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ABSTRACT

Background: A high percentage of patients with thin melanoma (TM), defined 
as lesions with Breslow thickness ≤1 mm, presents excellent long-term survival, 
however, some patients develop metastases. Existing prognostic factors cannot 
reliably differentiate TM patients at risk for metastases.

Objective: We aimed at characterizing the clinical-pathologic and mutation 
profile of metastatic and not-metastatic TM in order to distinguish lesions at risk of 
metastases.

Methods: Clinical-pathologic characteristics were recorded for the TM cases 
analyzed. We used a Next Generation Sequencing (NGS) multi-gene panel to 
characterize TM for multiple somatic mutations.

Results: A statistically significant association emerged between the presence of 
metastases and Breslow thickness ≥0.6 mm (p=0.003). None of TM with lymph-node 
involvement had Breslow thickness <0.6 mm. Somatic mutations were identified in 
19 of 21 TM analyzed (90.5%). No mutations were observed in two not-metastatic 
cases with the lowest Breslow thickness (≤0.4 mm), whereas mutations in more than 
one gene were detected in one metastatic case with the highest Breslow thickness 
(1.00 mm).

Conclusion: Our study indicates Breslow thickness ≥0.6 mm as a valid prognostic 
factor to distinguish TM at risk for metastases.

INTRODUCTION

From a clinical and molecular standpoint, 
melanoma is a complex, heterogeneous and unpredictable 
disease. The incidence of malignant melanoma (MM) 
has drastically increased in the past decades [1]. 
Approximately 70% of new cases of MM are thin 
melanomas (TM), which are lesions ≤1.00 mm in Breslow 
thickness, and TM diagnosis are increasing around the 

world [2]. After local excision, thin tumors have a 10-year 
survival rate of 85-90% [3]. However, the high percentage 
of TM without recurrences is in contrast with a group 
that could develop recurrences and regional or distant 
metastases [4–7]. The TM histopathological parameters 
have been extensively studied in the literature and they 
have been associated with prognosis [8].

Several studies showed numerous parameters 
indicative of unfavorable prognosis for TM patients 
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including male sex, advanced age, trunk and head/neck 
anatomic sites, III and IV Clark levels, presence of 
marked regression, absence of inflammatory infiltrate, 
presence of ulceration areas and high mitotic rate [9–11]. 
However, existing prognostic factors cannot reliably 
differentiate high- and low-risk TM patients. To the best 
of our knowledge, only a few studies have analyzed the 
molecular profile of TM and to date there is no molecular 
predictor of disease progression [12, 13]. In recent years, 
significant advances in the genetic field have led to the 
identification of specific driver mutations in melanocytic 
tumors [14–16]. BRAF, NRAS and TP53 mutations are the 
most prevalent pathogenic alterations in melanoma [17], 
but key genetic changes are also identified in CDKN2A, 
KIT, GNAQ and GNA11 genes [18–21]. Mutation 
frequencies of these genes change according to the 
different personal data and pathological features of MM 
[22], revealing a complex mutational pattern that could 
be evaluated to predict the risk of developing metastases.

In this study, we aimed at characterizing the clinical 
and molecular profile of metastatic and not-metastatic TM 
cases. First, we evaluated a possible association between 
the presence of metastases and the pathological features. 
Furthermore, we used a Next Generation Sequencing 
(NGS) gene panel including 15 genes, relevant in 
tumorigenesis and targeted therapies, with the aim to 
investigate multiple somatic mutations in metastatic and 
not-metastatic TM cases. The identification of patients 
with high-risk of developing metastatic disease could be 
potentially used in the clinical practice, in order to gain the 
best prognostic classification and to potentially define the 
best therapeutic choices.

