sections, the four Cayley–Rosenfeld projective planes,

E III, E VI, E VIII, F II

carry a similar structure with r = 10, 12, 16, 9.



Axioms 2018, 7, 72 24 of 32

Thus, among the exceptional symmetric spaces of compact type, there are two spaces that admit
two distinct even Clifford structures, namely, the Hermitian symmetric E III has even Clifford structures
of rank 2 and of rank 10, and the quaternion Kähler E VI has even Clifford structures of rank 3 and
rank of 12. For simplicity, we call octonionic Kähler the parallel even Clifford structure defined by
the vector bundles E10, E12, E16, E9 on the Cayley–Rosenfeld projective planes (E III, E VI, E VIII, F II).
In conclusion, and with the exceptions of

E I =
E6

Sp(4)
, E IV =

E6

F4
, E V =

E6

SU(8)
,

nine of the twelve exceptional Riemannian symmetric spaces of compact type admit at least one
parallel, even Clifford structure. Any of such structures gives rise to a canonical differential form:
the Kähler 2-form ω for the complex Kähler one, the quaternion Kähler 4-form Ω for the five Wolf
space, and a canonical octonionic Kähler 8-form Ψ for the four Cayley–Rosenfeld projective planes.
Their classes are always one of the cohomology generators, and Table 6 collects some informations on
the exceptional symmetric spaces of compact type. For each of them, the real dimension, the existence
of torsion in the integral cohomology, the Kähler or quaternion Kähler or octonionic Kähler (K/qK/oK)
property, the Euler characteristic χ, and the Poincaré polynomial (up to mid dimension) are listed.

Table 6. Exceptional, compact type, symmetric spaces.

dim torsion K/qK/oK χ Poincaré polynomial P(t) = ∑i=0,... biti

E I 42 yes 4 1 + t8 + t9 + t16 + t17 + t18 + . . .
E II 40 yes qK 36 1 + t4 + t6 + 2t8 + t10 + 3t12 + 2t14 + 3t16 + 2t18 + 4t20 + . . .
E III 32 no K/oK 27 1 + t2 + t4 + t6 + 2(t8 + t10 + t12 + t14) + 3t16 + . . .
E IV 26 no 0 1 + t9 + . . .
E V 70 yes 72 1 + t6 + t8 + t10 + t12 + 2(t14 + t16 + t18 + t20) + 3(t22 + t24 + t26 + t28) + 4(t30 + t32) + 3t34 + . . .
E VI 64 yes qK/oK 63 1 + t4 + 2t8 + 3t12 + 4t16 + 5t20 + 6(t24 + t28) + 7t32 + . . .
E VII 54 no K 56 1 + t2 + t4 + t6 + t8 + 2(t10 + t12 + t14 + t16) + 3(t18 + t20 + t22 + t24 + t26) + . . .
E VIII 128 yes oK 135 1 + t8 + t12 + 2(t16 + t20) + 3(t24 + t28) + 5t32 + 4t36 + 6(t40 + t44) + 7(t48 + t52) + 8t56 + 7t60 + 9t64 + . . .
E IX 112 yes qK 120 1 + t4 + t8 + 2(t12 + t16) + 3t20 + 4(t24 + t28) + 5t32 + 6(t36 + t40) + 7(t44 + t48 + t52) + 8t56 + . . .
F I 28 yes qK 12 1 + t4 + 2(t8 + t12) + . . .
F II 16 no oK 3 1 + t8 + . . .
G I 8 yes qK 3 1 + t4 + . . .

Next, we have Table 7 which contains the primitive Poincaré polynomials

P̃(t) = ∑
i=0,...

b̃iti

of the nine exceptional Riemannian symmetric spaces that admit an even parallel Clifford structure.
Here, the meaning of “primitive” varies depending on the considered K/qK/oK structure. Thus,
the Hermitian symmetric spaces, E III and E VII, are simply polynomials with coefficients the primitive
Betti numbers,

b̃i = dim (ker[Ln−i+1
ω : Hi → H2n−i+2]),

where Lω is the Lefschetz operator which multiplies the cohomology classes with the complex Kähler
form ω, and n is the complex dimension.

