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Premise  

 
Visual attention enables us to select relevant items for processing (Bundesen 

& Habekost, 2008; Pashler, 1998). Visual search for single targets is a popular and 

classical way of modelling this type of attention (Kristiansen, 2006; Nakayama & 

Martini, 2011; Wolfe, 1998): observers’ task is to determine whether the target is 

present or not (Riesman & Gelada, 1980).  

However, for many scenarios, a search that involves a single decision after 

which the search itself ends may not be very realistic: this is why multiple-target 

foraging may better tap into the nature of attentional allocation across the visual field 

(Cain, Val, Clark & Metro, 2012; Gilchrist, North & Hood, 2001; Hills, Kale & 

Wiener, 2013; Kristiansen, Johannsson & Thornton, 2014; Wolfe, 2013). 

 

In classical visual search tasks, observers look for a target item among some 

distractors; in hybrid search tasks, they search for one instance of any of several 

types of target held in memory; in foraging search tasks, perceivers collect multiple 

instances of a single target type (Wolfe, Aizenman, Boettcher & Cain, 2016). 

Combining these paradigms, in hybrid foraging tasks observers search visual 

displays for multiple instances of any of several types of target. If the set of possible 

targets is held in memory, these tasks have both a memory search component and a 

visual search one. Schneider and Shiffrin (1977) named these “hybrid searches”.         

           In our common daily life, we often have to deal with search tasks in which the 

number of targets is unknown and potentially large. This kind of search is the same 

we experience everyday while buying food at the supermarket or collecting clothes 

to put into the washing machine.  

The foraging paradigm is well suited to investigate some of the complications 

of the real world (Wolfe, 2016): indeed, searching for any of several target types is 

characteristic of our real world search tasks. Collecting information from internet has 

been considered as a task of this kind (Pirolli, 2007) and another example is 

searching memory for specific concepts or words (Hills, Jones & Todd, 2012). 
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        Foraging is an understudied area of visual search that needs to be 

investigated, mostly for the two following reasons: 

 Much is known about visual search for single targets but relatively little about 

how people “forage” for multiple targets. This kind of search, as underlined 

above, is closer to our daily life scenarios, since natural tasks typically do not 

involve a single target but multiple targets of various types;  

 There is a lack of studies about this topic: foraging tasks have been 

extensively studied in animals (Stephens & Krebs, 1986) but way less in 

human beings, despite their importance for our behaviour. 

 

It has long been known that human beings’ search behaviour is influenced by 

different mechanisms of control of attention: we can voluntarily pay attention, 

according to the context-specific goals, or we can involuntarily direct it, guided by 

the physical conspicuity of perceptual objects.  

Recent evidence suggests that pairing target stimuli with reward can modulate 

the way in which we voluntarily deploy our attention. In this thesis, the explored line 

of research focuses on the effects of reward, specifically a monetary reward: neutral 

stimuli are imbued with value via associative learning, through a training phase. This 

work aims to investigate if these stimuli will be able to capture attention in a 

subsequent foraging task. This mechanism, known as value-driven attentional 

capture, has never been investigated in a foraging context, but only in a classical 

visual search one: will it be able to influence the search behaviour when the targets 

are multiple? 

Foraging is a large field of inquiry, within which many questions need to be 

investigated: when we have to look for visual targets in a set of images and the 

number of these targets is unknown, how do we perform this search? How do 

observers maximize target collection? When is time to end a search? Which factors 

and/or strategies influence the search behaviour? 
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The first chapter of this work, through the analyses of the literature, aims to 

describe the answers to these questions, illustrating the characteristics of visual 

search in general and foraging in particular; the second chapter is dedicated to an 

examination of the different mechanisms of attentional selection, focusing on the 

value-driven attentional capture and its features; the third chapter reports three 

experimental studies carried out to look at the effect of a previous reward, obtained 

during a training phase, on a subsequent foraging task performance; finally, the 

fourth and last chapter exposes the general conclusions drawn from the results of the 

above experiments. 
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CHAPTER 1  

“HUMAN FORAGING IN A VISUAL SEARCH CONTEXT” 

 

“Each of us literally chooses, by his way of attending to things,  

what sort of universe he shall appear to himself to inhabit.”   

William James 

  

1.1 Introduction 

Searching the world around us is an important everyday human behaviour, 

whether we are seeking a friend's face in the crowd or trying to locate where we 

parked our car. Indeed, many daily activities imply looking for something. In our 

lifetime, we make about 5 billion eye movements and move our eyes approximately 

three times each second (Rayner, 1998). Our visual system is able to dedicate its 

limited capacity to the right input (Chun & Nakayama, 2010; Kristjánsson & 

Campana, 2010): we can efficiently decide where to look at, where to attend. 

Visual search - the exploratory activities/mechanisms that allow us to find 

visual objects - has been examined for years through the “visual search paradigm”.  

In classical visual search tasks, observers look for a target item among some number 

of distracting items. The two most commonly studied dependent measures are 

reaction time (RT) and accuracy to detect target(s) or to indicate its absence. 

Some tasks are much easier than others, for example, searching for a blue item 

among yellow distractors: in this case, the number (set size) of yellow items is non-

influential. In fact, either blue is present or it is not. The resulting RT x set size slopes 

have slopes near zero msec/item. These results reflect an underlying parallel search: 

all items can be processed at once to a level sufficient to distinguish targets from 

non-targets. The blue item “pops out” so that we can immediately notice it. 

          Now consider a different kind of search, for example we are looking for a S 

among mirrored Ss: on a target present trial, the target might be the first item visited 

by attention, the last one or any item in between. On average, attention will need to 
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visit half of the items. On trials in which there is no target (blank trials), attention 

will have to visit all items to confirm this absence. The cost of adding one additional 

distractor is twice as great for blank trials and so the resulting slopes of these ones 

should be twice as great (Horowitz & Wolfe, 1997). This type of search is defined 

serial. 

This division between parallel and serial visual searches became important 

when Anne Treisman presented the Feature Integration Theory (FIT; Treisman & 

Gelade, 1980). Her proposal was that many feature searches were parallel searches 

and that everything else required serial search. In feature searches, the target is 

distinguished from distractors by a single basic feature (for example, colour, size or 

motion). “Everything else” included searches for targets defined by conjunctions of 

features (for example, the target can be defined by colour and size together, and so by 

the conjunction of both these features). Today, this serial/parallel dichotomy is still 

useful but not accepted by various models of visual search (Duncan & Humphreys, 

1989; Wolfe, 1994; Wolfe, Cave & Franzel, 1989; Humphreys & Muller, 1993; 

Grossberg, Mingolla & Ross, 1994). For these authors, of course there is a clear and 

evident difference between searches where targets “pop out” of the display and 

searches where each additional distractor makes it harder to find what we are looking 

for, but they prefer to describe these searches as efficient in the former example and 

inefficient in the latter, rather than parallel and serial. 

Another important dichotomy refers to the pre-attentive processes used to 

direct attention: bottom-up (stimulus-driven) and top-down (user-driven). The 

bottom-up attentional control is driven by factors external to the observer, such as 

stimulus salience; the user-driven attentional control is driven by factors that are 

‘internal’ to the perceiver, such as his/her goals. If a target is sufficiently different 

from the distractors, efficient search is possible even if the observer does not know 

the target’s identity in advance. This happens when, for example, stimuli can be 

distinct in colour, orientation or size. We need pre-attentive processes to alert us to 

the presence of stimuli that might be worthy of our attention. We also need to 

voluntarily deploy our attention to stimuli that we have decided to notice: we need 

top-down, user-driven control of our pre-attentive processes. For example, if we are 
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looking for a specified colour, even in a group of very heterogeneous distractors, it 

will be possible to efficiently find the target (Duncan, 1989; Wolfe, 1990). 

Singleton search is probably the simplest use of pre-attentive information in a 

visual search task: a single target is presented among homogeneous distractors and 

differ from those ones by a single basic feature. Pre-attentive processing of the 

unique item causes attention to be deployed to that item, that will be examined before 

any distractors: RT is independent of the number of distractors presented. Mostly, in 

the real world, stimuli we need to search for are not defined by single basic features 

but by conjunctions of two or more of them. In fact, we will not only look for “red” 

when we are looking for an apple to eat: our visual search will be based on other 

features too (for instance, the shape). 

 

1.2 The classical visual-search paradigm and its tasks 

The visual-search paradigm provides a controlled and easy to implement 

experimental situation to study the search process. In our daily lives, we are 

constantly faced with the problem of spotting items of interest in a complex visual 

environment. A considerable amount of research has explored how we find such 

target items in visual displays containing distractor items (e.g., Chelazzi, Miller, 

Duncan & Desimone, 1993; Duncan & Humphreys, 1989; Eckstein, 1998; Eriksen & 

Schultz, 1979; Klein, 1988; Neisser, 1964; Palmer, 1990; Treisman & Gelade, 1980; 

Wolfe, 1994, 1998, 2003; Wolfe, Cave & Franzel, 1989; Woodman & Luck, 1999). 

This enormous research effort has brought the publication of a very substantial body 

of research (Eckstein, 2011; Nakayama & Martini, 2011; J. M. Wolfe, 1998, 2010, 

2012c; Wolfe & Reynolds, 2008). There are a number of reasons for this focus. First, 

visual search provides a convenient method to study low-level perceptual processes 

by using a reaction time measure (Rensink & Enns, 1995; Gilchrist, 1997; Davis & 

Driver, 1998); a second reason is that visual search provides a constrained 

experimental paradigm in which to study a more general behaviour (the exploratory 

activity). Most of this work has concerned search for a single target in displays that 

either do or do not contain that target. The standard requirement of a visual search 

task is for observers to detect the presence (or absence) of a target item, presented on 

a computer monitor, within an array of distractor items. The single target is present or 



Effect of reward contingencies on multiple target visual search 

 

9 

 

absent, and a search ends when the target is found or the observer quits the search, 

declaring the target to be absent. This all occurs over the course of a few hundred to a 

few thousand milliseconds. By manipulating factors such as the number of 

distractors and the visual similarity between them and the target, researchers have 

produced different models of human search behaviour (e.g. Duncan & Humphreys, 

1989; Treisman & Gelade, 1980). 

We now understand a great deal about this type of visual search (Chan & 

Hayward, 2013; Eckstein, 2011; Wolfe, 2014; Wolfe, Horowitz & Palmer, 2010), 

knowing that there are a number of well-established properties: first, when search 

becomes more difficult, search time increases linearly with display size for both 

target-absent and target-present displays; moreover, the target-present slope is half 

the target-absent slope (Treisman & Gelade, 1980). We also know that the efficiency 

of these searches falls on a continuum, as indexed by the slope of the function 

relating RT to set size (Wolfe, 1998). The relationship of target to distractor items is a 

powerful determinant of search efficiency (Duncan & Humphreys, 1989). If the 

target differs from a homogeneous set of distractors on the basis of a basic attribute 

like motion or colour, search will be really efficient. Indeed, the target will pop-out 

independent of the number of distractors (Egeth, Jonides & Wall, 1972). If the target 

and distractors share all their features, differing only in their arrangement, search will 

be quite inefficient, even if the items are clearly resolvable in peripheral vision 

(Bergen & Julesz, 1983), perhaps reflecting serial deployment of attention from item 

to item (Kwak, Dagenbach & Egeth, 1991). 

 If a basic feature of the target can give partial information, attention will be 

guided by that information. For example, if the target, when present, is black, and 

only half the distractors are black, then attention will be guided to black items 

(Egeth, Virzi & Garbart, 1984), and the efficiency will be double what it would have 

been without the colour information. Hence, the idea of guided search (Wolfe 1994, 

2007, 1989) with a limited set of attributes available to guide (Wolfe & Horowitz, 

2004). This body of research tells us something about searching for our bike in the 

parking lot (if it is red, we won’t waste time attending to black bikes) or the bottle 

opener in the kitchen drawer (this will be inefficient due to a lack of a salient 
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defining feature, and because of crowding effects too; Balas, Nakano & Rosenholtz, 

2009). 

Undoubtedly, researchers study phenomena in the laboratory in order to 

understand how they work in the real world, and the single target task has an obvious 

similarity to a large class of real-world search tasks: where is my mobile? Where is 

the sugar? Is my name on this list? And so on. But searching for a particular target 

item (e.g., where did I leave my bag?) is only one example of the set of visual search 

problems we daily face. In most of the cases, in our environment, we are not trying to 

find a single item, but a class of items of unknown quantity: these types of search 

define the foraging behaviour.  

