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Abstract We develop a newmethod of umbral nature to treat blocks of Hermite and
of Hermite like polynomials as independent algebraic quantities. The Calculus we
propose allows the formulation of a number of “practical rules” yielding significant
simplifications in computational problems involving integrals and partial differential
equations as well. The procedure we adopt is particularly useful to enter more deeply
in the algebraic structure of Hermite polynomials. It provides indeed a tool allowing
a generalization of the recently introduced geometrical point of view to the interplay
between ordinary monomials and Hermite polynomials.

1 Introduction

In this paper we deal with a protocol, which will be referred as Hermite calculus,
useful to treat computations involvingHermite polynomials and their generalizations
as well.
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To give a flavour of the techniques we will employ we consider the integral

I (α,β, γ) =
∫ ∞

−∞
e−(α+β)x2−γxdx (1)

which can be evaluated with ordinary means, thus getting

I (α,β, γ) =
√

π

α + β
e

γ2

4(α+β) (2)

We will test the formalism, we are going to decribe, by using such a benchmark
and restyle Eq. (1) as it follows

I (α,β, γ) =
∫ ∞

−∞
e−αx2−ĥ(γ,−β)xdx (3)

where we have introduced the notation

e−ĥ(γ,−β)x =
∞∑
r=0

(−x)r

r ! ĥr(γ,−β) =
∞∑
r=0

(−x)r

r ! Hr (γ,−β) (4)

based on the use of the umbral identity [1, 2]1

ĥr(γ,−β) = Hr (γ,−β),

Hr (x, y) = r !
[ r
2 ]∑

s=0

xr−2s ys

(r − 2s)!s!
(5)

In the integral in Eq. (4) we have treated the term which can be expended in terms
of Hermite polynomials as a single block and we have enucleated the variable x
raised to the first power.

We will now follow a prescription according to which the operator ĥ is treated as
an ordinary algebraic quantity.

According to the ordinary rules for the Gaussian integrals we can write [2, 3]

I (α,β, γ) =
√

π

α
e

ĥ2
(γ,−β)

4α =
√

π

α

∞∑
r=0

1

r !

(
ĥ2(γ,−β)

4α

)r

(6)

which provides us with the correct result for the problem we are studying. The

application of the previous prescription yields, indeed, if

∣∣∣∣βα
∣∣∣∣ < 1

1We have used the umbral notation in a rather inaccurate way, without specifying on which space
the operators are acting. For further comments and an appropriate discussion of the formal content,
see the second of Ref. [2].
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√
π

α

∞∑
r=0

1

r !

(
ĥ2(γ,−β)

4α

)r

=

=
√

π

α

∞∑
r=0

1

r !H2r

(
γ

2
√

α
,− β

4α

)
=

√
π

α + β
e

γ2

4(α+β)

(7)

which is obtained after using the identity [2]

∞∑
r=0

tr

r !H2r (x, y) = 1√
1 − 4yt

e
x2 t

1−4yt (8)

The result in Eq. (7), evidently correct, yields some confidence on the reliability of
the formalism, which is based on a rather wild use of the umbral formalism.

2 The Umbral Method and Generalized Hermite
Polynomials

Even though not explicitly stated, the umbral operator defined in Eq. (5) satisfies the
identity2

ĥm ĥr = ĥm+r (9)

where the powers m and r are not necessarily real integers. It is also fairly natural to
set

∂ĥ ĥ
r = r ĥr−1 = r Hr−1(γ,−β) (10)

Since the following recurrence holds

∂γHr (γ,−β) = r Hr−1(γ,−β) (11)

the “derivative” operator can therefore be identified with

∂ĥ → ∂γ (12)

Furthermore since
ĥĥr = ĥr+1 = Hr+1(γ,−β) (13)

and, on account of the recurrence,

Hr+1(γ,−β) = γHr (γ,−β) − 2 β r Hr−1(γ,−β) (14)