In the positive quaternion Kähler setting, the vanishing of odd Betti numbers and the injectivity
of the Lefschetz operator LΩ : H2k−4 → H2k, k ≤ n, now occur with Ω being the quaternion 4-form
and n being the quaternionic dimension. A remarkable aspect of the primitive Betti numbers

b̃2k = dim(coker[LΩ : H2k−4 → H2k])

for positive quaternion Kähler manifolds is their coincidence with the ordinary Betti numbers of the
associated Konishi bundle—the 3-Sasakian manifold fibering over it (cf. [48] (p. 56)).
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Finally, on the four Cayley–Rosenfeld planes, the vanishing of odd Betti numbers and the
injectivity of the map LΦ : H2k−8 → H2k still occur, and are defined by multiplication with the
octonionic 8-form Φ, and with k ≤ 2n, where n is now the octonionic dimension.

Table 7. Primitive Poincaré polynomials, P̃(t) = ∑i=0,... b̃iti.

Hermitian Symmetric Spaces Kähler Primitive Poincaré Polynomial

E III 1 + t8 + t16

E VII 1 + t10 + t18

Wolf spaces Quaternion Kähler primitive Poincaré polynomial

E II 1 + t6 + t8 + t12 + t14 + t20

E VI 1 + t8 + t12 + t16 + t20 + t24 + t32

E IX 1 + t12 + t20 + t24 + t32 + t36 + t44 + t56

F I 1 + t8

G I 1

Cayley–Rosenfeld projective planes Octonionic Kähler primitive Poincaré polynomial

E III 1 + t2 + t4 + t6 + t8 + t10 + t12 + t14 + t16

E VI 1 + t4 + t8 + 2(t12 + t16 + t20) + 3(t24 + t28 + t32)
E VIII 1 + t12 + t16 + t20 + t24 + t28 + t32 + t36 + t40 + t44 + t48 + t52 + t56 + t60 + t64

F II 1

Even Clifford exceptional symmetric spaces Fully primitive Poincaré polynomial

E II 1 + t6 + t8 + t12 + t14 + t20

E III 1
E VI 1 + t12 + t24

E VII 1 + t10 + t18

E VIII 1 + t12 + t16 + t20 + t24 + t28 + t32 + t36 + t40 + t44 + t48 + t52 + t56 + t60 + t64

E IX 1 + t12 + t20 + t24 + t32 + t36 + t44 + t56

F I 1 + t8

F II 1
G I 1

12. Grassmannians

Table 4 contains the following three series of Grassmannians:

Gr8(Rn+8) =
SO(n + 8)

SO(n)× SO(8)
, Gr4(Cn+4) =

SU(n + 4)
S(U(n)×U(4))

, Gr2(Hn+2) =
Sp(n + 2)

Sp(n)× Sp(2)
, (40)

that carry an even Clifford structure of rank r = 8, 6, 5, respectively.
To define them, recall that the Spin(8) ⊂ SO(16) ⊂ ClO subgroup is generated by the

following matrices:

mu,v =

(
−Ru ◦ Rv̄ 0

0 −Rū ◦ Rv

)
= mu ◦mv, (41)

where

mu =

(
0 Ru

−Rū 0

)
, mv =

(
0 Rv

−Rv̄ 0

)
(cf. Ref. [49]). For the orthonormal u, v ∈ S7 ⊂ O, matrices mu,v satisfy the properties

mv,u = −mu,v, m2
u,v = − Id .

On the other hand, recall that
TGr ∼= W ⊗W⊥,

where W is the tautological vector bundle, and W⊥ its orthogonal complement in the ambient
linear space.

Finally, it is convenient to recall that the complex structure and the local compatible hypercomplex
structures of the following complex Kähler and quaternion Kähler Grassmannians,
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Gr2(Rn+2) ∼= Qn ⊂ CPn+1, Gr4(Rn+4) =
SO(n + 4)

SO(n)× SO(4)
, Gr2(Cn+2) =

SU(n + 2)
S(U(n)×U(2))

,

come visibly from their elements, which are, respectively, oriented 2-planes, oriented 4-planes, and
complex 2-planes.

Look first at Grassmannians in the first of the three series (40), namely, at Gr8(R2m+8), referring, for
simplicity, to the case of an even dimensional ambient space, R2m+8, and thus insuring the spin property
of the Grassmannian. From the local orthonormal bases w1 . . . , w8 and w⊥1 , w⊥2 , . . . , w⊥2m−1, w⊥2m of
sections respectively of W and of W⊥, one gets the following local basis of the tangent vectors of
Gr8(R2m+8):

x1,1 = w1 ⊗ w⊥1 , . . . . . . x8,1 = w8 ⊗ w⊥1 ,

x1,2 = w1 ⊗ w⊥2 , . . . . . . x8,2 = w8 ⊗ w⊥2 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x1,2m−1 = w1 ⊗ w⊥2m−1, . . . . . . x8,2m−1 = w8 ⊗ w⊥2m−1,

x1,2m = w1 ⊗ w⊥2m, . . . . . . x8,2m = w8 ⊗ w⊥2m.