Nowadays, much is known about visual search for single targets, but 

relatively little about how observers ‘‘forage’’ for multiple targets. In the following 

section, it will be illustrated what it is known so far about this particular search 

behaviour.                                                                             

 

1.3 The “patch-leaving” behaviour                                                          

          The most investigated topic about foraging is the answer to the 

following question: “when to quit the search”? Many tasks that we need to 

perform on a daily basis require surveying an environment for items of 

interest and facing decisions about how to maximize the number or quality of 

items that are obtained. The topic of search termination has been studied in 

human visual searches having zero or one target (Chun & Wolfe, 1996; 

Cousineau & Shiffrin, 2004; Moran, Zehetleitner, Müller & Usher, 2013; 

Wolfe, 2012). Quitting times in searches with multiple targets have been 

studied extensively in the animal foraging literature: it is described as the 

patch-leaving problem (Stephens, Brown & Ydenberg, 2007; Stephens & 

Krebs, 1986). For example, if a bee is sipping nectar from flowers on a plant, 

when should it leave for the next flowering plant? Like for animals, human 

foraging can involve acquisition of resources, like food: if I am picking 

apples from a tree, at what point do I quit searching the current tree and move 

onto the next? The principles of foraging can also extend to our mental life: 

how long should we ‘fish’ for a word in the pool of our long-term memory? 
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Moreover, new foraging tasks are created by civilization: how long would we 

stay on one webpage before moving to another? These kind of questions 

address an understudied area of visual search and explore the interactions 

between decision making and visual cognition. Decision-making in visual 

search tasks has been explored by studying the foraging behaviour in animals 

(Charnov, 1976; Hayden, Pearson & Platt, 2011; McNamara, 1982; Mellgren, 

1982; Stephens & Krebs, 1986; Wajnberg, Fauvergue & Pons, 2000; 

Ydenberg, 1984) and by studying human behaviour in laboratory foraging 

tasks (Cain, Vul, Clark & Mitroff, 2012; Wolfe, 2013; Hutchinson, Wilke & 

Todd, 2008; Pirolli, 2007).  

Search termination becomes important if the observer does not know how 

many targets might be present, as in many real-world search tasks. Let us take the 

following one as an example: a radiologist might be looking for all signs of cancer. 

In search tasks like these, of course we are very interested in the discovery of targets, 

but search termination rules are important too.                                                                

There is very substantial animal literature on foraging, much of it centered on 

the question of whether or not animals are ‘‘optimal’’ foragers (Pyke, Pulliam & 

Charnov, 1977; Stephens & Krebs, 1986). The whole idea of ‘‘optimal’’ foraging is 

problematic (see Witness, Pierce and Ollason’s paper (1987): “Eight reasons why 

optimal foraging theory is a complete waste of time’’).                                                                                                                     

One major class of theories, termed Optimal Foraging Theory (OFT), 

provides a theoretical framework for deciding when to quit searching a display: the 

most influential idea is Charnov’s ‘‘Marginal Value Theorem’’ (MVT; Charnov, 

1976), a model of animal foraging that can be successfully applied to humans. MVT 

is characterised by the simplicity of its basic idea, explained as follows. The animal 

wants to maximize his intake of food. As it forages in one location, it depletes the 

resource in that location. At some point, the rate of return from the current location 

drops below the average rate of return: now, MVT tells us that it is time to move. The 

average return will depend on the rate with which resources can be extracted from 

patches of resource and the time it will take to get to the next patch. In fact, you 

cannot collect resources while you are travelling to the next patch and if it is going to 

take a long time to get to it, you should exploit the current patch for longer (Stephens 
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& Krebs, 1986). Recapping, MVT suggests that we measure the rate of return (e.g., 

how many apples I am collecting per unit of time) and that we quit searching the 

current display when the rate of return falls below the average rate of return 

(Charnov, 1976; Mellgren, 1982; Stephens & Krebs, 1986; Wajnberg, 2000; 

Ydenberg, 1984). The theorem correctly predicts that if we increase travel time (e.g., 

increasing the distance between trees), people will search longer before moving onto 

a new display: targets cannot be acquired during travel, so increased travel decreases 

the average rate. Thus, people search longer because it takes longer for the current 

rate to fall to the average rate.  

MVT, with its simple rule, has been highly influential because it can be used 

to study humans too (Cain, 2012; Wolfe, 2013). It requires an individual to keep 

track of only two pieces of information: the rate of target acquisition within the 

current patch and across all patches. But this approach has an important limitation: 

the theorem, in fact, leaves no room for an understanding of the environment (the 

context) to influence behaviour and does not take into account that we are not passive 

observers and that perception is inferential (Brady & Chun, 2007; Brady & 

Tenenbaum, 2013; Chun & Jiang, 1998; Feldman, Griffiths & Morgan, 2009; Fischer 

& Whitney, 2014). Other approaches within Optimal Foraging Theory propose that 

foraging behaviour is driven by very limited information and ignore the knowledge 

and beliefs individuals have about objects and/or the environment.  

Optimal foraging models have largely been tested in tasks where trials are 

drawn from a randomized design matrix. Such designs minimize the contextual 

information provided by objects and events, leading to an environment that is 

unrealistic. The real world, in fact, has structure and inferences about the nature of 

the world can come from a variety of sources (e.g., foraging in an orchard will be 

more or less successful, depending on the ongoing season). 

In the experiments in which MVT serves as a useful description of the results, 

observers “forage” in a realm of uniform, infinite resources. For example, suppose 

that there are multiple target types in the same patch (Wolfe, 2012b). Birds searching 

for insects tend to search for one type until it becomes rare and then switch to 

another type (Bond & Kamil, 2002). But what about humans: do they behave in a 

similar manner? There is some cost to switching from one target template to another 
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(Maljkovic & Nakayama, 1994; Rangelov, Muller & Zehetleitner, 2011; Wolfe, 

Horowitz , Kenner, Hyle & Vasan, 2004). This can be thought of as an internal travel 

time that will vary with the difficulty of searching memory (Mayr & Kliegl, 2000). 

Leaving the search for one item to begin the search for another is a form of patch-

leaving behaviour (Hills, 2012). It is interesting to see how this interacts with the 

external visual search: suppose that the set of possible targets includes bananas and 

pears. If you are currently searching for bananas and your eyes happen to light upon 

a pear, there are several possible consequences: you might miss the pear entirely 

(inattentional blindness; Mack, Tang, Tuma & Kahn, 1992); you might ‘‘pick’’ the 

pear and continue searching for bananas; the pear might provoke an automatic task 

switch to search for pears (Beck, Hollingworth & Luck, 2012). Depending on the 

relative costs for switching templates, selecting items and moving between patches, it 

could be optimal to search for one target, then the next, or to determine if each item 

in the display matches any item in the memorized target set.  

Anyway, there are endless complications/variations on basic foraging and 

MVT, starting with fundamental questions about what it would really mean to forage 

optimally (Stephens, Brown & Ydenberg, 2007). MVT assumes a uniform set of 

patches and an animal that knows the instantaneous and average rate. Obviously, an 

animal must learn those rates. But what happens if patches vary in quality? (As it 

happens in the real world, that tends not to be uniform in its distribution of 

resources). To investigate this issue, Wolfe (2013) took into consideration the search 

for blueberries in a field of blueberry bushes. This kind of visual search is quite 

straightforward: targets are round objects of a certain size and colour. There are many 

of these, it is not hard to find them and the ‘picker’ does not have to pick all of the 

berries. When does a forager leave one berry bush for the next one? Intuitively, we 

can consider that people do not pick all of the berries off one bush before moving on. 

In fact, one possible solution could be searching exhaustively, leaving when all the 

targets are found, but individuals (and animals too) rarely do this. MVT can give a 

good description of human behaviour for roughly uniform collections of patches but 

we see strong departures from it when patch quality varies and when visual 

information is degraded (Wolfe, 2013). The results of this experiment showed that 

patch-leaving behaviour in human visual search tasks is a strongly rule-governed 
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behaviour. When searching through a world of roughly uniform, depletable 

resources, patch-leaving behaviour was consistent with the expectations of the MVT. 

As observers selected items from the current patch, those items became rarer and 

took longer to pick. As a result, the rate of yield from the patch drops. At some point, 

the rate drops below the average rate for the task, and at about that point, observers 

tended to move to the next patch. The behaviour was also influenced by the 

experimental conditions: observers stayed longer and picked to a lower yield when 

the picking was hard and they stayed longer if the travel time between patches was 

longer. Moreover, observers were influenced by the instructions: they searched 

longer when told to search exhaustively.                                                        

In sum, humans’ visual foraging behaviour seems rule-governed: observers 

changed rules depending on the specific conditions of the foraging task. It seems 

likely that we share the basis for our foraging decisions with other animals but, at the 

same time, there are situations in our civilized world where those ancient rules are at 

odds with our modern desires. So, human ‘‘patch-leaving’’ behaviour is a complex 

domain: it is not explained by a single rule, anyway MVT is a fundamental 

determinant of it and a foundationally important concept in foraging.  

If MVT behaviour was deeply ingrained in us, this could become a problem 

when we are faced with foraging tasks that demand that we pick all of the ‘‘berries’’. 

For example, if a radiologist is looking for a cancer, it would be obviously wrong to 

adopt a strategy of terminating search when the ‘‘yield’’ from the current patient 

drops below the average yield. Therefore, there must be other rules, implicit or not, 

that govern when it is time to move to the next patient. Hutchinson, Wilke and Todd 

(2008) analysed these rules, presenting observers with a fishing task in which they 

had multiple ponds to pull fish from. When is it time to move to the next pond? In 

their task, at any point subjects could move to a new pond: but travel took some time. 

They delayed this switch much too long. Subjects spent longer at ponds where they 

had found more items (contrary to optimality predictions). However, they apparently 

responded not to the number of captures directly (despite this appearing on screen) 

but to the current interval without a capture, to the interval preceding the last capture, 

and to the time spent at the current pond. Subjects often left directly after a capture, 

perhaps an example of the Concorde fallacy. High success rate in the preceding patch 
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decreased residence time and subjects appeared to be learning to leave earlier over 

the latter two thirds of the experiment. The authors argued that minimization of delay 

to the next capture alone might explain some of the suboptimal behaviour observed.  

It is possible to apply similar rules to ‘‘fishing’’ for items in a more broadly 

cognitive sense: for example, in memory (Wilke, Hutchinson, Todd & Czienskowski, 

2009). As Hills (2006) wrote: ‘‘What was once foraging in a physical space for 

tangible resources became, over evolutionary time, foraging in cognitive space for 

information related to those resources’’. There is more than a merely analogical link 

between foraging for food resources and, for example, searching memory in order to 

name all the animals that you can in a fixed period of time (Hills, Jones & Todd, 

2012). If you try the animal-naming task, you will find yourself naming a collection 

of animals from one ‘‘patch’’ (for example farm animals). You will leave the patch, 

not when you have named every farm animal that you know, but when the yield from 

the farm patch drops to a point that makes it worth ‘‘travelling’’ to the fish patch or 

the jungle one. Returning to a more visual domain of search, the ideas of OFT have 

been effectively applied to ‘‘information foraging’’ on the world wide web (Pirolli, 

2007; Pirolli & Card, 1999). How do we decide when to leave a webpage for 

another? Pirolli (1997) introduced the useful idea of ‘‘information scent’’: for 

instance, if you are looking for the letter ‘‘T’’ and you know that it is white in a 

display of white and black letters, the “scent of white” will guide your foraging.  

In the visual search literature, the aspect of foraging that has attracted the 

most work has been the study of the searcher’s paths through the visual display. 

Anyway, there has been very little work on foraging within the visual search 

literature and that is why this potentially is a large field of inquiry.  

 

1.4 Influences of the context on the foraging behaviour 

One important source of structure often ignored by optimal foraging models 

is the temporal context. Many psychological processes have well-studied hysteresis 

effects (current performance depends on past input). Strong effects of a previous trial 

on performance have been revealed (e.g., priming of pop-out: Maljkovic & 

Nakayama, 1994, 1996, 2000; attentional capture: Lamy, Carmel, Egeth & Leber, 

2006; Leber & Egeth, 2006a, 2006b; Leonard & Egeth, 2008; attentional blink: 
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Potter, Chun, Banks & Muckenhoupt, 1998; working memory: Huang & Sekuler, 

2010; task switching: Schneider & Logan, 2005). Studying how people perceive 

ambiguous or impoverished visual input (for example classic ambiguous figures like 

the duck-rabbit, popularized by Jastrow or the young girl/old lady), we find evidence 

that perception is an active and predictive process in which recent experience 

influences current perceptual processing (Bar, 2007; Brascamp, 2008; Corbett, 

Fischer & Whitney, 2011; Fischer & Whitney, 2014; Liberman, Fischer & Whitney, 

2014).   