RESULTS

Clinical-pathologic features and association with 
the presence of metastases

Twenty-one TM cases were included in this study. 
As shown in Table 1, seven of the 21 selected cases were 
metastatic and 14 were not-metastatic TM. The median age 
at diagnosis was 49.0 years for metastatic cases (from 37 
to 74 years) and 50.5 years for not-metastatic cases (from 
29 to 85 years). Four metastatic TM cases were males and 
three females (57.1%, 42.9%), whereas six not- metastatic 
TM cases were males and eight females (42.9%, 57.1%). 
The majority of the metastatic and not-metastatic cases 
(85.7% and 64.3%, respectively) were localized in trunk 
(specifically shoulders, abdomen or back) considered 
site of intermittent sun exposure. All the metastatic cases 
showed Clark level III, whereas among the not-metastatic 
cases six showed Clark level II and eight Clark level 
III (42.9%, 57.1%). All metastatic cases had Breslow 
thickness ≥0.6 mm, by contrast among not-metastatic 
cases seven had Breslow thickness ≤0.5 mm and seven 
≥0.6 mm. A statistically significant association emerged 

between the presence of metastases and Breslow thickness 
≥0.6 mm (p=0.003). The TIL grade was classified as 
absent in three of seven metastatic cases (42.9%) and 
mild to marked in all not-metastatic cases. A mitotic rate 
≥1/mm2 was detected in three of seven metastatic cases 
(42.9%), by contrast all not-metastatic cases showed 
mitotic rate <1/mm2. The association between the presence 
of metastases and mitotic rate showed a p-value close to 
the statistical significance (p=0.051). No ulceration was 
observed in our TM series.

Somatic mutation profile and association with 
the presence of metastases

The somatic mutation profile of the 15 most 
frequently mutated genes in solid tumors was screened 
in all 21 TM samples by TruSight Tumor 15 panel, using 
NGS technology. Figure 1 reports an overview of the 
percentages of mutations identified in BRAF, NRAS, TP53, 
KIT, and ERBB2 genes, the distribution of point mutations 
in metastatic and non-metastatic TM cases analyzed, 
labeled by Breslow thickness (≤ 0.5 mm and ≥0.6 mm) 
and the presence or absence of metastases. We detected 
a total of 22 mutations in 19 of the 21 (90.5%) TM cases 
analyzed. All seven metastatic and 12 of 14 not-metastatic 
TM cases had at least one mutation in the genes analyzed 
(Table 2). We did not find a statistically significant 
difference between metastatic and not-metastatic cases 
and the presence of all mutations; the same results were 
obtained when the most frequently mutated genes (BRAF, 
NRAS and TP53) were evaluated separately (Table 2).

As shown in Table 2, BRAF mutations were detected 
in 11 cases (52.4%), NRAS in four (19.0%), TP53 in three 
(14.3%), KIT and ERBB2 in one case (4.8%) each. BRAF 
and NRAS were the most frequently mutated genes and 
their mutations were mutually exclusive. Overall, BRAF 
mutations were identified in six of seven metastatic cases 
(85.7%) and in five of 14 not-metastatic cases (35.7%). 
No mutations were identified in the other genes examined. 
The pathological features and the mutations identified in 
the series of TM cases analyzed are reported in Table 3. 
BRAF c.1799T>A (p.Val600Glu) was the most frequent 
mutation identified. Overall, nine of 21 (42.9%) of TM 
cases harbored this mutation, in particular it was detected 
in five of seven (71.4 %) metastatic and in four of 14 (28.6 
%) not-metastatic cases. Two additional BRAF mutations, 
c.1780G>A (p.Asp594Asn) and c.1798_1799GT>CG 
(p.Val600Arg), were identified in two TM cases. 
Three NRAS mutations, c.182A>G (p.Gln61Arg), 
c.181C>A (p.Gln61Lys) and c.34G>C (p.Gly12Arg), 
were identified in four TM cases. Five TP53 mutations, 
c.328C>T (p.Arg110Cys), c.1009C>T (p.Arg337Cys), 
c.1045G>T (p.Glu349Ter), c.742C>T (p.Arg248Trp) and 
c.11C>T (p.Pro4Leu), were detected in three TM cases. 
No mutations were observed in two TM cases whereas 
mutations in more than one gene were detected in one TM 
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case (Table 3). Specifically, no mutations were detected 
in two not-metastatic cases with the lowest values of 
Breslow thickness (0.3 mm and 0.4 mm, respectively) 
whereas BRAF c.1799T>A (p.Val600Glu) and TP53 
c.328C>T (p.Arg110Cys) mutations were identified in 
one metastatic case with the highest value of Breslow 
thickness (1.00 mm). Associations between gene 
mutations and Breslow thickness (≤0.5 mm and 0.6-1 
mm) distribution (Supplementary Table 1) and TIL grade 
distribution (Supplementary Table 2) were also tested and 
no statistically significant associations emerged.

