View metadata, citation and similar papers at core.ac.uk

Hindawi

Mathematical Problems in Engineering
Volume 2018, Article ID 7231920, 8 pages
https://doi.org/10.1155/2018/7231920

Research Article

brought to you by

provided by Archivio della ricerca- Universita di Roma La Sapienza

Hindawi

Identifying e-Commerce in Enterprises by means of Text Mining

and Classification Algorithms

Gianpiero Bianchi,! Renato Bruni(®),? and Francesco Scalfati’

'ISTAT, Direzione Centrale per la Metodologia e il Disegno dei Processi Statistici (DCME), Via Depretis 77, Roma 00184, Italy
2Universita di Roma “Sapienza”, Dip. di Ing. Informatica, Automatica e Gestionale (DIAG), Via Ariosto 25, Roma 00185, Italy

Correspondence should be addressed to Renato Bruni; bruni@dis.uniromal.it

Received 30 November 2017; Revised 10 May 2018; Accepted 10 June 2018; Published 9 August 2018

Academic Editor: Andras Szekrenyes

Copyright © 2018 Gianpiero Bianchi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Monitoring specific features of the enterprises, for example, the adoption of e-commerce, is an important and basic task for several
economic activities. This type of information is usually obtained by means of surveys, which are costly due to the amount of
personnel involved in the task. An automatic detection of this information would allow consistent savings. This can actually be
performed by relying on computer engineering, since in general this information is publicly available on-line through the corporate
websites. This work describes how to convert the detection of e-commerce into a supervised classification problem, where each
record is obtained from the automatic analysis of one corporate website, and the class is the presence or the absence of e-commerce
facilities. The automatic generation of similar data records requires the use of several Text Mining phases; in particular we compare
six strategies based on the selection of best words and best n-grams. After this, we classify the obtained dataset by means of four
classification algorithms: Support Vector Machines; Random Forest; Statistical and Logical Analysis of Data; Logistic Classifier.
This turns out to be a difficult case of classification problem. However, after a careful design and set-up of the whole procedure, the

results on a practical case of Italian enterprises are encouraging.

1. Introduction

A common basis for several data engineering tasks is the
collection of information regarding specific features of enter-
prises or similar entities. This information is usually obtained
by means of surveys, which are costly due to the amount of
personnel required for the practical realization of the task,
especially personnel from all the respondent organizations.
On the other hand, an automatic detection of the features
of interest, if possible, would allow consistent savings. One
important case is monitoring the adoption of e-commerce
in enterprises. This information is necessary, for example, in
several economic, social, or statistical analyses. An automatic
detection of the presence of e-commerce can be done, since in
general this information is publicly available on-line through
the corporate websites. However, to extract this information
with some degree of reliability, several processing steps are
required.

Given a set of data records grouped in two or more
classes (i.e., labeled), the task of classification consists of
learning from these labeled data a criterion to assign the
class to new unlabeled data. The set of labeled data is called
training set; another set of labeled data used to evaluate
the results of a classification algorithm by comparing the
predicted and the actual classes is called test set. Classification
is a fundamental Data Mining aspect, and many different
classification algorithms have been proposed in the literature.
See for references, e.g., [1, 2]. The above described detection
task can be seen as a classification problem, where each data
record refers to the website of a single enterprise, and its class
is presence or absence of e-commerce.

Obtaining such data records from the corporate websites
is a Text Mining operation. Text Mining is the branch of
Data Mining concerning the process of deriving high-quality
information from text; see also [3].This area underwent
noteworthy improvements in recent years (see, e.g., [4, 5]),

https://core.ac.uk/display/188824805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0001-5351-5372
https://doi.org/10.1155/2018/7231920

with a number of concurrent factors contributing to its
progress, first of all the continuous expansion of the Internet
and the demand for effective search strategies.

However, the above described problem turns out to be a
very difficult case of the classification problem, for several
reasons. First, it has a very large dimension, because each
record has thousands of fields. Secondly, the data records
should be automatically generated from the content of each
single website. This is a complex selection process that
requires the use of different Text Mining phases. Thirdly,
the problem is inherently difficult, since the data produced
in this manner are inevitably noisy and not completely
homogeneous. Web sites are of course not standardized; part
of the information of a website is provided to the human users
by means of the graphics rather than the text, etc. Therefore,
to obtain a satisfactory accuracy in the classification phase,
a quite articulated procedure has to be developed. Previous
attempts in solving the same problem are described in [6-8].

In this work, we describe our strategy for classifying
a list of 2,794 websites of Italian enterprises in order to
automatically detect whether each website offers e-commerce
facilities or not. We proceed as follows. Given the list of
the websites of the above enterprises, we extract all the
text from those websites by means of an automatic scraping
procedure, and we use this text to prepare the data records.
Such records should contain only the relevant part of each
single website, which is in practice a selection of its words
possibly integrated with additional information that could
be automatically retrieved. Additional information may be
as follows: the presence of credit card or currency logos, the
presence of login forms for the users, and in general any
nontextual information that would be judged relevant to the
analysis. These records are then used to write the document-
term matrix, which is a matrix reporting, for each record,
the frequency of each of the words in the above-mentioned
selection.

