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Abstract Consider G = SL2(Z)/{±I } acting on the complex upper half plane H
by hM (z) = az + b

cz + d for M ∈ G. Let D = {z ∈ H : |z| ≥ 1, |�(z)| ≤ 1/2}. We
consider the set E ⊂ G with the nine elements M , different from the identity, such
that tr (MMT ) ≤ 3. We equip the tiling of H defined by D = {hM (D): M ∈ G}
with a graph structure where the neighbours are defined by hM (D) ∩ hM ′(D) 	= ∅,
equivalently M−1M ′ ∈ E . The present paper studies several Markov chains related
to the above structure. We show that the simple random walk on the above graph
converges a.s. to a point X of the real line with the same distribution of S2WS1 , where
S1, S2,W are independent with Pr(Si = ±1) = 1/2 and where W is valued in (0, 1)
with distributionPr(W < w) = ?(w).Here? is theMinkowski function. If K1, K2, . . .

are i.i.d with distribution Pr(Ki = n) = 1/2n for n = 1, 2, . . ., then W = 1
K1+ 1

K2+...

:

this known result (Isola in Appl Math 5:1067–1090, 2014) is derived again here.

Keywords Random continued fractions · Minkowski question mark function ·
Hyperbolic plane · Modular group
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1 Introduction

In this paper, we are concerned with random walks in the upper half of the complex
plane (hyperbolic plane)
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H = {z ∈ C : �(z) > 0}.

The randomwalk is induced by the action on H of themodular groupG = PSL(2,Z),
which is the multiplicative group of all 2×2 matrices with integer entries and determi-
nant 1, quotiented by identifying twomatriceswhen one is equal to the othermultiplied
by −I2. The basic properties of this action are presented in Serre [11]. For

M = ±
[
a b
c d

]
(1)

with a, b, c, d ∈ Z and det M = 1 we let

hM (z) = az + b

cz + d
, z ∈ H. (2)

It is readily verified that hM maps H into H since �(hM (z)) has the same sign as
�(z), for any M ∈ G. Moreover,

hMM ′(z) = hM (hM ′(z)),

which proves that G acts on H . Furthermore, this action is faithful, as a consequence
of the quotient made above.

The discrete nature of G implies the existence of fundamental domains for the
action of G on H . Roughly speaking, a fundamental domain is a subset of H which
contains one element for eachG-orbit. The traditional choice of a fundamental domain
for the above action is the region D of all z’s in H such that |z| ≥ 1 and |�(z)| ≤ 1/2.
Each point in the interior of D (and the point i) belongs to a different orbit, whereas the
remaining orbits intersect twodifferent points on the boundary of D. As a consequence,
the set of all images D = {hM (D), M ∈ G} covers the whole space, with two distinct
sets overlapping at most on their boundaries. As long as z ∈ D does not lie on the
boundary of a set inD, there is a natural “projection” of H onto D. The image hM (D)

intersects D only for M = ±Ei , for some i = 0, 1, . . . , 8, where

E1 =
[
1 1
0 1

]
E2 =

[
1 −1
0 1

]
E3 =

[
1 −1
1 0

]
E4 =

[−1 −1
1 0

]

h1(z) = 1 + z h2(z) = −1 + z h3(z) = 1 − 1

z
h4(z) = −1 − 1

z

E5 =
[
1 0
1 1

]
E6 =

[
1 0

−1 1

]
E7 =

[
0 −1
1 1

]
E8 =

[
0 −1
1 −1

]

h5(z) = z

1 + z
h6(z) = z

1 − z
h7(z) = − 1

1 + z
h8(z) = 1

1 − z

E0 =
[
0 −1
1 0

]
, h0(z) = −1

z
,
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with hi = hEi , for i = 0, 1, . . . , 8: see the well-known picture at page 128 of Serre
[11]. These matrices (and their sign change) are characterized in G as having the trace
of MMT less or equal to three, aside from the identity.