2The subscript (γ,−β) has been omitted because the identity holds for ĥ operators with the same
basis, hereafter it will be included whenever necessary.
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we can also conclude that ĥ itself can be identified with the differential operator

ĥ = γ − 2 β ∂γ (15)

It is also worth noting that

∂r
x e

−ĥx = (−1)r ĥr e−ĥx = (−1)r
∞∑
n=0

(−x)n

n! ĥn+r =

= (−1)r
∞∑
n=0

(−x)n

n! Hn+r (γ,−β)

(16)

and, according to the identity

∞∑
n=0

tn

n!Hn+l(x, y) = Hl(x + 2yt, y)ext+yt2 (17)

we can establish the rule

ĥr e−ĥx = Hr (γ + 2 β x,−β)e−(γx+βx2) (18)

We can now make a step further by defining the integral

I (γ,β) =
∫ ∞

−∞
e−ĥx2dx

e−ĥx2 = e−(γx2+βx4)

(19)

which, after applying the prescription that ĥ can be treated as an ordinary algebraic
quantity, writes

I (γ,β) = √
πĥ− 1

2 (20)

which makes sense only if we can provide a meaning for ĥ− 1
2 , the most natural

conclusion is that they can be understood as factional order Hermite, which for our
purposes can be defined as it follows [4]

Hν(x,−y) = y
ν
2
e

x2

4y√
π

∫ ∞

0
e− t2

4 tν cos

(
x

2
√
y
t − π

2
ν

)
dt (21)

or as

Hν(x,−y) = �(ν + 1)
∞∑
r=0

xν−2r (−y)r

�(ν + 1 − 2r)r ! , x >> y (22)

which has however a limited range of convergence.
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The correctness of Eq. (20) can be readily proved by a numerical check, involving
either the definitions (21) and (22).
We will comment, later in this paper, on the extension of the Hermite polynomials
to non-integer index.

Let us now consider the following repeated derivatives

∂ n
x e

−ĥx2 = (−1)nHn(2 ĥ x,−ĥ)e−ĥx2 =

= (−1)nn!
[ n
2 ]∑

r=0

(−1)r (2x)n−2r

(n − 2r)!r !
(
ĥn−r e−ĥx2

) (23)

Thus, getting, on account of Eq. (18),

∂ n
x e

−ĥx2 = (−1)nn!
[ n
2 ]∑

r=0

(−1)r (2x)n−2r

(n − 2r)!r ! Hn−r (γ + 2 βx2,−β)e−(γx2+βx4) (24)

in accordance with

∂ n
x e

−(γx2+βx4) = H (4)
n (−2 γx − 4 βx3,−γ − 6 βx2,−4 βx,−β)e−(γx2+βx4)

(25)
In Ref. [5] the following integral

J (a, b, c) =
∫ ∞

−∞
e−(ax4+bx2+cx)dx,

Re(a) > 0
(26)

has been considered, within the framework of problems regarding the non-
perturbative treatment of the anharmonic oscillator. A possible perturbative treat-
ment is that of setting

J (a, b, c) =
∞∑
n=0

(−1)n

n! gn(a) [Hn(c,−b) + Hn(−c,−b)] ,

gn(a) =
∫ ∞

0
xne−ax4dx = 1

4
a− n+1

4 �

(
n + 1

4

) (27)

which, as noted in [5], is an expansion with zero radius of convergence in spite of
the fact that J (a, b, c) is an entire function for any real or complex value of b, c.