Fougnie, Cormiea, Zhang, Alvarez & Wolfe (2015) explored how foraging is 

influenced by temporal structure. They created historical dependencies between trials 

by adding ‘‘seasons’’ to foraging tasks: the displays alternated between periods of 

plenty (many targets) and of scarcity (few targets). Of interest was whether foraging 

behaviour depended on whether participants were in rising (scarcity-to-plenty) or 

falling phases (plenty-to-scarcity). They found that temporal history influenced 

foraging behaviour in a foraging task for Ts among Ls: participants foraged longer 

during falling phases. We know that quitting rules such as MVT predict the opposite 

pattern. Since the authors found that people search longer as patch quality falls, their 

conclusion was that participants were using temporal context to infer display quality. 

Therefore, temporal history may alter foraging behaviour by altering participants’ 

beliefs about display quality. People may forage for longer in falling phases because 

the expected yield of search is influenced by the content of the previous displays 

(which is higher for falling phases), but not in the way predicted by MVT. This 

temporal context effect not only altered foraging behaviour, but also was found to 

influence explicit judgments of target density: there were higher quality ratings for 

displays during falling phases, even though display quality was equivalent in falling 

and rising phases. Taken together, these findings argue that foraging behaviour is 

driven by inferences about the current state of the world shaped by previous 

experience: temporal history alters both behaviour and beliefs, consistent with an 

active inference (or Bayesian) account of foraging.  

Thus, these results highlighted the limitations of existing models and 

demonstrated that foraging theories need to consider richer models of observers’ 

representations of the world. Past experience can influence current perception, 
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recognition, or memory through Bayesian inference (Crawford, Huttenlocher & 

Engebretson, 2000; Feldman, 2009; Fischer & Whitney, 2014). As a matter of fact, 

we come into a display with prior beliefs about the world, beliefs informed by 

experience. Classic optimal foraging models often give observers considerable 

information (such as the distribution of possible states of the world) but ignore how 

observers acquire this information (Charnov, 1976; Hutchinson, Wilke & Todd, 

2008).  

           Context effects reveal the aspects of the environment that an observer uses to 

shape beliefs about the world and foraging theories will need to account for these 

context effects, as done by Zhang, Gong, Fougnie & Wolfe (2015), who found 

evidence of temporal effects in a laboratory analog of a berry-picking task: observers 

stayed longer when previous patches were better and this is the opposite of what 

would be predicted by a model in which the assessment of the average rate is biased 

in favour of recent patches. This result was found when patch quality varied 

systematically over the course of the experiment; smaller effects were seen when 

patch quality was randomized. Together, these data suggest that optimal foraging 

theories must account for the recent history to explain the current behaviour. The 

authors also investigated if one single patch can produce history effects on the 

foraging task. In order to answer this question, the berry patch quality changed 

randomly and the authors found that observers’ assessment of the current patch was 

influenced by the preceding one: human foraging behaviour is influenced by recent 

experience.  

 

1.5 Inhibition of return (IOR): a foraging facilitator 

We know that when attention is focused on a location, stimuli at that location 

are detected more readily. For example, when their attention is summoned to a 

location by a flashed cue, people are faster to detect stimuli presented near this cue. 

However, if the delay between the flashed cue and the subsequent appearance of the 

stimulus is long enough, people are slower to detect the stimulus at the cued location 

than at other locations in the display. Moreover, after attention has been directed to 

an item and then withdrawn from that, it is harder to get attention back to that item 
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(Posner & Cohen, 1984). This inhibitory mechanism is now known as inhibition of 

return (IOR; Posner, Rafal, Choate & Vaughan, 1985).  

Search is more efficient if participants attend to new items rather than 

repeatedly searching previously examined ones. IOR encourages orienting toward 

new information in the visual field and away from searched ones (Klein, 1988; Klein 

& MacInnes, 1999; MacInnes & Klein, 2003; Müller & von Mühlenen, 2000; Takeda 

& Yagi, 2000). Klein (1988) proposed that IOR might facilitate visual search when 

each display item requires an attention-demanding inspection to determine if it is the 

target (cf. Treisman & Gelade, 1980). Inhibitory tagging of display items that have 

already been examined attentively would, by repelling attention, help the observer 

avoid reinspecting them. The author tested this functional explanation of IOR by 

presenting luminance-detection probes immediately after the subject had performed 

an easy (pre-attentive; target “pops out”) or difficult (requiring serial allocation of 

attention to array items) visual search. The probes occurred on half of the trials and 

were presented at locations where there had been an item in the search display (on 

probes) or at locations where no item had been presented (off probes). The rationale 

was: “In serial search if the presumed allocation of attention to each item is followed 

by inhibition of return, then detection of on-probes should be delayed compared with 

off-probes” (Klein, 1988). This is precisely what he found, providing support for a 

view of IOR as a foraging facilitator. 

In another test by Klein and MacInnes (1999), participants searched for a 

character in the cluttered drawings of a “Where’s Waldo?” book while experimenters 

monitored their eye movements. Participants also had to make a saccade to a flashed 

probe whenever it appeared. When the probe appeared in a previously fixated 

location, saccadic latencies were longer. Furthermore, saccades made prior to probe 

onset were typically biased away from previous saccadic directions, supporting the 

notion that IOR directs attention to new locations during visual search. There are 

three main findings from this study: first, when probe targets were presented in a 

scene during search, participants were slower to saccade to them when they were in 

the general region of preceding fixations than when they were in a new region. 

Second, this inhibition was not observed if the search array was removed when the 

probe was delivered: IOR is attached to objects in a scene (e.g., Abrams & Dobkin, 
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1994; Tipper, 1991, 1994). Third, the freely executed saccades of participants prior to 

the presentation of the probe showed the same bias that was evident in the time to 

acquire the probe; that is, each saccade was more likely to repeat the previous 

direction than to reverse it. This is precisely what one would expect if the IOR that 

was seen in the time to find the probe was operating equivalently on the freely made 

saccades during search. And it is precisely such freely made saccades during visual 

search of a scene that ought to be influenced by inhibition serving as a foraging 

facilitator. 

The contribution of IOR was also investigated by Thomas, Ambinder, Hsieh, 

Levinthal, Crowell, Irwin, Kramer, Lleras, Simons and Wang (2006): participants 

searched for fruit on a tree in a fully immersive virtual environment and detected 

cues at previously searched and unsearched locations; their cue detection RTs were 

measured. Participants had to make head and limb movements to perform their 

search task. Because this task involved manual search, search rates were slower than 

those normally observed in IOR experiments. Participants also made a speeded 

response when they detected a flashing leaf that either was or was not in a previously 

searched location: responses were slower when the flashing leaf was in a previously 

searched location. Therefore, Thomas et al. found IOR in a foraging task that 

required slow, manual searches of a virtual environment: this result added ecological 

validity to the hypothesis that IOR acts as a foraging facilitator.  

This phenomenon appears to be robust and long lasting and it occurs in tasks 

that approximate real-world foraging. In conclusion, thinking about foraging tasks in 

our daily lives — searching for house keys on a cluttered desk or scanning a crowded 

room for our partner — IOR aids our accomplishment of these tasks, preventing us 

from searching the same locations over and over. 

 

1.6 Is visual search like foraging? 

Little work has been carried out in humans to explore to what extent visual 

search tasks are similar to more general search and if visual search is a valid and 

good model for foraging. To investigate this unclear topic, Gilchrist, North and Hood 

(2001) created a large-scale three dimensional foraging task. Participants were 

situated within an array of film canisters and required to detect the presence or 
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absence of a hidden target (a marble) by visiting each canister, picking it up and 

shaking it. Consistent with more traditional search tasks, search time increased 

linearly with the number of items, and the target-present to target-absent slope ratios 

did not differed significantly from 1:2. A number of authors have argued that this 

property of the search functions is a hallmark of serial self-terminating search in 

which each item is sampled in turn until the target is located (e.g. Treisman & 

Gelade, 1980). In this task, it is clear that search does occur in a serial manner, 

because participants could only sample one item at a time and then move on to the 

next one. Serial self-terminating models of visual search also assume that once an 

item is sampled it is excluded from the search set: Gilchrist et al. (2001) also 

measured the extent to which rechecking occurred in foraging. Participants, in a trial, 

made fewer erroneous revisits to locations they had already searched, compared to 

more conventional search (e.g. Gilchrist & Harvey, 2000). This suggests an increased 

role for memory. The authors argued that the increased effort required in foraging, or 

large-scale search, means that participants are more likely to remember the locations 

of visited stimuli in order to minimise costly revisits.                           

Let us compare this study with Gilchrist and Harvey (2000), who used a 

visual search paradigm and recorded eye movements arguing that, if search was 

supported by a perfect memory for which locations had been visited, then 

participants should never return to refixate a distractor. The overall search times of 

the two studies are radically different: there was a large increase in overall search 

time compared to the saccade study. This difference in search time also co-occurred 

with an increase in the number of visits or fixations that occur. It would appear, as 

previously noticed, that memory plays a more important part in determining foraging 

behaviour compared to search as reported by Gilchrist and Harvey (2000). This 

suggests that foraging and search differ in the extent to which they rely on memory 

to prevent revisits. In Gilchrist et al’s foraging experiment (2001), there is a 

substantial cost associated with revisiting a location that has been previously 

inspected: the participant has to walk across the room, lean over and shake the 

canister. We do not only need to remember which items have been visited or which is 

the identity of the target (Shore & Klein, 2000): search may also be supported by a 

long-term memory of a strategic route followed consistently on each trial (for 
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example “search from left to right”). Such strategic scanning appears to be an 

important characteristic of eye-movement patterns in visual search (Gilchrist, Csete 

& Harvey, 1999) and refixation frequency is maybe modulated by the extent to 

which such a mechanism is employed. Refixation frequency may be influenced by 

the extent to which each individual item is tagged and the extent to which strategic 

scanning occurs: the relatively small revisiting frequencies in foraging could 

represent an increase in strategic scanning or in the use of a memory for which 

individual items have been inspected on any given trial.  

To get to the point, some important similarities between visual search and 

foraging have been highlighted, but it has been underlined a difference too, explained 

in terms of different task demands. By the way, it has been argued that visual search 

is a valid model for human foraging (Wolfe, 1994) and that some mechanisms (IOR, 

for example) identified in visual search tasks are central to foraging. However, the 

two tasks differ greatly in terms of the coding of space and the effort required to 

search. The issue of physical effort in large-scale search was specifically addressed 

by Smith, Gilchrist and Hood (2005): an array of lights and switches was embedded 

in a raised floor of a square room. Children searched for a hidden target (a red light) 

by pressing switches at each potential location (defined by green lights). In one 

condition, participants searched with their dominant hand and in another they used 

their non-dominant one, which was deemed to engage more physical effort (e.g. 

Carlier, 1993). When searching with their non-dominant hands, children made more 

revisits to locations they had previously checked, suggesting that increased effort can 

also be associated with decreased memory for visited locations. 

Revisit behaviour was also measured by Ruddle and Lessels (2006) in a 

virtual reality task, where participants searched for multiple targets hidden in an 

array of boxes. There were three different search conditions: whilst seated at a 

monitor, standing stationary whilst wearing a VR headset and actively walking 

through the virtual display. Subjects made far fewer revisits when walking through 

the display and benefited less from environmental cues in this condition, suggesting 

that search efficiency was related to spatial updating processes provided by body 

movement (e.g. Gopal, 1989). Tasks such as these have provided an insight into the 

nature of large-scale search, and how that might relate to visual search behaviour, 
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even though their demands are not completely equivalent to those of conventional 

visual search.                                                                                                   

Smith, Hood and Gilchrist (2008) describe the first direct comparison of 

visual search and foraging-like behaviour within the same experimental context: 

search locations were indicated by an array of lights embedded in the floor. 

Participants actively searched the space: this is closer to the demands of the 

environment naturally encountered by people. In the visually guided conditions, 

participants searched for targets that were visually defined by the presence or absence 

of a visual feature: they walked to the target location (defined by the presence of an 

additional red light amongst green distractors) and activated the respective switch. 