These matrices generate the whole group G, since already ±E0 and ±E1 together
have this property. More generally, hM (D) intersects hM ′(D) if and only if M ′ =
±MEi for some i = 0, 1, . . . , 8. As a consequence, one can endow D with a graph
structure, joining intersecting regions with an edge, getting in this way a regular graph
with vertices in D of degree 9 (incidentally, this graph is isomorphic to the Cayley
graph of G, taking the ±Ei ’s as a set of generators).

In the following, we are going to investigate the asymptotic behaviour of the
H -valued processes

Zz
n = hMn ◦ · · · ◦ hM1(z), V

z
n = hM1 ◦ · · · ◦ hMn (z), z ∈ H, (3)

where (Mk, k = 1, . . .) is a sequence of i.i.d. randommatrices, taking each of the 9 pos-
sible values Ei , i = 0, 1, . . . , 8, with the same probability 1/9 (from now on, we take
for granted the identification of M with −M). For each z ∈ H and each n = 1, 2, . . .,
the complex random variables Zz

n and V z
n have the same law, but whereas (Zz

n)
∞
n=0

is always a homogeneous Markov chain, the process (V z
n )∞n=0 is not. More specifi-

cally, in most of the cases it remains a Markov chain, but with transition probabilities
depending on z. In fact, if z and hM (z) are known, one deduces M , except when the
stabilizer of z is non-trivial, which happens only for a denumerable subset of z in H
(Serre, page 129). Whenever z ∈ hM (intD), for some M ∈ G, both processes can be
“projected” on the vertices of the graph. Of the greatest interest is the fact that, for z
in the interior of D, V z

n “projected” on the graph induces a simple nearest-neighbour
random walk on it.

In order to discuss the asymptotic behaviour of these processes, it is necessary to
extend the action of G on the boundary ∂H = R ∪ {∞}, the extended reals, and to
study the processes in ∂H

Xx
n = hMn ◦ · · · ◦ hM1(x),Y

x
n = hM1 ◦ · · · ◦ hMn (x), x ∈ ∂H. (4)

The following result can be found in the second chapter of the book by Bougerol,
Lacroix [1] (see Benoist and Quint [2] for a more recent presentation). It refers to
random compositions of Mobius transformations of the form (2) as they appear in (3)
and (4), with general unimodular matrices with real coefficients.

Theorem 1.1 Let (Mk, k = 1, . . .) be an i.i.d. sequence of 2×2 unimodular matrices,
and let G be the smallest closed subgroup which contains the support of their law.
Suppose that:

1. G is not compact;
2. There does not exist a subset L in R

2 which is a finite union of one-dimensional
subspaces which is invariant under all matrices in G.

Then, the following hold:

1. For any z ∈ H, with probability 1, (V z
n ), as defined in (3), converges to a random

variable Z ∈ ∂H, as n → ∞;
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2. With probability 1, for any bounded and continuous function f defined on ∂H,∫
f (Y x

n )ν(dx) converges a.s. to f (Z) as n → ∞, for any probability measure ν

on ∂H;
3. The law λ of Z is the unique stationary measure for the Markov chain (Xx

n ) on
∂H, and it is atomless.

The assumptions of the theorem are clearly satisfiedwhen the law ofM is supported
by the nine values Ei , i = 0, 1, . . . , 8. The different kinds of convergence stated by
Theorem 1.1 in the complex and in the real case is due to the fact that the product
of matrices M1 ◦ · · · ◦ Mn , properly normalized, converges to a matrix of rank one,
that has a non-trivial null space which is avoided w.p. 1 by the “initial” vector (x, 1)t

since the distribution of this one-dimensional null space is atomless (Corollary 4.8 in
Benoist and Quint [2]).

