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Abstract

A vibration-based bistable electromagnetic energy harvester coupled to a directly

excited host structure is theoretically and experimentally examined. The primary

goal of the study is to investigate the potential benefit of the bistable element for

harvesting broadband and low-amplitude vibration energy. The considered system

consists of a grounded, weakly damped, linear oscillator (LO) coupled to a light-

weight, damped oscillator by means of an element which provides for both cubic

nonlinear and negative linear stiffness components and electromechanical coupling

elements. Single and repeated impulses with varying amplitude applied to the LO

are the vibration energy sources considered. A thorough sensitivity analysis of the

system’s key parameters provides design insights for a bistable nonlinear energy

harvesting (BNEH) device able to attain robust harvesting efficiency. Energy

localization into the bistable attachment is achieved through the exploitation

of three BNEH main dynamical regimes; namely, periodic cross-well, aperiodic

(chaotic) cross-well, and in-well oscillations.

For the experimental investigation on the performance of the bistable device,

nonlinear and negative linear terms in the mechanical coupling are physically

realized by exploiting the transverse displacement of a buckled slender steel beam;

the electromechanical coupling is accomplished by an electromagnetic transducer.
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Sommario

La tesi presenta lo studio teorico e sperimentale di un sistema di recupero di energia

di tipo bistabile, accoppiato a una struttura ospitante direttamente sollecitata

da eccitazione di tipo impulsivo. Il principale obiettivo è indagare il potenziale

beneficio offerto dall’elemento bistabile nel recuperare energia vibrazionale su

un’ampia banda di intensità dell’eccitazione, ivi compresi bassi livelli energetici,

per i quali analoghi sistemi monostabili perdono la loro efficienza. Il sistema

oggetto di studio è composto da un sistema primario lineare debolmente smor-

zato e una massa ausiliaria accoppiata meccanicamente e elettricamente al primo.

L’accoppiamento meccanico, fisicamente realizzato mediante una trave in buckling,

dà origine a un termine di rigidezza cubica e un termine di rigidezza lineare nega-

tiva; l’accoppiamento elettromeccanico assume un meccanismo di trasduzione ad

induzione elettromagnetica. L’esame di un sistema ottimale, risultato da un’estesa

analisi di sensitività, ha permesso di individuare i principali regimi dinamici favo-

revoli alla localizzazione dell’energia nel sistema ausiliario e conseguente efficiente

racimolazione dell’energia stessa.
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Chapter 1

Introduction

In this chapter a general introduction to the topic of the thesis is presented, with

particular reference to the motivation and objectives of this research work. The

research framework is intentionally minimal, referring to the next chapter for an

extended state of the art.

1.1 Research framework

Taking advantage of readily available, autonomous and durable energy sources is

becoming an essential requirement for sustainable engineering systems. Pervasive

mechatronic systems characterizing smart structures lead designers to consider

renewable energy sources specifically targeted to feed the increasing number of

embedded sensing and actuation devices. Wireless sensor networks for structural

health monitoring applications are a valid example in which a self-sustaining

power supply is required for the (often numerous) wireless components in order

to guarantee a prolonged operational life. The possibility of harvesting energy

from ambient sources to power application devices or energy storage elements

is, thus, a critical problem, since it may enable small-scale wireless and portable

electronic devices to be completely self-reliant. This is significant especially for

1
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Figure 1.1: Block diagram of the energy harvesting process.

those cases in which battery maintenance or replacement can be complicated or

even prohibited by the location of the device. Extracting power from ambient

sources is generally known as energy harvesting, or energy scavenging. This

approach has recently attracted a great deal of interest within both the academic

community and industry, as a potential inexhaustible source for low-power devices.

Using typical energy sources which are present in the natural environment, several

hundred microwatts up to some milliwatts of electrical energy can be converted

from one cubic centimeter size of an energy harvesting transducer. Among all the

energy sources available for small-scale power generation, such as kinetic, solar,

thermal, chemical, radio frequency etc., kinetic energy represents an attractive

approach, because of its versatility and abundance. Vibratory energy harvesters

exploit the ability of active materials (e.g., piezoelectric, magnetostrictive, and

ferroelectric) and/or electromechanical coupling mechanisms (e.g., electrostatic

and electromagnetic) to generate an electric potential in response to mechanical

stimuli and external vibrations (see the block diagram of Figure 1.1). The sources

of mechanical energy can be any vibrating structure, a moving human body or

air/water flow induced motion, to name a few.

Most of the initial research focused on linear resonant vibration harvesters, which,

operate based on the principle of linear resonance. However, they clearly possess

some drawbacks that limit their applicability and effectiveness. The first limitation

comes from their very narrow bandwidth, due to the fact that they are usually
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designed to be very lightly damped such that the steady-state peak amplitude is

maximized. In order to achieve acceptable performance, conventional vibration-

based energy harvesting devices based on linear elements must be specifically

tuned to match the frequency of the external vibration. Therefore, manufacturing

tolerances, variations in the design parameters around their nominal values and/or

variations in the nature of the excitation source can easily detune the harvester from

the excitation frequency, drastically reducing the energy output. The bandwidth

issue becomes fundamental for the performance of the harvesting device realizing

that most realistic excitations present in the environment are not harmonic but

have, instead, broadband or nonstationary (time-varying) characteristics, in which

either the energy is distributed over a wide spectrum of frequencies or the dominant

frequency varies with time. For example, environmental excitations to which a

bridge is subjected are generally random, resulting from the wind loading, in

which frequency and intensity vary depending on the atmospheric conditions, and

moving vehicles in which number, speed, weight and so forth vary at different times

during a given day. Impulsive excitations are also abundant in the mechanical

and civil field: human activities, as walking or running on a pedestrian bridge, a

train wheel moving on a railroad track, a motor car traveling along a road with a

few of potholes or passing on a speed bump or an airplane encountering a local

air turbolence are examples of a pulse-like vibration usable for energy harvesting

purpose.

Various strategies have been investigated to overcome this practical inconvenient

and increase the bandwidth of vibration-based harvesters. On one side, passive

or active frequency tuning or oscillator arrays/multi-modal generators have been

proposed. As for the former, tuning mechanisms can be realised mechanically

using springs or screws, with magnets or using a piezoelectric material; as for the

latter, different modes of a single oscillator or a series of resonators (commonly

cantilevers) with properly designed properties integrated in one single device can

be exploited to broaden the bandwidth of the harvester.
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Alternatively, significant bandwidth improvement can be achieved through the

introduction of nonlinearity into the design of an energy harvester. In principle,

these type of harvesting devices possess a potential function U(z) 6= 1/2kz2,

denoting by k the linear stiffness and z the displacement. In practice, a nonlinearity

of the third order is commonly exploited (it is easily achievable, by the transverse

displacement of an elastic wire or thin beam for example), the potential function

of which is written as U(z) = 1/2kz2 + 1/4knlz
4, being knl the cubic stiffness

coefficient. In particular, adding a strong (non linearizable) nonlinearity provides

for frequency robustness, related to the bend of the response curve, that enables

large amplitudes to persist over a much wider frequency range. The bandwidth

of the nonlinear system depends on the damping ratio, the nonlinearity and the

input excitation. If the system possesses a linear stiffness component negligible

with respect to the cubic component (the system is, in this case, referred to as

”essentially”, or ”purely”, nonlinear), the lack of a preferential resonance frequency

of the attachment theoretically enables it to engage in nonlinear resonances at

arbitrary frequency ranges. Nevertheless, monostable nonlinear configuration

have shown to possess a critical input energy threshold, resulting in ineffective

harvesting of energy from low-amplitude vibration sources. In fact, under small

excitation levels, the influence of the nonlinearity decreases and a monostable

Duffing harvester loses its broadband properties, effectively acting as a linear

resonator.

The strategy to efficiently harvest energy also from low-level, intermittent ambient

vibration, proposed herein, relies on the unique properties of a particular class of

strongly nonlinear vibrating systems that possess a multi-stable potential, instead

of monostable, like the linear and purely cubic configurations. In particular, a

bistable energy harvester, for which U(z) = 1/2kz2 + 1/4knlz
4, k < 0, has two

stable equilibrium states separated by a potential barrier (an unstable saddle). This

enables the system to exhibit three different dynamic operating regimes depending

on the depth of the potential barrier and the level of the input energy: in-well
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oscillations (oscillations in the neighborhood of one of the two stable equilibrium

positions) if the input energy is lower than the height of the potential barrier, a

chaotic motion with alternating cross- and in-well oscillations for excitation energy

sufficiently high to overcome the potential barrier, or large-amplitude periodic

cross-well responses for further increase of the energy level. Among the several

structures that can be conceived to attain the bistable mechanism, besides the

simplest snap-through truss (or von Mises structure), buckled beams are commonly

used in energy harvesting applications.

Since energy harvesting systems are commonly applied to vibrating structures,

including civil structures, like bridges, or industrial machines, it is more interesting

to investigate the integrated system composed of the nonlinear harvester coupled

to a directly loaded host structure, rather than the harvester device by itself,

in order to evaluate the dynamic interaction and energy exchanges between the

two subsystems. Prior studies, mainly focused on essentially cubic nonlinear

energy sinks coupled to a linear oscillator, have demonstrated how the nonlinear

attachment can significantly alter the dynamics of the integrated system and, in

particular, under certain conditions, can generate a number of nonlinear resonances,

through which vigorous energy exchanges occur between the two oscillators and,

possibly, energy localization into the attachment by means of resonance captures.

Energy localization to the nonlinear attachment is pursued in order to attain

efficient energy harvesting.

1.2 Aim and scope

Although incorporating bistable nonlinear harvesting systems into linear primary

systems has not been explored in the literature, recent analytical and numerical

studies restricted to the targeted energy transfer (TET) context highlighted that

the use of bistability in the coupling between primary and auxiliary mass can break

through the limit of the input energy threshold typical of the monostable nonlinear

devices, producing an enhancement in the rapid passive energy absorption and
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local dissipation of broadband input energies. The reason lies in the capability of

engaging in the three distinct mechanisms, mentioned before, for energy localization

in the nonlinear device, depending on the energy level initially input into the system.

These results suggest the possibility of exploiting these energy transfer mechanisms

to efficiently harvest power from ambient vibrations, usually characterized by very

low amplitudes.

In this regard, this thesis seeks to expand the use of bistability in systems for

enhanced vibration energy harvesting capability. The research work aimed to

explore the potential benefit of adding a bistable element in the coupling for

harvesting broadband and low-amplitude vibration energy. To this end, the

present study is concerned with the theoretical and experimental investigation of a

lightweight vibration-based energy harvesting device coupled to a weakly damped,

primary linear oscillator (LO). It is pointed out that the resulting integrated system

represents the main novelty of the present work, since energy harvesting systems

are rarely studied in the literature in combination with the main structure on

which they are supposed to operate. However, by doing so the dynamic interaction

between the two sub-structures can be taken into account.

The mechanical coupling consists of an element which provides for both cubic

nonlinear and negative linear stiffness components. The performance of the resulting

bistable nonlinear energy harvester (BNEH) is studied under both isolated and

repeated low-magnitude impulsive excitations directly imparted to the hosting

linear structure. It is worth noting that impulsive excitation is not commonly

considered as the vibration energy source, although it is pervasive in the structural

environment.

Electromagnetic coupling elements are used for energy conversion. Among the

current vibration-to-electricity transduction mechanisms (mainly electromagnetic,

piezoelectric and electrostatic), the electromagnetic technique has the advantage of

being relatively easily tunable to produce the desired electromechanical coupling, by

varying the permanent magnet and the induction coil features and size, and allowing



1.3. Thesis outline 7

low- to high-frequency applications based on a variety of system configurations. On

the other hand, piezoelectric harvesting elements out-perform the electromagnetic

harvesting elements in a small-scale apparatus, but the piezoelectric parameters

are inherent to the material selected, making them not easily tunable or designable.

Numerical simulations allowed to predict the favorable dynamic regimes for har-

vesting purposes. In particular, a thorough sensitivity analysis of the system’s

key parameters has been carried out to attain design insights for a BNEH able to

achieve robust harvesting efficiency over a broad range of excitation magnitudes.

This is achieved through the exploitation of the aforementioned main dynamical

regimes explored by the BNEH. As a result, the benefit provided by the bistability

for low energy level input into the linear oscillator, for which the essential cubic

nonlinear harvester loses its effectiveness, has been demonstrated.

The design of a physical system with integrated energy harvester has been developed,

guided by the preliminary numerical study, and the resulting experimental rig has

been built, in order to validate the numerical findings.

1.3 Thesis outline

The thesis is organized as follows.

Chapter 2 lays the groundwork for framing the relevant issues around the prob-

lem of energy harvesting in a low-energy vibratory environment. In particular,

the contextualization of the problem, background of the main types of energy

harvesters existing in the literature and possible solutions to their limitations

are discussed, together with the main electromechanical transduction techniques.

Some considerations on the study of the dynamics of the energy harvesting system

integrated to the hosting structure are emphasised and effective mechanisms for

targeted energy transfer (TET) from the primary system to a nonlinear bistable

attachment are described.

In Chapter 3, the derivation of the mathematical model of a coupled system

composed of a linear primary system and a bistable nonlinear energy harvester is
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presented and discussed.

Chapter 4 deals with the numerical study of the LO-BNEH coupled system. In

particular, numerical simulations are carried out to analyze the effect of the most

sensitive parameters on the energy harvesting efficiency. The role of key design

parameters, such as mass ratio, BNEH damping and negative stiffness, on the

coupled system response and the ensuing harvesting performance is examined

and an optimal set of parameters for efficient energy harvesting from a broad

range of excitation magnitudes is identified. The three efficient mechanisms for

energy transfer are detected and the advantage over the monostable counterpart is

demonstrated. The first two sections of Chapter 5 present the experimental fixture

of the integrated system and set-up, together with a brief description of the system

design and dynamic identification steps. Section 5.3 analyses the results of the

experimental campaign, in terms of the system dynamics and performance under

isolated and repeated impacts, and compares them to the monostable case. Finally,

the main results are summarized in the last section and the novel contribution of

this work are highlighted.



Chapter 2

State of the art

The work presented in this chapter lays the groundwork for the contextualization

of the problem of energy harvesting in a low energy vibration environment. The

main types of energy harvesters present in literature and possible solutions to their

limitations are discussed, unto the description of the bistable solution, which is the

subject matter of this dissertation. The importance of studying the dynamics of

the energy harvesting system integrated to the hosting structure is emphasised and

effective mechanisms for targeted energy transfer (TET) from the primary system

to a nonlinear bistable attachment are described. Finally, the main technologies

available for vibration-to-electricity conversion are briefly examined.

2.1 General overview on vibration energy harvesting

Self-powered (”fit-and-forget”) systems have become a research hotspot over the

last fifteen years, the main advantage being their minimum maintenance require-

ment. Autonomous and durable energy sources are of great interest to structural

monitoring applications with wireless devices, such as sensors and actuators, but

also to many other applications in all the engineering fields, including military

monitoring devices, structure-embedded instrumentation, remote weather station,

9
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Device type Power consumption

Mobile phone calling 1 W
MP3 player 50 mW
Functioning of a LED light 10 mW
2-axis accelerometer sensor 2− 3 mW
Temperature sensor (active mode) 3 mW
Functioning of a wireless sensor node 100µW
Cardiac pacemaker 50µW
Temperature sensor (sleep mode) 10µW
Quartz wristwatch 5µW
Sleep mode of a microcontroller 10 nW

Table 2.1: Power consumption of some common devices

calculators, watches, Bluetooth headsets, biomedical implants (a pacemaker or a

spinal stimulator for example), which traditionally have relied on batteries that

need periodical replacement. Wireless solution demand for sensors, actuators and

the other embedded electronic devices, together with the trend of decreasing their

power consumption and increasing efficiency, opened novel lines of research on

sustainable, long-term and low-maintenance power supply. Energy harvesting

systems, through the conversion of energy available from the environment from

the primary form into suitable secondary form (usable electric energy), can be

used either to charge batteries or supercapacitors or as independent power sources.

This reduces the reliance of wireless systems upon batteries and is particularly

relevant for devices located in areas that are inhospitable or difficult to reach for

maintenance and battery replacement.

Energy harvesting implementation field is typically confined to low power appli-

cations, including sensors, data transmitters, controllers or portable electronics.

Currently, the power consumption of these devices ranges from tens of µW for

wristwatches or MEMS sensors up to few hundreds of mW for mobile phones or

GPS applications [25, 26] (Table 2.1). Generally energy harvesting suffers from

low, variable and unpredictable levels of available power. Level and fluctuation

of electrical output depend on the design of the transducer and properties of

the ambient energy source. Hence, energy management is required to adapt the
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Figure 2.1: Example of wireless sensor network on a bridge.

electrical energy obtained to the requirements of the application device or the

energy storage element. This often means converting the voltage level or rectifying

and filtering pulse currents, controlling the peaks and adopting energy buffers.

Special care must be taken in matching the internal resistance of the transducer

and the power management or the load to maximize the harvested energy.

Wireless sensor networks (WSNs), among the most effective technologies in the

structural health monitoring (SHM) field, are continuously developed and enhanced;

they are specifically designed for very low power operation. The technology of a

WSN consists of a grid of spatially-distributed autonomous devices, using smart

sensors to monitor and communicate information about physical or environmental

conditions, like acceleration, temperature, pressure, magnetic field, concentration

of a given particle in the air and so on. A schematic view of a WSN is depicted

in Figure 2.1. A WSN system incorporates a gateway that provides wireless

connectivity back to the wired world and distributed nodes (Figure 2.2).

Currently, WSNs have characteristics of ubiquity, self-healing and self-organizing;

feeding them through scavenged energy would increase their operational life, which

strongly depends on the balance between power consumption and energy storage,

and guarantee the possibility of continuous automated SHM. To give an example,

structural health of buildings and bridges monitoring and control would require up

to thousands of integrated sensors. The current consumption of a WSN (Wireless
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Figure 2.2: Flux of information among the sensors grid and up to the end user.

Figure 2.3: A typical power consumption scenario of a sensor node. Since the consumption does not
equally match the harvester output, an energy buffer and power management IC in between is necessary
[1].

Sensor Network) node during operation can be estimated to be less than 30 m A

[27, 28, 29], with power consumption of the communication module reduced to 1

to 3 m W depending on number of state transitions, communication modulation

and strategies adopted for power consumption minimization [30]. They are usually

in a sleep mode for 99.9% of their lifetime, waking up for few milliseconds during

the communication operation (Figure 2.3). Consequently, the average power

consumption is reduced to tens of µW . Ultimately, harvesting energy is the only

way for the development and integration of the so-called ”Internet-of-Things” (IoT),

defined as ”an interconnection of uniquely identifiable embedded computing devices

within the existing Internet infrastructure, offering advanced connectivity of devices,

systems, and services that goes beyond machine-to-machine communications and

covers a variety of protocols, domains, and applications” [31].
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A variety of ambient energy sources are available for small scale power harvesting:

- natural energy: wind, water flow, ocean waves, solar energy;

- mechanical energy: vibrations from machines, mechanical stress, object’s

movement, strain from high-pressure motors, to name a few;

- thermal energy: wasted heat from furnaces, heaters or friction sources;

thermal gradients in the environment are directly converted to electrical

energy through the Seebeck (thermoelectric) effect;

- light energy: indoor room light and outdoor sunlight energy; it can be

captured via photo sensors, photo diodes, and solar photovoltaic (pv) panels;

- electromagnetic energy (RF): base stations, wireless internet, satellite com-

munication, radio, TV, digital multimedia broadcasting, etc.;

- chemical and biological sources.