Data records and document-term matrix are obtained by
applying several Text Mining procedures. In particular, we
identified six different effective ways to process the dataset:
using only the best words, with or without lemmatization;
using only the best n-grams; using both the best n-grams and
the best words, with or without the lemmatization; using the
best n-grams and then a word embedding procedure. Hence,
we obtain six different versions of the dataset, which are
finally classified by using four state-of-the-art classification
algorithms: Support Vector Machines; Decision Trees; Statis-
tical and Logical Analysis of Data; Logistic Classifier. These
were selected through preliminary experiments in which
such classifiers appeared as the most adequate for similar
problems.

The main content of this work is therefore the description
of innovative mining techniques to convert the problem of the
detection of e-commerce into a data classification problem
and a comparison of the practical results of these techniques.
The work is organized as follows. Section 2 presents the
different Text Mining procedures used. Section 3 describes
the selected classification algorithms. Section 4 reports the
practical results of the described approach and their analysis.
Finally, Section 5 draw conclusions.

Mathematical Problems in Engineering

2. The Text Mining Phase

We initially extract the text from each single website, by
using the web scraping procedure described in Section 2.1.
This procedure reads the accessible pages of the website
and saves to a single text file all the text (and possibly the
additional information mentioned in Section 1) that could
be retrieved. We receive in input the list of the corporate
websites. The list used in our experiments had 2,794 entries,
chosen randomly among the Italian enterprises with at least
10 persons employed; hence we obtained 2,794 very large
text files. After this, each text file receives the class label,
which is whether the corresponding website actually offers
e-commerce facilities or not. We denote by D the dataset
obtained, each element of D being a text file labeled with
the class. To perform the classification task, we initially select
within D a training set S composed of 50% of the elements of
D. The remaining part of D constitutes the test set T. Hence,
the elements of T actually have the class label, but that label is
kept hidden during the whole process until the classification
of T has been performed, and it is only used afterwards, to
evaluate the accuracy of the classification produced.

By working on the elements of S, we operate a number of
selection steps, in order to obtain records containing, as much
as possible, only information that is relevant for the classi-
fication, and not very large and unstandardized collections
of text. These records are used to write the document-terms
matrix. We have identified four basic manners to perform
such selection steps, which are listed below. We describe them
in detail in the Sections 2.2, 2.3, 2.4, and 2.5, and we compare
their performances in Section 4.

(1) Best words with lemmatization

(2) Best words without lemmatization
(but with a dictionary)

(3) Best n-grams (with or without a dictionary)

(4) Best n-grams followed by word embedding.

Some of the above techniques are obviously in mutual
exclusion, while others can be combined. In particular, we
use also the combination of 1 and 3 and the combination of 2
and 3. These combinations will constitute the fifth and sixth
alternatives in Section 4. We observe that, generally speaking,
the combinations often produce improvements in the results.
However, these combinations also increase the computational
burden of the resulting procedure, as it becomes the sum of
those given by the two component basic techniques, while
the improvements are much more limited. In the following
subsections we describe in detail all the operations mentioned
here.

2.1. Web Scraping. The web scraping procedure is imple-
mented in Java; it works by reading the homepage and all the
subpages directly accessible from it. It subsequently discards
the text of the subpages not containing any word from a
precompiled list I of words of interest for e-commerce (e.g.,
price, cart, pay, buy, etc.). Indeed, when none of these words

Mathematical Problems in Engineering

appear in a subpage, that page is likely not concerning e-
commerce. The scraping procedure also discards all non-
alphabetic strings of characters, while it handles all html
and JavaScript code. Note that we do not read the pages
not directly linked to the homepage, because they would
add a consistent number of words that are however scarcely
informative and thus would mainly constitute additional
noise.

On the other hand, for the accepted pages, this procedure
performs also Optical Character Recognition (OCR) on all
types of images, in order to read also the words provided as
images, which are often written with such a special emphasis
because they are particularly relevant. Furthermore, this pro-
cedure takes the screen-shot of the homepage and performs
OCR on that, too. Indeed, many websites try to catch the eye
on the key sentences of the homepage by adopting unusual
writing techniques. OCR is achieved by using the Tesseract
Open Source OCR Engine, initially developed by Hewlett
Packard Research before 1995 and subsequently by Google
Research since 2006 [9].

Finally, we complement the text extracted so far with the
additional information mentioned in Section 1. In our case,
we encode with special words the presence in a webpage of
the following features: (1) a login form for the users registered
to that website; (2) a credit card logo (Visa, Mastercard, etc.);
(3) a currency logo (euro, dollar, etc.). This information may
be further enriched by means of systematic interrogations of
search engines. An important example is the text provided
by a search engine as an automatic summarization of each
search result. The result of the above operations is a very
large text file for each website. Now, each of such text files
receives the class label, which is positive if the corresponding
website actually offers e-commerce facilities and negative
otherwise. The class is obtained from the dataset used in
[6], and it may contain a small degree of noise in the class
label (misclassification errors). Note also that the obtained
dataset D is quite imbalanced: positive records are not more
than one-fourth of the total. These two aspects contribute
to making the classification difficult. However, they have
been kept on purpose, since the real cases of the considered
problem generally share these features.