Thus, from the identity in law of (Zz
n) with (V z

n ) and of (Xx
n ) and (Y x

n ), and the
fact that convergence a.s. implies convergence in law, one can deduce the following
corollary:

Corollary 1.2 Under the assumption of the previous theorem:

1. For any z ∈ H, (Zz
n), as defined in (3), converges weakly to λ , as n → ∞;

2. For any atomless probability measure ν on ∂H, the process (Xx
n ) as defined in (4),

with x taken to be ν-distributed, converges weakly to λ as n → ∞.

In the present paper, the main goal is to identify the unique stationary distribution λ

for the chain (Xx
n ). In order to achieve this goal, we start in Sect. 2 with the observation

that the transition kernel of the chain is equivariant under the action of the four elements
group � on R ∪ {∞}, generated by the mappings g0(x) = h0(x) = −1/x and
g1(x) = −x . This has the consequence that initial laws which are invariant under
this group keep this property with the iterations of the Markov chain. Moreover,
for any function C which is constant on the orbits of this group one obtains that
(C(Xx

n )) is by itself a Markov chain. By choosing C(x) = min{|x |, 1
|x | }, we project

the dynamics of (Xx
n ) from the extended reals to the unit interval [0, 1], and we

characterize the stationary distribution of this projected Markov chain with the two
properties of symmetry w.r.t. 1/2 and invariance under a certain “tent” map of the
interval. In Sect. 3, we reformulate these invariances in terms of continued fraction
expansions, leading to identify the stationary distribution function for (C(Xx

n )) as the
Minkowski’s questionmark function ? (Minkowski [8]). A definition of ? can be found
in (18). The paper by Chassaing, Letac, Mora [4] can be also consulted for the links
between ? and the sequences of Farey–Brocot. This function is a remarkable example
of a continuous singular distribution function on [0, 1], ofwhichwe are going to review
some of its properties. By “lifting” this law on the extended reals to enforce the desired
invariance under �, the unique stationary distribution λ for (Xx

n ) is finally obtained. It
turns out that its survival function is a symmetrized version of the so-called Denjoy–
Minkowski function of parameter 1/2 (see Denjoy [5]). Finally, we have to mention
that the interest for the Minkowski function ? has been recently revived by the proof
by Jordan and Sahlsten [7] of the 1943 Salem conjecture limn

∫ 1
0 ei2πnxd?(x) = 0.
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2 Group Invariance Properties of the Markov Chain (Xn)

The first observation we are going to perform concerns a certain equivariance property
of the Markov chain (Xx

n ) defined in (4) and its consequences. We will use extensively
the notation X ∼ α when X has the distribution α and X ∼ Y when two random
variables X and Y have the same law.

Lemma 2.1 Let g0(x) = − 1
x and g1(x) = −x for x ∈ R∪{∞}. Let M1 be uniformly

distributed on the set of matrices Ei , for i = 0, 1, . . . , 8. Then

hM1(g j (x)) ∼ g j (hM1(x)), j = 0, 1, (5)

Proof Notice that

h0(x) = −h0(−x), h2i−1(x) = −h2i (−x), i = 1, . . . , 4,

which shows (5) with j = 1. Similarly

h0(1/x) = − 1

h0(x)
, hi (−1/x) = − 1

hϕ(i)(x)
, i = 1, 2, 5, 6.

with ϕ(1) = 3, ϕ(2) = 4, ϕ(5) = 8, ϕ(6) = 7. From this, formula (5) with j = 0
is obtained. ��

It is clear that the statement of the previous lemma holds for any g belonging to the
group � generated by g0 and g1 (shortly, also for g(x) = 1/x). The consequences of
the previous lemma are important.

Proposition 2.2 Let X0 be a random variable on the extended reals with the property
X0 ∼ g(X0), for any g ∈ �. Define X1 = hM1(X0), where M1 assumes the values
Ei with probability 1/9, for i = 0, 1, . . . , 8, independently of X0. Then X1 ∼ g(X1).
Furthermore, if f is a bounded measurable function on R ∪ {∞} such that f (x) =
f (g(x)) for any g ∈ �, then the function s(x) = E( f (hM1(x))) has again the property
s(x) = s(g(x)), for any x ∈ R ∪ {∞}.