Given that vibration sources are pervasive in the environment, kinetic energy

generators are one of the most attractive solutions for powering autonomous small-

scale systems, on which several studies have focused over the last years. Ambient

mechanical vibrations, including vibrations from industrial machinery and civil

structures, fluid flow, as air movements or ocean waves, wind and aeroelastic

vibrations, rotational kinetic energy are some of the most frequently exploited

energy sources. Because of the heterogeneity of the kinetic energy sources, the

amount and form of the available energy can vary significantly. Focusing on

relatively low-level vibrations that occur in common environments, some measured

data obtained from several vibration sources are summarized in Table 2.2. All these

different sources produce vibrations that can vary considerably in amplitude and

spectral characteristics. Figure 2.4 shows, as an example, three different frequency

spectra of vibrations coming from three different environments: a car hood in

motion, an operating microwave oven and a surge induced sloshing in a LNG carrier
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Sloshing

Figure 2.4: Power spectra of vibrations in three different environments [2, 3].

Vibration source Peak acceleration Frequency
(m/s2) (Hz)

External windows next to a busy street 0.7 100
Notebook computer during CD reading 0.6 75
Door frame as door closes 3 125
Base of 3-axis machine tool 10 70
Washing machine 0.5 109
Small microwave oven 2.25 121

Table 2.2: Example of some vibration sources

membrane tank. In Figure 2.5 some examples of vibration which civil structures

undergo in operational conditions are also shown. These very distinct behaviours

in the vibration energy sources available in the environment reflect the difficulty of

providing a general viable solution to the problem of vibration energy harvesting.

In the literature it is very common to consider a very special vibration signal

represented by a sinusoidal signal of a given frequency and amplitude. Perfectly

sinusoidal vibration, however, is able to represent only a narrow class of vibrations

available in the real environment. It can be found, for instance, in rotating machines.

For such vibrations, linear resonators, operating at their resonant frequency, are

suitable for harvesting power efficiently, as will be discussed in Section 2.2.1.

Hassaan’s study in [32], for example, focused on machinery systems driven by

sinusoidal excitation and proposed the adoption of a mass-spring absorber as a

energy harvester, tuned so to achieve both machinery vibration reduction and

maximum energy production.
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(a)

bottom slab
top slab

top slab

(b)

(c)

Figure 2.5: Time histories and spectra of different types of vibrations: (a) response to walking of a high-
frequency floor bay [4]; (b) vibration of the slabs of a box-shaped deck due to train-induced noise in the
cavity arising from vibrating bridge components [5]; (c) vertical displacement response to traffic flow of
the deck of a cable-stayed bridge [6].
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Most realistic excitations seen in the environment are often not harmonic but

have broadband or nonstationary (time-varying) characteristics, in which either

the energy is distributed over a wide spectrum of frequencies or the dominant

frequency varies with time. For instance, environmental excitations to which a

bridge is subjected are generally random, resulting from wind loadings in which

frequency and intensity vary depending on the atmospheric conditions and moving

vehicles in which number, speed, weight, etc. vary at different times during

a given day. Common sources for oscillations in microsystems have white noise

characteristics due to non-equilibrium thermal fluctuations, shot, and low-frequency

noise. For random vibrations, exploiting the energy content within any of the

different frequencies of which their frequency spectrum is composed is challenging

and requires specific technologies for the harvesting device, as will be discussed in

the next section.

Another peculiar class of vibration is represented by impulses, denoted by a big

amount of energy in a short time interval. Impulsive excitation is not normally

considered in literature as a vibration source for energy harvesting studies, although

it is ubiquitous in the structural environment, and, for this reason, adopted in

the present research work. Human activities, such as running or jumping on a

pedestrian bridge, or a train wheel moving on a railroad track (see Figure 2.6),

or a car wheel passing on a speed bump are only a few representative cases of a

pulse-like vibration usable for energy harvesting purpose. For example, Shenck

and Paradiso [33] described shoe inserts capable of generating an average power

of 8.4 m W in a 500 kΩ load under normal walking pace. Power of the order of

some micro-Watt can be scavenged by the impact of a water drop falling with

velocity from 1 to 3 m/s on a piezoelectric flexible structure [34, 35]. Impulsive

vibrations can be nearly periodic or random. Perhaps the most typical example of

a random pulse train is the vehicle traffic load on a highway bridge, but excitations

of that kind are encountered in different problems of engineering, for example a

non-stationary earthquake excitation regarded as a sequence of shocks which first
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Figure 2.6: Pulse-like vibration profiles of railroad tracks [7].

build up and next die out with time, randomly arriving wind gusts associated with

eddies, intermittent excitation of an airplane tail, or the behaviour of a vehicle

travelling over rough ground, where the vehicle structure is subjected to shocks

produced by sudden bumps in the ground surface. Also dynamic loading due

to wave slamming which acts on a ship hull structure or on some members of

an off-shore structure may be modelled as a train of randomly arriving loading

pulses. Impulsive excitation are well suited for energy harvesting purpose, since

they permit one of the most efficient mechanisms for energy transfer from the

excited structure to an attached (nonlinear) device to occur. This mechanism relies

on the excitation of so-called impulsive periodic and quasi-periodic orbits and will

be discussed in Section 2.3.

2.2 Suitable dynamic regimes

2.2.1 Energy harvesting via linear resonators

In the last fifteen years, the field of vibration-based energy harvesting has received

growing attention, as shown by the rising number of publications covering a wide

variety of mechanisms and techniques. Most of the initial research focused on

linear resonant vibration harvesters [36, 37, 38]. Vibration energy is best suited to
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Figure 2.7: Schematic of a linear inertial generator (a); piezoelectric linear cantilever beam (b).

inertial generators, rather than directly excited generator, because they require

only one point of attachment to a moving structure, allowing a greater degree

of miniaturization. Figure 2.7(a) depicts the schematic of an inertial generator,

based on a seismic mass m and a spring of stiffness k. Energy is converted when

work is done against the damping force cż, which opposes the relative motion

z(t) = x(t) − y(t). In order to generate power, the damper must be equipped

with a transduction mechanism, which extract the energy in the form of electrical

energy. The damping coefficient c includes, in general, both inherent and/or

parasitic damping ci and a damping-like coefficient related to the transducer cT .

One of the most common configuration of a linear energy harvester is depicted

in Figure 2.7(b): a base-excited cantilever beam with a proof mass at the tip,

performing small oscillations, most widely used for piezoelectric generators. The

linear energy harvester possesses a quadratic potential energy U(z) = 1/2kz2, with

k the linear stiffness. For the case of a cantilever beam, k is given by k = 3EI/L3,

where E is the modulus of elasticity, I is the moment of inertia and L the length

of the beam.

The functioning principle simply follows the general theory of a single degree of

freedom lumped spring mass system. Hence, assuming a sinusoidal displacement of

amplitude Y and frequency ω, y(t) = Y sinωt, as the base excitation, the governing
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equation of motion is described by 1:

mz̈(t) + cż(t) + kz(t) = −mÿ(t) (2.1)

the steady-state solution of which can be written in terms of damping constant

and natural frequency as:

z(t) =

(
ω
ωn

)2√[
1−

(
ω
ωn

)2]2
+
(
2ξ ω

ωn

)2Y sin (ωt− φ), φ = arctan
2ξωnω

ω2
n − ω2

(2.2)

where ξ = c/(2mωn) is the damping ratio, ωn =
√
k/m is the natural frequency

and φ the phase angle. The power dissipated within the damper (i.e. extracted by

the transduction mechanism and parasitic damping mechanisms) is given by [39]:

P =
mξY 2

(
ω
ωn

)3
ω3[

1−
(
ω
ωn

)2]2
+
(
2ξ ω

ωn

)2 (2.3)

It is well known that that maximum power is generated at the resonance frequency

of the linear oscillator and that the damping has the effect of broaden the bandwidth

of the device, as shown in Figure 2.8, in which power is plotted as a function of

the frequency ratio for various damping factors.

The damping factor controls the selectivity of the device. For applications where

the frequencies of vibration are well defined and stable in time, a low damping factor

would give a more peaked response and increase power generation. Conversely, if the

fundamental vibration frequency varies over time, a higher damping factor would

be necessary to widen the bandwidth of the generator; nevertheless, the amount

1Strictly speaking, Equation (3.18) is valid for an electromagnetic generator, where the
damping coefficient includes the damping caused by electromagnetic coupling. Damping arising
from piezoelectricity cannot be modeled as a viscous damping and Equation (3.18) should be
modified by adding a coupling term, i.e.

mz̈(t) + cż(t) + κV + kz(t) = −mÿ(t)

where κ is the electromechanical coupling coefficient and V is the output voltage on the electrical
load.
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Figure 2.8: Frequency spectrum of power generation around the resonance frequency of the generator for
various damping factors. The arrows indicate the trend of the curves for increasing values of damping.

of power deliverable, even at resonance, would drastically decrease. Moreover,

from Equation (2.3), the amount of power generated is proportional to the cube of

the vibration frequency. This means that the generator is likely to produce much

more power in applications with a fairly high frequency of vibration and is likely

to perform poorly at low frequencies (1-100 Hz), which is where most ambient

vibration exists.

When the generator operates at resonance, the maximum power can be obtained.

In this case, Equation (2.3) gives:

P =
mY 2ω3

n

4ξ
(2.4)

Infinite power at zero damping, coming from (2.4) is only theoretical. In practice,

since reducing the damping factor increases the displacement of the mass, which is

limited by the size and geometry of the device, the damping factor must be large

enough to prevent the mass displacement exceeding its maximum, Zmax. The max-

imum power that can be generated is, in fact, Pmax = mξω3
nZ

2
max. Equation (2.4)

should be modified if the inherent/parasitic damping (ξi) is of the same order of
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magnitude as the transducer damping (ξT ), as:

P =
mξTY

2ω3
n

4(ξi + ξT )2
(2.5)

Ultimately, linear harvesters have demonstrated some critical drawbacks that limit

their effectiveness in many field of application. Specifically, they work optimally

only when their natural frequency is tuned to the excitation frequency (resonance

condition). This presupposes a priori knowledge of the excitation frequency and

its persistency in time. Indeed, any variations in the excitation frequency around

the harvester’s fundamental frequency decreases the coupling between the source

and the harvesting device and reduces the output power significantly. Hence, the

narrow bandwidth of the linear harvesters limits their applications in practical

scenarios where the ambient vibration source has a broadband, time-varying or

even random frequency spectrum.

Many methods have been explored to increase the operational frequency range

of a vibration energy-harvesting device, by both tuning the resonant frequency

and broadening the bandwidth of the harvester. Recent examples include active

frequency-tuning techniques (which, however, are rarely applicable in practice,

since they require a certain amount of power input that, generally, outweighs

the power generated), multi-modal oscillators, cantilever arrays and amplitude

limiters [40, 41, 42]. Shahruz in [43] studied the design of an ensemble of cantilever

beams with proof masses at the tips, as in Figure 2.9(a), that can function as a

band-pass filter exploitable for energy harvesting purpose, by properly choosing the

dimensions of beams and masses. It was also shown that the maximal frequency

band of the band-pass filter is limited and independent of dimensions of the beams

and masses of the proof masses, thus it cannot be chosen arbitrarily large.

Optimizing strategies for excitations with time-varying frequency were formulated

theoretically in [18] for a linear single degree-of-freedom harvester, consisting of a

piezoelectric (PZT) stack and a proof mass and found the dependence of the average

output power on the frequency sweep rate, center frequency and range of excitation.
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(a) (b)

Figure 2.9: Ensemble of cantilever beams with proof masses at their tips (a) and transfer functions
corresponding to the beam–mass systems (a) when the device functions as a band-pass filter (b).

The authors proved that in certain conditions, tuning the excitation’s center

frequency outside the bandwidth of the steady-state fixed-frequency harvester and

away from its resonance frequency can be beneficial in terms of the average output

power.

Since linear resonators, as mentioned before, work most likely at high frequency,

whereas ambient vibration spectra have usually significant predominance of low

frequency components, frequency-up conversion techniques have been proposed to

”shift” the source vibration frequency to the harvester resonance frequency so that

useful power can be harnessed in low frequency excitation scenarios.

Alternatively, significant bandwidth improvement can be achieved through the

introduction of nonlinearity into the design of an energy harvester, which will be

discussed in section 2.2.2.

It is worth noting that a bound for the energy harvesting performance of a linear

oscillator is imposed by its mass. As becomes apparent from Equation (2.3), the

maximum power achievable by a linear harvesting system under sinusoidal external

excitation is dependent upon its mass. This statement is generalizable. It is known,

in fact, that the power dissipated by a linear single degree of freedom oscillator

subject to white noise base acceleration depends only on the mass of the system
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and the spectrum of the input, according to the relation:

P = π
mS0

2
(2.6)

where S0 is the spectrum of the base acceleration and m is the mass of the

oscillator. Equation (2.6) provides an upper bound on the power that can be

harvested, regardless of the values of linear damping or stiffness, meaning that

there is very limited scope for optimal design. Moreover, other studies have

demonstrated that the latter result applies also to multi degree-of-freedom linear

systems and to single and multi degree-of-freedom systems with nonlinear stiffness

driven by white noise base acceleration [44]. In the latter case, m refers to the

total mass of the system.

2.2.2 Adoption of nonlinear devices for energy harvesting pur-

pose

A significant number of research studies are currently focused on the idea of

incorporating nonlinearities into the harvester’s design so as to extend its bandwidth,

providing a possible solution for frequency mistuning, and enhance its performance

in a non-stationary vibratory environment. The WISEPOWER srl, company

of energy generators design and manufacturing site in Terni, Italy, declared a

considerable increase of the energy conversion efficiency enabled by nonlinear

dynamics solutions, based on the research work carried out in the NiPS (Noise

in Physical Systems) Laboratory at the Physics Department of the University of

Perugia, Italy.

The dynamics of the general nonlinear energy harvesting system (NEH) is described

by:

mz̈(t) = −dU(z)

dz
− cż(t) + f(t) (2.7)

where U(z) 6= 1/2kz2 is the potential function and f(t) the generical input force

coming from the ambient vibration, which can be written as f(t) = −mÿ(t) in case
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of base excitation. Specifically, one class of nonlinear harvesters widely investigated

incorporates cubic stiffness nonlinearities. The potential energy function is of the

form:

U(z) =
1

2
az2 +

1

4
bz4 (2.8)

with a > 0, therefore it exhibits mono-stable characteristics and the dynamics is

described by a (electromechanically coupled) Duffing’s equation, with restoring force

F (z) = az + bz3. Ideally, the maximum amount of power harvested by a nonlinear

system is approximately the same as the maximum power harvested by a linear

system [20] but a strong nonlinearity (”essential”, i.e. non linearizable) provides

for frequency robustness, related to the bend of the response curve, that enables

large amplitudes to persist over a much wider frequency range. The bandwidth of

the nonlinear system depends on the damping ratio, the nonlinearity and the input

excitation. The response curve bends with respect to the vertical configuration of

the linear case, towards right or left direction depending on the type of nonlinearity

(hard or soft nonlinearity, respectively), till the jumping phenomenon appears and

the response of harvester has three periodic solutions, which include two stable

solutions and one unstable solution. The bending of the response curve increases

(lowers) the frequency corresponding to the maximal amplitude and power, thus

it is beneficial for the harvester to work in higher- (lower-) vibration frequency

environment 2. For the two stable solutions of the nonlinear response, one is

relatively small and the other is relatively big. Therefore, in order to output larger

power, the nonlinear harvester should work at the stable response of high energy

orbit (Figure 2.10). In other words, the advantage imparted by the non-linearity

depends on realizing the high-energy attractor. A linearly decreasing or increasing

frequency sweep can capture the high-energy attractor, and, hence, improve the

output power and bandwidth for the softening and hardening cases, respectively.

Unfortunately, such conditions cannot be guaranteed in practice. Should the lower-

2Tipically, the goal is to increase the capability of a harvesting device at low frequency (below
few hundred Hz) because this is where most of the ambient energy is available. Due to geometrical
constraints, a small dimension linear harvester is, in general, not feasible.
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Figure 2.10: Hardening behaviour of a nonlinear system.

energy branch manifest instead, a momentary electrical short-circuit or mechanical

perturbation may be required.

Essentially nonlinear, monostable configurations have been proposed to accom-

modate frequency variation and frequency mistuning and to enable the energy

harvesting system to capture energy available from more complex excitations

[45, 46, 47, 48]. However, they have been shown to possess a critical input energy

threshold, resulting in ineffective harvesting of energy from low-amplitude vibration

sources. In fact, under small excitation levels, the influence of the nonlinearity

decreases and a monostable Duffing harvester loses its broadband properties, effec-

tively acting as a linear resonator [47]. As an example, results by Mann and Sims

[8] are presented in Figure 2.11, in which velocity response curves for two different

amplitude of the base acceleration are contrasted. The system under investigation

is an electromagnetic NEH harvesting from the nonlinear oscillations of a magnet

in levitation. The magnetic levitation system is realized by placing a center magnet

between two outer magnets into a base-excited tube, with the poles oriented so

to repel the outer magnets, thus, suspending the center magnet with a non-linear

restoring force (Figure 2.11(a)). It becomes apparent from Figure 2.11(b) that at

relatively low excitation levels, the frequency response of the system looks very

similar to the response of a linear system, whereas an increase of the excitation

level causes the response curve to bend to the right (multiple periodic attractors

and hysteresis in the frequency response curve).
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Figure 2.11: Sketch of the NEH proposed by [8] (a); Experimental (markers) and theoretical (black line)
of the velocity response for low (top) and high (bottom) excitation level (b).

Stanton et al. [9] proposed another monostable nonlinear device for energy har-

vesting through piezoelectric effect. The device consists of a piezoelectric beam

with a magnetic end mass interacting with the field of oppositely poled stationary

magnets, as shown in Figure 2.12(a). The dimensional tip displacement and voltage

response of the device under sinusoidal base excitation are plotted in Figure 2.12(b)

for two excitation amplitudes (the lighter solid line is the response at the lower

excitation amplitude) and it shows that the hardening behaviour tends to vanish

as the excitation amplitude decreases. Another interesting outcome of this study

is that, by tuning the nonlinear magnetic interactions around the end mass (i.e.,

tuning the distance d), the harvesting device is capable of both hardening and

softening behaviour, surpassing many other mechanism, that can only broaden the

frequency response in one direction.

Finally, according several research studies, nonlinear energy harvesters seem not

to provide a significant advantage in harvesting energy in a random excitation

environment. Daqaq demonstrated that under White Gaussian excitation, the
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(a) (b)

Figure 2.12: Sketch of the NEH proposed by [9] (a); displacement and voltage response for a low (ligher
line) and high (ticker line) excitation level for different values of d (b).

hardening-type non-linearity failed to provide any enhancement of output power

over the typical linear harvesters. Under colored Gaussian excitations, the expected

output power even decreased with such hardening-type non-linearity [49].