(42)

The listed 8-ples of sections can be written formally as octonions, i.e., for α = 1, . . . , 2m,

~xα = (x1,α, x2,α, . . . , x8,α) = x1,α + ix2,α + · · ·+ hx8,α, (43)

and this can be ordered as a n-ple of pairs of octonions:(
(~x1,~x2), . . . , (~x2m−1,~x2m)

)
∈ (O⊕O)m.

The even Clifford structure on Gr8(R2m+8) can then be defined by looking at a rank 8
Euclidean vector bundle E ⊂ End−(T Gr8(R2m+8)) that satisfies the condition of being locally
generated by anti-commuting orthogonal complex structures. Here, this is denoted by m1, m2, . . . , m8,
in correspondence with the m1, mi, . . . , mh. The existence of such an E is insured by the holonomy
structure SO(2m)× SO(8) of the Grassmannian, by its spin property, and by the given description
of Spin(8). Accordingly, if u, v are local sections of E, we can look at them as octonions in the basis
m1, m2, . . . , m8.

For any such orthonormal pair (u, v), look at u ∧ v as a section of Λ2E, and define

ϕ : Λ2E→ End−(T Gr8(R2m+8))

by
ϕ(u ∧ v)

(
(~x1,~x2), . . . , (~x2m−1,~x2m)

)
=
(
mu,v(~x1,~x2), . . . , mu,v(~x2m−1,~x2m)

)
, (44)

i.e., by diagonally applying the matrix (41). When this is extended by the Clifford composition, this
gives the Clifford morphism

ϕ : Cl0E→ End(T Gr8(R2m+8)).

Thus, the following theorem applies.

Theorem 10. There is a rank 8 vector sub-bundle E ⊂ End−(T Gr8(R2m+8)) that is locally generated by
the anti-commuting orthogonal complex structures m1, m2, . . . , m8, and E defines an even, non-flat, parallel
Clifford structure of rank 8 on Gr8(R2m+8). The morphism

ϕ : Cl0E→ End(T Gr8(R2m+8))
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is given by the Clifford extension of the map,

u ∧ v ∈ Λ2E −→ [mu,v : (O⊕O)m → (O⊕O)m],

which is defined by diagonally applying the matrix mu,v . Here, u, v are local orthonormal sections of E; thus,
unitary orthogonal octonions in the basis m1, m2, . . . , m8, so that mu,v acts diagonally on the m-ples of pairs of
local tangent vectors, (

(~x1,~x2), . . . , (~x2m−1,~x2m)
)
,

that can be looked at as elements of (O⊕O)m.

A similar statement holds for the second series of Grassmannians in (40), assuming again
an even dimensional ambient space, C2m+4. Let w1, w2, w3, w4 and w⊥1 , w⊥2 , . . . , w⊥2m−1, w⊥2m be the
local orthonormal bases of W and W⊥, respectively. Define the following local tangent vector fields as
local sections of T Gr4(C2m+4) ∼= W ⊗W⊥:

z1,1 = w1 ⊗ w⊥1 , . . . . . . z4,1 = w4 ⊗ w⊥1 ,

z1,2 = w1 ⊗ w⊥2 , . . . . . . z4,2 = w4 ⊗ w⊥2 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z1,2m−1 = w1 ⊗ w⊥2m−1, . . . . . . z4,2m−1 = w4 ⊗ w⊥2m−1,

z1,2m = w1 ⊗ w⊥2m, . . . . . . z4,2m = w4 ⊗ w⊥2m.

(45)

Again, look at the above lines as

~zα = (z1,α, z2,α, z3,αz4,α) ∈ C4, (46)

(α = 1, . . . , 2m), and order them as m-ples of pairs:(
(~z1,~z2), . . . , (~z2n−1,~z2n)

)
∈ (C4 ⊕C4)m.

Now consider the vector sub-space F =< 1, i, j, k, e, f >⊂ O, and note that the corresponding
operators (mu, with u ∈ F), act on the complex vector space (C4). Similarly to what was described
for the real Grassmannians, there is a vector sub-bundle, E6 ⊂ End−(T Gr4(C2m+4)), that is locally
generated by the anti-commuting orthogonal complex structures m1, m2, . . . , m6, which corresponds
to m1, mi, mj, mk, me, m f . This is due to the holonomy (S(U(2m)×U(4))) of the Grassmannian and
its spin property. If (u, v) is an orthonormal pair of sections of E6, then u ∧ v is a section of Λ2E,
and the map

ϕ : Λ2E→ End−(T Gr4(C2m+4)),

given by
ϕ(u ∧ v)

(
(~z1,~z2), . . . , (~z2m−1,~z2m)

)
=
(
mu,v(~z1,~z2), . . . , mu,v(~z2m−1,~z2m)

)
, (47)

is extended, by Clifford composition, to the Clifford morphism

ϕ : Cl0E→ End(T Gr4(C2m+4)).