Proof For the first statement, it is enough to notice that for any g ∈ �

g(X1) = g(hM1(X0)) ∼ hM1(g(X0)) ∼ hM1(X0) = X1.

As far as the second is concerned notice that similarly

f (hM1(g(x))) ∼ f (g(hM1(x))) = f (hM1(x)).

��
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The last statement in the above proposition suggests to introduce a function on the
extended realsR∪{∞}, whose values distinguish among the orbits of�. A convenient
function with this property is the function C : R ∪ {∞} → [0, 1] defined by

C(x) = min

{
|x |, 1

|x |
}

.

Given a random variable X with extended real values, the distribution of C(X) can be
immediately computed. When X ∼ −X and X ∼ −1/X , this transformation can be
easily inverted, “lifting” the law of C(X) to R ∪ {∞}, as stated in the next lemma.

Lemma 2.3 Let X be an extended real-valued random variable. Then X ∼ g(X) for
any g ∈ � if and only if the conditional distribution of X given W = C(X) is μW ,
where

μw = 1

4

(
δw + δ−w + δ1/w + δ−1/w

)
, w ∈ [0, 1]. (6)

In this case
X ∼ S2W

S1 , (7)

where Si , i = 1, 2 are independent random variables with Pr(Si = ±1) = 1/2,
independent of W .

Proof First observe that if f is any bounded measurable function on the extended
reals, x ∈ R ∪ {∞} and w = C(x) one has

1

4
( f (x) + f (−x) + f (−1/x) + f (1/x))

= 1

4
( f (w) + f (−w) + f (−1/w) + f (1/w)) .

Next observe that X ∼ g(X) for any g ∈ � if and only if for any f as above and any
a bounded measurable function on the unit interval [0, 1], it holds

E( f (X)a(W )) = 1

4
(E( f (X)a(W ) + f (−X)a(W )

+ f (−1/X)a(W ) + f (1/X)a(W )))

= 1

4
(E( f (W )a(W ) + f (−W )a(W ))

+ f (−1/W )a(W )) + f (1/W )a(W )))

which yields the first statement of the lemma. For the last distributional representation,
it is clear that the r.h.s. of (7) satisfies the assignment of the conditional distributions
(6). ��
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To continue, define the following mappings of the unit interval [0, 1] into itself,
namely

H0(x) = x, H1(x) = 1

1 + x
, H2(x) = 1 − x,

H3(x) = min

{
x

1 − x
,
1 − x

x

}
, H4(x) = x

1 + x
. (8)

It is immediately verified that

C(hi (x)) = C(Hi (x)), i = 0, 1, . . . , 4, (9)

C(Hi (x)) = C(hψ(i)(x)), ψ(1) = 7, ψ(2) = 8, ψ(3) = 6, ψ(4) = 5. (10)

Thus, given the sequence (Mn) of independent random matrices with uniform distri-
bution on Ei , i = 0, 1, . . . , 8, define In = 0 for Mn = E0 and In = i for Mn = Ei

or Mn = Eψ(i), i = 1, 2, 3, 4. One obtains an i.i.d. sequence (In) with values in
{0, 1, 2, 3, 4} with distribution ρ such that ρ({0}) = 1/9 and ρ({i}) = 2/9, for
i = 1, 2, 3, 4.

We are now ready to prove the following

Proposition 2.4 Let (Xx
n ) be defined in (4). The process (Ww

n = C(Xx
n )), with w =

C(x), is a Markov chain with values in the unit interval [0, 1] which evolves in the
following way

Ww
n+1 = HIn+1(W

w
n ), n = 0, 1, . . . ,Ww

0 = w ∈ [0, 1]. (11)

Moreover, if x = X0 with X0 ∼ gi (X0), for i = 0, 1, then, for any positive integer
n, the conditional distribution of XX0

n given WW0
n = w, where W0 = C(X0), is given

by μw, as defined in (6).