DISCUSSION

In this study we analyzed a series of TM, in order to 
investigate clinical-pathologic and molecular differences 
in metastatic and not-metastatic cases. The strategy of 
early detection and the greater incidence of melanomas in 
the last years has contributed to increase the diagnosis of 
TM [25]. Unfortunately, despite the excellent prognosis of 
TM, a small group of patients could develop metastases, 
fatal in 5% of the cases [26]. It is therefore of great 
interest to identify predictors of poor prognosis in TM 

Table 1: Clinical-pathologic features of the 21 thin melanoma cases analyzed

Clinical-pathologic characteristics Total cases
N=21 (%)

Metastatic cases 
N=7 (%)

Not-Metastatic 
cases N=14 (%) p-value

Median age at diagnosis (range) 49.0 (29-85) 49.0 (37-74) 50.5 (29-85) 1.000

Sex

 Male 10 (47.6) 4 (57.1) 6 (42.9)

 Female 11 (52.4) 3 (42.9) 8 (57.1) 0.659

Sun exposurea

 Chronic (head and neck) 1 (4.8) 0 (0.0) 1 (7.1)

 Continuous (lower/upper extremities) 5 (23.8) 1 (14.3) 4 (28.6)

 Intermittent (shoulders/abdomen/back) 15 (71.4) 6 (85.7) 9 (64.3) 0.741

Clark level

 II 6 (28.6) 0 (0.0) 6 (42.9)

 III 15 (71.4) 7 (100.0) 8 (57.1) 0.061

Breslow thicknessb

 ≤0.5 mm 7 (33.3) 0 (0.0) 7 (50.0)

 0.6-1.00 mm 14 (66.7) 7 (100.0) 7 (50.0) 0.003

TIL grade c

 0 3 (17.6) 3 (42.9) 0 (0.0)

 1 5 (29.4) 1 (14.3) 4 (40.0)

 2 7 (41.2) 2 (28.6) 5 (50.0)

 3 2 (11.8) 1 (14.3) 1 (10.0) 0.195

Mitotic rate/mm2c

 <1 14 (82.4) 4 (57.1) 10 (100.0)

 ≥1 3 (17.6) 3 (42.9) 0 (0.0) 0.051

Ulcerationc

 0 17 (100.0) 7 (100.0) 10 (100.0)

 1 0 (0.0) 0 (0.0) 0 (0.0) -

aAccording to Whiteman et al 2006; baccording to Richetta et al 2014; csome data for each pathologic feature are not 
available; in bold p-value <0.05 considered statistically significant. Abbreviations: TIL, Tumor-infiltrating lymphocyte; N= 
number of cases.
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patients [8]. Several authors highlighted an increased 
risk of progression for TM with Breslow thickness ≥0.75 
or ≥0.5 mm [6, 25, 27]. Most studies analyzing TM risk 
progression identified ulceration and mitotic rate as main 
predictors [6, 27], while others indicated other risk factors 
[28–30]. Our results showed that the presence of lymph-
node metastases was associated with Breslow thickness 
≥0.6 mm (p=0.003). In particular, none of TM with 
lymph-node involvement had Breslow thickness <0.6 
mm. These observations confirm Breslow thickness as the 
most powerful predictor of developing metastatic disease. 
Most studies showed that the presence of lymph-node 
metastases is very rare (<5%) in melanomas with Breslow 
thickness <0.8 mm and occur in approximately 5% to 
12% of patients with primary melanomas with Breslow 
thickness from 0.8 to 1.0 mm [6, 31–33].