Larger displays were not associated with longer response times. Feature-absent 

targets usually lead to inefficient profiles in visual search experiments: participants 

tend to serially inspect each item (due to increased visual complexity) and so search 

times are longer for larger display sizes. Here participants walked to the target 

location (defined by the absence of a red light amongst red and green distractors) and 

activated the switch. In this condition, search time was linearly related to display 

size. Therefore, despite the expanded search scale and the different response 

requirements, these visually guided conditions followed the pattern found in 

conventional visual search paradigms. This demonstrated that efficient and inefficient 

search profiles, as measured in traditional visual search tasks presented on a monitor, 

can also characterise visually guided search in large-scale egocentric space. In a non-

visually guided foraging condition, participants searched for a target that was only 

visible once the switch was activated (this is closer to the process of foraging as 

subjects were asked to physically inspect potential locations; moreover, foraging can 

often occur when no visual cue is available to exactly locate the target). Search time 

was linearly related to display size, as participants serially inspected each location. In 

the foraging condition, locations did not alter appearance after inspection (unless it 

was the target location) and so it was possible for participants to make revisit errors. 

However, these errors were comparatively small in number, and there was no 

relationship between the display size and the number of revisits made by the 

remaining participants. Compared to eye-movements in previous visual search 

studies, there were few revisit errors to previously inspected locations in this 
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condition. This demonstrates that there is an important distinction between visually 

guided and non-visually guided foraging processes and suggests an equivocal role for 

the visual search paradigm in modelling and predicting large-scale search behaviour, 

and more general foraging (e.g. Wolfe, 1994).  

By the way, there are differences that derive from the context requirements: 

first, large-scale body movements take longer to execute than saccades, and so search 

time is greater affected by additional items in the display; second, revisits to 

locations inspected previously in a trial are much less than those usually observed in 

eye-movement studies of refixations in visual search (Gilchrist & Harvey, 2000). In 

large-scale search, the increased effort required to actively search space could result 

in increased memory deployment for route, in order to avoid costly rechecking 

(Gilchrist et al., 2001). However, Smith, Gilchrist and Hood (2005) found that 

increased effort (searching with the non-dominant hand) was associated with poorer 

memory for inspected locations.  

It seems that visual search tasks can partially equate large-scale search when 

the visual cues to target location are of an equivalent nature. In any case, the 

differences between visual search and foraging, in terms of visual guidance, scale, 

movement and spatial coding, would suggest that search in these two contexts is not 

qualitatively equivalent. More studies are needed to solve these issues, to develop a 

comprehensive model of human search behaviour (e.g. Gilchrist & Harvey, 2000; 

Horowitz & Wolfe, 1998; Peterson et al., 2001) and to investigate whether results 

from visual search can genuinely provide predictions about more general foraging.  

 

In the next chapter, we will look further into another aspect linked to the 

foraging task: its connection with the reward. This psychological phenomenon will 

be illustrated and analysed. 
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CHAPTER 2  

“REWARD AND VALUE-DRIVEN ATTENTIONAL CAPTURE” 

  

2.1 Mechanisms of attentional selection and state of the art 

Visual scenes contain a large amount of information: many different objects 

with many component features need to be processed by an observer. What is 

represented through our visual system will then be available for higher-order 

cognitive processes, such as decision making, reasoning and memory storage. 

Stimuli compete to be represented in the brain, requiring a process of 

selection (e.g., Desimone & Duncan, 1995; Reynolds, Chelazzi & Desimone, 1999). 

The winners of this selection will become available to resource-limited cognitive 

systems: stimuli that are not attended often fail to reach awareness (Mack & Rock, 

1998; Most, Simons, Scholl, Jimenez, Clifford, Chabris, 2001; Rensink, O’Regan & 

Clark, 1997). Failing to rapidly attend to a stimulus may result in a missed 

opportunity to obtain a reward or to avert a negative outcome.  

Attentional control determines the contents of perceptual experience and the 

resulting awareness of one’s surroundings. Almost any behavioural or cognitive act 

like remembering, learning, perceiving or behaving depends on the control of 

attention. It has long been known that attentional selection in visual search depends 

both on voluntary, top-down deployment according to context-specific goals, and on 

involuntary, stimulus-driven capture based on the physical salience of stimuli and 

perceptual objects.  

Goal-driven and salience-driven have been well defined in the literature for 

years as the only two mechanisms of attentional selection. Anderson (2011) was the 

first to argue that there exists another mechanism, driven by the learned associations 

between stimuli and reward. The author proposed the existence of a “value-driven 

mechanism of attentional selection”, in which stimuli that have been previously 

associated with reward through learning involuntarily capture attention, even when 

they are entirely task-irrelevant, non-salient and when rewards are no longer 

available: reward learning modifies the attentional priority of stimuli, allowing them 
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to compete more effectively for selection (Anderson, Laurent & Yantis, 2011; Della 

Libera & Chelazzi, 2009; Hickey, Chelazzi, Theeuwes, 2010). This type of influence 

on the attentional control, mediated by reward, will be deeply investigated in the 

following sections of this chapter: reward has long been known to play a key role in 

cognition and learning (Pessoa & Engelmann, 2010; Schultz, Dayan & Montague, 

1997; Platt & Glimcher, 1999; Sugrue, Corrado & Newsome, 2005). 

  

2.2 Goal-driven attentional selection 

           Voluntary or top-down attentional control is driven by the current goals of the 

observer. When individuals are looking for a particular object or feature, or searching 

in a particular location, they can voluntarily direct overt attention (eye movements) 

or covert attention (without eye movements) to the task relevant object, feature, or 

location. Such deployments of attention increase the speed and accuracy of 

behavioural responses (e.g., Pashler, 1998) and evoke strong modulation of neural 

activity in the brain (e.g., Moran & Desimone, 1985; Yantis, 2008).  

           Our goals are often adaptive, flexible and can rapidly adapt to changes in 

expectations and task demands (e.g., Lien, Ruthruff & Johnston, 2010). Currently 

active goals play a powerful role in computing attentional priority. For example, 

attention can be deployed to a particular location when individuals are cued in 

advance to attend to it in preparation for an upcoming target (e.g., Posner, 1980). 

Goal-driven attentional control can also operate through the prioritization of stimulus 

features: knowledge of the specific features of the upcoming target increases the 

efficiency of visual search because the attentional selection will be limited to stimuli 

that possess a target-defining feature (Wolfe, 1994; Wolfe, Cave & Franzel, 1989).  

Goal-driven attentional selection is voluntary and intentional, but may proceed 

rapidly and automatically too. When the target of visual search is known in advance, 

stimuli that possess a target-defining feature capture attention and this mechanism is 

called contingent attentional capture (Folk, Remington & Johnston, 1992). 

Distractors that share the defining feature of the target selectively produce a spatial 

cuing effect consistent with attentional selection (Anderson & Folk, 2010, 2012; Folk 

& Anderson, 2010; Folk, Leber & Egeth, 2002; Folk & Remington, 1998). This goal-

related selectivity in attentional selection is supported by eye movement measures 
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(Ludwig & Gilchrist, 2002, 2003) and neurophysiological indices of stimulus 

processing (e.g., Eimer & Kiss, 2008; Serences, Shomstein, Leber, Golay, Egeth & 

Yantis, 2005; Serences & Yantis, 2007). Contingent attentional capture rapidly 

orients attention to likely targets, facilitating more rapid target localization, at the 

possible expense of selecting feature-similar non-targets that need to be rejected.  

 

2.3 Salience-driven attentional selection 

          This form of control is often referred to as bottom-up or stimulus-driven 

control (Itti & Koch, 2001; Parkhurst, Law & Niebur, 2002; Theeuwes, 1992, 2010; 

Yantis & Jonides, 1984; Yantis, 1993, 2000). When a salient, unexpected event 

occurs (e.g., the appearance of a new object, Christ & Abrams, 2006; Yantis & 

Hillstrom, 1994; or looming motion, Lin, Murray & Bointon, 2009), the observer 

will often orient to that event, even if it may interfere with other ongoing cognitive 

tasks.  

         Yantis and Jonides (1984) reported that the abrupt onset of a new perceptual 

object captures attention in a visual search task even when the onset does not reliably 

predict the target location. Visual search for a target is slowed by the presence of a 

physically salient non-target (Theeuwes, 1991, 1992, 1994, 2010; Yantis & Jonides, 

1984), which unwillingly draws eye movements (e.g., Theeuwes, de Vries & Godijn, 

2003; Van der Stigchel & Theeuwes, 2005). Neurophysiological measures show 

preferential processing of a salient distractor (e.g., Hickey, McDonald & Theeuwes, 

2006).  

          The extent to which salience-driven attentional priority can be overridden by 

goal-driven attentional control is still a matter of debate. Physically salient stimuli 

that do not match a currently active target template have consistently failed to 

produce evidence of attentional capture using both behavioural (e.g., Folk, 

Remington, Jhonston, 1992; Folk & Remington, 1998) and neurophysiological 

measures (Eimer & Kiss, 2008, 2010; Lien, Ruthruff, Goodin & Remington, 2008). 

Salient but task-irrelevant stimuli most strongly capture attention when the features 

of the upcoming target cannot be anticipated (e.g., Bacon & Egeth, 1994; Folk & 

Anderson, 2010), suggesting that goal-driven attentional control may be capable of 

gating the influence of salience on attentional selection. However, salient visual 
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events can carry important information concerning potential reward availability or 

danger. 

 

2.4 Attention to reward-related stimuli 

          An adaptive system of attentional selection must also be understood in terms of 

the influence of prior reward learning. An attentional system that only factors goals 

and salience into the computation of priority for selection is likely to result in missed 

opportunities to obtain a reward or escape danger, in fact both goals and salience are 

only indirectly related to the value of a stimulus.  

           Previous studies have suggested that the learned association of an item with a 

reward can enhance motivation and benefit goal-directed behaviour (Pavlov, 1927; 

Rescorla & Wagner, 1972). Selective attention is allocated to items that have been 

previously associated with reward (Anderson, Laurent & Yantis, 2011; Della Libera 

& Chelazzi, 2006, 2009; Hickey, Chelazzi & Theeuwes, 2010, 2011; Hickey & van 

Zoest, 2012; Peck, Jangraw, Suzuki, Efem & Gottlieb, 2009; Raymond & O’Brien, 

2009). 

           Engelmann, Damaraju, Padmala and Pessoa (2009) investigated the effect of 

motivation in a Posner cue–target task: participants were to use an endogenous cue 

(70% valid) to detect visually faint faces that appeared either on the left or the right 

side of fixation. It was shown that target detection performance improved with higher 

reward, without an increase in false alarm rates: therefore, reward boosts perceptual 

process capacity, enhancing detection sensitivity. 

           Savine, Beck, Edwards, Chiew and Braver (2010) used a switching task in 

which participants received a reward based on their performance. Faster response 

times and fewer errors were observed for trials within rewarded blocks, without any 

speed–accuracy trade-offs, and the facilitation was significantly stronger for mixed 

blocks (i.e., task-switching block) with high cognitive demands than for single-task 

blocks with low cognitive loads.  

           In a study by Veling and Aarts (2010), reward had the effect of reducing the 

Stroop interference. 

           Reward plays an important role in voluntary, deliberate deployments of 

attention in a variety of contexts. For example, Raymond and O'Brien (2009) showed 
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participants several novel faces during a training phase, and consistently followed 

each face with different amounts of positive or negative monetary reward. Following 

the training phase, participants carried out an attentional blink task in which two 

targets, each followed by a mask, were shown in rapid succession. The second target 

was one of the faces that had appeared during the training phase: the probability of 

correctly recognizing a face was much greater when it had been associated with large 

positive or negative rewards during training than if it had been associated with low or 

no reward. 

           However, reward can also have an adverse effect on behavioural performance. 

Previous reward history could be detrimental if a reward had been associated with a 

stimulus feature, such as a colour. In comparison with studies that had rewarded 

participants on the basis of their overall performance in a given task, these studies 

associated a particular feature with reward, and through this association, attention 

was involuntarily attracted to the stimulus. A previously rewarded colour was shown 

to be detrimental to performance if the colour used as a distractor in a subsequent 

task (Anderson, Laurent & Yantis, 2011).  

           In a Stroop task by Krebs, Boehler & Woldorff (2010), responses to rewarded 

ink colours were faster than those to unrewarded colours. Moreover, when the to-be-

ignored colour name was reward-related, it tended to magnify the usual slowing 

caused by colour-word conflict. This study shows that stimuli associated with high 

reward tend to draw attention even when those stimuli should be ignored. 

           Miranda and Palmer (2014) have recently shown that attentional capture can 

also be produced by presenting tasks in a videogame-like format, with points and 

sound effects serving as the rewards: participants were significantly slower at 

responding to the oddball shape when a colour previously associated with the x10 

bonus multiplier was present in the background.  