Proof Collecting together definition (8), relations (9) and (10), Proposition 2.2 and
Lemma 2.3, the result is readily obtained. ��

As a consequence, we have the following

Corollary 2.5 Let ν be a stationary distribution for the process (Ww
n )∞n=1 defined in

(11) and let W ∼ ν. Define the random variable X as in (7). Then the distribution of
X is stationary for the chain (Xx

n )
∞
n=1.

Thus, for each stationary distribution for the process (Ww
n , n = 1, 2, . . .), we can

construct a corresponding stationary distribution for the original process (Xx
n , n =

1, 2, . . .) by the operation of “lifting” described above.Nowwe reduce the construction
of a stationary distribution for theMarkov chain (Ww

n ) to the existence of a lawwhich is
invariant under two transformations of the unit interval, the symmetry transformation
H2 around 1/2 and the tent-like map H3. The basic point is that the inverse graph of
the latter is the union of the graphs of H1 and H4.
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Proposition 2.6 Let Hi , i = 0, 1, . . . , 4 be defined as in (8), and let W0 be a random
variable with values in [0, 1] with the properties

W0 ∼ 1 − W0 = H2(W0),W0 ∼ min

(
W0

1 − W0
,
1 − W0

W0

)
= H3(W0). (12)

Then W1 = HI (W0) ∼ W0, I having the law ρ, independent of W0.

Proof It is trivially W0 ∼ H0(W0) and by assumption W0 ∼ H2(W0) and W0 ∼
H3(W0). Therefore, the result holds if one proves that the assumptions on the law of
W0 imply thatW0 ∼ HJ (W0), J being a random variable assuming the values 1 and 4
with the same probability. It is not too complicate to realize that the law of W0 cannot
have an atom at 1/2. This comes from the fact that the invariance of the law under H3
implies that 1 has an atom with the same weight. But this is impossible since 0 and 1
are both sent to 0 by H3, which contradicts the invariance of the distribution ofW0 by
H3.

To continue the proof of Proposition 6, we need the following observation, which
for later use is collected as a lemma. ��
Lemma 2.7 If W0 ∼ 1−W0, W0 not having an atom at 1/2, then the law of H3(W0)

conditional to W0 < 1/2 coincides with the law of H3(W0) conditional to {W0 > 1/2}.
Thus, both coincide with the unconditional law of H3(W0).

Proof Being H3(w) = H3(1− w) for any w ∈ [0, 1], the law of H3(W0) conditional
toW0 < 1/2 is equal to the law of H3(1−W0) conditional toW0 < 1/2. Next, replace
W0 with 1−W0, these being equal in law, to obtain that the law of H3(W0) conditional
to 1−W0 < 1/2 is still the same. The last conditioning being the same as W0 > 1/2,
the proof of the first statement of the lemma is finished. The second is obtained from
the law of total probabilities. ��
Proof of Proposition 2.6, continued Next observe that H4(H3(w)) = w for w < 1/2
and H1(H3(w)) = w for w > 1/2. As a consequence for w > 1/2, from H3(W0) ∼
W0 one gets that

Pr(HJ (W0) > w) = 1

2
Pr (H1(W0) > w) = 1

2
Pr (H1(H3(W0)) > w)

= Pr

(
W0 >

1

2
, H1(H3(W0)) > w

)
= Pr(W0 > w),

and for w < 1/2

Pr(HJ (W0) < w) = 1

2
Pr(H4(W0) < w) = 1

2
Pr(H4(H3(W0)) < w)

= Pr

(
W0 <

1

2
, H4(H3(W0)) < w

)
= Pr(W0 < w).

