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The presence of liquid water at the base of the martian polar 
caps was first hypothesized more than 30 years ago (1) and 
has been inconclusively debated ever since. Radio echo 
sounding (RES) is a suitable technique to resolve this dispute, 
because low-frequency radars have been used extensively and 
successfully to detect liquid water at the bottom of terrestrial 
polar ice sheets. An interface between ice and water, or alter-
natively between ice and water-saturated sediments, pro-
duces bright radar reflections (2, 3). The Mars Advanced 
Radar for Subsurface and Ionosphere Sounding (MARSIS) in-
strument on the Mars Express spacecraft (4) is used to per-
form RES experiments (5). MARSIS has surveyed the martian 
subsurface for more than 12 years in search of evidence of 
liquid water (6). Strong basal echoes have been reported in 
an area close to the thickest part of the South Polar Layered 
Deposits (SPLD), Mars’ southern ice cap (7). These features 
were interpreted as due to the propagation of the radar sig-
nals through a very cold layer of pure water ice having negli-
gible attenuation (7). Anomalously bright reflections were 
subsequently detected in other areas of the SPLD (8). 

On Earth, the interpretation of radar data collected above 
the polar ice sheets is usually based on the combination of 
qualitative (the morphology of the bedrock) and quantitative 
(the reflected radar peak power) analyses (3, 9). The MARSIS 
design, particularly the very large footprint (~3 to 5 km), does 
not provide high spatial resolution, strongly limiting its abil-
ity to discriminate the presence of subglacial water bodies 

from the shape of the basal topography (10). Therefore, an 
unambiguous detection of liquid water at the base of the po-
lar deposit requires a quantitative estimation of the relative 
dielectric permittivity (hereafter, permittivity) of the basal 
material, which determines the radar echo strength. 

Between 29 May 2012 and 27 December 2015, MARSIS 
surveyed a 200-km-wide area of Planum Australe, centered at 
193°E, 81°S (Fig. 1), which roughly corresponds to a previous 
study area (8). This area does not exhibit any peculiar char-
acteristics, either in topographic data from the Mars Orbiter 
Laser Altimeter (MOLA) (Fig. 1A) (11, 12) or in the available 
orbital imagery (Fig. 1B) (13). It is topographically flat, com-
posed of water ice with 10 to 20% admixed dust (14, 15), and 
seasonally covered by a very thin layer of CO2 ice that does 
not exceed 1 m in thickness (16, 17). In the same location, 
higher-frequency radar observations performed by the Shal-
low Radar instrument on the Mars Reconnaissance Orbiter 
(18), revealed barely any internal layering in the SPLD and 
did not detect any basal echo (fig. S1), in marked contrast 
with findings for the North Polar Layer Deposits and other 
regions of the SPLD (19). 

A total of 29 radar profiles were acquired using the 
onboard unprocessed data mode (5) by transmitting closely 
spaced radio pulses centered at either 3 and 4 MHz or 4 and 
5 MHz (table S1). Observations were performed when the 
spacecraft was on the night side of Mars to minimize iono-
spheric dispersion of the signal. Figure 2A shows an example 
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The presence of liquid water at the base of the martian polar caps has long been suspected but not 
observed. We surveyed the Planum Australe region using the MARSIS (Mars Advanced Radar for 
Subsurface and Ionosphere Sounding) instrument, a low-frequency radar on the Mars Express spacecraft. 
Radar profiles collected between May 2012 and December 2015 contain evidence of liquid water trapped 
below the ice of the South Polar Layered Deposits. Anomalously bright subsurface reflections are evident 
within a well-defined, 20-kilometer-wide zone centered at 193°E, 81°S, which is surrounded by much less 
reflective areas. Quantitative analysis of the radar signals shows that this bright feature has high relative 
dielectric permittivity (>15), matching that of water-bearing materials. We interpret this feature as a 
stable body of liquid water on Mars. 
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of a MARSIS radargram collected in the area, where the sharp 
surface reflection is followed by several secondary reflections 
produced by the interfaces between layers within the SPLD. 
The last of these echoes represents the reflection between the 
ice-rich SPLD and the underlying material (hereafter, basal 
material). In most of the investigated area, the basal reflec-
tion is weak and diffuse, but in some locations, it is very sharp 
and has a greater intensity (bright reflections) than the sur-
rounding areas and the surface (Fig. 2B). Where the observa-
tions from multiple orbits overlap, the data acquired at the 
same frequency have consistent values of both surface and 
subsurface echo power (fig. S2). 