2.2. Best Words with Lemmatization. We process all the ele-
ments in S with the software TreeTagger. This tool performs
part-of-speech recognition (POS tagging) and lemmatization
in several languages. It was initially described in [10] and it
was subsequently developed by several contributors. Hence,
every word contained in these training files is identified as
a particular part of speech (e.g., a noun, a verb, etc.) and it
is lemmatized; that is, the inflectional ending of the word is
removed in order to return the word to its basic lemma. This
allows grouping together the different inflected forms of a
word (e.g., plurals of nouns, tenses of verbs, etc.) so they can
be analyzed as a single item.

This process is applied to any word, at first with the
version of TreeTagger developed for the Italian language. If
the word is an Italian word, this process returns the lemma
corresponding to the word. If the word is not an Italian one,
the above process returns that the word is unknown. In this

case, the process described above is applied again with the
version of TreeTagger developed for the English language. If
the word is still unknown, this means that that word belongs
to a different language, or that it may have been produced by
some error; in any case, that word is discarded. Indeed, many
websites of our list are in Italian language only, and we expect
that the Italian and the English versions of the multilanguage
websites are enough for performing our classification task.

Finally, we use this “normalized” training files to extract
the best words, i.e., the most characterizing words for our
detection task. We do this by using a procedure implemented
in Python that uses functions available from the Natural
Language Toolkit (NLTK) 3.0 (see also [11, 12]). Such a proce-
dure initially removes the stop-words (articles, prepositions,
etc.) and then computes, for any remaining word w, a score
s(w) = Xf(w) + X% (w), where Xf is called positive score and
XE negative score. These scores are based on the well-known
“chi-square test,” and the basic idea is to give a measure of the
dependence between the presence of w and the class of a file.
The positive score is defined as follows:

X2 _ p(Puipyn— Plszl)2)
T (pu + Pi2) (Par + Pa2) (P11 + Par) (P12 + Do)

where p,; is the number of occurrences of w in positive files;
P15 is the total number of occurrences of w; p,, is the number
of all distinct words occurring in positive files; p,, is the total
number of all distinct words; and p = p;; + pia + Pa1 + Paa-

The negative score is defined similarly, except that p,,
becomes the number of occurrences of w in negative files
and p,, the number of all distinct words occurring in
negative files. Recall that positive files are those generated
from websites offering e-commerce facilities; negative files are
those generated from websites not offering them. After this,
all words are sorted by decreasing score values, and the first
ones are called best words. In particular, we extract the first
1,000 of them, which constitute the set W1 of the 1,000 most
characterizing words, reduced to their underlying lemmas,
in Italian or English language, selected on the basis of their
conditional frequencies. The value 1,000 was selected as a
good compromise between accuracy and speed in our exper-
iments. If we select more than 1,000 words, the procedure
becomes slower with very modest improvements in accuracy
(allegedly, almost all the words that are really “characterizing”
already appear within the first 1,000 positions). On the other
hand, if we select less than 1,000 words, the procedure loses an
accuracy not sufficiently compensated by the improvements
in speed.

2.3. Best Words without Lemmatization. In this case, we
perform the same operations described in the above sub-
section, but without the lemmatization step. Instead of that,
we simply filter all the text by using dictionaries: we accept
only the words appearing in a (reasonably complete) list of
all Italian and English words, containing also all the possible
inflectional forms. These dictionaries were obtained from the
mentioned software TreeTagger. In this manner, we extract
the set W2 of the 1,000 most characterizing words, selected
on the basis of their conditional frequencies, in Italian

or English language but without detecting the underlying
lemmas. Therefore, different inflections of the same lemma
will be considered different words. However, this technique
has the advantage of being much faster and lighter that the
former one, from the computational point of view.

2.4. Best n-Grams. n-grams are sequences of n adjacent
words which are typically used together. An example is “credit
card,” which is a bigram, ie., has n = 2. To extract the
n-grams, we may optionally filter all the words of the text
files by using dictionaries. This means accepting only the
words appearing in the above-mentioned list of all Italian
and English words, including also all the possible inflectional
forms. Using dictionaries would remove words in languages
different from Italian or English or words erroneously read
by the scraping procedure. On the other hand, not using
dictionaries would allow considering also special strings or
acronyms that are not real words but are commonly used.
From the computational point of view, the first choice leads
to a reduced set of candidate n-grams, which consumes less
memory, while the second choice consumes more memory
but it is faster. After evaluating the advantages of each choice,
we adopted the first one for our experiments.

In the case of n-grams, lemmatization is not performed,
since substituting words with their basic lemmas may result
in losing the identity of many n-grams, which are generally
built with specific inflectional forms.