In the present study, we have also attempted to 
identify a different mutational pattern between metastatic 
and not-metastatic TM cases. We characterized multiple 
mutations in 15 most frequently mutated genes in solid 
tumors by NGS technology. The most frequent mutations 
identified were BRAF mutations (52.4%), followed by 
mutations in NRAS (19.0%) and TP53 (14.3%). BRAF 
mutations were mainly detected in metastatic TM. This 
result is in line with the literature [34], confirming a more 
aggressive behavior for melanomas associated to BRAF 
mutations, including thin lesions.

Mutations were also found in KIT and ERBB2 
(4.8%). Overall, our data are in agreement with literature 
data showing that BRAF is mutated in about 50% of 
melanomas [14, 35, 36] and that NRAS is the second most 
frequently mutated gene [37]. In agreement with literature 

Figure 1: Distribution of gene mutations in metastatic and non-metastatic thin melanoma cases, labeled by pink and 
blue bars, respectively. Thin melanoma cases with a Breslow thickness of ≤ 0.5 mm and 0.6-1 mm are showed by light green and yellow 
bars, respectively. To the left of the figure are the percentages of mutations identified in BRAF, NRAS, TP53, KIT and ERBB2 genes.

Table 2: Distribution of 21 metastatic and not-metastatic thin melanoma cases according to all gene mutations and 
specific mutated genes

Total cases
N=21 (%)

Metastatic cases
N=7 (%)

Not-metastatic cases
N=14 (%) p-value

Mutated Wild-type Mutated Wild-type Mutated Wild-type

All 
mutations 19 (90.5) 2 (9.5) 7 (100.0) 0 (0.0) 12 (85.7) 2 (14.3) 0.533

BRAF 11 (52.4) 10 (47.6) 6 (85.7) 1 (14.3) 5 (35.7) 9 (64.3) 0.063

NRAS 4 (19.0) 17 (81.0) 1 (14.3) 6 (85.7) 3 (21.4) 11(78.6) 1.000

TP53 3 (14.3) 18 (85.7) 1 (14.3) 6 (85.7) 2 (14.3) 12 (85.7) 1.000

KIT 1 (4.8) 20 (95.2) 0 (0.0) 7 (100.0) 1 (7.1) 13 (92.9) -

ERBB2 1 (4.8) 20 (95.2) 0 (0.0) 7 (100.0) 1 (7.1) 13 (92.9) -

Abbreviation: N= number of cases.
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data [38], we also showed that the most frequent BRAF 
mutation was the c.1799T>A (p.Val600Glu). In addition, 
we identified two different BRAF mutations, c.1780 
G>A (p.Asp594Asn) which results in an inactivation of 
BRAF gene [39] and c.1798_1799GT>CG (p.Val600Arg), 
which rarely occurs in melanoma [40]. In our series, 
one metastatic case showed the concurrent presence 
of BRAF and TP53 mutations. Recent Whole Exome 
Sequencing (WES) study attributed a TP53 mutation 
frequency of 19.0% in melanoma [14]. We identified 
one not-metastatic TM case with multiple TP53 variants 
(c.1045G>T, p.Glu349Ter; c.742C>T, p.Arg248Trp; 
c.11C>T, p.Pro4Leu). To date, there are conflicting data 
about the role of TP53 alterations in melanoma [41, 42] 
and further studies could help to clarify the role of this 
gene in melanoma progression. We identified the ERBB2 

c.2521C>T (p.Leu841Phe) mutation in one case. This 
mutation is located in the kinase domain and, to our 
knowledge, it has not been previously reported. In recent 
study no ERBB2 mutations were found in melanoma, 
however the importance of ERBB2 mutations in the 
kinase domain is well documented in a wide variety of 
human cancers [43]. Further studies are needed to clarify 
the role of ERBB2 mutations in melanoma, as it may help 
for considering targeted therapy. We also identified the 
KIT c.2519G>A (p.Ser840Asn) mutation in one case. 
This mutation was found for the first time in a 2-year-
old boy affected by cutaneous mastocytosis [44]. KIT 
mutation is most frequently observed in acral, mucosal 
and chronically sun-exposed melanomas [45, 46]. In 
our study, KIT mutation was identified in a TM located 
in acral site. KIT is another important checkpoint for 