The two-way pulse travel time between the surface and 
basal echoes can be used to estimate the depth of the subsur-
face reflector and map the basal topography. Assuming an 
average signal velocity of 170 m/μs within the SPLD, close to 
that of water ice (20), the depth of the basal reflector is about 
1.5 km below the surface. The large size of the MARSIS foot-
print and the diffuse nature of basal echoes outside the bright 
reflectors prevent a detailed reconstruction of the basal to-
pography, but a regional slope from west to east is recogniza-
ble (Fig. 3A). The subsurface area where the bright reflections 
are concentrated is topographically flat and surrounded by 
higher ground, except on its eastern side, where there is a 
depression. 

The permittivity, which provides constraints on the com-
position of the basal material, can in principle be retrieved 
from the power of the reflected signal at the base of the SPLD. 
Unfortunately, the radiated power of the MARSIS antenna is 
unknown because it could not be calibrated on the ground 
(owing to the instrument’s large dimensions), and thus the 
intensity of the reflected echoes can only be considered in 
terms of relative quantities. It is common to normalize the 
intensity of the subsurface echo to the surface value (21)—i.e., 
to compute the ratio between basal and surface echo power. 
Such a procedure has the advantage of also compensating for 
any ionospheric attenuation of the signal. Following this ap-
proach, we normalized the subsurface echo power to the me-
dian of the surface power computed along each orbit; we 
found that all normalized profiles at a given frequency yield 
consistent values of the basal echo power (fig. S3). Figure 3B 
shows a regional map of basal echo power after normaliza-
tion; bright reflections are localized around 193°E, 81°S in all 
intersecting orbits, outlining a well-defined, 20-km-wide sub-
surface anomaly. 

To compute the basal permittivity, we also require infor-
mation about the dielectric properties of the SPLD, which de-
pend on the composition and temperature of the deposits. 
Because the exact ratio between water ice and dust is un-
known (15), and because the thermal gradient between the 
surface and the base of the SPLD is poorly constrained (22), 
we explored the range of plausible values for such parameters 

and computed the corresponding range of permittivity val-
ues. The following general assumptions were made: (i) The 
SPLD is composed of a mixture of water ice and dust in var-
ying proportions (from 2 to 20%), and (ii) the temperature 
profile inside the SPLD is linear, starting from a fixed tem-
perature at the surface (160 K) and rising to a variable tem-
perature at the base of the SPLD (range, 170 to 270 K). 
Various electromagnetic scenarios were computed (5) by con-
sidering a plane wave impinging normally onto a  structure 
with three layers: a semi-infinite layer with the permittivity 
of free space, a homogeneous layer representing the SPLD, 
and another semi-infinite layer representing the material be-
neath the SPLD, with variable permittivity values. The output 
of this computation is an envelope encompassing a family of 
curves that relate the normalized basal echo power to the per-
mittivity of the basal material (Fig. 4A). This envelope is used 
to determine the distribution of the basal permittivity (inside 
and outside the bright area) by weighting each admissible 
value of the permittivity with the values of the probability 
distribution of the normalized basal echo power (Fig. 4B). 
This procedure generated two distinct distributions of the ba-
sal permittivity estimated inside and outside the bright re-
flection area (Fig. 4C and fig. S4), whose median values at 3, 
4, and 5 MHz are 30 ± 3, 33 ± 1, and 22 ± 1 and 9.9 ± 0.5, 7.5 
± 0.1, and 6.7 ± 0.1, respectively. The basal permittivity out-
side the bright area is in the range of 4 to 15, typical for dry 
terrestrial volcanic rocks. It is also in agreement with previ-
ous estimates of 7.5 to 8.5 for the material at the base of the 
SPLD (23) and with values derived from radar surface echo 
power for dense dry igneous rocks on the martian surface at 
midlatitudes (24, 25). Conversely, permittivity values as high 
as those found within the bright area have not previously 
been observed on Mars. On Earth, values greater than 15 are 
seldom associated with dry materials (26). RES data collected 
in Antarctica (27) and Greenland (9) show that a permittivity 
larger than 15 is indicative of the presence of liquid water be-
low polar deposits. On the basis of the evident analogy of the 
physical phenomena on Earth and Mars, we can infer that 
the high permittivity values retrieved for the bright area be-
low the SPLD are due to (partially) water-saturated materials 
and/or layers of liquid water. 