After this, we prepare a list R of the relevant words. We
define as relevant the words that meet the following three
criteria: (1) they appear frequently enough (we require that
they appear in at least 1% of the text files belonging to one
class); (2) they are not stop-words (articles, prepositions, etc.);
(3) they respect some conditions on the length (basically we
avoid words that are too short or too long, by penalizing
words shorter than 3 letters or longer than 12 letters).

Subsequently, we apply the n-grams procedure, again
from the Natural Language Toolkit (NLTK) 3.0, to identify
the n-grams that contain at least one of the words of R. After
this, we use another procedure to compute, for any such n-
gram z, a score s(z) = Xi(z) + Xf(z), where Xi is called
positive score and XE negative score. These scores are again
based on the well-known “chi-square test,” and the basic
idea is to give some measure of the dependence between the
presence of the words constituting z and the class of a file.
Assuming that z is a bigram, the positive score is defined as
follows:

2
2 _ 9 (911922 — 91291))
T (g d2) (9 + 92) (901 + 92) (912 + 92)

where ¢;, is the number of positive files containing all the
words constituting z; ¢, is the number of positive files
containing only the first word of z; g,, is the number of
positive files containing only the second word of z; q,, is
the number of positive files not containing any of the words
constituting z; and g = q;; + g1, + ga1 + 9. The negative
score is defined similarly, except that all the above values are
computed for negative files. In case z has n > 3, the above
formula is consequently expanded. We extract n-grams using

Mathematical Problems in Engineering

all the values of n from 2 to 5. In case an n-gram with n
words is fully contained in a larger n-gram with (n+1),...,5
words, we remove the larger n-gram. We do this because
we assume that the presence of the shorter n-gram is more
significant than that of the larger one. We observe that, in
our experiment, this practically leads to using almost only
bigrams, with consequent computational advantages.

All n-grams are sorted by decreasing values of the score
s, and the first ones are called best n-grams. In particular,
we take the first 1,000 of them, thus obtaining the set Z of
the 1,000 most characterizing n-grams containing at least
one relevant word of the set R. Again, the value 1,000
was selected as a good compromise between accuracy and
speed in our experiments. If we select more than 1,000
n-grams, the procedure becomes slower with almost no
improvements in accuracy (allegedly, almost all the n-grams
that are really “characterizing” already appear within the first
1,000 positions). If we select less than 1,000 n-grams, the
procedure loses an accuracy not sufficiently compensated by
the improvements in speed.

2.5. Best n-Grams Followed by Word Embedding. In addition
to the operations described in the above subsection, after the
identification of the best n-grams, we apply a word embed-
ding procedure. To this aim, we use the open source proce-
dure doc2vec, available from the Python library GenSim [13].
This procedure implements a strategy for the unsupervised
learning of continuous representations for large blocks of
text, such as sentences, paragraphs, or entire documents. We
initially reduce each single text file to its intersection with the
words of the set Z, obtaining the sets of records S, T',. Note
that they actually constitute an automatic summarization of
the texts.

We then use doc2vec to convert each record r € S,, T,
into a vector v of k integer numbers that should represent r
at a higher abstraction level. This is obtained by representing
each word of Z as a point (i.e., a tuple of numerical coordi-
nates) in a vector space, by evaluating the distances among
these points and by subsequently clustering these points into
k =~ |Z|/5 clusters by a k-means algorithm (see, e.g., [1]). The
distance between two words is computed as the probability of
finding them in the same context (that is, a sequence of words
of predetermined length). Then, the vector v associated with
the generic record r is composed of the cardinalities of the k
intersections between the following: the set of all the words in
r and the set of the words of each of the k clusters. Eventually,
all these vector representations {v;} of the records constitute
a set V. These vectors {v,} can be used as records themselves
and can undergo the classification step described in the next
section.

2.6. The Data Records Produced. So far, we have described
the selection of the sets W1,W2,Z,V. We also define the
sets Al = W1 U Z and A2 = W2 U Z, composed of the
single words and n-grams that should be more relevant for
the considered classification task. Now, given a generic record
r, either in the training set S or in the test set T, we define
ry, as the intersection between r and W 1; that is, we keep in
ry, only the words belonging also to set W1. We similarly

Mathematical Problems in Engineering

define ryy,, 7, 74, and r4,. Moreover, if we use the word
embedding procedure and we substitute records with their
vector representations V, we denote the generic vector by ry,.
Hence, we have six different and alternative versions of each
record: Ty, Twas Tz T Tars Taa-

We denote by Sy1, Sz Sz Sys Sar> Sap the result of the
above Text Mining operations on all the elements of the
training set S and by Ty, Tyya> Ty Ty Tuq> Tayp the result of
the same operations on all the elements of the test set T'.