Barton [46] tested an electromagnetic NEH under both periodic and narrow-band

random excitation and showed that the peak velocity attained by the harvester

under periodic excitation is never reached by the harvester under random excitation.

A new class of nonlinear harvesters with a bi-stable potential has been recently

investigated as a possible solution to improve the performance of energy har-

vesters in case of both low-level energy excitations and non-stationary vibratory

environments.

2.2.3 Bistable solutions

As shown in Figure 2.13, an energy harvester with a bistable potential (bistable

nonlinear energy harvester, BNEH) has two stable equilibria separated by a

potential barrier (an unstable saddle). The potential function is of the form given

by Equation (2.8) with a < 0. This provides for three different dynamic operating

regimes depending on the energy level input into the system. Namely, the bistable
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Figure 2.13: Double-well potential of a bistable oscillator showing example trajectories for in-well, chaotic
cross-well and periodic cross-well oscillations.

system can perform low-energy in-well oscillations, whereby the inertial mass

oscillates around one of the stable equilibrium positions, as shown in Figure 2.14(a),

where the response trajectory (upper graph) and phase portrait with an overlay

Poincaré map (lower graph) are displayed. When sufficient energy is supplied to

the system, dynamic trajectories overcome the potential barrier and escape from

one potential well to the other activating the inter-well dynamics, characterized by

aperiodic or chaotic vibrations between wells (Figure 2.14(b)). This non-resonant

behavior permits coupling between the environmental excitation and the energy

harvester over a wider range of frequencies. As the excitation energy is further

increased, the device may exhibit periodic cross-well oscillations (Figure 2.14(c)).

The latter have been recognized as a means by which to dramatically improve energy

harvesting performance. This is due to the fact that, since the inertial mass must

displace a greater distance from one stable state to the next, its velocity is much

greater than that for in-well or chaotic vibrations. As the electrical output of an

energy harvester is dependent on the mass velocity, high-energy orbits substantially

increase power per forcing cycle (as compared with in-well and chaotic oscillations)

and are more regular in waveform (as compared with chaotic oscillations), which

is preferable for external power storage circuits. Additionally, snap-through may

be triggered regardless of the form or frequency of exciting vibration, alleviating

concerns about harvesting performance in many realistic vibratory environments

dominated by effectively low-pass filtered excitation [10]. Generally speaking, the
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Figure 2.14: Example of displacement response trajectories (top row) and phase plots with an overlap
Poincaré map as black circles (bottom row) for the three dynamic regimes of a BNEH: in-well oscillations
(a), chaotic in-well and cross-well vibrations (b) and periodic cross-well oscillations (c) [10].

three dynamic regimes may theoretically coexist although only one is physically

realizable at a time.

The simplest bistable structure is the von Mises truss, that is realized by means

of two oblique elastic bars mutually hinged at the top. When the structure is

disturbed by a sufficiently high external loading action, that can be of the form of

either vertical force or vertical displacement at the top hinge, it reaches a limit point

(evanescence of the stiffness), losing its stability, and a snap through occurs, causing

a sudden jump from the stable equilibrium position to the next one (Figure 2.15).

During the snapping-through phase, the trusses go through the horizontal unstable

equilibrium. If the downward load is decreased the structure encounters a second

limit point where the trusses suffer a reverse snapping to an upward configuration.

The part of the equilibrium path between the two limit points (the dashed portion

of the force-displacement and potential curves in Figure 2.15) is the set of unstable

equilibrium states where the trusses are compressed to a level that the negative

geometric stiffness overcomes the elastic stiffness. For such this structure, subject
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Figure 2.15: The von Mises structure, restoring force and potential function (left-hand side) and config-
urations at limit points (LPs) and equilibrium points (EPs) (right-hand side). EP1 and EP3 are stable,
EP2 is unstable.

to a downward load P at the keystone, letting θ the angle with respect to the

vertical, the equilibrium equation, under the hypothesis of identical trusses, can be

written as:

2Tcosθ + P = 0 where (2.9a)

T = ks(l0 −
√
a2 + (h0 − x)2) , cos θ =

h0 − x√
a2 + (h0 − x)2

(2.9b)

In (2.9) T denotes the tension in each spring, ks is the trusses equivalent spring

constant, l0 the initial length of the trusses, h0 and a as in Figure 2.15. Substituting

the expressions for T and cos θ (2.9b) in (2.9a), the governing equation of the

elastic problem, in terms of the vertical displacement of the keystone x is, then,

given by:

P + 2ks

(
1− l0√

a2 + (h0 − x)2

)
(h0 − x) = 0 (2.10)

The restoring force is clearly nonlinear and it can be expressed as a cubic polynomial

using the binomial expansion of the square root truncated at the third order. By
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(a) (b) (c)

Figure 2.16: Drawing of a piezoelectric bistable cantilever beam with a tip magnet and one (a) or two (b)
fixed magnets; experimental fixture of an electromagnetic cantilever beam with tip magnet by [11] (c).

setting the origin of the variable on the axis passing through the supports (or,

equivalently, operating the change of variable x = h0 − y), the simple expression

for the restoring force Fs is obtained, as:

Fs = αy + βy3 where α = 2ks(1− l0/a) and β = ksl0/a
3 (2.11)

The coefficient of the linear term α is clearly negative.

Several structures can be conceived to attain the snap-through mechanisms, besides

the snap-through truss. Among all, buckled beams are a common solution for

energy harvesting applications. A beam axially compressed beyond its first critical

buckling load behaves, in principle, as a von Mises structure; since it represents the

bistable element of the energy harvester under investigation in the present work,

its mechanical characterization will be extensively discussed in Section 3.1.

Another frequently used structure is a cantilever beam holding a magnet at its tip

and an external magnet conveniently placed at a certain distance from the tip mag-

net and with polarities opposed to those of the tip magnet. Alternatively, a couple

of external magnet would have same polarities as the tip magnet (Figure 2.16).

Bistable configurations have received much attention due to their capacity for high

output power when they snap through from one stable state to another, providing

large-amplitude motions across a wide range of input frequencies [50, 51, 52].

Erturk et al. [53] proved that a piezomagnetoelastic harvester driven by harmonic
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base excitation can produce one order of magnitude larger power output over a

given excitation frequency range, compared with the conventional case without

magnetic buckling.

Gammaitoni et al. [54] numerically explored the average voltage drop produced by

a piezoelectric oscillator under a wide-bandwidth Gaussian noise, as a function of

the linear stiffness coefficient. The voltage was found to reach a maximum when

the latter takes negative values.

A piezoelectric axially loaded beam was theoretically and experimentally inves-

tigated by Cottone et al. [55] under wideband random vibrations. The buckled

configuration enabled a significant amplification of displacement and output voltage

compared to the unbuckled case.

Many unconventional configurations of bistable devices, as well as multistable

designs with more than two stable equilibrium states, were also explored. Zhu and

Beeby [56] proposed a coupled bistable structure, consisting of two cantilevers with

a repelling force between them and subject to white noise vibrations with various

average accelerations, which is capable of triggering bistable operation with a lower

excitation force than conventional bistable and linear structures.

Hosseinloo and Turitsyn [57] presented a non-resonant harvester with adaptive

bistable potential, able to surpass linear and conventional bistable counterparts

when subject to both harmonic and non-stationary random-walk experimental

excitations.

Kumar et al. [58] examined a model of a piezomagnetoelastic energy harvester

capable of performing in the monostable, bistable, and tristable operating regimes

and showed that bistable and tristable configurations are capable of harvesting

more power while undergoing cross-well oscillations for certain values of excitation

amplitude and frequencies.

All the abovementioned works on nonlinear energy harvesters refer to harvesting

systems subject to direct or base excitation, mostly harmonic or random. Few

works focused on a harvesting device directly excited by impulsive forces, which,
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however, represent an important subset of the ambient vibration sources (including

human activities such as walking or jumping, and automobiles driven over traffic

counters or speed bumps, to cite but a few examples) [59, 47]. Bistable energy

harvesters turn out to be particularly sensitive to impulsive excitations [60, 61].

Harne et al. [62] developed a predictive strategy to determine the power generation

performance of a bistable piezoelectric cantilever resulting from the favorable

snap-through oscillations induced by applied impulses.

2.3 Exploiting targeted energy transfer (TET)

Energy harvesting systems are commonly applied to vibrating structures, including

civil structures, like bridges, or industrial machines. Hence, more recently, nonlinear

harvesters coupled to a directly loaded host structure have been investigated, in

order to evaluate the dynamic interaction and energy exchanges between the two

subsystems. In these systems, vibration energy harvesting can be achieved through

the passive nonlinear targeted energy transfer (TET) technique, which allows

irreversible transfer of transient vibration energy from the primary system to the

nonlinear local attachment, mainly by means of internal resonances and nonlinear

mode localization [13], and eventually converts mechanical vibration energy into

electrical energy.

Since the seminal work by Vakakis, Gendelman et al. [63, 64, 65, 66], due to

its various and numerous applications, starting from vibration absorbtion (shock

isolation, seismic mitigation and self-excited instabilities suppression) [12], the

problem of passive nonlinear energy transfer (TET) has become a subject of growing

interest. In this context, the dynamics of a linear structure weakly coupled to a

local nonlinear attachment possessing essential stiffness nonlinearity was thoroughly

studied. It was shown that under certain conditions this type of essentially nonlinear

attachment can passively absorb energy from a linear non-conservative (damped)

structure, in essence, acting as nonlinear energy sink (NES). Indeed, the addition

to a linear system of a local attachment possessing essential (nonlinearizable)
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stiffness nonlinearity may significantly alter the global dynamics of the resulting

integrated system. This is because of the lack of a preferential resonance frequency

of the attachment (it has no linear stiffness term), which, in principle, enables it

to generate a countably infinite number of non-linear resonance conditions (i.e.

mωprimary = nωNES , with m and n integers), through which vigorous energy

exchanges occur between the two oscillators and, possibly, energy localization.

Resonance interactions between the two sub-systems over broad frequency bands

can lead to interesting resonance capture, a transient dynamical phenomenon

whereby the trajectory of the dynamical system is captured in the domain of

attraction on the resonance manifold. It is such resonance capture that triggers

energy pumping phenomena, whereby a one-way, irreversible transfer of energy,

from the linear structure to the attachment occurs. In other words, externally

imparted energy in the linear system gets transferred to the non-linear attachment

in a one-way, irreversible fashion. Energy localization to the nonlinear attachment

is sought in order to attain efficient energy harvesting.

A paradigmatic example is provided by the essential nonlinear coupling of a weakly

damped primary linear oscillator (LO) to an ungrounded lightweight, weakly

damped NES, thoroughly analyzed by many authors within the context of energy

absorbtion. The frequency-energy plot (FEP) depicting the periodic orbits of the

corresponding Hamiltonian system is plotted in Figure 2.17. The backbones of the

FEP are formed by nonlinear normal mode (NNM) branches on which the system

response consists of in- and out-of-phase synchronous vibrations of the two masses

(respectively, S11+ and S11−). These NNMs are nonlinear continuations of the

in-phase and out-of-phase linear normal modes of the corresponding two degree-of

freedom linear system. In addition, there is a sequence of higher- and lower-

frequency branches of subharmonic tongues Snm± and Unm± with m 6= n, that

bifurcate out from the backbone branches. Each tongue occurs in the neighborhood

of an internal resonance between the LO and the NES, meaning that the NES

is capable of engaging in every possible n : m internal resonance with the LO.
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Figure 2.17: FEP of the periodic orbits of the Hamiltonian system (impulsive orbits: (•), bifurcation
points: (+) when four Floquet multipliers are equal to +1 and (◦) when two Floquet multipliers are equal
to +1 and two to −1) [12].
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Figure 2.18: Close-ups of particular branches in the frequency index–logarithm of energy plane [12].

Figure 2.18 depicts some close-ups of the FEP, whereby the insets in the graphs

display the periodic orbits in the configuration plane, with displacement of the

NES and LO on the horizontal and vertical axis respectively, in the same scale.

The portions of the curves marked as red refer to the unstable parts of the

branches. The inset clearly show where the motion is localized into the NES

(nearly horizontal curves). Without going through the analytical approach and

demonstration of occurrence of irreversible energy transfer mechanisms (see [13] for

detailed explanation), three types of efficient targeted energy transfer mechanisms

are detected from the investigation of the complex dynamics of this coupled system:

fundamental TET, occurring when the motion takes place along the backbone

curve S11+ (1:1 resonance capture), subharmonic TET, when the motion takes

place along a lower frequency branch Snm, n < m ∈ Z+, and TET initiated by

nonlinear beats, which is based on the excitation of a special orbit with main

frequency greater than the natural frequency of the linear oscillator. In particular,
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Figure 2.19: Percentage of impulsive energy eventually dissipated in the NES as a function of the magni-
tude of the impulse [13].

while the first two cannot be activated directly after the application of an impulsive

excitation to the linear oscillator with the NES initially at rest, the latter can

be initiated if the system is impulsively excited. It is also demonstrated the

existence of a critical level of energy, which represents a lower bound below which

no significant TET can be initiated when the LO is impulsively excited (Figure

2.19).

Based on this, some recent works are proposed in the context of energy harvesting.

Kremer and Liu [67] proposed an electromechanical, two-degree-of-freedom system

composed of a linear primary structure coupled to a nonlinear attachment through

a nonlinear spring and electromagnetic coupling elements. The performance of

the harvesting system when a base displacement was applied to the primary

mass was evaluated, revealing the presence of a threshold before the NEH can

be engaged. This threshold marks the beginning of 1:1 resonance and energy

transfer. Remick et al. [68, 69] showed that, for an electromagnetic vibration

energy harvester with a pure (nonlinearizable) geometric stiffness nonlinearity

coupled to a grounded, damped linear primary oscillator (LO), under single or

repetitive impulsive excitation of the linear oscillator, high-frequency transient

dynamical instabilities in the damped response arise from transient resonance
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Figure 2.20: Percentage of impulsive energy dissipated in the NES as a function of the magnitude of the
impulse, for varying negative stiffness (from [14]) Dashed line represents the monostable (purely cubic)
system, whereas the thick solid line refers to the optimal value of the negative linear stiffness.

captures in the damped dynamics of the system, for sufficiently high levels of input

energy. The high-frequency instability leads to high-amplitude oscillations of the

nonlinear attachment, providing superior energy harvesting performance. Thus, it

was confirmed that for an essentially nonlinear system a minimum input energy

level is required for passive TET from the primary system to the coupled nonlinear

device to occur and, hence, for efficient energy harvesting.

Although incorporating bistable nonlinear harvesting systems into linear primary

systems has not been explored in the literature, recent analytical and numerical

studies restricted to the TET context highlighted that the use of bistability in

the coupling can break through the limit of the input energy threshold typical of

the monostable nonlinear devices, producing an enhancement in the rapid passive

energy absorption and local dissipation of broadband input energies (Figure 2.20)

[70, 71, 14].

In particular, in [72] Romeo et al. investigated an impulsively excited, weakly

damped, linear oscillator coupled to a light, bistable nonlinear energy sink (BNES)

and showed that, in addition to the energy transfer mechanism of nonlinear beats,

with high-amplitude periodic cross-well oscillations triggered by sufficiently high

input energy, at a lower energy regime the presence of the negative stiffness
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component gives rise to two further passive energy transfer mechanisms from the

linear oscillator to the BNES, namely chaotic (aperiodic alternating in-well and

cross-well) oscillations and secondary, in-well, nonlinear beats occurring at very

low-energy level. Hence, this assures that a broadband efficient energy transfer is

possible over a broad range of input energy. In that work, the nonlinear beats takin

place within the in-well dynamics of the BNES are interpreted as Limiting Phase

Trajectories (LPTs). LPTs (so called because they are trajectories representing

an outer boundary for a set of trajectories encircling the basic stationary points,

see [73]) represent special orbits characterized by strongly modulated oscillations

during which maximum energy exchange between the oscillators occur. Figure 2.21

reports some results from [14], where TET mechanisms are distinguished based on

the inspection of Poincaré sections constructed at four distinct input energy levels.

Specifically, 1:1 in-phase and out-of-phase NNMs are detected for the highest energy

condition, where the double-well configuration of the potential still do not come

into play (Figure 2.21(a)). Primary LPT appeares for the intermediate energy

level: it separates the two regular regions encircling the 1:1 NNMs and corresponds

to the most intense modulated oscillations that give rise to intense energy exchange

between the linear oscillator and the BNES, as shown in the inset of Figure 2.21(b).

As energy decreases, chaos starts to govern the dynamics of the system, which starts

exhibiting alternating in-well and cross-well oscillations (Figure 2.21(c)). Here, only

two classes of peculiar orbits arise in which the BNES performs periodic in-well

and cross-well oscillations, with a 1:3 subharmonic oscillation. Finally, for very

low level of the input energy (lower that the potential energy barrier), secondary

LPTs separate the region of regular motion (quasi-periodic orbits) encircling two

stationary points from the surrounding chaotic motion (Figure 2.21(d)). The two

stationary points correspond to 1:1 resonance oscillations of the LO and the BNES,

which oscillates within a well, while the secondary LPTs trigger the low amplitude,

nonlinear beats with strong TET.

These results suggest the possibility of exploiting these additional energy transfer
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(a) (b)

(c) (d)

Figure 2.21: Poincaré sections of the bistable system investigated by [14]. Insets depict the displacement
of the LO (blue) and BNES (red) of selected points on the Poincaré map.

mechanisms to efficiently harvest power from ambient vibrations, usually charac-

terized by very low amplitudes.

2.4 Transduction mechanisms

The established transduction mechanisms for vibration-to-electricity conversion

are piezoelectric, electromagnetic and electrostatic. The transducer can generate

electricity from mechanical strain or relative displacement or velocity present

within the system, depending upon the type of transducer. The use of active

materials such as piezoelectrics is an obvious example that enables the strain to

be directly converted into electrical energy. Electromagnetic and electrostatic

transduction exploits the relative velocity or displacement that occurs within a

generator. Each transduction mechanism has different characteristics such as

damping effects, ease of use, scalability, and effectiveness. The power generated
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varies greatly, according to device size, type, and input vibration parameters and

the device sizes vary from the micro-scale (0.01 cm3) to the macro-scale (75 cm3)

[74]. The efficiency of electromagnetic generators is dependant upon the design

of the device. Assuming no size constraints, electromagnetic harvesting will be

the most efficient because the coil can be large, with a high number of turns and

low coil resistance (larger diameter of the wire) providing very high potential

coupling factors. The efficiency of piezoelectric generators is fundamentally limited

by the piezoelectric properties of the material whereas the efficiency of electrostatic

generators varies with position and device design but, actually, is reduced by

technical challenges relating to charging the electrodes, the separation distances

and the amplitudes of displacement (achieving an efficiency as high as that of the

other solutions requires impractically large amplitudes of displacement compared

to the minimum capacitor separation gap). Thus, the suitability of each mechanism

for any particular application depends largely on the operating environment and

practical constraints of the design problem. A brief description of the main

transduction methods is reported below.