           In another study by Palmer, Davies, Nguyen, Berndt and Miranda (2014), 

participants were rewarded for locating certain shapes in a training phase and then in 

a later test phase (during which shape was irrelevant to the task) they were 

significantly slower to identify oddball colour targets if a previously rewarded shape 

was present as a distractor. This means that participants’ visual systems learned to 

prioritize processing of rewarded shapes and automatically attend to them even when 
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they were irrelevant to the task. This kind of result has a practical implication, in fact, 

it can be applied to socially-critical searches such as searching for guns, knives, or 

bombs in checked baggage or tumours in x-rays, and these are actually examples of 

foraging tasks. The idea could be to reward the user for finding important search 

targets during training so that these targets will be “tagged” by the visual system and 

automatically draw attention in the field.  

           The influence of learned value on attention may also contribute to explain 

clinical syndromes characterized by similar failures of cognitive control, including 

drug addiction, attention-deficit/ hyperactivity disorder, obsessive-compulsive 

disorder and obesity. These conditions tend to co-occur (Davis, 2010; Sheppard, 

Chavira, Azzam, Grados, Umaa, Garrido & Mathews, 2010), and correlations with 

individual differences in working memory capacity and impulsivity suggest that 

there may be common underlying mechanisms that make some individuals more 

susceptible to value-driven attentional capture and the disorders to which it may 

contribute. 

 

2.5 Reward priming 

           Several studies have shown that reward delivery gives rise to involuntary 

deployment of attention on the very next trial, the phenomenon named “reward 

priming”. For example, in the study by Hickey, Chelazzi and Theeuwes (2010a), 

participants searched for a shape singleton (e.g., a diamond in an array of circles) and 

reported the orientation of a small line segment contained in the target. On some 

trials, all the shapes were rendered in the same colour (red or green). On many trials, 

however, one of the non-target shapes had a unique colour (red among green or vice-

versa). Each trial was followed by a feedback display containing the amount of 

reward that was received on that trial, either 1 point or 10, translated into monetary 

reward at the end of the experiment. Reward was randomly delivered. If on trial N 

the target and most of the non-targets were red (and the colour singleton was green), 

then on trial N + 1 the colour assignment could be the same, or it could swap so that 

the target and most of the distractors were green (and the colour singleton was red). 

On trials in which the colours did not swap, a high reward on trial N yielded faster 

responses on trial N + 1 than did a low reward. However, when the colours swapped, 
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this pattern reversed. This outcome indicates that when a particular colour is 

rewarded, that colour appears to draw attention to itself on the immediately following 

trial, even though colour is not relevant to the task. A follow-up study revealed that 

the magnitude of reward-modulated priming across individuals is positively 

correlated with individual reports of the extent to which reward motivates behaviour 

(Hickey, Chelazzi & Theeuwes, 2010b). Thus, individuals who are the most 

motivated by rewards are also the most influenced by recent reward history in visual 

search.  

           Della Libera and Chelazzi (2006) reported a similar result employing a global-

local number identification task pioneered by Navon (1977). Participants were shown 

a large number (global feature) comprised of identical smaller numbers (local 

features) on a given trial, and were cued in advance on which feature to perform an 

identity judgment. Subjects were randomly given a high or low monetary reward for 

correctly identifying the cued feature. These were referred as prime trials, each of 

which was followed by an unrewarded probe trial on which only one of the two 

feature judgments could be performed. Following a high reward, response time was 

faster on probe trials when the judgment from the prime trial was repeated and 

slower when the judgment switched, consistent with inter-trial priming of the 

rewarded feature. This pattern was reversed, however, following the receipt of a low 

reward, suggesting that participants were biased against repeating the same judgment 

in this case. 

           In Serences’ work (2008), participants selected one of two coloured circles via 

a button press, and their selection either was or was not followed by the delivery of 

monetary reward. Recent reward history of each colour predicted both stimulus 

selection and stimulus-evoked response in early visual areas, as measured by 

functional magnetic resonance imaging (fMRI). Serences and Saproo (2010) showed 

that oriented gratings associated with larger rewards are represented with greater 

precision in early visual areas of the human brain. Shuler and Bear (2006) found that 

when light flashes predicted reward, responses in rat area V1 reflected temporal 

expectations concerning reward delivery, with activity being either maximal or 

minimal at the time of expected reward. In sum, these results argue that current 
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stimulus-reward associations bias perception, consistent with attentional priority to 

high-value features. 

 

2.6 Value-driven attentional capture’s features 

           As previously discussed, this involuntary mechanism of attentional capture by 

stimulus–reward association is distinct from conventional stimulus or goal-driven 

attention: the attentional system chooses previously reward-associated stimuli over 

other, more perceptually salient items and under explicit instructions to ignore the 

stimuli.  

           Value-driven attentional capture can be evoked through brief training 

(stimulus-reward associations can be learned very rapidly compared to other forms of 

experimental learning such as perceptual learning) and it persists for several months 

and even though participants show no explicit memory for the previously 

experienced stimulus-reward contingencies (Anderson & Yantis, 2013). Individuals 

vary in the degree to which they are susceptible to the attentional bias and this 

variety depends on visual working memory capacity (low-capacity individuals 

exhibit more prolonged slowing due to value-driven capture) and trait impulsivity 

(high impulsive individuals exhibit stronger value-driven capture). The effect of 

value-driven attentional capture is spatially specific: RT to targets appearing in a 

location occupied on the previous trial by a high-value distractor are especially slow, 

a demonstration of inhibition of return (Theeuwes & Godijn, 2002). When a salient 

distractor captures attention, the subsequent active suppression of that item in order 

to direct attention to the target of search gives rise to a persisting inhibitory signal at 

that location. Subsequent voluntary deployment of attention is slowed by this 

inhibition. This IOR-based signature provides strong evidence for a spatially-specific 

instance of involuntary attentional deployment. 

            Summarising, when stimuli are learned to predict reward, these stimuli gain a 

competitive advantage in perception that promotes selection even when they are non-

salient and not relevant to the task. This value-based attentional priority can be 

persistent, being robust to extinction in the absence of available rewards and can 

generalize to other stimuli and contexts, promoting the application of prior learning 

to new situations. In fact, while perceptual learning is typically very stimulus 
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specific, value-driven capture occurs for different shapes (e.g., red diamond when the 

red target was previously a circle, Anderson et al., 2011a, 2011b; Yantis, 2012, 2013) 

and even for novel stimuli (e.g., red letter when the target was previously a geometric 

shape, Anderson et al., 2012). 

            It is important to point out and remember that reward learning can imbue 

stimuli with value that can override top-down intention and give rise to suboptimal 

behaviour. In fact, pairing target stimuli with reward may lead to undesired 

aftereffects, whereby a stimulus previously associated with reward attracts attention 

even when it would be more advantageous to ignore it.  

  

2.7 Effects of monetary reward on the deployment of attention 

            Recent laboratory research has shown that attentional control is directly 

regulated by primary reward (e.g., food and sexual stimuli) and secondary reward 

(e.g., money; Awh, Belopolsky & Theeuwes, 2012; Chelazzi, Perlato, Santandrea & 

Della Libera, 2013). Particularly, financial reward enhances goal directed control by 

motivation in human participants, influencing how limited processing resources are 

prioritized (Anderson, 2013; Chelazzi, Perlato, Santandrea & Della Libera, 2013).  

Anderson, Laurent and Yantis (2011a) were among the first to show that task-

irrelevant stimuli previously associated with high monetary reward captured 

attention. Many other studies reported similar findings (Anderson, Laurent & Yantis, 

2011b; Failing & Theeuwes, 2014; Lee & Shomstein, 2014; Roper, Vecera & Vaidya, 

2014; Theeuwes & Belopolsky, 2012; Wang, Yu & Zhou, 2013).  

            In the study by Della Libera and Chelazzi (2006), observers performed a task 

in which they had to respond to prime and probe displays, presented as sequential 

pairs within individual trials. After each correct response to a prime stimulus, 

observers were given a high or low monetary reward. The level of the reward did not 

depend on actual performance, but subjects were misleadingly told that high and low 

rewards respectively signified optimal and suboptimal performance. Negative 

priming (impaired response to a probe target that had served as the distractor in the 

preceding prime display; Tipper, 2001) occurred only if the attentional selection of 

the prime target had been highly rewarded and was therefore deemed successful by 

the subject. The authors found out for the first time that attentional processes are 
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subject to an ‘‘efficiency check’’ system that dynamically adjusts attentional 

deployment toward specific items on the basis of previous outcomes. Every time a 

selection occurs, a memory trace is stored: a highly rewarded attentional selection 

will leave a stronger and longer-lasting trace than a selection that has poor 

consequences.  

            Della Libera and Chelazzi (2009) developed a training phase, in which 

correct attentional selection of specific visual items was rewarded with differential 

monetary gains and a test phase, run several days later, in which the effects of the 

history of rewards on attentional selection could be assessed in the absence of any 

ongoing reward manipulation. They demonstrated that the attentional processing of 

specific objects is durably adjusted, according to the more or less rewarding 

consequences of prior attentional episodes concerning the same objects. Therefore, 

the long-term learning to select and to ignore specific objects in the environment is 

shaped by a cumulative measure of gains (and losses) resulting from past encounters 

with those objects. The results showed that formerly reward predictive shapes 

impaired performance as the to-be-ignored shape in the matching task, but did not 

impair performance as irrelevant distractors in the visual search task. However, 

visual search was facilitated for goal-relevant targets that were formerly predictive of 

high reward. 

            Attention seems to be influenced not only by past encounters with specific 

objects and contexts, but also by the previous consequences of selecting or 

discarding specific objects. Failing and Theeuwes (2014) found that after an initial 

training phase in which one colour led to greater monetary reward than the other, the 

more highly rewarded colour later induced greater exogenous cuing and in this way 

they showed that monetary reward is a powerful driver of selective attention (Awh, 

Belopolsky & Theeuwes, 2012; Gottlieb, Hayhoe, Hikosaka & Rangel, 2014).  

However, these findings were not without controversies. For example, we cannot be 

sure that monetary reward drives attention in a value-dependent or value-independent 

manner. Jiao, Du, He and Zhang (2015) led participants to believe that they were 

performing the search task simultaneously with another participant, who may receive 

the same, more, or less reward relative to their own reward. When participants 

believed that the other individual was receiving the same or less reward, the 



Effect of reward contingencies on multiple target visual search 

 

34 

 

previously reward-associated colours induced attentional capture, and the magnitude 

of the capture was greater for the previous high-reward than the previous low-reward 

colour. Value-dependent attentional capture was also observed in Anderson and 

colleagues’ more recent work (Anderson, 2015; Anderson & Yantis, 2013; Anderson 

et al., 2011b), and in studies that trained participants to associate reward with a single 

stimulus. Other studies using primary reward such as chocolate odour or electric 

shock have also observed value-dependent capture effects by previously reward-

associated stimuli (Miranda & Palmer, 2013; Pool, Brosch, Delplanque & Sander, 

2014). In other experiments, it has been shown either no effects of reward training or 

attentional capture that was value-independent. For instance, Roper, Vecera and 

Vaidya (2014) did not find significant differences among high-reward, low-reward 

and baseline conditions. Other works reported increased capture by previously 

rewarded stimuli, but the capture effect was not greater for the more highly-reward 

stimulus (Anderson, Laurent & Yantis, 2013). In addition, some studies that reported 

monetary reward driven capture effects did not always report results from the low-

reward colour, either because this condition was omitted from the design (e.g., 

Experiment 4 of Sali, Anderson & Yantis, 2014), or because no direct statistical 

comparisons were made between the high and low-reward stimuli, like in the study 

of Anderson et al. (2011). In fact, this comparison is sometimes made difficult by the 

small effects of monetary reward. 

             Another issue to investigate is: when does reward influence attention? 

During training when differential monetary reward is given, or during testing where 

there is no monetary reward? Some studies found that people were faster responding 

to the more highly rewarded target during training, others found no effect of reward 

in the training phase. For example, participants in Anderson et al. (2011a) were 

equally fast responding to the high and low reward targets during the training phase 

and this was the case in several subsequent reports (Anderson & Yantis, 2013; Gong 

& Li, 2014; Sali, Anderson & Yantis, 2014). Reward learning was expressed 

subsequently in the test phase when the previously rewarded colours were task-

irrelevant and when monetary reward was no longer used. One explanation for the 

lack of training effects can be that the colour search task used in the training phase 

may have been relatively insensitive. In fact, colour search typically has fast RT, 
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leaving little room for reward to further reduce RT. Some studies have found 

significant effects of monetary reward during the training phase either because a 

shape discrimination task has been used (Failing & Theeuwes, 2014) or because 

monetary reward has been additionally associated with response (Lee & Shomstein, 

2014). Sha and Jiang (2015) showed, through their study, that both monetary reward 

and value-independent mechanisms influenced selective attention. Participants had to 

search for two potential target colours among distractor colours in the training phase; 

subsequently, they searched for a shape singleton in a test phase. Subjects were 

slower in the test phase if a distractor with the previous target colours was present 

rather than absent. Such slowing was observed even when no monetary reward was 

used during training.  