3. The Classification Procedures

Many different classification approaches have been proposed
in the literature, based on different paradigms and data
models. There is not a single approach able to outperform all
the others on every instance of the problem. However, given a
specific category of problems, it is generally possible to iden-
tify which approaches provide the best performances for that
category. We applied different classifiers by using scikit-learn
[14], which is a very good machine learning package currently
included into scientific Phyton distributions. In our case,
the best results in the preliminary tests have been obtained
with the following: Support Vector Machines; Decision Trees;
Logistic classifiers. We also obtained comparable results with
another technique called Statistical and Logical Analysis
of Data, currently not included in scikit-learn. Therefore,
we selected these four classifiers for our full experiments.
They are briefly described below. The fields of each record
corresponding to the words/n-grams constitute the set of
input or independent variables; the class constitutes the target
or dependent variable. For each of these classifiers, we search
for the parameters providing the best accuracy performances
by using a simple grid search approach. Note that a more
careful parameter selection could lead to further modest
improvements in these performances; however this is not the
focus of this work.

Support Vector Machines (SVMs) are supervised learning
models that build a deterministic binary linear classifier.
This technique is based on finding a separating hyperplane
that maximizes the margin between the extreme training
data of opposite classes. New examples are then mapped
into that same space and predicted to belong to a class,
on the basis of which side of the hyperplane they fall on.
In addition to performing linear classification, SVMs can
efficiently perform a nonlinear classification using what is
called the kernel trick, by implicitly mapping their inputs to a
higher dimensional space; see also [15, 16]. We use the Python
implementation of this classifier that is available in the scikit-
learn package by means of the function SVC().

Decision Trees are a supervised learning model that maps
observations about the input variables to conclusions about
the target variable. The goal is to create a Decision Tree that
predicts the value of the target variable based on combi-
nations of the values of the input variables. Each internal
node is associated with a decision concerning the value of
an input variable that best splits the training set. Different
algorithms can be used to determine the input variables
associated with the internal nodes; see also [17]. Several
Decision Trees can be combined as an ensemble classifier,

obtaining the so-called Random Forest approach. Random
forests are generally more robust and can achieve better
performances than the single Decision Trees. For this reason,
we use such a version of the Decision Tree methodology in
our experiments. We use the Python implementation of this
classifier that is available in the scikit-learn package by means
of the function RandomForestClassifier().

Statistical and Logical Analysis of Data (SLAD) is a
classification methodology based on Boolean logic and dis-
crete optimization [18]. It constitutes a recent version of the
classical approach of Logical Analysis of Data (LAD) [19]
incorporating scoring criteria proposed in [20]. To apply
this approach, all values must be converted into binary form
by means of a discretization process called binarization.
The domain of each field is partitioned in a finite number
of subdomains that are encoded using binary attributes.
Since the number of obtained binary attributes is often very
large, a selection step is performed. After this, the selected
binary attributes are used to build the patterns. A pattern
is a conjunction of binary attributes, also called conditions,
characterizing one class. Each pattern receives a weight,
which is a measure of its importance for the classification.
Finally, each unlabeled record is classified on the basis of the
weighted sum of the patterns covering that record. We use
the C++ implementation of this classifier that was used in the
work [18].

Logistic regression is a regression model where the target
variable is categorical; hence, it can be used to perform clas-
sification. This approach measures the relationship between
the target variable and one or more independent variables by
estimating the probabilities using a logistic function, which
is the cumulative logistic distribution; see also [21]. Logistic
regression can be seen as a special case of the generalized
linear model and thus analogous to linear regression. We
use the Python implementation of this classifier that is
available in the scikit-learn package by means of the function
LogisticRegression().

4. Experimental Results

We apply the described procedure to a list of 2,794 corporate
websites. Each record has a class value, although this infor-
mation may be noisy. A record is positive if the correspond-
ing website offers e-commerce facilities, and it is negative
otherwise. The dataset is very imbalanced, since roughly
20% of the entries are positive. The resulting classification
problem is very difficult. Indeed, it is very easy to reach an
80% of accuracy by simply predicting all records as negative.
However, this result would be completely useless from the
practical point of view. Obtaining the correct identification
of the positive records constitutes the main target in this
type of applications, and this identification is particularly
challenging.

To perform the classification task, in each dataset we
select a training set S of 1,397 records, which is 50% of
the total dataset. To tackle the issue of imbalance in the
training set (see also [22, 23]), we operate as follows. First,
we perform a partial resampling by randomly undersampling
the majority class and oversampling the minority class (by

6

TABLE 1: Results on Sy, Ty, : best words with lemmatization.
Algorithm Accuracy Precision Sensitivity Fl-score
SVM 84.97 % 68.34 % 58.03 % 62.77 %
RF 84.82 % 67.29 % 59.34 % 63.07 %
SLAD 84.70 % 64.51 % 60.24 % 62.30 %
LC 83.54 % 64.04 % 56.07 % 59.79 %

Mathematical Problems in Engineering

TABLE 6: Results on S 4,, T y,: best words without lemmatization and
best n-grams.

Algorithm Accuracy Precision Sensitivity Fl-score
SVM 84.32 % 64.14 % 63.93 % 64.04 %
RF 85.76 % 69.06 % 62.95 % 65.87 %
SLAD 84.60 % 64.11 % 60.24 % 61.30 %
LC 83.82 % 64.79 % 56.72 % 60.49 %

TABLE 2: Results on Syy,, Tyy,: best words without lemmatization.