2.4.1 Electrostatic energy harvesting

Electrostatic energy harvesters extract power by using mechanical vibrations to

separate a set of fixed electrodes and a set of movable electrodes, charged electro-

statically in opposite polarity, causing work to be done against the electrostatic

attraction; the motion of the movable electrodes varies the capacitance between the

two series of electrodes. A schematic of this type of device is depicted in Figure 2.22.

The movable electrodes are attached to the inertial mass. The capacitance varies

between maximum and minimum value. In general, these systems can work at

constant charge or at constant voltage. If the charge on the capacitor is constrained,

the voltage will increase as the capacitance decreases. Conversely, if the charge

on the capacitor is constrained, charge will move from the capacitor to a storage

device or to the load as the capacitance decreases. According to the movement
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Figure 2.22: Schematic of an electrostatic energy harvester.

(a) (b) (c)

Figure 2.23: Three types of electrostatic energy harvesters: In-Plane Overlap (a); In-Plane Gap Closing
(b); Out-of-Plane Gap Closing (c).

direction of the capacitor plates, electrostatic energy harvesters can be classified

into three types, as shown in Figure2.23, i.e. in-plane overlap type which varies

the overlap area between electrodes, in-plane gap closing type which varies the

gap between electrodes and out-of-plane gap type which varies the gap between

two large electrode plates [20]. Roundy in [38] provides an exhaustive description

and comparison of each of the three types. Electrostatic energy harvesters have

high output voltage level and low output current. Their primary disadvantage is

that they require an implanted charge or an external direct current (dc) voltage

source to initiate the conversion process. The voltage output of electrostatic

devices can be determined in a fairly arbitrary manner by specifying the initial

charge up voltage. However, the current output of electrostatic devices depends

on the capacitance, therefore, larger devices, with larger capacitances, provide
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higher currents. The power density of electrostatic energy harvesters is much lower

than that of the other two types of vibration energy harvesters. However, dimen-

sions of electrostatic energy harvesters are normally small which make them well

suited to microelectromechanical (MEMS) implementation. The great advantage

of electrostatic converters is that MEMS processing technology offers an effective

method to obtain close integration with electronics. Maximum capacitance is a

critical parameter for this type of transducers because current, not voltage, will

scale down with size because the capacitance of device in general decreases with

decreasing size. They are also very sensitive to the minimum allowable capacitor

gap. To design a generator with high power output, the range of motion of the

generator must be hundreds of times greater than the minimum capacitor gap.

This represents a practical implementation difficulty. The constitutive equations for

electrostatic transducers depend heavily on the geometry and operating conditions

(e.g., constant voltage or constant charge). Their efficiency is affected by technical

challenges relating to charging the electrodes, the separation distances, and the

amplitudes of displacement. Finally, generating a level of power comparable to

other technologies with electrostatic generators requires that the device oscillates

at a magnitude of hundreds of microns while maintaining a minimum capacitive

air gap of 0.5 mm or less. This configuration presents practical implementation

and stability issues.

2.4.2 Piezoelectric energy harvesting

Piezoelectric materials offer a simple approach to kinetic energy harvesting, whereby

vibratory mechanical input energy is directly converted into electrical energy by

using an appropriate type of piezoelectric material and associated electrodes.

Piezoelectricity was first discovered in 1880 by Pierre and Jacques Curie. Their

research revealed a coupled linear relationship between mechanical stress and

electrical charge in crystalline material. This relationship is directly due to the

crystal structure of the material. In particular, the direct piezoelectric effect,
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Figure 2.24: Schematic of direct piezoelectric effect; (a) piezoelectric material, (b) voltage generation
under tension, (c) voltage generation under compression [15].

used for energy harvesting, refers to the change in electric polarization, that is

to say the internal generation of electrical charge and consequently an electric

potential, produced in the material in response of an applied mechanical stress.

According to the definition of ”direct piezoelectric effect”, when a mechanical

strain is applied to crystals by an external stress, an electric charge occurs on

the surfaces of the crystal and the polarity of this observed electric charge on the

surfaces can be reversed by reversing the direction of the mechanical strain applied

[75]: compression along the direction of polarization, or tension perpendicular

to the direction of polarization, generates voltage of the same polarity as the

poling voltage, whereas tension along the direction of polarization, or compression

perpendicular to the direction of polarization, generates a voltage with polarity

opposite that of the poling voltage, as shown in Figure 2.24. The strain and coupling

coefficients in the fundamental piezoelectric equations are in general much higher in

33 mode than in 31. However the 33 mode of bulk crystal corresponds to very high

natural frequencies (∼ 1 to 100 kHz), while longitudinal strain is easily produced

within a cantilever beam that resonates at lower frequencies (∼ 100 Hz) [76] The

electromechanical coupling produced from these crystals is physically realized in

the mechanical system as a stiffness term with structural-like damping behavior, in

which performance is thus proportional to displacement. The piezo-constitutive law

dictates how stress and strain are related to electric charge density and electric field
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Figure 2.25: Direct piezoelectric effect with 33 and 31 strain-charge coupling.

strength, respectively, via the material parameters. The piezoelectric parameters

are inherent to the material selected, making them not easily tunable or designable.

There is a wide choice of piezoelectric materials available for different application

environments. Commonly used piezoelectric materials are natural materials such

as quartz, tourmaline etc., which, however, exhibit a limited piezoelectric effect

in terms of usable power, and man-made polycrystalline ferroelectric ceramic

materials such as barium titanate (BaTiO3) and lead zirconate titanate (PZT) or

piezopolymers (PVDF) with improved properties. The achievable induced strains

and properties inherent to the crystalline material primarily determines coupling

effectiveness. Maximization of the product of the piezoelectric voltage constant

and the piezoelectric strain constant is paramount for suitable material selection

for vibration energy harvesting, which serves to maximize the electromechanical

coupling.

Piezoelectric elements are preferable for high frequency applications based on

cantilever beam configuration, typically with a mass at the unattached end of the

lever (Figure 2.26). Other harvesting schemes using piezoelectric elements include

membrane structures to harvest energy from pulsing pressure sources or walking

[33].

One particular advantage of this transduction principle is that piezoelectrics are

well suited to microengineering (MEMS), where, due to size constraints imposed by

cost, construction, and placement, they typically operate on a power scale of the

order of microwatt [16, 77], that is a smaller power scale relative to the capability

of electromagnetic harvesting elements; however, microscale limitations imposed
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Figure 2.26: Schematic of bimorph piezoelectric cantilever beam.

on electromagnetic systems are no valid for piezoelectric systems. This trade-off is

an important consideration when determining the scale of the device needed in the

application environment.

Piezoelectrics are characterized by their ability to produce a relatively high voltage

output but only at low electrical currents. The output impedance of piezoelectric

generators is typically very high (> 100kQ). The actual voltage and current

outputs for a given power output depend on the type of converter structure used.

Increasing the volume of piezoelectric material can either increase the voltage or

the current produced depending on the way in which the volume of material is

increased. However, as low voltage is rarely a problem for this type of converters,

we can say that increasing the volume will generally increase the current from the

device. The piezoelectric materials need to be strained directly, and therefore their

mechanical properties will limit their overall performance and lifetime. Additionally,

the transduction efficiency is ultimately limited by the piezoelectric properties of

the chosen material. Piezoelectric transducers are relatively easy to fabricate and

can be used in both direct force and impact-coupled harvesting applications.

These coupling elements have been widely studied and utilized in the literature

for small- and micro-scale vibration energy harvesting. Wang [16] numerically and

experimentally investigates a nonlinear device based on the traditional cantilever

beam configuration with time-varying potential energy function, to scavenge energy

from human lower-limb motion (Figure 2.27(a)). The author reports a maximum

energy harvesting capability on the scale of 30 mW for a human motion speed of
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7 − 8 km/h. Mak et al. [17] use a traditional linear cantilever beam setup with

nonlinearity induced via a vibro-impact bump stop and piezoelectric layers, as

in Figure 2.27(b). The harvester is embedded within a car tyre as a means of

feeding a tyre pressure monitoring system. The bump stop impacts the beam

when it is excited at a sufficient magnitude, causing the beam to vibrate at higher

frequencies.The system is investigated under various velocities of the car: the

peak power output is of the order of magnitude of 10 mW, corresponding to the

impact of the beam to the stop, with a car speed of 65 km/h. An energy harvesting

system, consisting of a piezoelectric (PZT) stack and a proof mass as shown in

Figure 2.27(c)), is proposed in [18] to evaluate the effect of an excitation with

time-varying frequency on the response of the linear energy harvester. The output

power of the given dimensional system in the fixed-frequency case was analytically

found to be 3.5 mW under harmonic excitation of amplitude 1 N. Pan et al. [19]

place several patches of piezoelectric ceramics on a bi-stable hybrid composite

plate and test it under sinusoidal excitation. The output power was measured at

different frequencies and g-level accelerations: about 20 mW was harvested at 2 g.

2.4.3 Electromagnetic energy harvesting

The conversion of kinetic energy into electricity using electromagnetic induction

exploits the well-known Faraday’s law (1831), which states the proportionality of

the electromotive force induced in a circuit to the time rate change of the magnetic

flux linkage. The relative motion generates an induced voltage (or induced emf) in

the coil, proportional to the rate of change in time of the magnetic flux passing

through the coil, and the induced current flowing through the coil creates, in turn,

its own magnetic field that opposes the field created by the permanent magnet.

The interaction between the two magnetic fields results in an electromagnetic force

which opposes the motion, allowing the conversion of the mechanical energy into

electrical energy, as better explained in Section 3.3. The principle was first applied

to electrical energy generation in the early 1930s, when rotational generators were
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(a) (b)

(c) (d)

Figure 2.27: Piezoelectric energy harvesting systems: (a) [16] substrate layer 0.26 cm3; (b) [17] cantilever
beam mass 0.20 g, tip mass 0.97 g; (c) [18] mass 0.011 kg; (d) [19] size 100× 40× 12 mm.

mechanically driven to produce small-scale power output. The electromagnetic

technique is commonly realized by coupling a static magnetic field produced by a

permanent magnet and a solenoid in relative motion with respect to the magnet.

One of the two components usually acts as a stator and the other as a mover

(Figure 2.28(a)). In most cases, the coil is fixed while the magnet is mobile, since

the coil is fragile compared to the magnet and static coil can increase the lifetime

of the device. The amount of electricity generated depends upon the strength of

the magnetic field, the velocity of the relative motion and the properties of the coil

(Figure 2.28(b)). As for the latter is concerned, the number of coil turns and the

coil resistance are important parameters for determining the voltage and useful

power developed by a generator. The number of turns is governed by the geometry

of the coil, the diameter of the wire it is wound from and the density with which

the coil wire has been wound. The permanent magnets can be realized with several
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(a) (b)

Figure 2.28: Scheme of an electromagnetic energy harvester (a) and of the electromagnetic induction(b).

(a) (b)

Figure 2.29: Two types of electromagnetic energy harvesters.

different materials, of which neodymium provides the strongest magnetic flux field

density per volume.

Generally, there are two types of electromagnetic energy harvesters in terms of

the relative displacement. The first type (Figure 2.29(a)) is based on the lateral

movement between the magnet and the coil. The magnetic field cut by the coil varies

with the relative movement between the magnet and the coil. In the second type, as

shown in Figure 2.29(b), the magnet moves in and out of the coil. The magnetic field

cut by the coil varies with the distance between the coil and the magnet. The first

type is more common as it is able to provide better electromagnetic coupling [20].

As for piezoelectric transduction, electromagnetic induction does not require the

device to have an initial bias voltage. Similarly, the oscillatory electrical response

needs to be rectified and converted to a DC signal in order to charge a storage

component. In contrast to piezoelectric transduction, instead, electromagnetic

energy harvesting results in high current outputs (associated with a much lower
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optimal circuit resistance as compared to piezoelectric energy harvesters) at the

expense of low voltage . This means that electromagnetic converters can be scaled

down in size at the cost of output voltage while piezoelectric and electrostatic

converters can be scaled down only at the cost of current output. Low voltage

output is frequently a problem for small converters.

Electromechanical transduction adapts to low to high frequency applications based

on a variety of system configurations and has a wide operating scale spanning

from micro to kilowatt [78, 7, 79], using both rotational and linear devices. They

are usually recommended for lower frequencies (2− 20 Hz), small impedance and

medium size. An advantage consists in the high tunability of the coupling, which is

dependent upon design parameters (type and size of permanent magnet, induction

coil size). Advantages of this type of generator are their design simplicity, which

makes them suitable for academic research laboratory activities, and, and their

durability, as the harvester power generation depends on the relative velocity

and change in magnetic flux, hence its amplitude is not limited by its fatigue

strength, as, for example, for piezoelectric materials. Moreover, its costs less than

other solutions. In general, the voltage magnitude of electromagnetic converters

increases with device volume. Most of the commercial solutions are available at

centimetre scales because they exhibit higher power density than piezoelectric

devices. An increase in volume will increase the potential number of turns while

keeping the area of each coil constant, thus increasing voltage. On the other hand,

the integration of electromagnetic harvesters into micro-electro-mechanical-systems

(MEMS) results difficult. In fact, minimization in scaling leads to vast efficiency

reduction with the result of some design restrictions for micro-fabrication. The

reason is that the induced electromotive force (EMF) decreases rapidly as the device

size scales down. Figure 2.30 compares normalized power density of some reported

electromagnetic vibration energy harvesters, highlighting that power density of

macro-scaled electromagnetic vibration energy harvesters is much higher than that

of micro-scaled devices. This proves analytical results presented by Beeby et al.
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Figure 2.30: Normalized power density of some existing electromagnetic vibration energy harvesters [20].

Figure 2.31: Power versus scaling length L (solid line corresponds to the line of best fit for upper limit of
power) [21].

[80]. In Figure 2.31 the output power from some electromagnetic harvesters (into

an electrical load) is plotted as a function of the scaling length L = V 1/3 with

V the ”active volume” of the device. However, micro-scale converters are still

produced, tipically using planar spiral micro-coils, as the one in Figure 2.32. Micro-

coils are coils which are fabricated using photolithography techniques to define

the coil pattern, most commonly on substrates such as silicon, flex substrates or

printed circuit boards (PCBs) [81]. Thus, in general, assuming an electromagnetic

generator correctly designed and not constrained in size, it is the most efficient

converter of kinetic energy into electrical, because the coil can be large, with a high
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(a) (b)

Figure 2.32: Micro-fabricated square spiral coil.

number of turns and low coil resistance (larger diameter wire) providing very high

potential coupling factors. Attempts to miniaturise the technique, however, using

micro-engineering technology to fabricate a generator, invariably reduce efficiency

levels considerably.

These coupling elements have been utilized in a variety of configurations in the

literature for small-scale vibration energy harvesting. A tunable electromagnetic

energy harvester was proposed in [16]. Mann and Owens [22] investigate an

electromagnetic-induction energy generator containing a moving magnet that is

suspended in reference to an external housing with magnetic repulsion and a

series of magnets that are positioned to make the system bistable (Figure 2.33(a)).

Forward and reverse frequency sweep tests with an applied base harmonic excitation

have been carried out and up to 100 mW with excitation amplitude of 8 m/s2. Ma

and Zhang [23] use a rotational electromagnetic energy harvester based on a

pendulum system with nonlinearity further induced via a potential well design

(Figure 2.33(b)). The authors investigated this system for various harmonic

excitation frequencies, circuit loads, and excitation magnitudes, resulting in power

output on the scale of 0.5− 3.0 mW while operating outside of the potential well.

Energy harvesting technologies are particularly well suited for bridge applications,

since these are structures prone to damage from repeated dynamic loading, that

make excellent candidates for self-sustained SHM applications. Many recent studies
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have examined the feasibility of using the low frequency vibrations of concrete and

cable-stayed bridges to power SHM sensors. Jung et al. [24] conducted a field

test on an in-service cable-stayed bridge using an electromagnetic energy harvester

improved by introducing the combination of a motor and a gear part, as depicted

in Figure 2.33(c). The prototype device produced a maximum of 15.46 mW of

power when attached to the bridge’s stay cable.

(a) (b)

(c)

Figure 2.33: Electromagnetic energy harvesting systems: (a) [22] mass 35.6 g; (b) [23] acceleration approx.
200 mg. (c) [24], maximum stay cable acceleration 100− 200 mg.
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Chapter 3

Model of the

electromechanically coupled

system

In this chapter, the derivation of the mathematical model of the coupled system

under investigation is presented and discussed. The model considers, for the

electromechanical coupling, an electromagnetic transducer.

3.1 System modeling

The proposed energy harvesting system is modeled as a two degree-of-freedom

system, composed of a grounded, weakly damped, linear primary oscillator of mass

m1 (the LO) that is coupled to a lightweight, damped, nonlinear oscillator of mass

m2 (the bistable nonlinear energy harvester, BNEH) by means of electromechanical

coupling elements and an element which provides both cubic nonlinear and negative

linear stiffness components. The sketch of the coupled-oscillator system under

investigation is depicted in Figure 3.1.

It is here pointed out that the novelty of the presented system lies in the coupling

55
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Figure 3.1: Model of the two coupled oscillators.

of the energy harvesting device to the main (linear) structure, which allows to

account for the dynamic interaction of the two sub-structures.

The mechanical coupling is intended to add to the third-order stiffness nonlinearity

a negative linear stiffness component. This can be achieved using a nonlinear

structure possessing limit points in the equilibrium path such that, under a critical

load value, a snap-through instability takes place. The von Mises truss, recalled in

2.2, is a paradigm for the mechanism of the snap-through, where two symmetric

stable equilibrium states coalesce with the unstable one, producing a two-well

potential energy. The snap-through instability causes a sudden jump of the trusses

to a far-away stable configuration [82]. The bistability, i.e., the negative stiffness

around the equilibrium position, is here realized by exploiting the buckling of a

slender beam subjected to an axial compressive force and connected to the mass of

the BNEH at its midspan. When the compressive force exceeds the critical load

corresponding to the first mode of buckling, the beam buckles to one of the two

possible buckled states [83]. The simplified one degree of freedom (dof) model that

approximates the continuous model of beam is able to capture the main features of

the physical harvesting device. Its derivation is described in Section 3.2, whereas

Section 3.3 is devoted to modeling the electromechanical coupling.
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3.2 Mechanical coupling modeling

3.2.1 Problem formulation and analytical solution of the clamped-

clamped buckled beam

The analytical model of the harvesting system is derived according to the Euler-

Bernoulli beam theory accounting for von Kármán nonlinear strains. The nonlinear

problem of a post-buckled beam undergoing compressive axial force was extensively

investigated in several works, including the more recent study of Nayfeh and Emam

[84].