Table 3: Pathological features and mutations identified in metastatic and not-metastatic thin melanoma cases

ID
LYMPH 
NODE 

METASTASES

BRESLOW 
THICKNESS

CLARK 
LEVEL ULCERATION MITOTIC 

RATE
TIL 

GRADE
BRAF (NM_004333.4, 

NP_004324.2)

NRAS 
(NM_002524.4, 
NP_002515.1)

TP53 
(NM_000546.5, 
NP_000537.3)

KIT 
(NM_000222.2, 
NP_000213.1)

ERBB2 
(NM_004448.2, 
NP_004439.2)

#1 YES 0.7 mm III NO 1/mm2 0 c.1799T>A, p.Val600Glu

#2 YES 1.0 mm III NO NO 2 c.1799T>A, p.Val600Glu c.328C>T, 
p.Arg110Cys

#3 YES 0.9 mm III NO NO 3 c.1780G>A, p.Asp594Asn

#4 YES 0.9 mm III NO 1/mm2 0 c.1799T>A, p.Val600Glu

#5 YES 0.6 mm III NO 1/mm2 2 c.1799T>A, p.Val600Glu

#6 YES 0.8 mm III NO NO 0 c.1799T>A, p.Val600Glu

#7 YES 1.0 mm III NO NO 1 c.34G>C, 
p.Gly12Arg

#8 NO 0.4 mm II NO NO 1 c.2519G>A, 
p.Ser840Asn

#9 NO 0.6 mm III NO NO 3 c.1009C>T, 
p.Arg337Cys

#10 NO 0.8 mm III NO NO 2

c.1045G>T, 
p.Glu349Ter; 

c.742C>T, 
p.Arg248Trp; 

c.11C>T, 
p.Pro4Leu

#11 NO 0.7 mm III NO NO 2 c.1799T>A, p.Val600Glu

#12 NO 0.3 mm II NO NO 1

#13 NO 0.7 mm III NO NO 2 c.182A>G, 
p.Gln61Arg

#14 NO 0.4 mm II NO NO 1 c.1799T>A, p.Val600Glu

#15 NO 0.6 mm III NO NO 2 c.1799T>A, p.Val600Glu

#16 NO 0.5 mm III NO NO 1 c.1799T>A, p.Val600Glu

#17 NO 0.7 mm III NO NO 2 c.2521C>T, 
p.Leu841Phe

#18 NO 0.4 mm II NA NA NA c.182A>G, 
p.Gln61Arg

#19 NO 0.7 mm III NA NA NA c.1798_1799delGTinsAG, 
p.Val600Arg

#20 NO 0.4 mm II NA NA NA

#21 NO 0.3 mm II NA NA NA c.181C>A, 
p.Gln61Lys

Abbreviations: TIL, Tumor-infiltrating lymphocyte; NA, not available.
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the targeted therapy in melanomas, since molecules as 
imatinib, nilotinib and apatinib can affect melanoma cells 
with KIT mutations [44–46]. Notably, in our series only 
two cases were negative for the presence of mutations in 
the genes analyzed. Both these cases were not-metastatic 
cases and had low Breslow thickness (<0.4 mm). On 
the other hand, we detected mutations in more than one 
gene (BRAF and TP53) in one metastatic case with a high 
Breslow thickness (1.0 mm).

In conclusion, our findings support and confirm 
Breslow thickness as a valid prognostic factor, able to 
distinguish TM with a high- or low-risk of developing 
metastases and suggest that Breslow thickness ≥0.6 mm 
may be considered as a threshold value where Sentinel 
Lymph Node Biopsy should be discussed and considered. 
Future studies on a larger cohort of TM patients examined 
by NGS analyses are needed to provide a genetic profile 
that could be useful as a prognostic and predictive factor.