These two together easily imply that HJ (W0) ∼ W0. ��
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3 Minkowski’s Question Mark Function and Denjoy–Minkowski
Distribution on the Real Line

The goal of this section is to deduce from the invariance properties assumed in (12)
a unique law for W0, whose distribution function is the question mark function intro-
duced by Minkowski. This characterization is well known (see Isola [6], Lemma 4.1),
but here we give a probabilistic proof of it. For this purpose, the continued fraction
representation of irrational numbers in the unit interval [0, 1] is required (see Olds
[9]). On this interval, we define the function Ak(w) = 1

k +w
for k ∈ N

+. Likewise
define for k1, . . . , kn, . . . in N+

Ak1,...,kn (w) = Ak1 ◦ . . . ◦ Akn (w) = 1

k1 + 1
k2+ 1

...+ 1
kn+w

, n ∈ N
+. (13)

Then

x = lim
n

Ak1,...,kn (w)
def= [k1, . . . , kn, . . .] (14)

always exists and does not depend on w ∈ [0, 1]. Such an x is necessarily an irra-
tional number. Conversely for any irrational number x ∈ (0, 1), there exists a unique
sequence (kn)n∈N+ such that (14) holds. This is called the continued fraction expansion
of x : its definition implies the recursion

x = [k1, k2, . . .] = 1

k1 + [k2, k3, . . .] . (15)

The above construction allows to associate with any probability distribution p on
the positive integers an atomless law μ(p) on the interval [0, 1] in the following way.
Let (Kn, n = 1, 2, . . .) be a sequence of i.i.d. p-distributed random variables: then
W = [K1, K2, . . .] has the law μ(p). The function p �→ μ(p) is clearly injective,
since K1 is the integer part ofW−1. The distribution μ(p) can be characterized as the
unique stationary distribution for the Markov chain (Uu

n , n = 1, 2, . . .), where

Uu
n+1 = AKn+1(U

u
n ) = 1

Kn+1 +Uu
n

, n = 0, 1, . . . ,Uu
0 = u ∈ [0, 1].

This is an instance of a general principle (see Chamayou and Letac [3], Proposition 1).
An equivalent way of stating this property is the following: for W and K independent
random variables, with values in [0, 1] and N

+ , respectively, it holds

K ∼ p,W ∼ 1

K + W
�⇒ W ∼ μ(p). (16)

Now we are in a position to prove the following result.
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Theorem 3.1 Let W have an atomless law on the interval [0, 1]: Then the following
are equivalent:

1. W ∼ 1 − W and W ∼ min
{

W
1−W , 1−W

W

}
.

2. W ∼ μ(p), with
p(n) = 2−n, n = 1, 2, . . . . (17)

3. The distribution function of W at irrational points is given by

P(W < [k1, k2, . . .]) = 2
∞∑
n=1

(−1)n+12−∑n
j=1 k j def= ?([k1, k2, . . .]) (18)

for k j = 1, 2, . . ., j = 1, 2, . . ..

The function ? defined in (18) on the irrational numbers is called the Minkowski’s
question mark function. Being continuous, it can be uniquely extended to the whole
unit interval. In fact, it is known since the work of Salem [10] that

|?(x) − ?(x ′)| ≤ C |x − x ′|α with α = log 2

2 log θ

where θ = 1+√
5

2 is the golden ratio and C is a constant. The function ? is strictly
increasing but it is singular w.r.t. the Lebesgue measure, since its derivative is zero a.s.
(Salem [10], Viader, Bibiloni and Paradis [12]). A direct proof of the characterization
(2) of the distribution function ? stated in the previous theorem can be found in Isola
[6], Lemma 4.6.

Proof (1) implies (2). SinceW has an atomless law, we can assume that it takes values
in the set of irrationals, and write W = [K1, K2, . . .], with the law of the process
(Kn, n = 1, 2, . . .) to be determined. Next observe that for any w = [k1, k2, . . .] ∈
[0, 1]\Q one has for k1 > 1 (i.e. w < 1/2) and k1 = 1 (i.e. w > 1/2), respectively

w

1 − w
= [k1 − 1, k2, . . .], 1 − w

w
= [k2, k3, . . .]. (19)

We now show by induction the following facts

• (A)n Pr(K1 = k) = 1
2k

, k = 1, . . . , n,

• (B)n [K2, K3. . . .]|{K1 = n} ∼ W,

• (C)n [K1 − n, K2, . . .]|{K1 > n} ∼ W.