Algorithm Accuracy Precision Sensitivity Fl-score
SVM 85.11 % 65.33 % 63.59 % 64.45 %
RF 84.47 % 68.75 % 61.31 % 63.82 %
SLAD 84.45 % 64.15 % 59.03 % 62.54 %
LC 83.54 % 64.04 % 56.07 % 59.79 %
TABLE 3: Results on S, T,: best n-grams.
Algorithm Accuracy Precision Sensitivity Fl-score
SVM 85.11 % 77.09 % 45.24 % 57.02 %
RF 85.18 % 69.74 % 62.02 % 65.43 %
SLAD 85.47 % 64.67 % 61.00 % 62.68 %
LC 83.32 % 65.38 % 50.16 % 56.77 %

TABLE 4: Results on S, Ty: best n-grams followed by word embed-

ding.

Algorithm Accuracy Precision Sensitivity Fl-score
SVM 82.89 % 60.78 % 60.98 % 60.88 %
RF 84.75 % 66.43 % 60.98 % 63.59 %
SLAD 84.72 % 66.13 % 60.58 % 63.39 %
LC 82.61 % 61.65 % 53.77 % 58.44 %

TABLE 5: Results on S,,, Ty,;: best words with lemmatization and

best n-grams.

Algorithm Accuracy Precision Sensitivity Fl-score
SVM 84.75 % 65.97 % 62.30 % 64.08 %
RF 85.61 % 69.26 % 62.31% 66.04 %
SLAD 85.97 % 66.67 % 62.18 % 64.31 %
LC 83.60 % 64.29 % 56.77 % 60.89 %

replication), until obtaining a dataset of the same size but
containing roughly 40% positive entries. Then, we adjust
the misclassification costs (computed during the training
phase) by using weights inversely proportional to the class
frequencies in the resampled training set. Finally, we focus
on performance measures possessing low sensitivity to data
imbalance.

We perform experiments using the six versions of the
dataset described at the end of Section 2 and the four
classifiers described in Section 3. In Tables 1, 2, 3,4, 5, and 6,
SVM denotes Support Vector Machines; RF denotes Random
Forest; SLAD denotes Statistical and Logical Analysis of Data;
LC denotes Logistic Classifier.

After training the classifiers on the training sets
Swi>Sw2> S Sy Sa1>Sas, performing 5-fold cross-
validation, we obtain the sets of the predictive models
My, Myyn, Myy My, M sy, M y,. Then, we use them to
predict the class for the records in the corresponding test sets
Twi> Twa Ty Ty Tays Ty The number of terms actually
included in each predictive model is clearly quite variable,
depending on the type of dataset, the classification algorithm,
etc. However, we could estimate for this number a range
going approximatively from 10% to 50% of the total in the
majority of the cases. Finally, by knowing the real class of
the records in the above test sets, we compute the confusion
matrix and we use its elements (true positives TP, false
negatives FN, true negatives TN, and false positives FP) to
evaluate the following performance measures:

(i) Accuracy a, defined as the percentage of correct
predictions over all predictions:

PR (0 (TP + TN) 3)
" TP+FN +TN +FP’

(ii) Precision p, also called the positive predictive value,
defined as the percentage of true positive records in
all positive predictions: p = 100 TP/(TP + FP).

(iil) Sensitivity s, also called the true positive rate, defined
as the percentage of correct positive predictions in all
real positive records: s = 100 TP/(TP + FN).

(iv) Fl-score, which is the harmonic mean of precision
and sensitivity:

200TP

= 20IP (4)
2TP + FP + FN

Note that, for the detection of e-commerce, Fl-score appears
to be the most relevant performance measure, since it fully
evaluates the correct identification of the positive records,
which is the most important and difficult task, and because it
has low sensitivity to data imbalance. Due to its broad usage,
we also report the classification accuracy, though we should
observe that this measure typically does not provide enough
insight and it is sensible to data imbalance.

Table 1 reports the results of the four described classifiers
on the records obtained using only the best words with
lemmatization (Syy;, Ty,); Table 2 reports the same results on
the records obtained by using only the best words without
lemmatization (Syy,, Ty,); Table 3 reports the same results
on the records obtained by using only the best n-grams
(S4,T,); Table 4 reports the same results on the records

Mathematical Problems in Engineering

obtained by using the vector representations given by the
word embedding procedure (Sy, T); Table 5 reports the
same results on the records obtained by using the best words
with lemmatization and the best n-grams (S,;, T4,); finally,
Table 6 reports the same results on the records obtained using
the best words without lemmatization and the best n-grams
(S22 Tao)-
By analyzing the above results, we observe what follows.

(1) The Random Forest (RF) classifier provides the
best performances in our experiments. However, we
notice that Support Vector Machines (SVMs) and Sta-
tistical and Logical Analysis of Data (SLAD) are not
much worse in the same experiments. In particular,
SVM techniques are generally able to give more stable
results, since they are less sensible to overfitting issues,
and they also exhibit a better flexibility with respect to
the other classifiers (and for these reasons SVMs are
often used in practical applications; see, e.g., [24-26]).
SLAD, on the other hand, offers the advantages of
providing intelligible logic rules for the classifications,
which could be used for gaining more insight on the
analyzed phenomenon (see, e.g., [27]).