The use of our point of view allows to write

J (a, b, c) =
∫ ∞

−∞
e−ĥ(b,−a)x2−cxdx =

√
π

ĥ
e

c2

4ĥ = √
π

∞∑
s=0

1

s!
( c
2

)2s
ĥ−(s+ 1

2 ) (28)
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We have omitted the subscript (b,−a) in the r.h.s. of Eq. (28) to avoid a cumbersome
notation. The meaning of the operator ĥ raised to a negative exponent is easily
understood as

ĥ−(s+ 1
2 ) = H−(s+ 1

2 )
(b,−a) (29)

where the negative indexHermite polynomials are expressed in terms of the parabolic
cylinder functions Dn according to the identity [6]

H−n(x,−y) = (2y)−
n
2 e

x2

8y D−n

(
x√
2y

)
(30)

The use of Eq. (30) in Eq. (28) finally yields the same series expansion obtained
in Ref. [5]

J (a, b, c) = √
π

∞∑
s=0

1

s!
( c
2

)2s
(2a)−

1
2 (s+ 1

2 ) e
b2

8a D−(s+ 1
2 )

(
b√
2a

)
(31)

which is convergent for any value of b, c and a > 0.

3 Final Comments

Regarding the use of non-integer Hermite polynomials it is evident that the definition
adopted in Eq. (21) can be replaced by the use of the parabolic cylinder function, it
is therefore worth noting that the use of the properties of the D functions allows the
following alternative form for Eq. (20) (see Ref. [7])

I (γ,β) = √
π (2 β)−

1
4 e

γ2

8β D− 1
2

(
γ√
2β

)
=

=
√

γ

2
√
2β

(2 β)−
1
4 e

γ2

8β K 1
4

(
γ2

8β

)
;

D− 1
2
(z) =

√
z

2π
K 1

4

(
1

4
z2

)
(32)

where Kν(z) is a modified Bessel function of the second kind.
A further example of application of the method developed so far is provided by

∫ ∞

0
e−(βx2n+γxn)dx =

∫ ∞

0
e−ĥ(γ,−β)xn dx = 1

n
�

(
1

n

)
ĥ

− 1
n

(γ,−β) =

= 1

n
�

(
1

n

)
(2β)−

1
2n e

γ2

8β D− 1
n

(
γ√
2β

) (33)
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In a forthcoming more detailed note we will extend the method to cases involving
higher order Hermite polynomials. Just to provide an idea of the extension of the
technique,we note that the use of this family of polynomials allows to cast the integral
in Eq. (28) in the form

J (a, b, c) =
∫ ∞

−∞
e 4 ĥ(−c,−a)x−bx2dx =

√
π

b
e
( 4 ĥ(−c,−a))

2

4b (34)

where (
4ĥ(−c,−a)

)n = H (4)
n (−c,−a) = (−1)nn!

[ n
4 ]∑

r=0

cn−4r (−a)r

(n − 4r)!r ! (35)

with H (4)
n (c,−a) being a fourth order Hermite Kampé de Fériét [8] polynomial.

The series expansion of the right hand side of Eq. (34) in terms of fourth order
Hermite converges in a much more limited range than the series (31) and has been
proposed to emphasize the possibilities of the method we have proposed so far.

According to our formalism the Pearcey integral, widely studied in optics, within
the framework of diffraction problems [9], is easily reduced to a particular case of
Eq. (26), namely

J (1, x,−iy) =
∫ ∞

−∞
e−(t4+xt2)+iyt dt =

√
π

ĥ(x,−1)

e
− y2

4ĥ(x,−1) (36)

and can be expressed in terms of parabolic cylinder functions, as indicated before. It
is perhaps worth stressing that, in the literature a converging series for the Pearcey
integral is given in the form [10]

J (1, x,−iy) =
∫ ∞

−∞
e−t4−ĥ(iy,−x)t dt =

=
∫ ∞

0
e−t4

(
eĥ(iy,−x)t + eĥ(−iy,−x)t

)
dt = 2

∞∑
n=0

(−1)ng2n(1)a2n(x, y) (37)

with
a0(x, y) = 1,

a1(x, y) = y,

an(x, y) = 1

n
(y an−1(x, y) + 2 x an−2(x, y))

(38)

which is reconciled with our previous result, in terms of two variable Hermite poly-
nomials, provided that one recognizes
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J (1, x,−iy) =
∞∑
n=0

(−1)n

n! gn(1) [Hn(−iy,−x) + Hn(iy,−x)] (39)

In this letterwe have provided somehint on the use of theHermite calculus to study
integral formswith specific application in different field of research. In a forthcoming
more detailed note we will show how the method can be extended to a systematic
investigation of the Voigt functions and to the relevant generalizations [11].