For n = 1, (A)1 is a consequence of the symmetry of the law of W around 1/2,
whereas (B)1 and (C)1 are obtained fromLemma 2.7: indeed there we established that
both the law of H3(W ) = W

1−W conditional to W < 1
2 and the law of H3(W ) = 1−W

W

conditional to W > 1
2 , are equal to the unconditional law of H3(W ), which in turn is

equal to the law of W .
Now assume that (A)n, (B)n, (C)n are true and proceed by induction. Since

Pr(K1 = n + 1) = Pr(K1 > n)Pr(K1 = n + 1|K1 > n)
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and the first factor by the induction assumption (A)n is equal to 1/2n , we have to
prove that Pr(K1 = n + 1|K1 > n) = Pr(K1 − n = 1|K1 − n > 0) = 1

2 . This is a
consequence of (C)n and (A)1. Hence (A)n+1 is proved.

To prove (B)n+1, we condition the l.h.s. of (C)n by {K1 = n + 1}. We get

[K1 − n, K2, . . .]|{K1 = n + 1} ∼ W |{K1 = 1} = [1, K2, K3, . . .]

so that

[K2, K3, . . .]|{K1 = n + 1} ∼ [K2, K3, . . .]|{K1 = 1} ∼ W

from (B)1. Hence (B)n+1 is proved.
Finally in order to prove (C)n+1, we condition the l.h.s. of (C)n by {K1 > n + 1}.

We get

[K1 − n, K2, . . .]|{K1 > n + 1} ∼ W |{K1 > 1} = [K1, K2, . . .]|{K1 > 1}

and this in turn implies that

[K1 − n − 1, K2, . . .]|{K1 > n + 1} ∼ [K1 − 1, K2, . . .]|{K1 > 1} ∼ W.

from (C)1. Hence (C)n+1 is proved. Finally notice that (A)n and (B)n , for any positive
integer n, are equivalent to the l.h.s. of (16), with p given in (17). This establishes (2).

(2) implies (3). Consider the representation W ∼ [K1, K2, . . .], where (Kn, n =
1, 2, . . .) is an i.i.d. sequence of random variables with the same distribution (17). The
survival function of K1 being equal to P(K1 ≥ k1) = 2 × 2−k1 , the events

En = {K1 = k1, . . . , Kn−1 = kn−1, Kn ≥ kn}, n = 1, 2 . . .

have probabilities
Pr(En) = 2 × 2−∑n

j=1 k j . (20)

Next another sequence (Fn) is constructedbymeans of the following recursion, starting
from F1 = E1,

F2n = F2n−1\E2n, F2n+1 = F2n ∪ E2n+1, n = 1, 2, . . . .

The fundamental property is that, for any positive integer n

F2n ⊂ {W < [k1, k2, . . .]} ⊂ F2n−1,

since the functions Ak1,...,kn are decreasing for n odd and increasing for n even, and
the range of Ak1,...,kn−1,kn+1 is an interval adjacent to the right (left) to the range of
Ak1,...,kn−1,kn if n is even (odd). By the properties of continued fraction expansions, both
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the sequences (F2n−1) and (F2n) converge (from above and from below, respectively)
to the event {W < [k1, k2, . . .]}. Since for any positive integer n

Pr(F2n) = Pr(F2n−1) − Pr(E2n),Pr(F2n+1) = Pr(F2n) + Pr(E2n+1)

it suffices to substitute the expressions (20) to get the desired (18).
(3) implies (1). It consists in a simple verification. Since for k1 > 1, we have