We examined other possible explanations for the bright 
area below the SPLD (supplementary text). For example, a 
CO2 ice layer at the top or the bottom of the SPLD, or a very 
low temperature of the H2O ice throughout the SPLD, could 
enhance basal echo power compared with surface reflections. 
We reject these explanations (supplementary text), either be-
cause of the very specific and unlikely physical conditions re-
quired, or because they do not cause sufficiently strong basal 
reflections (figs. S5 and S6). Although the pressure and the 
temperature at the base of the SPLD would be compatible 
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with the presence of liquid CO2, its relative dielectric permit-
tivity is much lower (about 1.6) (28) than that of liquid water 
(about 80), so it does not produce bright reflections. 

The substantial amounts of magnesium, calcium, and so-
dium perchlorate in the soil of the northern plains of Mars, 
discovered using the Phoenix lander’s Wet Chemistry Lab 
(29), support the presence of liquid water at the base of the 
polar deposits. Perchlorates can form through different phys-
ical and/or chemical mechanisms (30, 31) and have been de-
tected in different areas of Mars. It is therefore reasonable to 
assume that they are also present at the base of the SPLD. 
Because the temperature at the base of the polar deposits is 
estimated to be around 205 K (32), and because perchlorates 
strongly suppress the freezing point of water (to a minimum 
of 204 and 198 K for magnesium and calcium perchlorates, 
respectively) (29), we therefore find it plausible that a layer 
of perchlorate brine could be present at the base of the polar 
deposits. The brine could be mixed with basal soils to form a 
sludge or could lie on top of the basal material to form local-
ized brine pools (32). 

The lack of previous radar detections of subglacial liquid 
water has been used to support the hypothesis that the polar 
caps are too thin for basal melting and has led some authors 
to state that liquid water may be located deeper than previ-
ously thought [e.g., (33)]. The MARSIS data show that liquid 
water can be stable below the SPLD at relatively shallow 
depths (about 1.5 km), thus constraining models of Mars’ hy-
drosphere. The limited raw-data coverage of the SPLD (a few 
percent of the area of Planum Australe) and the large size 
required for a meltwater patch to be detectable by MARSIS 
(several kilometers in diameter and several tens of centime-
ters in thickness) limit the possibility of identifying small 
bodies of liquid water or the existence of any hydraulic con-
nection between them. Because of this, there is no reason to 
conclude that the presence of subsurface water on Mars is 
limited to a single location. 
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Fig. 1. Maps of the investigated area. (A) Shaded relief map of Planum Australe, Mars, south of 75°S 
latitude. The map was produced using the MOLA topographic dataset (11). The black square outlines the 
study area. (B) Mosaic produced using infrared observations by the THEMIS (Thermal Emission Imaging 
System) camera (13), corresponding to the black square in (A). South is up in the image. The red line marks 
the ground track of orbit 10737, corresponding to the radargram shown in Fig. 2A. The area consists mostly 
of featureless plains, except for a few large asymmetric polar scarps near the bottom right of (B), which 
suggest an outward sliding of the polar deposits (34). 
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Fig. 2. Radar data collected by MARSIS. (A) Radargram for MARSIS orbit 10737, whose 
ground track is shown in Fig. 1B. A radargram is a bi-dimensional color-coded section made 
of a sequence of echoes in which the horizontal axis is the distance along the ground track of 
the spacecraft, the vertical axis represents the two-way travel time of the echo (from a 
reference altitude of 25 km above the reference datum), and brightness is a function of echo 
power. The continuous bright line in the topmost part of the radargram is the echo from the 
surface interface, whereas the bottom reflector at about 160 μs corresponds to the 
SPLD/basal material interface. Strong basal reflections can be seen at some locations, 
where the basal interface is also planar and parallel to the surface. (B) Plot of surface and 
basal echo power for the radargram in (A). Red dots, surface echo power; blue dots, 
subsurface echo power. The horizontal scale is along-track distance, as in (A), and the 
vertical scale is uncalibrated power in decibels. The basal echo between 45 and 65 km along-
track is stronger than the surface echo even after attenuation within the SPLD. 
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Fig. 3. Maps of basal topography and reflected echo power. (A) Color-coded map of the topography 
at the base of the SPLD, computed with respect to the reference datum. The black contour outlines the 
area in which bright basal reflections are concentrated. (B) Color-coded map of normalized basal echo 
power at 4 MHz. The large blue area (positive values of the normalized basal echo power) outlined in 
black corresponds to the main bright area; the map also shows other, smaller bright spots that have a 
limited number of overlapping profiles. Both panels are superimposed on the infrared image shown in 
Fig. 1B, and the value at each point is the median of all radar footprints crossing that point. 