A further important application is the use of the method within the framework of
evolutive PDE. To start, we consider the following straightforward example:

∂t F(x, t) = (
α∂x + β∂2

x

)
F(x, t)

F(x, 0) = f (x)
(40)

whose (formal) solution is easily obtained as

F(x, t) = e(αt)∂x+(βt)∂2
x f (x) (41)

The use of the formalism developed so far allows to write the rhs of Eq. (41) in the
form

F(x, t) = eĥ(αt, βt)∂x f (x) (42)

by the use of standard exponential rules we obtain

F(x, t) = f
(
x + ĥ(αt, βt)

)
(43)

which is still a formal solution unless we provide a meaning for the rhs of Eq. (43).
Let us therefore use the Fourier transform method to write

f
(
x + ĥ(αt, βt)

)
= 1√

2π

∫ ∞

−∞
f̃ (k)eikx+ĥ(αt, βt)ikdk =

= 1√
2π

∫ ∞

−∞
f̃ (k)eik(x+αt)−k2βt dk

(44)

which is a kind of Gabor transform [12]. It is evident that the same result can be
obtained with ordinary means, we have used this example to prove the correctness
and flexibility of the method we propose.

Let us now specialize the result to the case f (x) = xn and write

f
(
x + ĥ(αt, βt)

)
=

(
x + ĥ(αt, βt)

)n =
n∑

s=0

(
n

s

)
xn−s ĥs(αt, βt) =

= Hn(x + αt, βt)

(45)
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which is just the derivation from a different point of view of the following operational
identity [13]

eκ∂x+λ∂2
x xn = Hn(x + κ,λ) (46)

We want also to emphasize that the methods we have just outlined offer further
possibility of speculation on the nature of the ĥ operator itself, which can be further
exploited to introduce nested Hermite polynomials. Its umbral nature and the asso-
ciated flexibility allows indeed noticeable degree of freedom therefore the following
identity derives naturally from the previous prescription

eĥ(α, β)∂
2
x xn = Hn

(
x, ĥ(α, β)

)
=

= n!
[ n
2 ]∑

r=0

xn−2r Hr (α, β)

(n − 2r)!r !
(47)

This is what we define nested Hermite, for obvious reasons. The geometrical nature
of the operator itself can be understood as discussed in [14] and will be further
commented elsewhere.

Before closing the paper wewant to underline that the possibilities for the applica-
bility of the integration method discussed in this letter arise if, inside the integrand,
an exponential generating function is recognized.

To clarify this point we note that the integral

f (a, b, c) =
∫ ∞

−∞
e−ax2+√

x2+bx+cdx,

b2 − 4c < 0

a > 1

(48)

can be written as

f (a, b, c) =
√

π

a
e

R̂2

4a =
√

π

a

∞∑
n=0

1

n!
(

1

4a

)n

R2n(b, c) (49)

provided that

e
√
x2+bx+c = eR̂x =

∞∑
n=0

xn

n! R̂
n,

R̂n = Rn(b, c)

(50)

where Rn(b, c) are polynomials of the parameter b, c.
Even though such a polynomials expansion can be obtained using different proce-

dure, we have tested the validity of our ansatz using the following integral definition
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Rm(b, c) = m!
2π

∫ 2π

0
e−imφe

√
e2iφ+beiφ+cdφ (51)

which has been used to benchmark the identity (49), with the full numerical integra-
tion of (48). Further comments will be provided elsewhere.
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