In another experiment, they introduced monetary reward to the target colours during 

the training phase: participants were faster finding the target associated with higher 

monetary reward. However, reward training did not yield value-dependent attentional 

capture in the test phase. Attentional capture by the previous target colours was not 

significantly greater for the previously high-reward colour than the previously low or 

no-reward colour. Although monetary reward can increase attentional priority for the 

high-reward target during training, subsequent attentional capture effects may reflect, 

in part, attentional capture by previous targets. This finding indicates that previous 

targets can capture attention (Kyllingsbæk, Schneider & Bundesen, 2001; Shiffrin & 

Schneider, 1977) and fits with the widely accepted idea that switching one’s 

attentional set is challenging (Leber & Egeth, 2006; Monsell, 2003) and that 

attentional capture is influenced by the attentional control setting (Folk, Remington 

& Johnston, 1992). 

             The diversity of findings in the literature may mean that training using 

monetary reward can yield transferrable effects in some, but not all, measures of 

attention. Compelling evidence for greater capture by previously high-reward stimuli 

had been observed when no search was involved in the training phase. For example, 

Pool, Brosch, Delplanque and Sander (2014) associated one shape with chocolate 

odour (CS+) and another shape with just air (CS-): CS+ shape induced attentional 

shifting. In another study, Wentura, Müller and Rothermund (2013) presented colours 

one at a time, and associated different colours to different amounts of monetary 
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reward: colours associated with higher reward induced greater capture. Finally, Mine 

and Saiki (2015) evidenced value-dependent capture in a test phase. What was in 

common among these studies was that participants did not perform any visual search 

during reward training. Because the reward-associated stimuli cannot be considered 

as previous targets (no search was performed on them), they are unlikely to produce 

target-induced capture. In addition, reward learning may be stronger when reward 

learning was the primary process in the training phase, as opposed to a process 

secondary to visual search. 

 

             In the studies that are going to be presented in the next chapter, it will be 

discussed the role of a training procedure in inducing value-driven attentional capture 

in a following foraging task. 
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CHAPTER 3  

“REWARD CONDITIONING ON A FORAGING TASK” 

 

3.1 Original study 

The aim of the following studies is to verify how and if reward learning 

influences subsequent attentional priority. In order to do this, a modified version of 

the value-driven attentional capture paradigm (originally reported in Anderson, 

Laurent and Yantis, 2011) has been employed.  

In the study of Anderson et al. (2011), in the training phase participants 

searched for a red or green target among differently coloured non-targets, and 

received visual feedback at the end of each trial consisting of an accumulating 

monetary reward for a correct response. The participants’ response did not depend on 

colour: in fact, they discriminated the orientation of a bar within the target stimulus. 

One target colour was associated with a high probability (P = 0.8) of a high reward 

(5¢) and a low probability (P = 0.2) of a low reward (1¢); this mapping was reversed 

for the other target colour. Experimental subjects had to learn this reward 

contingency through 1,008 trials. Training thus imbued one colour with high value 

and the other colour with lower (but positive) value. The test phase was composed of 

480 trials and no reward was provided: participants searched for a unique shape in an 

array of six differently coloured shapes. On half of these trials, one of the non-target 

items was rendered in red or green (each equally often); the target was never red or 

green, and participants were informed that colour was irrelevant to the task and so 

should be ignored. The sequence of trial events of this experiment is showed in 

figure 3.1.  

Based on the reward contingencies to which observers were exposed during 

the training, trials during the test phase were classified as containing a high-value 

distractor, a low-value distractor, or neither. A repeated-measures ANOVA revealed 

that response times significantly differed among these three conditions [F (2, 50) = 

6.07, P = 0.004]. High-value distractors slowed RT relative to when neither value-

related distractor was present [t (25) = 3.49, P = 0.002]. Slower RTs on trials 
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containing previously rewarded distractors is proof of an attentional capture effect: 

visual system prioritized the colour previously associated with monetary reward and 

allocated attention to it, even though that colour was irrelevant to the task. Thus, 

arbitrary and otherwise neutral stimuli imbued with value via associative learning 

capture attention powerfully and persistently during extinction, in a manner 

completely independent of goals and salience. 

 

 

 

 

Figure 3.1       Sequence of trial events by Anderson, Laurent and Yantis (2011) 
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3.2 Study 1 

The aim of Study 1 is to evaluate the influence of a previous reward on a 

foraging task, looking at the differences among three conditions: high rewarded / low 

rewarded / non-rewarded colours. A new training procedure, inspired by the one 

reported in Anderson et al. (2011), was tested: through a monetary reward, coloured 

stimuli are imbued with different values via associative learning. Then, a foraging 

task is presented to the experimental subjects. By comparing the three different 

conditions of the training phase, it is evaluated if, in the following testing session, 

rewarded stimuli automatically draw attention, even though colour is not-relevant to 

the task. 

 

3.2.1 Participants 

Twenty-four experimental subjects (16 males; mean age, 22.6 years) 

participated in Study 1. All participants completed two sessions (training and testing) 

and were paid for their participation on the basis of their performance in the training 

phase, as explained in more detail below. They were students from Peking University 

with normal or corrected-to-normal vision, and gave written informed consent. The 

study was approved by the Committee for Protecting Human and Animal Subjects, 

Department of Psychology, Peking University (China). 

 

3.2.2 Stimuli and apparatus 

Six colours were selected and matched in luminance. All stimuli were 

presented against a black background and displayed on a high quality touch-screen 

LCD monitor (Display ++ Version R07, Cambridge Research Systems Ltd). The 

screen size was 32 inches diagonal (active area: 710 mm x 395 mm) and the 

resolution was 1920 x 1080 pixels (10-bit RGB, 120 Hz refresh rate). The 

touchscreen had the following characteristics: spatial accuracy: 3-4 mm; timing: 22 

ms resolution; optical clarity: near 100% optical transmission. 

During the traning phase, stimuli (that is dots, squares and diamonds) were 

displayed on the touch-screen, but participants used the keyboard to perform the task.  

Only in the testing session they performed the task (foraging) through the use of the 

touch-screen. In this phase of the experiment, stimuli were letters (Ns) and their 
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mirror images. The experimental program was written in Matlab and functions from 

the Psychtoolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). 

 

3.3.3 Procedure 

The experiment consisted of two parts: a training phase and a testing phase, 

performed individually by subjects in a room with normal interior lighting. At the 

beginning of the experiment, participants were advised that a specific amount of 

money would have been awarded for responses that met predefined parameters of 

speed and accuracy (as explained below). The total duration of the task was about 

100-120 minutes. 

 

Training phase (reward) 

Before the beginning of the training phase, subjects were provided with 

instructions directly shown through a slide on the screen and then performed 5 

blocks, each of 6 practice trials, to get familiar with the task. The distance from the 

screen was 60 cm: participants used a chin-rest in order to maintain the eyes at a 

constant distance from the screen and to feel more comfortable during the execution 

of the experimental session. The training session was made up of two parts, each 

composed of 99 trials for 5 blocks, for a total of 990 trials. Participants were given a 

break at the end of each block.  

 Each trial of the training phase started with a cue display with a centrally 

positioned coloured dot (size 0.25° x 0.25°), followed by a search display that 

presented participants with a ring of 6 shapes: three squares and three diamonds. The 

sequence of trial events of the training session is shown in figure 3.2. Each shape 

(size 3.35° x 3.35°) was located at equal eccentricity (11.7°). The cue appeared for 

1.15 ms and the following shapes for 1.45 ms. Six colours were present in each trial, 

but only three of them were rewarded. To control for intrinsic differences in the 

perceptual salience of different colours, the colour assignments were 

counterbalanced across participants. 

Subjects had to remember the colour of the dot, shown in the cue display, and 

then match it to the shape rendered in the same colour, shown in the next visual 

search display. Each target was assigned to one of two responses (different 
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keypresses): if the cue colour appeared as a square, subjects had to press F on the 

keyboard; if it was a diamond, they had to press J. Participants were instructed to 

perform the task as fast as possible (time-out response <0.75 s: no points were 

awarded for longer responses) and as accurate as possible, since both factors 

(missing rate and accuracy) would have influenced the amount of the final payment.  

The reward for a correct answer could be either high “+10 points”, low “+2 

points” or “+0 points” (non-rewarded condition). So, if participants answered 

correctly on a trial, they were awarded points and received visual feedback indicating 

an accumulating monetary reward. The total score was incremented, depending on 

subject’s performance, for each correct answer and was visible all the time. Through 

this trial-by-trial reward feedback, subjects could monitor their ability and were 

continuously motivated to do better. One third of the trials presented a “+10” bonus, 

one third a “+2” bonus and the last one third a “+0” bonus. This balanced “reward 

schedule” was thought to equally imbue three different colours with three different 

values. 
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Figure 3.2       Sequence of trial events in the training session (from the image above           

to the one below) 

 

  

Testing phase (no reward) 

Before the beginning of the testing phase, subjects were provided with 

instructions directly shown on the screen and then performed 5 practice trials, 

followed by 100 experimental trials. They could take a break, if they wanted to, at 

the end of each trial. The distance from the screen was 35 cm (in this phase no chin-

rest was used, since the task required the use of the touch screen). 

The visual field of the task consisted of 144 letter stimuli (size 1.9° x 1.9°), 

one-twelfth of which were targets. The target proportion was kept low, otherwise 

subjects could collect fluently without searching. During this phase, participants’ 

task was to collect, using their own fingers, only the letters N presented on the touch-

screen, trying to avoid the distractors, that is mirror-Ns. In each trial, both targets and 

distractors were rendered in the three colours previously rewarded during the training 

session. In the testing session, subjects were not rewarded for their performance. 

Importantly, the foraging task was time-limited: subjects only had 15 seconds 

of time to collect as much targets as they could. 
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Figure 3.3       Screenshot of a portion of the screen in the test session (foraging task) 

 

 

Assessment of Explicit Memory 

At the end of the testing phase, participants were asked if they recalled which 

colours were followed by higher, lower and no reward during the training phase. 

Interestingly, all of them reported memory for the colour associated with the high-

value reward. 

 

3.3 Data Analyses and results 

Statistical analysis was performed with the software package IBM SPSS 

Statistics Version 20. Data were expressed as means ± standard deviation (SD). 

Comparisons between groups were performed by means of parametric tests.  

A value of P <0.05 was considered statistically significant. 

 

Training phase 

During the training phase, RTs and accuracy were measured. To test the 

effect of the reward on performance, a repeated-measures ANOVA (within subjects) 

was performed on each variable.  
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As for RTs, there was a significant difference between the three differently 

rewarded conditions: [F (2, 46) = 10.402, p = <.001]. Post hoc analysis with 

Bonferroni correction showed that subjects were faster when responding to the high-

rewarded colour (M = 562.497, SD = 32.998) than when responding to the low-

rewarded colour (M = 576.633, SD = 33.248, p = .011) or the non-rewarded colour 

(M = 579.804, SD = 33.385, p = .001), whereas there was no significant difference 

between the low-rewarded colour and the non-rewarded one.  

 

  

 

Figure 3.4       Training phase: RTs (ms) in the three differently rewarded conditions  

 

 

 

 

 

 

 

 

Rts ms 
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 As for accuracy, Anova reported a significant main effect: [F (2, 46) = 4.001, 

p = .025]. Post hoc analysis with Bonferroni correction revealed that subjects were 

more accurate when responding to the high-rewarded colour (M = .841; SD = .068) 

than when responding to the non-rewarded colour (M = .803; SD = .088, p = .019), 

whereas the difference between the low-rewarded colour (M = .815; SD = .081) and 

the non-rewarded one was not significant. 

 

 

 

Figure 3.5       Training phase: accuracy in the three different rewarded conditions  

 

 

After having evaluated that during the training phase participants were faster 

and more accurate in responding to the high-rewarded colour, the testing phase 

aimed to assess whether this colour still captures attention.  
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Testing phase 

During the testing phase, only accuracy was measured, since the foraging task 

was time-limited. 

 

Foraging accuracy 

           Anova reported a not significant main effect: [F (2, 46) = 1.94, p = .16], but 

post hoc analysis with Bonferroni correction revealed a significant difference 

between the previously high-rewarded colour (M = .349; SD = .047) and the 

previously non-rewarded colour (M = .320; SD = .023, p = .046): participants 

collected more items when responding to the previously high-rewarded colour than 

when responding to the previously non-rewarded colour. In contrast, there were no  

significant differences between the other pairs of conditions. 