Note that the holonomy group S(U(2m)×U(4)) acts on the model tangent space C8m, and the
orthogonal representation

S(U(2m)×U(4))→ SU(8m)

defines an equivariant algebra morphism (ϕ : Cl06 → End(C8m) mapping su(4) = spin(6) ⊂ Cl06 into
su(8m) ⊂ End(C8m)). The parallel, non-flat feature of ϕ again follows from the holonomy-based
construction. This gives the following theorem.
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Theorem 11. There is a rank 6 vector sub-bundle, E ⊂ End−(T Gr4(C2m+4)), that is locally generated by
the anti-commuting orthogonal complex structures m1, m2, . . . , m6, and E defines an even, non-flat, parallel
Clifford structure of rank 6 on Gr4(C2m+4). The morphism

ϕ : Cl0E→ End(T Gr4(C2m+4))

is given by Clifford extension of the map:

u ∧ v ∈ Λ2E −→ [mu,v : (C4 ⊕C4)n → (C4 ⊕C4)m],

which is defined by diagonally applying the matrix mu,v. Here, u, v are local orthonormal sections of E, and are
thus unitary orthogonal in the basis m1, m2, . . . , m6, so that mu,v acts diagonally on the m-ples of pairs of local
tangent vectors: (

(~z1,~z2), . . . , (~z2m−1,~z2m)
)
,

which can be viewed as elements of (C4 ⊕C4)m.

Remark 4. When the ambient linear spaces have odd dimensions, similar statements hold, but the Clifford
vector bundles E8 and E6 are defined only locally. This fact is due to the spin/non-spin property of the two series
of Grassmannians, Gr8(Rn+8) and Gr4(Cn+4), whose second Stiefel Whitney class satisfies w2(Gr) = nu,
where 0 6= u ∈ H2(Gr;Z2) (cf. Table 4, where in the non-spin cases the even Clifford structure is referred to as
“projective”).

For Grassmannians in the last series, the spin property of Gr2(Hn+2) holds for all values of n, due
to the vanishing of H2(Gr;Z2). The Clifford morphism ϕ is here constructed as follows. Let w1, w2 and
w⊥1 , . . . , w⊥n be local orthonormal bases of W and W⊥, respectively. Define the following local tangent
vector fields as local sections of T Gr2(Hn+2) ∼= W ⊗W⊥:

h1,1 = w1 ⊗ w⊥1 , h2,1 = w2 ⊗ w⊥1 ,

h1,2 = w1 ⊗ w⊥2 , h2,2 = w2 ⊗ w⊥2 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h1,n−1 = w1 ⊗ w⊥n−1, h2,n−1 = w2 ⊗ w⊥n−1,

h1,n = w1 ⊗ w⊥n , h2,n = w2 ⊗ w⊥2n.

(48)

Next, let u, v be local orthonormal sections of E5, the sub-bundle of End+(T Gr2(Hn+2)) that is
locally generated by the Clifford system C4, whose existence is insured by the holonomy of this spin
Grassmannian. The composition uv acts diagonally on the n-ples:(

~h1,~h2, . . . ,~hn−1,~hn
)
=
(
(h1,1, h2,1), (h1,2, h2,2), . . . ((h1,n, h2,n)

)
∈ (H⊕H)n,

and
ϕ : Cl0E→ End(T Gr2(Hn+2))

is given by the Clifford extension of the map

u ∧ v ∈ Λ2E −→ [uv : (H⊕H)n → (H⊕H)n].

This gives the following theorem.

Theorem 12. There is a rank 5 vector sub-bundle, E ⊂ End+(T Gr2(Hn+2)), that is locally generated by the
anti-commuting orthogonal self-dual involutions σ1, σ2, . . . , σ5, and E gives rise to an even, non-flat, parallel
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Clifford structure of rank 5 on Gr2(Hn+2). The Clifford morphism ϕ is constructed as follows. Let u, v be local
orthonormal sections of E, and let the composition uv act diagonally on the n-ples:(

~h1,~h2, . . . ,~hn−1,~hn
)
,

that can be looked at as elements of (H⊕H)n. Then, the morphism

ϕ : Cl0E→ End(T Gr2(Hn+2))

is given by the Clifford extension of the map

u ∧ v ∈ Λ2E −→ [uv : (H⊕H)n → (H⊕H)n].