(2) The use of the best n-grams alone is able to provide
results that, for this particularly difficult classification
problem, are very good (Table 3). However, the joint
use of best n-grams and best words (Tables 5 and 6)
allows attaining a slightly better performance. More-
over, this last option is considerably more robust, as
shown by the results of all the four classifiers and not
only those of the best one.

(3) When focusing on the results of the best words (Tables
1 and 2), we can analyze the differences between the
use of lemmatization and the use of a dictionary. In
our case, using only a dictionary, without returning
each word to its basic lemma, appears slightly more
convenient. This means that the presence of specific
inflectional forms has a precise significance with
respect to the presence of e-commerce. Indeed, in the
vast majority of the cases of e-commerce, very specific
inflectional forms of the key words are used (e.g., the
present of the verbs buy, pay, book, etc.). On the other
hand, when using also the n-grams (Tables 5 and 6),
the results become almost comparable. Apparently,
many specific inflectional forms are captured also by
the n-grams, so the possible advantages of not using
lemmatization cease. In any case, lemmatization has
the advantage of saving some memory, because dif-
ferent words may correspond to the same lemma.

(4) The use of the word embedding technique can provide
slightly more robustness with respect to the use of
best n-grams alone. The improvements are not fully
apparent in our experiments, because the results of
this technique usually improve when the number of
n-grams used in it becomes consistently larger than
1,000. However, this was not possible in our exper-
iments, due to the very large memory requirements

of this technique. Testing the use of larger sets of n-
grams with this technique will be part of our future
work.

The computational times and the memory usage of the
procedures are quite reasonable, considering the large size
of the problem. In particular, using a PC with i7 processor
and 16GB RAM, the fastest technique is the one producing
S,, T, (only the best n-grams), which takes about 2 hours.
The use of the dictionary and the set of relevant words R
avoids the generation of several useless n-grams, saving also
memory. The generation of Sy, Ty, requires a very moderate
additional time, but a considerable additional memory. The
generation of Sy,, Ty, requires slightly more time, about 3
hours, though the memory usage is inferior. On the other
hand, the generation of Sy, T}y, by using lemmatization is
a much slower process and requires about 6 hours, though
the memory usage is still inferior because different words
may correspond to the same lemma. The combinations of
best words and best n-grams clearly require the times and the
memory needed by its two components. Hence, the genera-
tion of S4,, T4, requires about 5 hours, while the generation
of S41, T4, needs about 8 hours. The small enhancement in
performances is therefore paid with a considerable increase
in complexity.

5. Conclusions

In several large-scaled surveys, the automatic individuation
of some feature of interest can be seen as a classification
problem. Determining whether an enterprise website offers
e-commerce facilities or not is a particularly interesting case.
However, to solve the problem by means of a classification
algorithm, it is necessary to convert each website into a record
describing that website in a compact and tractable manner.
Such records should contain only the relevant portion of
the information of the websites, and we found that a careful
selection of the information inserted in the records is a key
element for obtaining satisfactory performances in the classi-
fication. We have presented several alternative techniques for
doing this, and we have observed that introducing too much
information may be not beneficial because of the amount of
noise introduced at the same time. Another issue faced in the
classification of similar data is data imbalance. This can be
addressed by recurring to resampling, weights’ adjustments
in the learning phase, and the use of performance measures
with low sensitivity to data distributions.

The results of our automatic procedure may be used
either for replacing surveyed data for statistical purposes,
thus saving the cost of actual surveys (especially for the
respondents), or to validate and enrich already surveyed
data, for example, those contained in the Business Register
of a Statistical Office, thus improving their quality and
reliability. The present analysis should support in designing
a procedure to solve real-world problems of the described
type, possibly integrated by taking into account the specific
requirements of the analyzed practical case. Future work may
include the extension of the described procedure to other
languages different from Italian and English; the evaluation

of other classification algorithms in this task; an analysis of
the robustness of the proposed approach [28]; the application
of the detection via web to other features different from the
presence or the absence of e-commerce.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

References

[1] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, Springer, New York, NY, USA, 2008.

[2] W. Klosgen and J. M. Zytkow, Eds., Handbook of Data Mining
and Knowledge Discovery, Oxford University Press, 2002.

[3] R.Feldman and J. Sanger, The Text Mining Handbook: Advanced
Approaches in Analyzing Unstructured Data, Cambridge Uni-
versity Press, Cambridge, UK, 2006.

[4] A.Khadjeh Nassirtoussi, S. Aghabozorgi, T. Ying Wah, and D.
C. L. Ngo, “Text mining for market prediction: A systematic
review,” Expert Systems with Applications, vol. 41, no. 16, pp.
7653-7670, 2014.

[5] W. W. M. Fleuren and W. Alkema, “Application of text mining
in the biomedical domain,” Methods, vol. 74, pp. 97-106, 2015.