  

 

 

Figure 3.6       Testing phase: accuracy in the three conditions 
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3.4 Study 1: Conclusions 

The goal of this first study was to verify the influence of a previously learned 

reward on a subsequent foraging task. A new training procedure, through the use of a 

monetary reward, imbued coloured stimuli with different values (that is, high, low 

and no reward), via associative learning. Then, a following testing session was 

presented to the participants. By comparing the three different conditions of the 

training phase, it was evaluated if, in the foraging task, rewarded stimuli 

automatically drew attention, even though colour was not-relevant to the task. 

An effect of the reward on performance was found: in particular, for RTs, 

there was a significant difference between the three differently rewarded conditions 

and subjects were faster when responding to the high-rewarded colour than when 

responding to the low-rewarded colour or the non-rewarded one. Regarding the 

accuracy, subjects were more accurate when responding to the high-rewarded colour 

than when responding to the non-rewarded one. Therefore, during the training phase 

participants were faster and more accurate in responding to the high-rewarded 

colour. This colour still captured attention during the testing phase: participants 

collected more items when responding to the previously high-rewarded colour than 

when responding to the previously non-rewarded colour. This means that, even 

though the search behaviour is not limited to one item but concerns the collection of 

several targets, the effect of the previously learned reward associations is still 

present.  

 

Support for value-dependent capture can be provided by two means: greater 

attentional capture by prior targets previously associated with high-value reward than 

with low-value reward, or greater attentional capture by prior targets following 

rewarded training than following unrewarded training (no reward). Study 2 tests the 

first hypothesis, comparing high-rewarded condition with the low-rewarded one; 

study 3 tests the second hypothesis, comparing high-rewarded condition with the 

non-rewarded one. Specifically, it is investigated the cue-effect as a top-down 

influence and in particular whether the cue influences the foraging task (testing 

phase) depending on previous imbued values (training phase). In these studies, 

colour is relevant to the task. 
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3.5 Study 2 

It is well known that high-rewarded items are more difficult to disregard 

when serving as distractors and easier to select when serving as targets. As 

previously seen, pairing target stimuli with reward can modulate the voluntary 

deployment of attention, but there is little evidence that reward modulates the 

involuntary deployment of attention to task-irrelevant distractors. Yantis, Anderson, 

Wampler and Laurent (2012) showed that attentional capture by physically salient 

distractors is magnified by a previous association with reward and demonstrated that 

physically inconspicuous stimuli previously associated with reward capture attention 

persistently during extinction, even several days after training. 

In Study 1, the reward-associated colours could be both the target and the 

distractor in the foraging task, and RTs and hit rates were measured for the three 

differently rewarded conditions. The results showed an effect of the previous reward, 

that is reward associations influenced attentional allocation.  

In Study 2, the reward-associated colours can only be the distractors. In the 

first session, subjects are trained as in Study 1. In the testing session, participants 

perform the same foraging task with the following change: they are cued to ignore a 

colour. The aim of Study 2 is to assess whether valuable distractors show evidence of 

attentional capture that is attributable to prior reward learning. There are only two 

conditions: a high-rewarded condition compared with a low-rewarded one. Thus, it is 

evaluated whether the reward associations can benefit the top-down attentional 

control. Reducing the conditions from three to two, it is possible to deeply highlight 

the effect of the high-rewarded value, simplifying the task. 

 

3.5.1 Participants 

Fourteen experimental subjects (7 males; mean age, 21.6 years) participated 

in Study 2. All of them completed two sessions (training phase and testing phase) 

and were paid for their participation, on the basis of their performance in the training 

phase. All participants were students from Peking University with normal or 

corrected-to-normal vision, and gave written informed consent. The study was 

approved by the Committee for Protecting Human and Animal Subjects, Department 

of Psychology, Peking University (China). 
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3.5.2 Procedure 

The study consisted of a training phase and a testing phase, performed 

individually by subjects in a normally lit room. At the beginning of the study, 

participants were informed that a specific amount of money would have been 

awarded for responses that met predefined parameters of speed and accuracy. The 

total duration of the task was about 100-120 minutes. Stimuli and apparatus were the 

same used in Study 1. 

 

Training phase  

In the training session, colour-reward associations were trained as in Study 1, 

with the only difference that there were only two conditions rather than three (high-

reward and low-reward). 

Before the beginning of the training session, subjects were provided with 

instructions directly shown through a slide on the screen and then performed 5 

blocks, each of 6 practice trials to get familiar with the task. The distance from the 

screen was 60 cm: participants used a chin-rest in order to maintain the eyes at a 

constant distance from the screen and to feel more comfortable during the execution 

of the experimental session.  

The training phase consisted of two parts, each including 70 trials for 5 

blocks, for a total of 700 trials. Participants were given a break at the end of each 

block. Each trial of the training phase started with a cue display with a centrally 

positioned coloured dot (size 0.25° x 0.25°), followed by a search display that 

presented participants with a ring of 6 shapes: three squares and three diamonds. 

Each shape (size 3.35° x 3.35°) was located at equal eccentricity (11.7°). The cue 

appeared for 1.15 ms and the following shapes for 1.45 ms.  

Six colours were present in each trial, but only two of them were rewarded. 

To control for intrinsic differences in the perceptual salience of different colours, the 

colour assignments were counterbalanced across participants. Participants had to 

remember the colour of the dot, shown in the cue display, and then match it to the 

shape rendered in the same colour, shown in the next visual search display. Each 

target was assigned to one of two responses (different keypresses): if the cue colour 
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appeared as a square, subjects had to press F on the keyboard; if it was a diamond, 

they had to press J.  

Subjects were instructed to perform the task as fast as possible (time-out 

response <0.75 s: no points were awarded for longer responses) and as accurate as 

possible, since both factors (missing rate and accuracy) would have influenced the 

amount of the final payment. 

The reward for a correct answer could be either high “+10 points” or low “+2 

points”. So, if participants answered correctly on a trial, they were awarded points 

and received visual feedback indicating an accumulating monetary reward. The total 

score was incremented, depending on subject’s performance, for each correct answer 

and was visible all the time. Through this trial-by-trial reward feedback, subjects 

could monitor their ability and were continuously motivated to do better. Half of the 

trials presented a “+10” bonus, the other half a “+2” bonus. This balanced “reward 

schedule” was thought to equally imbue two different colours with two different 

values. 

 

 

Testing phase  

Before the beginning of the testing phase, participants were provided with 

instructions directly shown through a slide on the screen and then performed 5 

practice trials, followed by 120 experimental trials. They could take a break, if they 

wanted to, at the end of each trial. The distance from the screen was 35 cm (this time 

no chin-rest was used, since the task required the use of the touch screen). The visual 

field of the task consisted of 144 letter stimuli (size 1.9° x 1.9°), one-twelfth of 

which were targets. The target proportion was kept low, otherwise subjects could 

collect fluently without searching. During this phase, participants’ task was to 

collect, using their own fingers, only the letters N presented on the touch-screen, 

trying to avoid the distractors, that is mirror-Ns.  

Before being exposed to the foraging screen, observers saw a cue: a coloured 

dot (size 0.25° x 0.25°), centrally positioned on the screen; it appeared for 500 ms, 

following a fixation point. The cue colour informed subjects that they could never 

find a target in that colour and so they were instructed to ignore the cue colour.  
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In Study 1, the reward-associated colours were both targets and distractors in 

the foraging task: in each trial, both targets and distractors were rendered in the 

colours that had been previously rewarded during the training session.  

In Study 2, subjects performed the same foraging task as in Study 1, with the 

difference that, in each trial, only the distractors were rendered in the two colours 

previously rewarded during the training session. The other four colours (which were 

not imbued with a value during the training) that had been presented in the training 

phase were randomly used to render the colour of the targets. Each of the reward-

associated colours (high and low) were equally possible to appear as distractors. The 

foraging task was time-limited: subjects only had 15 seconds of time to collect as 

much targets as they could.  

A difference in performance between the high-rewarded and the low-

rewarded conditions was expected, with a better performance for the high-rewarded 

colour. 
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3.6 Data Analyses and results 

Training phase 

RTs and accuracy were measured during the training phase. Repeated-measures 

ANOVA (within subjects) was performed to test the effect of the reward. 

 As for RTs, there was a significant difference between the two conditions:   

[F (1, 13) = 22.928, p = <.001]. Participants were significantly slower when 

responding to high-rewarded stimuli (M = .564, SD = .031) than when responding to 

low-rewarded ones (M = .551, SD = .027). 

 

 

 

Figure 3.7       Training phase: RTs in the two differently rewarded conditions 
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 As for accuracy, there was a significant difference between conditions:         

[F (1, 13) = 13.888, p = .003]. Participants were significantly less accurate when 

responding to high-rewarded stimuli (M = 303.846; SD = 35.047) than when 

responding to low-rewarded ones (M = 316.076; SD = 26.784). 

 

 

 

Figure 3.8       Training phase: accuracy in the two differently rewarded conditions 

 

 

Testing phase 

There was no significant effect (F = .438, p = .520) of the cue colour on the 

foraging accuracy (high-rewarded condition: M = 145.307; SD = 34.721; low-

rewarded condition: M = 139.538; SD = 26.222). 

 

3.7 Study 2: Summary of the results 

The aim of this second study was to evaluate if valuable distractors showed 

evidence of attentional capture, attributable to prior reward learning. There were only 

two conditions: a high-rewarded condition compared with a low-rewarded one. Thus, 
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it was assessed if the reward associations could benefit the top-down attentional 

control.  

During the training phase, participants were significantly slower when 

responding to high-rewarded stimuli than when responding to low-rewarded ones 

and significantly less accurate when responding to high-rewarded stimuli than when 

responding to low-rewarded ones. In the testing phase, there was no significant effect 

of the cue colour on the foraging accuracy. 

 

3.8 Study 3  

As for Study 2, the aim of Study 3 is to evaluate whether valuable distractors 

show evidence of attentional capture that is attributable to prior reward learning. This 

time, a high-rewarded condition is compared with a non-rewarded one. 

 

3.8.1 Participants 

Fourteen experimental subjects (8 males; mean age, 20.3 years) participated 

in Study 3. All participants completed two sessions (training and testing) and were 

paid for their participation, on the basis of their performance in the training phase.  

They were students from Peking University with normal or corrected-to- normal 

vision, and gave written informed consent. The study was approved by the 

Committee for Protecting Human and Animal Subjects, Department of Psychology 

of Peking University (China). 

 

3.8.2 Procedure 

         The experiment consisted of two parts: a training phase and a testing phase, 

performed individually by subjects in a normally lit room. At the beginning of the 

experiment, participants were advised that a specific amount of money would have 

been awarded for responses that met predefined parameters of speed and accuracy.  

The total duration of the task was about 100-120 minutes.  
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Training phase  

          In the training phase, colour-reward associations were trained as before.  

There were the following two conditions: high-rewarded and non-rewarded 

conditions. Before starting the training session, subjects were provided with 

instructions directly shown through a slide on the screen and then performed 5 

blocks, each of 6 practice trials to get familiar with the task. The distance from the 

screen was 60 cm: participants used a chin-rest, in order to maintain the eye at a 

constant distance from the screen and to feel more comfortable during the execution 

of the experimental session.  

          The training session was made up of two parts, each composed of 70 trials for 

5 blocks, for a total of 700 trials. Participants were given a break at the end of each 

block. Both stimuli and apparatus were the ones used in Study 1 and 2.  

          Each trial of the training phase started with a cue display with a centrally 

positioned coloured dot (size 0.25° x 0.25°), followed by a search display that 

presented participants with a ring of 6 shapes: three squares and three diamonds. 

Each shape (size 3.35° x 3.35°) was located at equal eccentricity (11.7°). The cue 

appeared for 1.15 ms and the following shapes for 1.45 ms.  

          Six colours were present in each trial, but only two of them were rewarded. 

To control for intrinsic differences in the perceptual salience of different colours, the 

colour assignments were counterbalanced across participants. Observers had to 

remember the colour of the dot, shown in the cue display, and then match it to the 

shape rendered in the same colour, shown in the next visual search display. Each 

target was assigned to one of two responses (different keypresses): if the cue colour 

appeared as a square, subjects had to press F on the keyboard; if it was a diamond, 

they had to press J.  

          Subjects were instructed to perform the task as fast as possible (time-out 

response <0.75 s: no points were awarded for longer responses) and as accurate as 

possible, since both factors (missing rate and accuracy) would have influenced the 

amount of the final payment. 