The transverse planar vibration of the clamped-clamped beam, subjected to a

constant uniaxial compressive force of magnitude P and an external transverse

load F̂ (x̂, t̂), is governed by the following partial differential equation of motion,

including the effect of mid-plane stretching:

ρA
∂2ŵ

∂t̂2
+ EJ

∂4ŵ

∂x̂4
+ γ̂

∂ŵ

∂t̂
+

[
P̂ − EA

2L

∫ L

0

(∂ŵ
∂x̂

)2
dx̂

]
∂2ŵ

∂x̂2
= F̂ (x̂, t̂) (3.1)

complemented by the following boundary conditions:

ŵ(0, t̂) = 0,
∂ŵ(x̂, t̂)

∂x̂

∣∣∣
x̂=0

= 0

ŵ(L, t̂) = 0,
∂ŵ(x̂, t̂)

∂x̂

∣∣∣
x̂=L

= 0

(3.2)

where ρ is the mass per unit volume of the beam, γ̂ the damping coefficient, E the

modulus of elasticity, J = bh3/12 the moment of inertia (being b the height and

h the thickness of the beam), A = bh and L the cross-sectional area and initial

length of the straight beam, respectively. The transverse displacement is denoted

by ŵ and is a function of the time t̂ and the spatial coordinate x̂ along the axis of

the beam in its initial configuration. It is often convenient to express the problem

in nondimensional form, by nondimensionalizing the spatial and time variables as
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follows:

x =
x̂

L
, w =

ŵ

r
, t = t̂

√
EJ

ρAL4
, ω = ω̂

√
ρAL4

EJ
(3.3)

where r =
√
J/A is the radius of gyration of the cross-section. This nondimension-

alization allows Equation (3.1) to have the simplest scaled form, written as:

ẅ + wiv + γẇ +

(
P − 1

2

∫ 1

0
w′2 dx

)
w′′ = F (x, t) (3.4)

w(0, t) = 0, w′(x, t)
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x=0

= 0, w(1, t) = 0, w′(x, t)
∣∣
x=1

= 0 (3.5)

where the overdot indicates the derivative with respect to time t and the prime

indicates the derivative with respect to the spatial coordinate x. Also, the nondi-

mensional quantities are:

P =
P̂L2

EJ
, γ =

γ̂L2

√
ρAEJ

, F =
F̂L4

rEJ
(3.6)

The buckling problem is obtained from Equations (3.4) and (3.5) by dropping the

time derivatives and the dynamic load, resulting in the following equations:

ψiv +

(
P − 1

2

∫ 1

0
ψ′2 dx

)
ψ′′ = 0 (3.7)

having denoted as ψ(x) the static configuration associated to the compressive load

P . The boundary conditions for the fixed-fixed beam are given by:

ψ = 0 and ψ′ = 0 at x = 0 and x = 1 (3.8)

Since the integral in Equation (3.7) is a constant for a given ψ(x), the term in

brackets is constant, hence Equation (3.7) reduces to:

ψiv + λ2ψ′′ = 0 (3.9)
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where

λ2 = P − 1

2

∫ 1

0
ψ′2 dx (3.10)

represents a nondimensional critical buckling load Pcr. The general solution of the

forth-order differential equation (3.7) is of the form:

ψ(x) = c1 + c2x+ c3 cosλx+ c4 sinλx (3.11)

Satisfying the boundary conditions by substituting (3.11) in (3.8) yields a system

of equations in ci, i = 1, 4 and λ, representing the eigenvalue problem for λ, the

characteristic equation of which is 2−2 cosλ−λ sinλ = 0. The first four eigenvalues

λ are found to be 2π, 8.9868, 4π and 15.4505 and the corresponding mode shapes

are of the form:

ψ(x) = c
[
1− cosλx− λ(1− cosλ)

λ− sinλ
x+

1− cosλ

λ− sinλ
sinλx

]
(3.12)

where c is a constant that can be defined by satisfying the condition (3.10) and is

expressed as:

c = ±2

√
P

λ2
− 1 (3.13)

Thus, for a given axial load P , the constant c corresponding to any eigenvalue λ

can be determined and hence its corresponding buckled shape can be obtained.

The former expression of ψ(x) governs both symmetric and antisymmetric buckling

shapes. It follows that the first four nondimensional critical buckling loads Pcr,i

are 4π2, 8.18π2, 16π2 and 24.19π2. The first buckling shape results in the simple

expression:

ψ(1)(x) = c(1− cos 2πx) with c2 =
P − Pcr,1

π2
, Pcr,1 = 4π2 (3.14)

When the axial load exceeds the first critical buckling load, the straight position

loses stability and the beam buckles. As the axial load is increased beyond
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Figure 3.2: Bifurcation diagram for the static deflection of the fixed–fixed beam at x = 0.25 with the
axial load. P1, P2, P3 are the first three critical loads.

the second critical buckling load, the beam has three equilibria: the straight

configuration, which is unstable, and two nontrivial equilibria, corresponding to the

first and second buckled configurations, and so forth (Figure 3.2). The first buckled

configuration is a stable equilibrium position, whereas buckled configurations

beyond the first bucking mode are unstable equilibrium positions [84]. As a

consequence, when the applied axial load goes beyond the second buckling load,

the beam exhibits stable and unstable equilibrium positions, with the result of a rich

and complex dynamics. To study the dynamical problem of the beam around the

buckled configuration, the total deflection can be defined as the summation of the

post-buckling static deflection and the time-dependent displacement v(x, t) around

the initial equilibrium configuration, namely w(x, t) = ψ(x) + v(x, t). Substitution

into (3.4) and (3.5) leads to the following equations:

v̈ + viv + γv̇ + λ2v′′ =

(∫ 1

0
ψ′v′ dx+

1

2

∫ 1

0
v′2 dx

)
(ψ′′ + v′′) + F (3.15)

v(0, t) = 0, v′(x, t)
∣∣
x=0

= 0, v(1, t) = 0, v′(x, t)
∣∣
x=1

= 0 (3.16)

Equation (3.15) possesses both quadratic and cubic nonlinearities due to the change
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of variable in v. Since there are no restrictions on v to be small, (3.15) governs

the global dynamics of the buckled beam, around the two buckled configurations.

The nonlinear dynamical problem of distributed-parameter systems can be solved

through an approximate analytical approach consisting in finite-degree-of-freedom

discretization technique, which replaces the distributed-parameter system by a

set of nonlinearly coupled ordinary differential equations. Either the spatial or

the temporal form of the solution is assumed a priori. The Galerkin method is

commonly used for a spatial discretization and a truncated set of eigenfunctions of

the linearized problem are usually taken as the trial functions. Hence, according

to the multi-mode Galerkin-type discretization, the solution is written in the form:

v(x, t) =
N∑
n=1

φn(x)qn(t) (3.17)

where N is the number of the retained modes, φn(x) is the nth linear vibration

mode shape of the buckled beam and qn(t) is the nth generalized coordinate. The

eigenvalue problem for the natural frequencies and mode shapes can be obtained

by dropping the nonlinear, damping, and forcing terms from Equation (3.15) and

letting v(x, t) = φ(x)eiωt, being ω the natural frequency and φ(x) its corresponding

linear vibration mode shape. The resulting linear free vibration problem is:

φiv + λ2φ′′ = ψ′′
∫ 1

0
ψ′φ′ dx (3.18)

φ = 0 and φ′ = 0 at x = 0 and x = 1 (3.19)

The general solution is given by the summation of a homogeneous solution and the

particular solution, as:

φ(x) = d1 sin s1x+ d2 cos s1x+ d3 sinh s2x+ d4 cosh s2x+ d5ψ
′′ (3.20)
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where the di, i = 1, ..., 5 are constants and:

s1,2 =
1

2

[
±λ2 +

√
λ2 + 4ω2

]
(3.21)

Solving this eigenvalue problem yields the natural frequencies ω and their corre-

sponding vibration mode shapes φ around a buckled configuration ψ due to a given

axial load P . The eigenmodes satisfy the orthonormality condition
∫ 1

0 φiφj dx = δij ,

where δij is the Kronecker delta. Figure 3.3(a) shows variation of the lowest four

nondimensional natural frequencies around the first buckled configuration, with

the nondimensional buckling level [85]. The latter is the rise of the beam at its

midspan b, related to the axial load by the relationship b = 2c = ±4
√

P
λ2
− 1.

From Figure 3.3(a) it can be seen that buckled beams possess several internal

resonances that can be activated at different buckling levels. The variation of the

first four natural frequencies for the first, second and third buckling shapes with

the axial load P is depicted in Figure 3.3(b). Odd vibration modes, indicated by

solid lines, depend on the applied axial load (or, equivalently, on the initial buckled

deflection), whereas even modes, represented by dotted lines, do not depend on the

axial load. From Figure 3.3(b) it becomes apparent that many internal resonances

might be activated among vibration modes not only around the same buckled

configuration, but also around different buckled configurations [84]. Substituting

(3.17) into (3.15) and applying the expansion theorem (multiplying by φm and

integrating over the domain) leads to a set of equations for qm(t), as follows:

q̈m+γq̇m+ω2
mqm =

N∑
i=1

N∑
j=1

Qmijqiqj+
N∑
i=1

N∑
j=1

N∑
k=1

Tmijkqiqjqk+fm(t), m = 1, ..., N

(3.22)

where

Qmij =

∫ 1

0
ψ′′φm dx

∫ 1

0
φ′iφ
′
j dx+

∫ 1

0
φ′′i φm dx

∫ 1

0
ψ′φ′j dx

Tmij =

∫ 1

0
φ′′i φm dx

∫ 1

0
φ′jφ

′
k dx

(3.23)
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(a)

(b)

Figure 3.3: Variation of the first four natural frequencies around the lowest three buckling shapes with
the axial load (a) and around the first buckled configuration with the nondimensional buckling level
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are the coefficients of the quadratic and cubic nonlinearities, respectively, and

fm(t) =

∫ 1

0
φmF (x, t) dx (3.24)

is the projection of the external force on the mth mode. The reduction of the

problem to single-mode approximation is reported in the next subsection.

3.2.2 Single-mode approximation of the harvester’s dynamics

A single-mode discretization can be obtained letting v(x, t) = φn(x)qn(t) in Equa-

tion (3.15), multiplying the result with φn(x) and integrating from x = 0 to x = 1.

The result is:

q̈n + γq̇n + ω2
nqn = α2q

2
n + α3q

3
n + fn(t) (3.25)

where:

α2 =

∫ 1

0
ψ′′φn dx

∫ 1

0
(φ′n)2 dx+

∫ 1

0
φnφ

′′
n dx

∫ 1

0
ψ′φ′n dx

α3 =

∫ 1

0
φnφ

′′
n dx

∫ 1

0
(φ′n)2 dx

(3.26)

and fn(t) expressed by (3.24) for n = m. For a fixed-fixed beam, ωn, α2 and α3

are not available in simple form.

To study the forced vibration of buckled beams, it is a common practice to assume

as trial functions only the eigenmodes that are directly or indirectly excited. In

particular, if a system is excited near the natural frequency of a specific linear mode

and that mode is not involved in an internal resonance with any other modes, only

that mode is assumed in the expansion, regardless of the conditions under which

such a projection from an infinite-dimensional space to a finite-dimensional space is

performed. Such an approach is referred to as single-mode discretization [86]. The

discretization approach for the clamped-clamped beam may yield erroneous results

in some ranges of buckling level, such as internal resonances and for high levels

of buckling, and this is confirmed by comparison with direct approach [87]. The

reason is that the shape of the motion is fixed a priori and the nonlinear motion is
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Figure 3.4: Sketch of the buckled beam.

postulated as separable in space and time. Therefore, the spatial nonstationarity of

the actual nonlinear motion is neglected a priori. Hence, some calculated intrinsic

system properties, such as the nonlinearity coefficient (cfr. [88]), which depend on

the spatial variation, can be affected by the single-mode approximation. Thus, care

must be taken when using a single-mode discretization in analyzing the possible

issues related to the current buckling level of the beam.

Nevertheless, existing theoretical predictions of the nonlinear response of buckled

beams to harmonic excitations are based on a single-mode Galerkin discretization

of the governing partial differential equation and boundary conditions. Such this

single-mode approximation is useful to characterize the mechanical features of a

simple mechanical system and to provide insights on the dynamical behaviour. It is

a common practice, then, to complement the analytical results with experimental

data or finite element models to adjust the mechanical parameters of the buckled

beam [89].

A dimensional approach for the one degree-of-freedom model is proposed below.

The problem formulation is written with reference to the straight configuration,

unstable position of the buckled beam, where the governing equation takes the form

of a Duffing-type oscillator with negative linear coefficient (Figure 3.4). To study

the dynamical problem of the beam around the buckled configuration, the total

deflection can be defined as the summation of the post-buckling static deflection and

the time-dependent displacement v̂(x̂, t̂) around the initial equilibrium configuration,

namely ŵ(x̂, t̂) = d0ψ(x̂) + v̂(x̂, t̂), where ψ(x̂) is the first buckling mode shape

and d0 = ŵ(L/2, 0) is the rise at the midspan of the beam. The first buckling

mode shape and its corresponding Euler’s load, solution of the buckling problem
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obtained from Equation (3.1) by dropping the time derivatives and the dynamic

load, are given by:

ψ(x̂) =
1

2

(
1− cos 2π

x̂

L

)
and P̂cr = 4π2EJ

L2
(3.27)

where ψ(x̂) is normalized so that ψ(L/2) = 1; thus the post-buckling deflection is

described by:

ŵs(x̂) = d0ψ(x̂) =
1

2
d0

(
1− cos 2π

x̂

L

)
(3.28)

Substituting (3.28) into the equation of the buckling problem, which is given by:

EJ
∂4ŵs
∂x̂4

+

[
P̂ − EA

2L

∫ L

0

(∂ŵs
∂x̂

)2
dx̂

]
∂2ŵs
∂x̂2

= 0 (3.29)

and solving for d0 yields, for post-buckling (P̂ > P̂cr and d0 6= 0), the relationship

between the dimensional axial load P̂ and the resulting dimensional initial deflection

d0:

d2
0 =

4

π2

(P̂ − P̂cr)L2

EA
(3.30)

According to the multi-mode Galerkin discretization, v̂(x̂, t̂) can be expanded into

a superposition of N orthonormal base functions φn(x̂), as v̂(x̂, t̂) =
N∑
n=1

ηn(t̂)φn(x̂)

where ηn(t̂) are the generalized coordinates. Retaining only the first mode and

approximating the mode shape with the first buckling mode shape function

(v̂(x̂, t̂) ≈ η(t̂)ψ(x̂)), the expression for the total deflection becomes:

ŵ(x̂, t̂) = d0ψ(x̂) + η(t̂)ψ(x̂) = q(t̂)ψ(x̂) (3.31)

where q(t̂) = d0 + η(t̂) represents the time-dependent displacement of the middle

point of the clamped-clamped beam relative to the axis passing through the

supports. Substituting the expression for ŵ(x̂, t̂) (3.31) into (3.1) and applying the

expansion theorem (by multiplying for ψ and integrating over the length) yields to
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the equation:

mq̈ + cq̇ + k3q + k2q
3 = f (3.32)

where ˙(·) = d(·)/ dt̂, m, c and f are the generalized mass, damping and load,

respectively, and k3 and k2 are the linear and (cubic) nonlinear stiffness, respectively.

They are expressed as:

m = ρA

∫ L

0
ψ2 dx̂, c = γ

∫ L

0
ψ2 dx̂, k2 =

EA

2L

(∫ L

0
ψ′2 dx̂

)2

k3 = EJ

∫ L

0
ψ′′2 dx̂− P̂

∫ L

0
ψ′2 dx̂, f =

∫ L

0
F̂ψ dx̂

(3.33)

Equation (3.32) is the equation of a Duffing-type nonlinear oscillator, describing the

single-degree-of-freedom motion of the transverse vibration of the beam midpoint.

The restoring force potential of the Duffing oscillator, written in the form:

V (q) = +
1

2
k3q

2 +
1

4
k2q

4 (3.34)

suggests that the sign of k3 determines the number and type of the equilibrium

positions. In fact, as the linear stiffness term becomes negative (i.e. k3 < 0),

the center equilibrium q = 0 becomes unstable and the potential becomes of the

standard double-well type, resulting in the bistable harvesting system of interest.

The potential barrier height is given by ∆V = k2
3/(4k2) and the two minima of

the potential energy function, corresponding to the stable equilibrium positions,

are located at qe = ±
√
−k3/k2. The bistable system can exhibit three different

dynamic operating regimes depending on the depth of the potential barrier and the

level of the input energy: in-well oscillations (oscillations in the neighborhood of

one of the two stable equilibrium positions) if the input energy is lower than ∆V ,

chaotic alternating cross- and in-well oscillations for excitation energy sufficiently

high to overcome the potential barrier, or large-amplitude cross-well response with

further increase of the energy level.
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3.3 Electromechanical coupling modeling

The electromechanical coupling is intended to be achieved via a permanent magnet

and a cylindrical inductance coil. The electromechanical elements harvest the

energy, which is dissipated across a resistive element in the electrical circuit; the

transduction mechanism generates electricity by exploiting the relative displacement

occurring within the system. The relative motion between the magnet and the coil

of conducting wire generates an induced voltage (or induced emf) E in the coil,

which is proportional to the rate of change in time of the magnetic flux passing

through the coil, according to Faraday’s law. For an N turn coil, it is:

E = −dΦ

dt
= −N dφ

dt
(3.35)

where φ is the average flux linkage per turn and Φ = Nφ is the total flux linkage

of the N turn coil. The flux linkage depends on the magnet and coil parameters

and the air gap flux density between the magnet and coil. The total flux linkage

for a N turn coil positioned in a magnetic field is evaluated as the combination of

flux linkages through single turns, which encircle a surface area Ai, i.e.:

Φ =

N∑
i=1

∫
~Ai

~B(~xi) d ~A (3.36)

where B denotes the magnetic field flux density for a given ith turn area Ai, xi

the position of the coil. The area of the effective magnetic field depends on the

magnet’s relative position with respect to the coil (axial dependence) and the size

of the coil in terms of its outer radius and inner radius (radial dependence). In the

case where the flux density can be considered uniform over the area of the coil,

the integral in (3.36) can be reduced to the product of the coil area, number of

turns and the component of flux density normal to the coil area, Φ = NBA sinα,

where α is the angle between the coil area and the flux density direction. In most

linear vibration generators, the motion between the coil and the magnet is in a
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single direction, e.g., let us say the w-direction, and the voltage induced in the coil

can then be expressed as the product of a flux linkage gradient and the velocity:

Φ = −dΦ

dw

dw

dt
= −N dφ

dw

dw

dt
(3.37)

A load resistance RL connected to the coil terminals allows the power to be extracted

from the harvesting device and the induced current to circulate into the coil. The

induced current is able to flow through the coil and load resistance, creating its

own magnetic field that opposes the field created by the permanent magnet. The

interaction between the two magnetic fields results in an electromagnetic force Fem

which opposes the motion, allowing the conversion of the mechanical energy into

electrical energy.