1 − [k1, k2, . . .] = [1, k1 − 1, k2. . . .],

in order to prove that ? corresponds to a probability measure which is symmetric
around 1/2, it is enough to verify

?([k1, k2, . . .]) + ?([1, k1 − 1, k2, . . .]) = 1, k1 > 1,

which is straightforward. The second invariance property is deduced from (19) and
from the fact that K − 1|{K > 1} ∼ K when K has the distribution (17). ��

Next, by Proposition 2.6 and Theorem 3.1 we have the following

Corollary 3.2 The function ? is a stationary distribution function for the Markov
chain (Ww

n ) defined in (11).
By Lemma 2.3, for completing our program we need to compute the law of S2WS1 ,

where W, S1, S2 are independent, W has the distribution function ? on [0, 1] and S1
and S2 are two random variables which assume the values −1 and +1 with the same
probability 1/2. This law is stationary for the process (Xx

n ) described in (4) because
of Proposition 2.2 and Corollary 3.2, and it is unique by Theorem 1.1.

As a first step, we prove that the distribution of W S1 is the so-called Denjoy–
Minkowski function χ1/2 of order 1/2 (Chassaing et al. [4] page 41). In order to define
it, we write positive irrational numbers y in the form

y = [k0; k1, k2, . . .] = k0 + 1

k1 + 1
k2+...

,

where k0 = [y] and y − [y] = [k1, k2, . . .] ∈ (0, 1). Now define

χ1/2(y) = χ1/2([k0; k1, k2, . . .]) =
∞∑
n=0

(−1)n2−∑n
j=0 k j . (21)

As for the function ?, it is observed that χ1/2 is a continuous function, and thus, it
extends uniquely to the whole non-negative real line.

Proposition 3.3 Let W have the distribution function ?. Let Y = WS1 . Then the
survival function Pr(Y > y) of Y is the function χ1/2(y).
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Proof By comparing (18) with (21), it is immediately verified that for y irrational

Pr(Y>y) = 1 − Pr(S1 = 1, X<y) = 1 − ?(y)

2
, 0 < y < 1,

and

Pr(Y > y) = Pr

(
S1 = −1,

1

X
> y

)
= 1

2
?

(
1

y

)
, y > 1.

Now it remains to verify that the r.h.s. of the above expressions coincide with χ1/2(y),
for all irrationals y. For the former, this is immediately verified. For the latter, we
conclude with the observation that, for k0 ≥ 1 it is

1

[k0; k1, k2, . . .] = [0; k0, k1, . . .]. (22)

��
Here is a noteworthy property of χ1/2.

Proposition 3.4 Let Y be a positive random variable with the survival function χ1/2.
Then, [Y ] + 1 has the geometric distribution (17), and it is independent of Y − [Y ],
which has the distribution function ?. In other words, if K0, K1, . . . are i.i.d. with
distribution (17) then

Y ∼ [K0 − 1; K1, K2, . . .]. (23)

Proof If W have distribution function ?, we know that one can construct W =
[K1, K2, . . .], where (Kn) is an i.i.d. sequence of random variables with the distri-
bution (17). Moreover, let S1 independent of W such that Pr(S1 = ±1) = 1/2. From
Proposition 3.3wewriteY = WS1 .Thus, the law ofY is amixture, with equal weights,
of the law of [0; K1, K2, . . .] and, from (22), of that of [K1; K2, . . .]. From this one
obtains (23). ��
The last step that ends the determination of the unique stationary distribution λ of
the Markov chain (Xx

n ) defined in (4) is a simple symmetrization of the Denjoy–
Minkowski function.

Proposition 3.5 Let X ∼ λ, the unique stationary distribution of the chain (Xx
n )

defined in (4). Then, for any x ≥ 0

Pr(X > x) = Pr(X < −x) = 1

2
χ1/2(x)

Proof It is immediately obtained from the representation X = S2Y , where Y has the
survival function χ1/2 and S2 is an independent random variable such that Pr(S2 =
±1) = 1/2. ��
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