          The reward for a correct answer could be either high “+10 points” or “+0 

points” (non-rewarded condition). So, if participants answered correctly on a trial, 

they were awarded points and received visual feedback indicating an accumulating 
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monetary reward. The total score was incremented, depending on subject’s 

performance, for each corrected answer and was visible all the time. Through this 

trial-by-trial reward feedback, subjects could monitor their ability and were 

continuously motivated to do better.  

           Half of the trials presented a “+10” bonus, the other half a “+0” bonus.  

This balanced “reward schedule” was thought to equally imbue two different colours 

with two different values. 

 

 

Testing phase (no reward) 

           Before starting the testing session, subjects were provided with instructions 

directly shown through a slide on the screen and then performed 5 practice trials, 

followed by 120 experimental trials. They could take a break, if they wanted to, at 

the end of each trial. The distance from the screen was 35 cm (this time no chin-rest 

was used, since the task required the use of the touch screen). 

           The visual field of the task consisted of 144 letter stimuli (size 1.9° x 1.9°), 

one-twelfth of which were targets. The target proportion was kept low, otherwise 

subjects could collect fluently without searching. During this phase, participants’ 

task was to collect, using their own fingers, only the letters N presented on the touch-

screen, trying to avoid the distractors, that is mirror-Ns.  

           As in Study 2, before being exposed to the foraging screen, observers saw a 

coloured dot: this cue (size 0.25° x 0.25°), centrally positioned on the screen, 

appeared for 500 ms, following a fixation point. The cue colour informed subjects 

that they could never find a target in that colour and so subjects were instructed to 

ignore it.  

           As in Study 2, in each trial, only the distractors were rendered in the two 

colours previously rewarded during the training session: so, in the current study, cue 

colours (reward-associated colours) could only be the distractors. The other four 

colours (the ones not imbued with a value during the training) that were present in 

the training phase were randomly used to render the colour of the targets.  

           Each of the reward-associated colours (high-rewarded and non-rewarded) 

were equally possible to appear as distractors, both of them in half of trials. The 
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performance difference between the high-rewarded and non-rewarded conditions is 

considered the benefit of reward association for attentional suppression: we would 

expect to see high benefit for the high-rewarded colour.  

           The foraging task was time-limited: subjects only had 15 seconds of time to 

collect as much targets as they could.  

 

3.9 Data Analyses and results 

Training session 

           RTs and accuracy were measured during the training phase. Repeated-

measures ANOVA (within subjects) was performed to test the effect of the reward. 

 

Training Rts  

           The training performance showed no significant difference (F = .273,              

p = .610) between condition 1 (M = .529, SD = .076) and condition 2 (M = .526,   

SD = .064). 

 

Training accuracy 

           There was no significant difference (F = .980, p = .340) between condition 1 

(M = 279, SD = 45.493) and condition 2 (M = 282.857, SD = 51.485). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Effect of reward contingencies on multiple target visual search 

 

58 

 

Foraging accuracy 

           A significant difference was found (F (1, 13) = 5.720, p = .033) between 

condition 1 (M = 135.714; SD = 36.256) and condition 2 (M = 151.142; SD = 

39.551). High-value distractors capture attention, impairing the performance. 

 

 

 

Figure 3.9       Foraging task’s accuracy in the two different rewarded conditions 

 

3.10 Study 3: Summary of the results 

The aim of this third study was to evaluate if valuable distractors showed 

evidence of attentional capture, attributable to prior reward learning. There were only 

two conditions: a high-rewarded condition compared with a non-rewarded one. 

Regarding both RTs and accuracy, the training performance showed no significant 

difference between condition 1 and condition 2. In the following testing phase, a 

significant difference was found between the two conditions, that is high-value 

distractors captured attention, impairing the performance. 
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CHAPTER 4 

 

“GENERAL CONSIDERATIONS AND CONCLUSIONS” 

 

“All our knowledge has its origins in our perceptions”. 

Leonardo Da Vinci 

 

 

          The evaluation of the functional properties of visual attention has in past 

decades been dominated by the study of single-target visual searches: in these tasks, 

participants have to detect the presence of a single target among a group of 

distractors, and the search ends when the target is found. But, in real-world scenarios, 

our goals unlikely involve only one target: for this reason, we need paradigms 

involving visual foraging for multiple targets to investigate visual attention from a 

more realistic point of view. 

Allocation of attention is typically conceptualized as due to bottom-up 

influences from salient objects or top-down control settings from the observer. 

However, attention is also automatically allocated to objects that have value to the 

organism and that “mean something” to it, based on previous experience (Anderson 

et al., 2011; Della Libera & Chelazzi, 2006; Hickey, Chelazzi & Theeuwes, 2010; 

Lee & Shomstein, 2013). Such value-driven attentional capture is a form of 

attentional control based on reward conditioning.  

Attentional capture driven by reward history, that is, value-driven attentional 

capture (Anderson et al., 2013) is a psychological phenomenon in which rewarded 

stimuli become more salient, automatically drawing attention when encountered 

later. It can be reliably produced in the laboratory, usually by paying participants 

money (in fact, money can be considered as a form of reward) for finding targets in a 

visual search task. 

The aim of the present work was to evaluate the role of a previous reward 

(learned through specific reward-contingencies presented during a training phase) on 

the performance of a following testing phase, in which a foraging task was 

conducted. Much is known about RTs and accuracy of single-target search tasks, but 

less attention has been dedicated to understanding how human beings search for 
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multiple-targets, that is how they perform foraging tasks. At the same time, much is 

known about bottom-up and top-down mechanisms of attentional deployment but 

value driven attentional capture still needs to be deeply investigated, expecially in a 

foraging context.  

Previous work has revealed that reward training can cause certain colours to 

capture attention in a visual search task (e.g., Anderson et al., 2011). By the 

literature, we know that stimulus-reward associations can be learned very quickly 

compared to other forms of learning, such as perceptual learning, and prove to be 

robust: they can persist even when there is no explicit memory for the previously 

experienced stimulus-reward contingencies (Anderson & Yantis, 2013). 

The training procedure in Study 1 revealed its effectiveness, based on 

reaction times and accuracy. There was a main effect of reward, in that the response 

to the three differently-rewarded colours was significantly different. In particular, 

participants responded significantly faster and were more accurate when the cued 

colour was a high-rewarded one than when it was a low or non-rewarded one. In the 

subsequent foraging task of Study 1, those items rendered in the previously high-

rewarded colour were significantly preferred by participants compared to the 

previously non-rewarded items and consequently they were collected first and more 

frequently. 

This was the first description of the presence of a reward conditioning effect 

in a foraging task, which is different from the classic visual search task. These results 

agree with the proposal that reward association modifies attentional priority based on 

a factor other than bottom-up physical salience or top-down task goal (Awh et al., 

2012; Chelazzi et al., 2014). 

It is important to make some considerations and underline some factors about 

the foraging task used in these studies: 

 - Targets were rare (as it happens in medical or airport screening, that can be 

seen as real examples of foraging tasks): in these cases, observers usually shift 

response criteria, leading to elevated miss error rates, and they also speed target-

absent responses, making more motor errors;  

- Letters N were used as targets. It is well known that familiarity speeds 

visual search and it does so principally when the distractors, not the targets, are 
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familiar (Wang, Cavanagh & Green, 1994). In fact, an unfamiliar target is detected 

more rapidly among familiar distractors, as compared with the reverse situation; 

- In the training phase of these studies, stimuli were squares and diamonds, 

whereas during the foraging task the previously reward-associated stimuli were 

letters. Value-driven capture can occur for stimuli that are not an exact match to the 

formerly rewarded targets. In fact, prior reward learning extends to newly 

encountered stimuli and contexts (Anderson et al., 2011a, 2011b; Yantis, 2012, 

2013): the presence of a previously reward-associated feature, like for example the 

colour, is enough to modify the attentional priority of even a novel stimulus, 

reflecting generalization of reward learning.  

Thus, there is an effect of the reward in the foraging task, in that recent 

reward history modulates value-driven attentional capture. In these studies, reward 

influenced the task even though targets were rare, different from those used in the 

training phase, presented with unfamiliar distractors and even if there was a high 

time pressure for the participants to complete the task, since the trial was time-

limited. 

In Study 2 and 3, it was evaluated the top-down influence through a cue-

effect. It is acknowledged that reward learning can imbue stimuli with value that can 

override top-down intention and give rise to suboptimal behaviour. Pairing target 

stimuli with reward may lead to undesired after-effects, whereby a stimulus 

previously associated with reward attracts attention even when it would be better to 

ignore it (Lynn & Shin, 2015). In fact, both in Study 2 and 3, the cue tells observers 

that they will never find a target of that colour and so it is beneficial to ignore it. But 

reward modifies performance so that attentional priority is given to stimuli 

previously associated with a high reward. A stimulus associated with reward attracts 

attention even when it is no longer relevant. That is why it is interesting to explore 

whether or not strategic top-down control can be employed to overcome the 

attentional bias due to a recent reward–stimulus association. It is interesting also 

because of its ecological validity: maladaptive attentional biases (e.g., addiction) may 

be counteracted by treatments that control motivation by increasing the subjective 

relevance of rewards that are less detrimental (Lynn & Shin, 2015). 
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           In the training phase of Study 2, contrary to what initially hypothesised, an 

unexpected result emerged: in the low-rewarded condition, subjects were 

significantly faster and more accurate, compared to the high-rewarded condition. It 

seems that the operational learning procedure implemented in this training phase, in 

which there are only two rewarded colours rather than three, as in Study 1, was 

harder to perform than the training phase of Study 1. In the foraging phase of Study 

2, no significant difference was found.  

           In several studies (Della Libera & Chelazzi, 2006; Hickey et al., 2010; 

Serences, 2008; Serences & Saproo, 2010; Shuler & Bear, 2006), positive effects of 

reward — faster and/or more accurate responses to high-rewarded stimuli — were 

observed when the task involved currently rewarded stimuli and/or stimuli that were 

currently task-relevant, as in Study 1. Researchers have in a few cases examined the 

effect of a to-be-ignored stimulus previously associated with reward, as done in 

Study 2 and 3: Gong, Yang and Li (2016) suggested that reward association can 

modify the priority map during active distractor suppression and benefit behavioural 

performance, as a result of the interaction between a top-down inhibition mechanism 

and enhanced WM representation of the reward-associated feature. However, in most 

of the cases, the previously reward-related stimuli failed to capture attention (Della 

Libera & Chelazzi 2009; Krebs et al. 2010; Brien 2009). In these experiments, 

stimuli were typically complex multi-feature or multidimensional objects, like 

complex shapes, words, or faces. This aspect of the stimuli may have precluded them 

from exerting a significant and persistent effect on observable behaviour.  

Therefore, the choice of which stimuli will characterise the task can exert a 

different effect. Maybe the nature of the stimuli used in the present research (letters 

and their mirrored-images) could explain why the cue-colour fails to capture 

attention in Study 2. 

In the training phase of Study 3, no significant effect was found. However, in 

the following testing session, it seems difficult to suppress the response to the to-be-

ignored cue (high-rewarded condition): if the previously high-rewarded colour was 

the cue, and so the distractor, even though observers were instructed to ignore it, this 

colour still captured attention. In other words, there is an effect of the to-be-ignored 

stimulus that has been previously associated with a reward. 
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It is important to note that, during the training phase, accuracy is emphasized 

but, in the non-rewarded condition present in Study 3, even though subjects are 

correct they receive a “+0” bonus: it is possible that this can be seen by them as a 

form of punishment. It is well know that punishment, and not only reward, is able to 

capture attention. This could explain why subjects collected more items rendered in 

the non-rewarded colour. Moreover, top-down cognitive control is effective when 

there is enough time to respond, but this foraging task was time-limited, an aspect of 

the design that may have influenced foraging accuracy. Anyhow, learned reward 

association show they have a flexible role on cognitive control (Pessoa, 2009). 

An action repetitively followed by a reward will be more readily elicited on 

subsequent encounters with the same stimuli and context, a phenomenon known as 

the law of effect (Thorndike, 1911). These consequences of rewards are important 

because they reinforce adaptive behaviours at the expense of competing ones, 

increasing fitness of the organism in its environment.  

Future studies need to investigate whether similar influences regulate covert 

mental processes, such as visual selective attention in general and foraging behaviour 

in particular. It is clear that reward learning influences subsequent attentional 

priority: in some contexts, failing to notice targets can have dramatic effects (e.g., 

missing a malignant tumor in an X-ray), so it could be important to develop 

strategies that could limit such errors. This can be done exploiting the knowledge 

that different reward patterns can differently impact search behaviour.  

Since there is a big discrepancy in the results illustrated in the literature, it 

will be interesting to deeply test different training procedures in order to understand 

the reasons why reward effect exerts less or more power.  
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