According to Lorentz’s law, the electromagnetic force Fem induced by the interaction

of the magnet and the coil is proportional to the coil current Q̇, i.e.:

Fem = keQ̇ (3.38)

being ˙(·) = d(·)/ dt. The proportionality constant ke is the transduction factor,

which physically describes the strength of the electromechanical coupling. The

transduction factor can be defined as:

ke = dΦ/dw (3.39)

It depends on the magnetic field flux density and coil geometry [67] and, for a

uniform flux density over the area of the coil, substituting (3.36) into (3.39) it can

be reduced to the following expression:

ke =
lwhc(ro − ri)

Ac
B (3.40)

with lw length of the wire, ro and ri outer and inner radius of the coil, respectively,

hc and Ac thickness and cross-sectional area of the coil (Ac = π((ro + ri)/2)2), B
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the magnetic induction. Substituting the expression (3.39) into (3.35), the induced

electromotive force is written as:

E = keẇ (3.41)

On the other hand, the output voltage can be defined by applying Kirchhoff’s law

to the system, i.e.:

E = (Rc +RL)Q̇+ LcQ̈ (3.42)

where Rc and Lc are the resistance and inductance of the coil respectively. The

former is simply:

Rc = ρ
lw
Ac

= ρ
N2π(ro + ri)

fhc(ro − ri)
(3.43)

with f the fill factor and ρ the resistivity of the coil material. By substituting

(3.41) into (3.42), the current in the circuit can be written as:

Q̇ =
ke

Rc +RL
ẇ − Lc

Rc +RL
Q̈ (3.44)

An estimate for the coil inductance is provided by Wheeler in [90] as:

Lc =
7.875 · 10−06(ro + ri)

2N

13ro − 7ri + 9hc
(3.45)

and the maximum coil impedance ZL can be estimated as:

ZL = 2πfmaxLc (3.46)

where fmax is the maximum driving frequency, in Hz, imposed by the mechanical

system.

Depending on the geometric properties of the coil, the inductance can be assumed

to be negligible relative to the load resistance used, by an appropriate choice of the
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coil dimensions). With this assumption the equation (3.44) can be simplified as:

Q̇ =
ke

Rc +RL
ẇ (3.47)

Finally, the electromagnetic force is proportional to the current and hence the

velocity, and thus it can be described as a linear, electromagnetic damping [81]:

Fem = beẇ (3.48)

where be is the electromechanically induced damping coefficient. Here, w denotes the

relative displacement, defined as y2−y1 (y1 and y2 being the absolute displacements

of the primary system and the harvester, respectively) and ẇ its time derivative.

By expressing the electromechanical damping coefficient as:

be =
k2
e

Rc +RL
(3.49)

the linear differential equation that governs the electromagnetic interaction can be

written as:

Q̇ =
be
ke
ẇ (3.50)

3.4 Governing equations and harvesting measures

Recalling Equation (3.32), which models the mechanical coupling between the

primary mass m1 and the secondary mass m2 of the system of Figure 3.1, the

nonlinear equations of motion of the complete system can be written using (3.32),

provided that the Lagrangian coordinate q is substituted with the relative dis-

placement w = y2 − y1 of the mass m2, placed at the midpoint of the beam

(note that in Equation (3.31) ψ(L/2) = 1) and the damping coefficient accounts

for both the inherent (mechanical) damping and the electromechanically induced

damping be (see Equation (3.48)). The current Q̇ flowing in the circuit is related

to the relative velocity ẇ by Equation (3.50). Finally, the coupled second-order
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differential equations governing the dynamics of the electromechanical system of

Figure 3.1, excited by a force F (t) directly applied to the primary mass with zero

initial conditions, can be written as follows:

m1ÿ1 + b1ẏ1 + k1y1 − (be + b2)ẇ − k3w − k2w
3 = F (t)

m2(ẅ + ÿ1) + (be + b2)ẇ + k3w + k2w
3 = 0

Q̇− be
ke
ẇ = 0

(3.51)

where k1 and b1 represent respectively the linear stiffness coefficient and the linear

viscous damping coefficient of the LO, b2 the linear viscous damping coefficient of

the BNEH, and k2 the cubic stiffness coefficient, and k3 denotes the linear stiffness

coefficient. The sign of k3 determines the number and type of the equilibrium

positions of the system. In fact, as seen in Section 3.2, from the definition of the

restoring force potential governing the system dynamics, written for the complete

system as:

V (y1, w) =
1

2
k1y

2
1 +

1

2
k3w

2 +
1

4
k2w

4

it becomes apparent that for k3 ≥ 0 the harvester is monostable whereas in the

presence of a negative linear stiffness term (i.e. k3 < 0) the center equilibrium

y1 = w = 0 becomes unstable bifurcating into the two specular stable states

y1 = 0, w = ±
√
−k3/k2 (Figure 3.5). The potential barrier height is given by ∆V =

k2
3/(4k2) and the bistable system can exhibit different dynamic operating regimes,

for a given potential barrier height, depending on the level of the input energy: if

the input energy is lower than ∆V , it performs oscillations in the neighborhood

of one of the two stable equilibrium positions (in-well oscillations); increasing the

excitation energy yields chaotic alternating cross- and in-well oscillations; with

further increase of the energy, large-amplitude periodic cross-well responses occur.

Each of them represents a different targeted energy transfer mechanism from the

directly forced LO to the BNEH [14]. Hence, the dynamics of the bistable system

is driven by the depth of the potential wells and the magnitude of input energy.
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-d0

d0

Figure 3.5: Potential energy surface of the coupled system.

The set of governing equations (3.51) can be conveniently written with reference

to the initial equilibrium position of the BNEH mass, corresponding to one of the

potential wells. In order to do so, the change of variables w = z + d0 is introduced,

where d0 =
√
−k3/k2 is the position of each of the two equilibrium points, so that

the nonlinear elastic force:

Fs(w) = k3w + k2w
3

assumes the expression:

Fs(z) = −2k3z + 3d0k2z
2 + k2z

3

Ergo, the set of equations (3.51) become:

m1ÿ1 + b1ẏ1 + k1y1 − (be + b2)ż + 2k3z − 3d0k2z
2 − k2z

3 = F (t)

m2(z̈ + ÿ1) + (be + b2)ż − 2k3z + 3d0k2z
2 + k2z

3 = 0

Q̇− be
ke
ż = 0

(3.52)

By scaling the time such that t = ctτ and introducing the variables y1 = cxx, z =
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Figure 3.6: Single impulse (a) and train of impulses of inter-arrival times ∆tp (b).

cxv,Q = cqq, equations (3.52) can be rewritten in normalized form as:

x′′ + λx′ + x− µ[(β + ζ)v′ − 2ξv + 3αv2 + v3] = γf(τ) (3.53a)

v′′ + x′′ + (β + ζ)v′ − 2ξv + 3αv2 + v3 = 0 (3.53b)

q′ − βv′ = 0 (3.53c)

where the following non-dimensional parameters have been defined:

µ =
m2

m1
, λ =

b1√
m1k1

, ζ =
b2
m2

√
m1

k1
, β =

be
m2

√
m1

k1
, ξ =

k3

k1

m1

m2
(3.54)

with γ = 1
k1

√
k2m1
k1m2

and (·)′ = d(·)/ dτ . The normalization coefficients are given by

ct =

√
m1

k1
, cx =

√
k1m2

k2m1
, cq =

k1m2

kem1

√
m2

k2
(3.55)

For the normalized system the two stable equilibrium positions are x = 0, v = 0

and x = 0, v = 2α, with α =
√
−ξ. In order to study the effects of system damping,

electromechanical coupling and mass ratio on the performance of the harvester,

the coupled system (3.51) is first explored in the normalized form (3.53).

Two different excitation scenarios are considered. In the first case, a single

impulsive forcing excitation is applied to the linear subsystem. As is well known,
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an instantaneously applied force F (t) = Xδ(t) at t = 0, obeying

∫ +∞

−∞
F (t) dt =

∫ +∞

−∞
Xδ(t) dt = X

with δ(t) the Dirac delta function and X the magnitude of the impulse, applied to

the system at rest at t = 0−, is equivalent to imposing an initial velocity of X/m1

and no external forcing. Denoting by I0 = X/m1 the dimensional initial velocity

of the primary system directly following the applied impulse, the non-dimensional

equations (3.53) are complemented by the following initial conditions:

x(0+) = 0 , x′(0+) = Ĩ0 , v(0+) = 0 , v′(0+) = −Ĩ0 , q(0+) = 0 (3.56)

where Ĩ0 = ct/cxI0, solved with γf(τ) = 0.

As a second forcing scenario, a series of pulses, defined as:

F (t) =
N∑
p=0

Xpδ(t− tp), tp =

p∑
r=1

∆tr (3.57)

is input into system (3.52), where N is the total number of impulses applied after

the initial excitation, corresponding to p = 0, tp the time of application of the pth

impulse, ∆tp the interval of time between the two consecutive pulses (p− 1) and p.

For the first impulse, at t0 = 0, assuming that the system is at rest at t = 0−,

the initial conditions are still expressed by (3.56) or, referring to the dimensional

system (3.52):

y1(0+) = 0 , ẏ1(0+) = I0 , z(0+) = 0 , ż(0+) = −I0 , Q(0+) = 0 (3.58)

whereas the pth impulse, applied to the LO at time t+p , is assigned by imposing the
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following initial conditions:

y1(t+p ) = y1(t−p ), ẏ1(t+p ) = ẏ1(t−p ) + I0,p

z(t+p ) = z(t−p ), ż(t+p ) = ż(t−p )− I0,p

Q(t+p ) = Q(t−p ), r = 1, ..., N

(3.59)

As becomes clear from (3.59), the initial state of the system at the time of the

application of the pth impulse depends upon the mechanical energy remaining in

the system at that time.

The instantaneous power extracted by the transduction mechanism, i.e. dissipated

across the resistive element in the coupled circuit, is given by

P (t) = RLQ̇
2 =

(
k2
e −Rcbe
k2
e

k2
1m2

k2m1

√
k1

m1

)
µ

β
q′2 (3.60)

where the term in brackets has units of Watts, whereas the term µ/βq′2 is the

non-dimensional power. It follows that the total energy harvested following the pth

impulse is obtained by integrating the power (3.60) over the time interval between

the application of the pth impulse and the succeeding one; that is,

Eh(t−p+1) =

∫ tp+1

tp

P (t) dt =
k2
e −Rcbe
k2
e

k2
1m2

k2m1

∫ τp+1

τp

µ

β
q′(τ)2 dτ (3.61)

If only one impulse is applied to the primary system, the energy harvested by the

BNEH up to time t, Eh(t), can be obtained from Equation (3.61) by replacing the

lower limit of the integral by zero and the upper limit of the integral by t; the total

energy harvested up to the end of the damped motion, at t = tf , is given by the

asymptotic limit reached by Eh(t).

The energy harvesting performance is also defined in terms of energy harvesting

efficiency, which is expressed as the total energy harvested after the pth impulse,

normalized by the total energy in the system at the time t+p of application of that
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impulse:

η% =
Eh(t−p+1)

Etot(t
+
p )

100 (3.62)

where

Etot(t
+
p ) =

1

2
m1[ẏ1(t+p )]2 +

1

2
m2[ż(t+p ) + ẏ1(t+p )]2 +

1

2
k1[y1(t+p )]2 − k3[z(t+p )]2

+ ak2[z(t+p )]3 +
1

4
k2[z(t+p )]4

(3.63)

The expression (3.63) for the total energy in the system immediately after the

application of an impulse suggests that, if a single impulse is considered, it coincides

with the kinetic energy input into the primary system, holding the initial conditions

(3.58); otherwise it takes into account the amount of energy still possessed by the

system at the time of application of the pth impulse.



78 Chapter 3. Model of the electromechanically coupled system



Chapter 4

Numerical investigation

This chapter deals with the numerical study of the integrated harvesting system.

Discussed here is the dynamics of the electromechanical system and resulting

phenomena upon which a novel vibration energy harvesting apparatus is designed

and validated. Due to the double-well potential of the bistable system, several

distinct dynamic regimes arise and provide for efficient transfer and harvesting of

energy.

4.1 Parametric analysis and optimization

In order to study the effect of the bistability on the damped dynamics and to

evaluate the effect of sensitive parameters on the performance of the bistable

harvesting system, a computational study for the first excitation scenario of single

impulse is carried out, using the non-dimensional nonlinear equations of motion

(3.53) and the initial conditions (3.56). The sensitivity analysis conducted on this

system reveals the strong dependence of the efficiency of the BNEH on the mass

ratio parameter. The efficiency measure is here computed from (3.62) with

Etot(0
+) =

1

2
m1I

2
0 = k2

1

m2

2k2m1
Ĩ2

0

79
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Figure 4.1: Contour plots for efficiency measure η% resulting from the application of a single impulse
to the primary linear system, evaluated at τ = 60 as a function of ξ and Ĩ0. Parameters are β = 0.1,
λ = 0.001, ζ = 0.02: (a) µ = 0.2; (b) µ = 0.05; regions I, II and III refer to different dynamic behaviours
as discussed in the text.

so that

η% =
(k2
e −Rcbe)/k2

e

∫ τ
0 µ/β q

′(τ)2 dτ

1/2Ĩ2
0

× 100 (4.1)

with the coil resistance, transduction factor and electromagnetic damping coeffi-

cients given in Table 4.2. Figure 4.1 shows the percentage of impulsive energy η%

which is harvested during the damped motion by the BNEH up to a time τ = 60

(which corresponds physically to approximately t = 1s for the physical system

presented in Section 4.2), as a function of the negative stiffness parameter ξ in the

range [−1.0, 0.0] and the magnitude of the initial velocity Ĩ0 in the range (0.0, 1.0].

The comparison of the two contour plots reveals that, in the domain of low impulse

magnitudes, i.e. Ĩ0 ∈ (0.0,∼ 0.5), as the mass ratio decreases, the presence of the

negative stiffness allows a greater enhancement of the harvester efficiency with

respect to the monostable configuration (approximately three times). Conversely,

high values of the mass ratio increase the monostable efficiency, whereas they

slightly reduce the bistable harvesting capability, with the result that the bistable

structure loses its advantage.

In Figure 4.1(b) three different regions of the contour plot can be detected, each

of which corresponds to one of the three different mechanisms of energy transfer
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from the linear oscillator to the bistable attachment discussed in [72]. Region I is

associated with high input energy which enables cross-well oscillations to occur. The

snap through between the two stable equilibrium positions leads to an intense energy

exchange between the two subsystems, and hence to intense energy harvesting. As

the input energy level further increases, 1:1 transient resonance capture dominates

the initial dynamics, whereas cross-well oscillations take place only in a second

stage during a few cycles before the BNEH falls into one of the potential wells.

However, the cross-well phase is characterized by the best performance of the

harvester. The intermediate regime of region II is dominated by alternating in-

well and cross-well oscillations. This chaotic motion is still beneficial for energy

harvesting mainly due to the jumps from one stable equilibrium position to the

other. As expected, this intermediate dynamical regime tends to disappear as the

negative stiffness parameter ξ tends to zero (i.e., in the monostable configuration);

this is evidenced by the blue region on the right of Figure 4.1(b). Region III refers

to the lowest-energy regime, in which the motion of the BNEH is confined in one

of the two wells, depending on the initial conditions; here, the negative stiffness

promotes nonlinear beats which are the main mechanisms for energy absorption.

Strongly modulated oscillations can be observed as the negative stiffness parameter

approaches its optimal range. In general, both periodic and chaotic cross-well

dynamics are observed in the first cycles of the motion (see Figures 4.5 et seq. in

Section 4.2). Even in the presence of very weak inherent damping of the BNEH,

the overall damping, including the contribution by the electromechanical elements

and any losses associated with the linear stiffness, leads to fast decay of oscillations.

As the energy decreases, the motion of the bistable attachment is trapped in

one of the wells, where the third mechanism still allows some energy harvesting

until the system goes to rest. The three energy transfer mechanisms can be only

partly traced on the plot for the case of high mass ratio (Figure 4.1(a)). In the

intermediate region, chaotic cross-well motions can take place depending on the

magnitude of the impulse and the height of the potential barrier (upper portion of
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Figure 4.2: Contour plots for the efficiency measure η% resulting from the application of a single impulse
to the primary linear system, evaluated at τ = 60 as a function of the negative stiffness parameter ξ and
the mass ratio µ. Parameters are β = 0.1, λ = 0.001, ζ = 0.02: (a) Ĩ0 = 0.45; (b) Ĩ0 = 0.25; (c) Ĩ0 = 0.09.

region II, delimited by the dashed line); alternatively, the harvester can perform

high-amplitude in-well oscillations after a single initial jump into the opposite well

(lower portion of region II). In Figure 4.2, the energy measure η% for three different

energy levels within the range of the low impulses, namely Ĩ0 = 0.45, Ĩ0 = 0.25

and Ĩ0 = 0.09, is presented as a function of the mass ratio and negative stiffness

parameters. The plots confirm, in particular for very low impulses, the greater

gain in energy harvesting of the bistable configuration for a lower mass ratio. A

small mass of the harvester is desirable, and often required, in real applications.

In the low-initial-energy portion of Figure 4.1, depending on the impulse magnitude

and the mass ratio, a range of optimal negative stiffness is clearly detected. This

well-defined range for optimal ξ disappears in the high-energy region (Ĩ0 greater

than approximately 0.5), revealing the loss of effectiveness of the bistability in the

harvester performance. It should be noted that the value of ξ ' 0.5, corresponding

to the maximum efficiency of the harvesting device in the low-energy regime,

implies that the harvester’s frequency of oscillation in its motion around a stable

equilibrium state (i.e., in one of the potential wells) is tuned to the natural frequency

of linear oscillator. It is also noteworthy that these findings depend on the time

interval of computation for the harvesting measure (4.1). Naturally, energy can be
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Figure 4.3: Contour plots of the efficiency measure η% resulting from the application of a single impulse
to the primary linear system, harvested up to time τ = 60, as a function of the inherent viscous damping
of the coupling ζ and the amplitude of the initial velocity Ĩ0. Parameters are β = 0.1, λ = 0.001, µ = 0.04:
(a) monostable configuration (ξ = 0.0); (b) bistable configuration (ξ = −0.6); regions I, II and III refer to
the same regions of Figure 4.1.

harvested until the system comes to rest, around τ = 140; however, as will be shown

in Section 4.2, the time τ = 60 corresponds physically to approximately 1 second,

which is convenient in view of subsequent investigation of repeated impulses.

The parametric analysis of energy harvesting performance conducted on the non-

dimensional system highlights also the central role of damping. As shown in

Figure 4.3, an increase of the inherent (purely mechanical) linear viscous damping in

the coupling, ζ, causes a deterioration of the energy harvesting efficiency, regardless

of the presence of the negative stiffness term in the coupling. As expected, contrary

to what would be needed in a passive nonlinear vibration control system, very

weak damping in the coupling is desirable in order to optimize the performance of

the harvester. The contour plots of Figure 4.3(a) also confirm the existence of a

critical threshold for the initial energy imparted to the system, below which the

performance of the system in its monostable configuration drastically decreases.

The contours in the plot of Figure 4.3(b) are in agreement with the boundaries of

the three behavioral regions identified above.