Fig. 4. Results of the simulation and retrieved permittivities. (A) Output of the electromagnetic simulations 
computed at 4 MHz (figs. S4 and S6). The blue shaded area is the envelope of all curves incorporating different 
amounts of H2O ice and dust along with various basal temperatures for the SPLD. The blue line is the curve for 
a single model (basal temperature of 205 K and 10% dust content), shown for illustration, and the black 
horizontal line is the median normalized basal echo power at 4 MHz from the observations. (B) Normalized basal 
echo power distributions inside (blue) and outside (brown) the bright reflection area, indicating two distinct 
populations of values. These distributions, together with the chart in (A), are used to compute the basal 
permittivity; for example, the intersection between the blue curve and the black line gives a basal permittivity 
value of 24. (C) Basal permittivity distributions inside (blue) and outside (brown) the bright reflection area. The 
nonlinear relationship between the normalized basal echo power and the permittivity produces an asymmetry 
(skewness) in the distributions of the values. 
 

on S
eptem

ber 19, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://www.sciencemag.org/
http://science.sciencemag.org/


Radar evidence of subglacial liquid water on Mars

M. Cartacci, F. Cassenti, A. Frigeri, S. Giuppi, R. Martufi, A. Masdea, G. Mitri, C. Nenna, R. Noschese, M. Restano and R. Seu
R. Orosei, S. E. Lauro, E. Pettinelli, A. Cicchetti, M. Coradini, B. Cosciotti, F. Di Paolo, E. Flamini, E. Mattei, M. Pajola, F. Soldovieri,

published online July 25, 2018

ARTICLE TOOLS http://science.sciencemag.org/content/early/2018/07/24/science.aar7268

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2018/07/24/science.aar7268.DC1

CONTENT
RELATED 

http://science.sciencemag.org/content/sci/361/6401/448.full
http://science.sciencemag.org/content/sci/361/6400/320.full

REFERENCES

http://science.sciencemag.org/content/early/2018/07/24/science.aar7268#BIBL
This article cites 42 articles, 6 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

registered trademark of AAAS.
 is aScienceAmerican Association for the Advancement of Science. No claim to original U.S. Government Works. The title 

Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

on S
eptem

ber 19, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/content/early/2018/07/24/science.aar7268
http://science.sciencemag.org/content/suppl/2018/07/24/science.aar7268.DC1
http://science.sciencemag.org/content/sci/361/6400/320.full
http://science.sciencemag.org/content/sci/361/6401/448.full
http://science.sciencemag.org/content/early/2018/07/24/science.aar7268#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

	Radar evidence of subglacial liquid water on Mars