Example 1. Here, we briefly list some properties of the 16-dimensional examples that are included in the
just-described even Clifford structures. More details can be found in Ref. [20]. From the first series of
Grassmannians, one has the "complex octonionic projective line"

(C⊗O)P1 ∼= Gr8(R10) ∼= Q8 ⊂ CP9,

which is totally geodesic in E III. There are two parallel even Clifford structures of rank 2 (complex Kähler) and
of rank 8. Accordingly,

Poin
Gr8(R10)

= 1 + t2 + t4 + t6 + 2t8 + t10 + t12 + t14 + t16.

Next, from the second series, one has the “third Severi variety”

Gr4(C6) ∼= V14
8 ⊂ CP14.

There are three parallel even Clifford structures of rank 2 (complex Kähler), rank 3 (quaternion Kähler), and rank
6. Here,

Poin
Gr4(C6)

= 1 + t2 + 2t4 + 2t6 + 3t8 + 2t10 + 2t12 + t14 + t16.

Finally, from the third series, one gets Gr2(H4), with its two families of 2-planes (HP2) lying on the
Grassmannian and satisfying the classical intersection properties of the Klein quadric, and

Poin
Gr2(H4)

= 1 + t4 + 2t8 + t12 + t16.

Example 2. Finally, we mention some higher dimensional examples. First, we address the 32-dimensional
Wolf space Gr8(R12), that has three non-flat, even Clifford structures: two of rank 3, corresponding to the two
quaternion Kähler structures (in correspondence with two different ways to define hypercomplex structures on
the planes on any Gr4(Rn+4)), and one of rank 8, described in this section. Indeed, Gr8(R12) can be looked at as
the “quaternion octonionic” projective line ((H⊗O)P1) that is a total geodesic sub-manifold of the exceptional
symmetric space (H⊗O)P2 ∼= E VI, cf. [50]. Its Poincaré polynomial,

Poin
Gr4(R12)

= 1 + 2t4 + 4t8 + 5t12 + 6t16 + 5t20 + 4t24 + 2t28 + t32,

exhibits the presence of two quaternion Kähler 4-forms and an “octonionic Kähler” 8-form (Ψ). The latter is
related to one that is defined on E VI through its holonomy group, Spin(12) · Sp(1) (cf. [19]).

Next, the 64-dimensional Grassmannian

Gr8(R16) =
SO(16)

SO(8)× SO(8)
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supports, besides the just-described parallel even Clifford structure of rank 8, another similar structure obtained
by interchanging the roles of the two vector bundles W and W⊥, i.e., by operating through the mu,v on elements
of W⊥. The real cohomology

H∗(Gr8(R16)) ∼=
R[e, p1, p2, p3, e⊥, p⊥1 , p⊥2 , p⊥3 ]

ee⊥ = 0, (1 + p1 + p2 + p3)(1 + p⊥1 + p⊥2 ,+p⊥3 ) = 1
, (49)

in terms of the Pontrjagin classes pα, p⊥α and Euler classes e, e⊥ of W and W⊥ gives rise to the
Poincaré polynomial

Poin
Gr8(R16)

= 1 + t4 + 4t8 + 5t12 + 9t16 + 11t20 + 15t24 + 15t28 + 18t32 + . . . .

These two mentioned even Clifford structures descend to a unique even, parallel Clifford structure of rank 8
on the smooth Z2-quotient

Gr⊥8 (R16) = Gr8(R16)/ ⊥

by the orthogonal complement involution ⊥. The quotient Gr⊥8 (R16) turns out to be a totally geodesic,
half dimensional sub-manifold of E VIII and can be viewed as the “projective line” ((O ⊗ O)P1) over the

“octonionic octonions” [50]. For the computation of the cohomology of Gr⊥8 (R16), just note that the involution
⊥ identifies p1 → p⊥1 , p2 → p⊥2 , p3 → p⊥3 , e → e⊥. This, due to the relations in (49), allows only the
p2

1, e, p4
1, p2

1e, p6
1, p4

1e, p8
1, p6

1e classes to survive up to dimension 32. This gives the Poincaré polynomial

Poin
Gr⊥8 (R16)

= 1 + 2t8 + 2t16 + 2t24 + 2t32 + . . . .
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