Furthermore, as discussed in Section 3.3, the electromechanical coupling introduces

an additional velocity-proportional damping term in the equations of motion,
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besides determining the amount of the electric current circulating in the coil,

according to Equation (3.53c). The electromechanical coupling coefficient β is

dependent upon the transduction factor ke (see Equation (3.49)), which is deter-

mined by the geometric features of the coil and by the permanent magnet selection

(cfr. Equation (3.40))). Hence, the restriction to (0.0, 1.0] of the electromechanical

coupling to the range β, within which the variation of energy harvested is explored,

corresponds to physical limitations of the experimental apparatus. Numerical sim-

ulations of a non-optimized system with high mass ratio and high BNEH damping

reveal that the percentage of energy harvested by the BNEH is strongly affected

by the value of β, namely following a monotonically increasing trend with positive

but decreasing slope up to β = 1.0, independent of the NEH mono- or bistable

configuration and of the impulse level. For an optimized system, the contour plot

of the surface given by η% as a function of β and Ĩ0 is displayed in Figure 4.4. In

the region of low input energy, where the monostable harvester performance is still

strongly related to the value of β (Figure 4.4(a)), this dependence is progressively

reduced by the addition of the negative stiffness, reaching the scenario shown in

Figure 4.4(b) at the optimal value of the negative stiffness parameter (ξ = 0.6). A

plateau of increasing efficiency is shown to exist for the entire range of impulse

magnitudes studied, starting from β ≈ 0.1 (Figure 4.4). Since the electromechanical

coupling parameter β depends on the size of the coil, β = 0.1 is deemed acceptable

to preserve different energy transfer mechanisms (addressed in [72]) while keeping

the coil construction simple, in view of the planned experiments that will be built

upon the available experimental apparatus developed by Remick et al. [68]. It

becomes apparent upon comparing the contour plots of Figures 4.4(a) and 4.4(b)

that a great enhancement in energy harvesting efficiency is allowed by the addition

of the negative stiffness for the case of low impulses.
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Figure 4.4: Contour plots of the efficiency measure η% resulting from the application of a single impulse to
the primary linear system, evaluated at τ = 60 as a function of the electromechanical coupling parameter
ζ and the amplitude of the initial velocity I0. Parameters are λ = 0.001, ζ = 0.02, µ = 0.04: (a)
monostable configuration (ξ = 0.0); (b) bistable configuration (ξ = −0.6); regions I, II and III refer to
the same regions of Figure 4.1.

Description, symbol Value

Mass ratio, µ 0.04
Negative linear stiffness in the coupling, ξ −0.6
LO linear viscous damping, λ 0.001
Linear viscous damping in the coupling, ζ 0.02
Electromechanical coupling, β 0.1

Table 4.1: Non-dimensional parameters of the system (3.53).

4.2 Dynamic response of the optimal BNEH

In this section the dynamics of the system is investigated for varying energy levels

input into the linear oscillator, within the domain of low impulses, where the ca-

pacity of an analogous monostable NEH for optimal energy harvesting deteriorates.

For the system properly designed using the results from the parametric study, three

different energy-transfer mechanisms are detected for different magnitudes of impul-

sive excitation, in agreement with the results discussed in [72]. The time-domain

response of the system (3.52) and the associated temporal evolution of the energy

measures described by (3.61) and (3.62) are explored by performing numerical

simulations for the non-dimensional system (3.53) with the initial conditions (3.56),

with parameters (3.54) chosen on the basis of the parametric study and listed in



86 Chapter 4. Numerical investigation

Description, symbol Value

LO mass, m1 7.1 kg
LO linear viscous damping, b1 0.38 Ns/m
LO linear stiffness, k1 19 889.25 N/m
BNEH mass, m2 0.284 kg
Linear viscous damping in the coupling, b2 0.31 Ns/m
BNEH cubic stiffness, k2 1.824× 107N/m3

BNEH linear stiffness, k3 −477.36 N/m
Load resistance, RL 47 Ω
Coil resistance, Rc 32.1 Ω
Transduction factor, ke 11 T m
Electromechanical damping coefficient, be 1.53 Ns/m

Table 4.2: Dimensional parameters for the system (3.51).

Table 4.1, and with physical variables scaled using the normalization constants

(3.55).

The dimensional parameter values of system (3.52) are shown in Table 4.2. The

system is integrated for a simulation duration of 140 time units, corresponding

physically to 2.6 s, which is long enough to allow the system dynamics to damp out

completely. The frequency content of the displacement time histories during the

time interval analyzed is studied by applying the wavelet transform to the damped

responses. Also, the instantaneous energy stored in the BNEH is computed, as the

ratio between the total energy of the BNEH and the total energy in the two-DOF

system at time t, in order to provide more insights into the energy transfer between

the two subsystems, and thus the capability of the harvester to passively absorb

impulsive energy from the LO.

Three different energy levels are reported: the highest energy level, close to the

upper limit of the range of low impulses, corresponding to an initial velocity

I0 = 0.16 m/s (Ĩ0 = 0.45); an intermediate energy level, with I0 = 0.09 m/s,

corresponding to Ĩ0 = 0.25; and finally, the lowest one, with initial velocity

I0 = 0.03 m/s and Ĩ0 = 0.09.

In Figure 4.5 the response of the system when the primary oscillator is impulsively

excited by the highest energy level is shown. Cross-well oscillations performed by



4.2. Dynamic response of the optimal BNEH 87

0 0.5 1 1.5 2 2.5
5

0

5

10

15

y
1
(m
m
)

(a)

0 0.5 1 1.5 2 2.5
5

0

5

10

15

z
 (

m
m

)
(b)

0

20

40

60

80

100

E
N
E
H
(%
)

0 0.5 1 1.5 2 2.5

(c)

t (s)

F
re

q
u

e
n

c
y
 f

o
r 

y 1
(H

z
)

0 0.5 1 1.5 2 2.5
0

10

20

30

(d)

t (s)

F
re

q
u

e
n

c
y
 f

o
r 

z
 (

H
z
)

0 0.5 1 1.5 2 2.5
0

10

20

30

(e)

0 0.5 1 1.5 2 2.5
0

20

40

60

t (s)

η
(%

)

monostable

(f)

Figure 4.5: Transient dynamics of the two-DOF system for the high input energy level (I0 = 0.16 m/s):
time histories of the linear oscillator (a) and harvester (b) responses (dashed lines represent the two equi-
librium positions); (d) and (e) corresponding wavelet transform spectra; (c) percentage of instantaneous
total energy in the BNEH; (f) percentage of total energy harvested by the BNEH (the dotted-dashed line
represents the same quantity for the analogous monostable NEH).

the BNEH in the first 0.4 s allow fast energy transfer from the linear oscillator

to the nonlinear bistable energy harvesting device, resulting in energy harvesting

efficiency of approximately 44% within this initial stage of the motion, which

represents 90% of the overall harvesting. The corresponding amount of energy

harvested up to the first 0.4 s is 38 mJ, reaching 43 mJ by the time the system

comes to rest. The energy initially stored in the LO quickly flows to the BNEH,

then is released back to the LO. The motion is strongly localized to the BNEH

as evidenced by the fact that the amplitude of oscillation of the BNEH is more

than three times as large as that of the LO. The time-frequency analysis (wavelet

spectrum) of the relative response reveals that a 1:1 resonance capture between the

LO and the BNEH takes place, but also subharmonic components over a broader

frequency ranges, mainly 1:2 and 1:3, are present, which is what enhances TET.

Figure 4.6 shows the dynamics of the system for the intermediate impulse level.

The BNEH time series shows that the harvester is able to overcome the potential
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Figure 4.6: Transient dynamics of the two-DOF system for the intermediate input energy level (I0 =
0.09 m/s): time histories of linear oscillator (a) and harvester (b) responses (dashed lines represent the
two equilibrium positions); (d) and (e) corresponding wavelet transform spectra; (c) percentage of instanta-
neous total energy in the BNEH; (f) percentage of total energy harvested by the BNEH (the dotted-dashed
line represents the same quantity for the analogous monostable NEH).

barrier and undergo chaotic cross- and in-well oscillations in the range 0–0.6 s.

The three jumps between the two stationary positions correspond in the energy

harvesting efficiency plot to an increase of the rate of harvesting. This first regime

accounts for around 26% of the energy harvested. The following second regime,

consisting in in-well oscillations, leads the system to achieve the final 48% efficiency.

The amount of energy eventually harvested by the nonlinear bistable device is of

13 mJ. Part of the energy initially stored in the LO flows back and forth between

the two oscillators for the first second in a reversible energy transfer. Hence the

system is still able to capture energy, but more slowly.

For the lowest excitation magnitude the dynamics evolves around one of the two

stationary positions, depending on the initial conditions (Figure 4.7(b)). In-well

oscillations again allow good energy harvesting performance; the energy exchange is

due in this case to a 1 : 1 resonance capture. Nonlinear beats occur and, as a result,

energy is continuously exchanged between the LO and the nonlinear attachment.
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Figure 4.7: Transient dynamics of the two-DOF system for the low input energy level (I0 = 0.03 m/s): time
histories of linear oscillator (a) and harvester (b) responses (dashed lines represent the two equilibrium
positions); (d) and (e) corresponding wavelet transform spectra; (c) percentage of instantaneous total
energy in the BNEH; (f) percentage of total energy harvested by the BNEH (the dotted-dashed line
represents the same quantity for the analogous monostable NEH).

A fast energy transfer from the LO to the BNEH, with 40% of the total 48% of

energy harvested, occurs in the first 0.5 s, due to larger oscillation amplitudes of

the nonlinear attachment. 2 mJ of energy is harvested by the nonlinear device

when this low-magnitude impulse is input to the LO.

The monostable counterpart of the system under investigation presents a common

behavior in the entire range of excitation magnitudes studied. The case for

I0 = 0.09m/s is reported as an example in Figure 4.8. The NEH undergoes small

oscillations and most of the impulsive energy remains localized to the directly

excited primary system, as becomes apparent from Figure 4.8(c), where the

instantaneous energy possessed by the NEH during the motion is approximately

zero (the scale has been changed for the sake of readability). The amount of total

energy eventually harvested by the monostable nonlinear device is three times

smaller for the high and intermediate energy levels and four times smaller for the

lowest one.
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Figure 4.8: Transient dynamics of the two-DOF system in its monostable configuration, for the interme-
diate input energy level (I0 = 0.09m/s): time-histories of linear oscillator (a) and harvester (b) responses;
(d) and (e) corresponding wavelet transform spectra; (c) percentage of instantaneous total energy in the
NEH; (f) percentage of total energy harvested by the NEH

4.3 Energy harvesting efficiency under repeated im-

pulses

4.3.1 Periodic impulses scenario

The response of the system (3.51) when the primary structure is excited by a

train of pulses characterized by the same magnitude (Xp = X, p = 1, ..., N , hence

I0,p = I0, p = 1, ..., N) and same inter-arrival time (∆tp = ∆tr, p, r = 1, ..., N)

is investigated in this section. Numerical simulations are carried out for the

dimensional system (3.52) complemented by the initial conditions (3.58) and

(3.59), for various forcing amplitudes, expressed in terms of initial velocity I0, and

for various inter-arrival times ∆tp. A normalized impulsive period µT is defined,

as the duration of time ∆tp between the application of two consecutive pulses,

normalized by the fundamental period of the primary system T1 = 2π
√
k1/m1,

such that the impulse period is defined as µT = ∆tp/T1 (T1 = 0.1187 s for the
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Figure 4.9: Contour plots of the total energy harvested Eh as a function of the impulse period µT and
the amplitude of the initial velocity I0, measured after (a) 1, (b) 3, (c) 10 and (d) 20 impulses.

physical system with parameters listed in Table 4.2). It describes the frequency of

application of the impulses as a function of the cycles of response of the LO. The

energy harvesting performance is evaluated by computing the measures given by

equations (3.61) and (3.62).

Figures 4.9 and 4.10 depict the total energy harvested and the energy harvesting

efficiency as functions of the impulse magnitude, within the low-energy impulse

domain, and of the normalized inter-arrival time µT in the range (0, 6]. The case of

application of a single impulse is plotted in Figures 4.9(a) and 4.10(a). µT indicates

in this case the normalized time of the system response; for example, µT = 6 means

a time t = 0.7 s, at which the amount of energy harvested is calculated. The two
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contour plots confirm the results presented in Section 4.2. As expected, the amount

of energy harvested depends on the excitation magnitude and on the time during

which the system oscillates (Figure 4.9(a)); moreover, the efficiency is higher in

the low and high impulse magnitude regions, especially in the first stage of the

system motion (Figure 4.10(a)). Starting from the second impulse applied, discrete

“ribs” of higher performance begin to form for discrete ranges of the impulse period,

near multiples of the primary system fundamental period (Figures 4.9(b), 4.9(d)

and 4.10(b), 4.10(d)), and they continue to develop with the successive pulses. The

occurrence of these regions of higher performance indicates the strong dependence

of the harvesting capability upon the dynamic state of the primary system when

excited. In fact, the peaks occur when the primary mass is hit while performing

its maximum velocity (i.e., possessing maximum kinetic energy). A steady-state

condition in terms of definition of the ribs can be detected after 10 impulses, for

all parameter combinations (µT , I0), with peak values of energy harvested from

high-energy pulses of more than 200 mJ occurring at µT ≈ 3.1. Operating outside

of the high-performance ribs reduces energy harvesting performance significantly.

The presence of sharply defined ribs of higher efficiency was found by Remick et al.

in [69] for a purely cubic nonlinear system coupled to a linear primary oscillator

driven by a periodic pulse train. Similarly, it can be observed for the monostable

counterpart of the system under investigation herein. Hence, the comparison

between the results obtained for the mono- and bistable configurations highlights

the gain of the latter in terms of energy harvesting efficiency within the portions

between the ribs and, mainly, the existence of a novel high-efficiency region in the

regime of low-energy impulses.

This overall qualitative behavior can be examined in a more quantitative way in

the plots of Figure 4.11, where the energy extracted from each impulse by the

vibration harvester is averaged over 600 impulses. The mean extracted energy

Ēh and presented as a function of the inter-arrival time parameter µT , for each

of the three energy levels examined. In particular, for the high and intermediate
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Figure 4.10: Contour plots of the efficiency η% as a function of the impulse period µT and the amplitude
of the initial velocity I0, measured after measured after (a) 1, (b) 3, (c) 10 and (d) 20 impulses.

impulse levels (Figures 4.11(a) and 4.11(c), respectively) the addition of bistability

to the system turns out to be ineffective in close proximity to the high-efficiency

ribs, whereas it is beneficial outside the ribs. The resulting average of the total

amount of energy harvested is much greater for the bistable case, revealing superior

robustness. For the excitation amplitude I0 = 0.16 m/s, Eh = 9.8 mJ is achieved

at µT = 4.5 cycles, which is in the deepest part between the two consecutive ribs

at µT = 4.1 and µT = 5.2; this performance exceeds that of the purely cubic

system by more than six times, with the bistable system harvesting 61.3 mJ versus

2.5 mJ for the monostable configuration at µT = 4.3 (Figure 4.11(a)). The peak

value reaches 480 mJ of average energy harvested. Conversely, at low energies the
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Figure 4.11: Average energy harvested Ēh in mJ and energy harvesting efficiency η̄% as a function of
the impulse period µT , computed for 600 impulses. (a),(b) I0 = 0.16 m/s; (c),(d) I0 = 0.09 m/s; (e),(f)
I0 = 0.03 m/s. Comparison with the monostable configuration (dashed lines).
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bistable system outperforms its monostable counterpart for all impulse periods, as

revealed by Figure 4.11(f), where the high-efficiency ribs mostly vanish. In the case

of Figure 4.11(e), a significant enhancement in the energy harvesting capability

occurs outside of the high-performance ribs (3 mJ for the bistable case, compared

to 0.08 mJ of the monostable case, for µT = 3.7), although it diminishes near the

ribs (10 mJ is harvested on average by the monostable system at µT = 4 cycles,

more than ten times the energy harvested by the bistable system).

For impulse periods greater than 6, the curves of Eh show a gradual flattening,

resulting in higher gain for impulse periods outside the ribs and a progressive

deterioration on the ribs. This tends to an asymptotic limit because, if the inter-

arrival time is large enough to let the LO and BNEH come to rest before the

next impulse is applied, the mechanical energy in the primary system following

the application of an impulse is completely harvested (or dissipated) before the

next impulse is applied. This critical period is µT ≈ 25 cycles and coincides with

the time required by the system to damp out completely. Above this value, the

system response replicates the single-impulse results presented in Section 4.2. Time

histories of LO and BNEH responses for this case are presented for the intermediate

energy level in Figure 4.12.

Two indices are chosen to ”condense” the results discussed above, namely a

normalized difference index (NDI) and a mean difference (D), defined as:

NDI(X) = mean
[Xb,i −Xc,i

Xc,i

]
, D(X) = mean[Xb,i −Xc,i], X = Eh, η

where the subscriptions b and c stand for ”bistable configuration” and ”purely

cubic configuration” respectively, and the means are intended over the i− th triad

(µT , I0, X). These indices give a prompt view of the overall trend of the curves

in Figure 4.11, and in particular, of the deviation between the bistable and cubic

curves, and they are particularly useful for the upcoming results of Section 4.3.2

about the random pulses case, where the overcoming of one configuration over the

other is less easily identifiable.
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Figure 4.12: Displacement time history of LO (a) and BNEH (b); percentage of instantaneous total energy
in the BNEH (c) and total energy harvested (d) for I0 = 0.09 m/s and µT = 32. Number of impulses: 10.
Dashed lines represent the two equilibrium positions.
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Numerical simulations of the response of the system (3.51) for several specific

parameter sets (µT , I0) are also reported in the next plots for the very-low-energy

case. Different colors are used in the time histories to identify the consecutive

applied impulses. The displacement responses of the system for I0 = 0.03 m/s

and µT = 2 for the first 25 applied impulses are shown in Figure 4.13, along

with the percentage of instantaneous energy in the BNEH (computed as the

total energy in the BNEH divided by the total energy in the two-DOF system

at time t) and the energy harvesting measure (3.61), used to compare system

performance. The response of the monostable counterpart for the same parameter

set is depicted in Figure 4.14. This operating condition reflects the case in which

the energy harvesting capability of the bistable configuration is similar to that of

the monostable one. As seen in Figure 4.13(b) the dynamics of the nonlinear

oscillator is characterized by a complex motion composed of chaotic alternating

cross-well and in-well oscillations. The sequence of cross-well oscillations absorbs

and harvests most of the energy initially possessed by the LO (Figures 4.13(c)

and 4.13(d)). However, at the same operating conditions, the purely cubic energy

harvester is capable of performing high-amplitude oscillations, resulting in similar

performance.

The results of the time simulation for µT = 3.7 are shown in Figures 4.15 and

4.16 for the bistable and monostable NEH respectively. This parameter value

corresponds to the region between two consecutive ribs. In-well nonlinear beating

(Figure 4.15(a)) yields fast energy transfer from the LO to the BNEH, with

localization of impulsive energy to the BNEH as each impulse is applied to the linear

sub-system (Figure 4.15(c)). This operating regime corresponds to good energy

harvesting performance in which energy is quickly harvested for the entire duration

of each response. Figure 4.16 shows the poor performance of the monostable

counterpart. Note that some scales have been changed for the sake of readability.