MATERIALS AND METHODS

Sample information and DNA extraction

We performed a retrospective observational study 
on a selected series of 21 TM cases including seven 
metastatic and 14 not-metastatic cases. Cases were 
selected to include: melanoma patients with lesions 
≤1.00 mm in Breslow thickness, comparable median 
age at diagnosis and a comparable number of female 
and male individuals. The series included in the study 
was collected between January 2009 and December 
2015 at the Department of Dermatology and Venerology, 
Sapienza University of Rome and at the Laboratory of 
Dermatopathology of the “San Gallicano” Dermatological 
Institute and at the Dermato-oncology and preventive Unit 
of San Gallicano Institute of Rome. All patients involved 
in the current study signed an informed consent form with 
a detailed description of the study protocol. The study 
was approved by The Local Ethical Committee (Sapienza 
University of Rome, Protocol 873/13). The study was 
performed according to the Helsinki’s declaration. All 
cases were characterized by the personal data (sex and age 
at diagnosis) and by the main clinical-pathologic features 
including presence of metastases, anatomic site based on 
sun exposure (chronic, continuous or intermittent), Clark 
level, Breslow thickness, mitotic rate (number of mitoses/
mm2), ulceration status and tumor-infiltrating lymphocyte 
(TIL) grade based on assessment of absent, mild, 
moderate, or marked density (TIL grade 0-3). Genomic 
DNA of both tumor and normal tissue samples was 
extracted from 10 μm-thick microdissected formalin fixed 
paraffin-embedded (FFPE) sections, using QIAamp DNA 
FFPE tissue kit (Qiagen), according to the manufacturer’s 
instructions. DNA quantification was performed with 
Qubit dsDNA HS Assay Kit (Invitrogen), according to the 
instructions provided by the manufacturer.

Target sequencing and variant classification

Genomic screening for 21 TM cases was performed 
with TruSight Tumor 15 panel (Illumina), including 
relevant regions in 15 frequently mutated genes in solid 
tumors (AKT1, BRAF, EGFR, ERBB2, FOXL2, GNA11, 
GNAQ, KIT, KRAS, MET, NRAS, PDGFRA, PIK3CA, 
TP53, RET). Briefly, genomic regions were prepared in 
paired-end libraries, pooled and loaded into the MiniSeq 
system (Illumina) for automated cluster generation, 
sequencing and data analysis, including variant calling. 
The results were annotated and filtered using Illumina 
Variant Studio software. Somatic mutations were 
identified by directly comparing the mutation profile 
of tumor samples with their matched normal samples. 
Furthermore, we filtered out somatic single-nucleotide 
variants (SNVs) with allele frequency <5% and those 
with <500 reads. In silico bioinformatics analyses, SIFT 
and Polyphen [23, 24], were used to determine the 
potential functional effects of identified somatic SNVs. 
The presence of these variants was also examined in the 
Catalogue of Somatic Mutations in Cancer (COSMIC). In 
order to direct inspect mutations, sequenced reads were 
visualized with the Integrative Genomics Viewer (IGV) 
tool, using hg19 as reference genome.

Statistical analysis

Mann-Whitney and Fisher’s exact test were used 
(where appropriate) in order to evaluate the potential 
associations between the presence of metastases and 
pathological features and the potential association between 
the presence of metastases and the mutation profile. A 
p-value ≤0.05 was considered statistically significant. All 
statistical analyses were performed with the R software 
(www.r-project.org).

Abbreviations

MM: Malignant melanoma; TM: Thin Melanoma; 
NGS: Next Generation Sequencing; TIL: tumor-infiltrating 
lymphocyte; FFPE: formalin fixed paraffin-embedded; 
SNVs: single-nucleotide variants; COSMIC: Catalogue of 
Somatic Mutations in Cancer; IGV: Integrative Genomics 
Viewer.
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