[6] G. Barcaroli, G. Bianchi, R. Bruni, A. Nurra, S. Salamone, and
M. Scarno, “Machine learning and statistical inference: the case
of Istat survey on ICT, in Proceeding of 48th scientific meeting of
the Italian Statistical Society SIS, 2016, M. Pratesi and C. Pena,
Eds., Salerno , Italy, 2016.

G. Barcaroli, A. Nurra, S. Salamone, M. Scannapieco, M. Scarno,
and D. Summa, “Internet as data source in the istat survey on
ICT in enterprises;,” Austrian Journal of Statistics, vol. 44, no. 2,
pp. 31-43, 2015.

[8] D. Blazquez, J. Domenech, J. A. Gil, and A. Pont, “Automatic
detection of e-commerce availability from web data,” in Pro-
ceedings of the CARMA 2016 - Ist International Conference on
Advanced Research Methods and Analytics, July 2016.

R. Smith, “An Overview of the Tesseract OCR Engine,” in
Proceedings of the Ninth International Conference on Document
Analysis and Recognition (ICDAR 2007) Vol 2, pp. 629-633,
Curitiba, Parana, Brazil, September 2007.

)
)

=

[10] H. Schmid, “Improvements in Part-of-Speech Tagging with
an Application to German,” in Natural Language Processing
Using Very Large Corpora, vol. 11 of Text, Speech and Language

Technology, pp. 13-25, Springer Netherlands, Dordrecht, 1999.

[11] S.Bird, E. Klein, and E. Loper, Natural Language Processing with
Python, OReilly Media, 2009.

[12] “NLTK 3.0 Documentation,” http://www.nltk.org/book/.

[13] R. Rehurek and P. Sojka, “Software Framework for Topic

Modelling with Large Corpora,” in Proceedings of the LREC 2010

Workshop on New Challenges for NLP Frameworks, Malta, 2010.

E Pedregosa, G. Varoquaux, and A. Gramfort, “Scikit-learn:

machine learning in Python, Journal of Machine Learning

Research, vol. 12, pp. 2825-2830, 2011.

[15] C.-C. Chang and C.-]. Lin, “Training v-support vector classi-
fiers: theory and algorithms,” Neural Computation, vol. 13, no.
9, pp. 2119-2147, 2001.

[16] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer,
1995.

(14

Mathematical Problems in Engineering

[17] W.-Y. Loh, “Fifty years of classification and regression trees,”
International Statistical Review, vol. 82, no. 3, pp. 329-348, 2014.

[18] R.Bruniand G. Bianchi, “Effective Classification Using a Small
Training Set Based on Discretization and Statistical Analysis,”
IEEE Transactions on Knowledge and Data Engineering, vol. 27,
no. 9, pp. 23492361, 2015.

[19] E.Boros, P. L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, and I.
Muchnik, “An implementation of logical analysis of data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 12, no. 2,
pp- 292-306, 2000.

[20] R. Bruni, “Reformulation of the support set selection problem
in the logical analysis of data,” Annals of Operations Research,
vol. 150, pp. 79-92, 2007.

[21] D. A. Freedman, “Statistical models: Theory and practice,”
Statistical Models: Theory and Practice, pp. 1-442, 2009.

[22] H.He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9,
pp- 1263-1284, 2009.

[23] H. He and Y. Ma, Eds., Imbalanced learning, IEEE Press,
Piscataway, NJ; John Wiley & Sons, Inc., Hoboken, N7, 2013.

[24] L. M. R. Baccarini, V. V. Rocha E Silva, B. R. De Menezes,
and W. M. Caminhas, “SVM practical industrial application for
mechanical faults diagnostic,” Expert Systems with Applications,
vol. 38, no. 6, pp. 6980-6984, 2011.

[25] Y. Ma and G. Guo, Eds., Support Vector Machines Applications,
Springer, 2014.

[26] M. De Santis, E. Rinaldi, E. Falcone et al., “Combining opti-
mization and machine learning techniques for genome-wide
prediction of human cell cycle-regulated genes,” Bioinformatics,
vol. 30, no. 2, pp. 228-233, 2014.

[27] R. Bruni, G. Bianchi, C. Dolente, and C. Leporelli, “Logical
Analysis of Data as a Tool for the Analysis of Probabilistic
Discrete Choice Behavior,;” Computers ¢ Operations Research,
2018, https://doi.org/10.1016/j.cor.2018.04.014.

[28] R. Bruni and G. Bianchi, “Robustness Analysis of a Web-
site Categorization Procedure based on Machine Learn-
ing” Technical report n. 04-2018 DIAG, Sapienza Univer-
sity of Rome, 2018, http://www.dis.uniromal.it/~bruni/files/
brunil8robustness.pdf.

http://www.nltk.org/book/
https://doi.org/10.1016/j.cor.2018.04.014
http://www.dis.uniroma1.it/~bruni/files/bruni18robustness.pdf
http://www.dis.uniroma1.it/~bruni/files/bruni18robustness.pdf

Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