Finally, the response for µT = 4 is presented in Figures 4.17 and 4.18, where the

monostable system performance overcomes the bistable one. As each impulse is
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Figure 4.13: Bistable system response for I0 = 0.03 m/s and µT = 2: displacement time history of LO
(a) and BNEH (b); percentage of instantaneous total energy in the BNEH (c) and total energy harvested
(d). Number of impulses: 25. Dashed lines represent the two equilibrium positions.
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Figure 4.14: Monostable system response for I0 = 0.03m/s and µT = 2: displacement time history of LO
(a) and monostable NEH (b); percentage of instantaneous total energy in the NEH (c) and total energy
harvested (d). Number of impulses: 25.
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Figure 4.15: Bistable system response for I0 = 0.03 m/s and µT = 3.7: displacement time history of LO
(a) and NEH (b); percentage of instantaneous total energy in the BNEH (c) and total energy harvested
(d). Number of impulses: 25. Dashed lines represent the two equilibrium positions.
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Figure 4.16: Monostable system response for I0 = 0.03m/s and µT = 3.7: displacement time history of
LO (a) and NEH (b); percentage of instantaneous total energy in the NEH (c) and total energy harvested
(d). Number of impulses: 25.
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applied to the primary mass, a fast energy transfer from the LO to the BNEH

occurs and the energy localizes to the BNEH; it is then released back to the LO

half a period after of application of the impact. The motion is confined around one

of the two stable equilibrium positions. Inside the potential well, nonlinear beats

take place. The high efficiency is confirmed by the higher oscillation amplitude

of the attachment compared to that of the linear oscillator, but the total energy

harvested is modest if compared to the monostable case (Figure 4.18).

4.3.2 Random impulses scenario

The numerical investigation has been also extended to random pulse trains. Gen-

erally, a train of pulse-like random excitation can be described as a shot noise

process, or Poisson noise process, and is described by the superposition of random

pulses arriving independently at random times, as follows:

F (t) =

N(t)∑
k=1

Fkw(t− tk) (4.2)

where Fk is a sequence of independent random variables of the magnitude of the kth

impulse, and w(t− tk) is the so-called noise function, a non-random (deterministic)

function describing the shape of the pulses. For the case of impulsive noise process,

the pulse-shape function w(t− tk) in Equation (4.2) is a unit impulse, meaning a

Dirac delta function δ(t− tk). N(t) is assumed to be a Poisson process. A Poisson

process is a simple and widely used stochastic process for modeling the times at

which arrivals enter a system. Thus, the random variable N(t), ∀t > 0, is the

number of arrivals in the time interval (0, t], described by the Poisson discrete

probability mass function:

P{N(t)}(n) = e−λt
(λt)n

n!
, n = 0, 1, ...,∞
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Figure 4.17: Bistable system response for I0 = 0.03 m/s and µT = 4: displacement time history of LO
(a) and BNEH (b); percentage of instantaneous total energy in the BNEH (c) and total energy harvested
(d). Number of impulses: 25. Dashed lines represent the two equilibrium positions.
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Figure 4.18: Monostable system response for I0 = 0.03m/s and µT = 4: displacement time history of LO
(a) and NEH (b); percentage of instantaneous total energy in the NEH (c) and total energy harvested (d).
Number of impulses: 25.



4.3. Energy harvesting efficiency under repeated impulses 105

where λt is the expected number of occurrences in the time interval of size t. The

Poisson process is completely characterized by the average pulse arrival rate λ of

events, i.e. the expected number of events (impulses) per unit time (mean and

variance are µP = σ2
P = λt). tk’s are the arrival times for the Poisson counting

process N(t), t > 0.

In the Poisson process, time intervals Xk = tk+1 − tk between two subsequent

pulses (Xk: random variable of the waiting time) have an exponential distribution

[91], the probability density function of which is:

p{X}(x) = λe−λx, x ≥ 0

where λ is the arrival rate of the process. Mean and variance are µX = 1/λ and

σ2
X = 1/λ2, respectively (Figure 4.19(a)).

The Fk’s are identically distributed random variables, mutually independent and

independent of the distribution of the pulse arrival time tk. The distribution for the

variables Fk is chosen to be the Rayleigh distribution, whose probability density

function is given by:

p(n) =
n

b2
e−

n2

2b2

with mean µR = b
√
π/2 and variance σ2

R = (2 − π/2)b2 (Figure 4.19(b)). The

impulsive-noise model given by Equation (4.2) is a white noise.

Finally, µR represents the average amplitude of the impulses (it will be named

I0) and µX the average interarrival time, i.e. µT = µX/T1 (µX ≡ ∆tp = µTT1).

Figure 4.20 shows a realization of the Poisson-distributed impulse train.

The response and performance of the system under stochastic impulsive excitation

is investigated by examining separately the effect of random amplitudes, keeping

the interarrival time constant, and the effect of random waiting times with constant

amplitudes.

Figure 4.21 depicts the average energy harvested Ēh in mJ and average energy

harvesting efficiency η̄% over 600 pulses, for the system subject to trains of period-



106 Chapter 4. Numerical investigation

(a) (b)

Figure 4.19: Exponential distribution for the waiting times µT = 6, µX = σX = 0.07 (a) and Rayleigh
distribution for the impulse amplitudes: N = 1000, µR = 0.07, b = 0.06 (b).
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Figure 4.20: Random pulse train as Poisson process, with Rayleigh distributed magnitudes: I0 = 0.07 m/s,
µT = 6.
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ically repeated impulses with random magnitudes. The three cases corresponding

to the low, intermediate and high energy levels respectively are considered with

reference to the mean value of the impulse magnitude I0.

It becomes apparent from Figures 4.21(a) that the stochasticity of the impulse

magnitude allows a significant enhancement of the total energy extracted by the

system in the higher energy regime, with respect to the periodic case, regardless

the type of configuration (mono- or bi-stable) of the harvesting device. A slight

enhancement from the bistable system can be also seen in comparison to the

monostable case (note that the y-axis of the graphs has a logarithmic scale).

Conversely, in the lower energy regime (Figure 4.21(e)), the gain of energy harvested

by the bistable device compared to the monostable case becomes considerable. The

second evidence regards the appreciable improvement provided by the random

distribution of the impulse amplitude, occurring for both the intermediate and low

energy scenarios (Figures 4.21(c) and 4.21(e)), respectively), at very low values of

µT (slow arrival time).

The effect of random interarrival time of the impulses on the harvesting performance

is evaluated by varying the standard deviation of the interarrival times (i.e. from

a maximum value to zero, which corresponds to the case of uniform intervals).

In order to do this, the arrival time intervals are computed as the summation

of a constant rate ∆tc and a random rate ∆tr. By letting the mean of ∆t (∆t)

be constant (for each µT it is ∆t = ∆tp = µTT1), and varying the rate of each

contribution to ∆t, that is:

∆t
r

= α∆t, ∆tc = (1− α)∆t→ ∆t = ∆tc + ∆t
r

the distribution of the interarrival times has mean ∆t and standard deviation

the standard deviation of the random part. The multiplier α ∈ [0; 1] defines the

deviation from the periodic intervals, which occurs for α = 0. As α increases,

the standard deviation, as well as the mean of the random part, increases. By

inspecting the results with varying α, the occurrence of random intervals seems to
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Figure 4.21: Average energy harvested Ēh in mJ and energy harvesting efficiency η̄% as a function of
the impulse period µT , computed for 600 impulses. (a),(b) I0 = 0.16 m/s; (c),(d) I0 = 0.09 m/s; (e),(f)
I0 = 0.03 m/s. Comparison with the monostable configuration (dashed lines) and with the periodic case
for the bistable configuration (blue lines).
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deteriorate progressively the response of the system, as α increases. The graphs for

α = 1 are depicted in Figure 4.22. The presented curves result from a process of

piecewise averaging and further interpolation (with ’spline’ interpolation method)

of the original curves with the purpose of achieving smoother curves to extrapolate

the overall trend and allow a better interpretation of the results. The values of NDI

and D confirm a better performance of the bistable configuration, compared to the

monostable one. However, it should be noted that the raw graphs present values

of the energy harvesting efficiency and mean total energy harvested per impulse

that are highly variable with respect to the impulse period (or µT ), denoting low

robustness and reliability of the harvester.
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Figure 4.22: Average energy harvested Ēh in mJ and energy harvesting efficiency η̄% as a function of
the average impulse period µT , computed for 600 impulses. (a),(b) I0 = 0.16 m/s; (c),(d) I0 = 0.09 m/s;
(e),(f) I0 = 0.03 m/s. Comparison with the monostable configuration (dashed lines).



Chapter 5

Experimental study

The main results of experimental tests on an electromagnetic bistable energy

harvesting system coupled to a hosting primary mass are presented herein. This

novel experimental apparatus proves the superior energy harvesting ability of this

system compared to a more conventional cubic nonlinear energy harvester.

5.1 Experimental setup

A bistable nonlinear electromagnetic energy harvester coupled to an impulsively

excited primary linear oscillator has been experimentally investigated. The experi-

mental campaign was carried out in the Mechanical Engineering Laboratory of the

University of Illinois at Urbana-Champaign.

The experimental apparatus is presented in Figure 5.1.

The hosting structure, representing the linear primary system, is a frame consisting

of a HDPE mounting mass, which holds eleven steel plates used to achieve the

desired mass. It is grounded to an optical table via two thin spring steel vertical

flexures, which provide for the linear stiffness and light viscous damping. A blue-

tempered steel beam with its supports (in Figure 5.2(a)) and an inductance copper

coil with aluminum mounting bracket contribute to the total mass of the primary

111
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Figure 5.1: Photograph of the experimental apparatus of the energy harvesting system (top view in (b)).

system. The bistable nonlinear energy harvesting system (BNEH) is composed of

two permanent magnets, collar mounts and a steel rod, which slides within two

linear ball bearings embedded in the aluminum uprights fixed at the ends of the

HDPE mounting mass (Figure 5.2(b)). The damping in the coupling arises mainly

from the interaction of the rod with the bearings. As known, damping arising from

bearings can be conveniently considered as a linear viscous damping, that is to say,

proportional to the velocity [92], rather than Coulomb damping.

The mechanical coupling between the linear system (LO) and the BNEH is provided
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Figure 5.2: Photograph of the beam support (a) and sketch of the coupled harvesting device (b).

by the blue-tempered steel slender beam with Young modulus E = 200 GPa, which

is physically connected at its midspan to the BNEH mass via two collar mounts.

Other collar mounts are placed to precisely hold the permanent magnets in place.

The beam is clamped at both ends. It has a thickness of 0.2 mm, height 15.8 mm

and length of 165 mm. The transverse deflection resulting from the orientation of

the beam perpendicular to the direction of motion of the harvester mass, gives rise

to a cubic stiffness nonlinearity. The bistability, i.e., the negative stiffness around

the equilibrium position, is realized by exploiting the buckling of the slender beam

subject to an axial compressive force, which slightly exceeds the Euler’s critical

load. The buckled beam, in fact, possesses limit points in the equilibrium path such

that, under the critical load, a snap-through instability takes place. A positioning

bolt is properly tightened to adjust the compressive force, or, equivalently, the

initial static deflection of the beam.

As for the electromechanical coupling, the inductance coil is fixed at the LO

frame, so to act as the stator, while the magnet composing the BNEH mass will be

moving relatively to it. The coil is constructed within a HDPE spool of inner radius

ri = 14 mm. The coil is wrapped into 819 turns to achieve a thickness of hc = 16 mm

and outer radius ro = 20 mm, which provides the desired electromechanical coupling.

Size and number of turns of the coil assure the assumption made in Section 3.3,
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Figure 5.3: Photographs of the electrical circuit.

according to which the coil inductance Lc, calculated as (3.45), and hence the

coil impedance Zc (recall (3.46)), are negligible. The coil was wound by while

striving to maintain an orthogonal fill factor. The fill factor encompasses tightness

of winding, insulation thickness and winding shape, which essentially determines

the efficiency of the coil. The orthogonal fill factor physically describes coil winding

in which each new turn of wire lies directly on top of the wire turn below it and

perfectly in line with the wire turn next to it and corresponds to a coil efficiency

of ≈ 80%. Enameled AWG 30 copper wire is used to maximize turns, in order

to improve the electromagnetic transduction, while minimizing coil resistance,

which adds additional linear viscous damping to the system without the benefit of

contributing to energy harvesting output. Two cylindrical neodymium (NdFeB)

permanent magnets, with 25.4 mm outside diameter and 25.4 mm length, are placed

together to create a uniform magnetic field within the coil. Neodymium magnets

have higher magnetic flux output per unit volume than other types; the selected

magnets provide a flux density of B = 1.32 T. The coil leads are soldered to longer

wires, connected to a breadboard and placed in series with a simple resistor of

resistance RL = 47 Ω, which allows the power to be extracted from the harvesting

device and the induced current to circulate in the coil (Figure 5.3). It is worth

mentioning the relevance of the position of the coil relative to the lines of force

of the magnetic field generated by the magnet. According to Faraday’s law, the

electromotive force induced by the relative motion between the magnet and the
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Figure 5.4: Change of magnetic flux concatenated to the circuit.

coil of conducting wire (induced voltage) is directly proportional to the time rate

of change of the magnetic flux concatenated to the circuit, that is the magnetic

flux passing through the imaginary surface bounded by the wire loop. Changes

that occur entirely outside the region enclosed by the coil cannot affect it. Hence,

the circuit must cut the lines of induction of the field, in order to vary the number

of lines of induction enclosed into the circuit during the relative motion of the

wire loop with the magnet. This can happen, for example, by axially moving wire

loop and magnet relative to each other, when the first is in a close proximity to

the latter (Figure 5.4(a)) or by rotating the coil or extracting it from the field,

in the case of uniform field (Figure 5.4(b)). With reference to the first of the

two configurations, which is employed in the specific rig, the coil must be moved

rapidly and in close proximity to the magnet in order to maximize the induced

voltage. On the contrary, if at the center of the magnet, it will not experience

significant changes of magnetic flux as the field lines are approximatively parallel

to the direction of relative motion. Moreover, as known, the magnetic field is

strongest near to the poles of the magnet where the lines of flux are more closely

spaced.

The graph in Figure 5.5 describes the dependence of the voltage upon the position

of the coil relative to the magnet. The curve is constructed experimentally by
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Figure 5.6: Block diagram of the instrumentation.

recording the peak of the voltage across the load resistance resulting from the

application to the BNEH of a controlled displacement and velocity time series,

varying the initial position of the magnet of 1 mm for each measurement. For

S0 = 0, the oscillating magnet is fully outside the coil and its edge is aligned with

the side of the coil. The maximum output voltage occurs when the magnet is

initially inserted into the cavity of the coil at 4 mm, whereas the minimum potential

difference is experienced when the center of the coil coincide with the center of the

magnet.

The described coupled system has been tested under isolated and periodically

repeated impulses applied to the linear sub-system, within a range corresponding

to an initial velocity spanning (0.05; 0.4) m/s. Figure 5.6 shows the block diagram

of the instrumentation. Single impulsive forces are applied to the linear oscillator

by use of an instrumented PCB 086D20 modal hammer with a plastic tip with the
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Figure 5.7: Set-up of the experimental test.

system initially at rest. Trains of periodically repeated impulses are applied to the

primary system by use of an APS Dynamics Model 400 long-stroke electromagnetic

shaker. The stinger, fixed to the crosshead armature of the shaker, strikes the linear

oscillator and a PCB 208C05 force transducer, mounted on the stinger, measures

precisely the excitation force time history. The input frequency and voltage levels

are adjusted until the desired impulse period and excitation magnitude are obtained.

A customized square waveform is input into the shaker controller, namely a positive

half-square wave, which applies a fast impulsive force, similar to the impulse

imparted by the modal hammer in the single impulse excitation scenario, followed

by a negative half square wave, which aims to quickly retract the shaker armature

and stinger, in order to avoid undesirable double impacts to the excited structure.

Elastic bands inside of the shaker are adjusted to precisely control the separation

between the primary system and stinger tip prior to the application of each impulse.

They bring the stinger back to the prescribed separation before the next impulse

is applied. The average width of the half-sine pulse provided by both the modal

hammer and the shaker tip was ≈ 3 ms, thus it well approximates the Dirac

function. For this reason, the excitation magnitude can be equivalently defined in

terms of initial velocity I0 of the primary system directly following the impulse.

Time series measurements of the BNEH absolute velocity are recorded using a

Polytec PSV laser vibrometer with a sampling frequency of fs = 12.8 kHz while
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a PCB accelerometer with sensitivity 100 mV/g is used to measure accelerations

of the primary system. Voltage time histories measurement taken across the load

resistance are recorded to compute the output power from the harvesting device, as

P = V 2/RL, with RL the load resistance, so that the energy harvested is calculated

by integration from the power. The data acquisition is synchronized by means of a

small pre-trigger of duration 196 ms. The synchronization of the measurement of

the system response is important for accurate computation of the relative velocity

by eliminating any phase mismatch between the measurements. Figure 5.7 pictures

the set-up for energy harvesting measurements.

The time series data are then post-processed: low-pass filters are used to attenuate

the noise in the raw signals and acceleration measurement is numerically integrated

to obtain absolute velocity of the linear oscillator. A high-pass filter with cut-off

frequency of 3 Hz is applied to this velocity in order to remove the low-frequency

contamination [93]. The wavelet spectra are computed during post-processing from

the velocity time series data.

5.2 Design and system identification

Aiming mainly at validating the numerical evidence of Chapter 4 rather than

maximizing the energy harvesting capability of the bistable device, the experimental

campaign was carried out starting from an existing experimental apparatus. The

main goal of the experimental tests was, in fact, to validate the theoretical model in

its capacity as a predictive design tool for bistable energy harvesters. This resulted

in some restrictions and feasibility limits and conditioned the concept design of the

coupling between primary structure and energy harvester, being the connection

system between the two masses assigned. The stiffness and damping coefficients in

the coupling were physically difficult to adjust; therefore, the current system as

built is non-optimized; optimal parameters for best energy harvesting performance

resulted from the parametric analysis of the system (3.52) carried out in Section 4.1.

Operatively, given the mass m2 of the BNEH, the mass m1 of the hosting frame
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Figure 5.8: Linear oscillator design and subsequent identification.

was adjusted in order to obtain a mass ratio m2/m1 ≈ 4%, which was deemed as

reasonable for practical applications. The steel vertical flexures were designed so to

achieve a natural frequency for the LO of ≈ 8.2 Hz, adopting a simple shear-type

model, for which the lateral stiffness is given by 2 × 12EJ/l3 (Figure 5.8(a)).

Once assembled, linear modal analysis was performed in order to identify the

values of the coefficients b1 and k1. The linear stiffness coefficient was identified

by measuring the structure response under an initial non-zero displacement and

zero initial velocity, and computing the frequency spectrum to extract the natural

frequency. Logarithmic decrement method was used to identify the damping

ratio (Figure 5.8(b)). The Restoring Force Surface (RSF) method confirmed the

experimentally estimated parameters. This method has a more general applicability

and is commonly adopted for nonlinear system identification purposes. It consists

of measuring the time histories of the acceleration ẍ(t) of the one dof system and

of the excitation F (t), which enable to compute the time history of the (generally

speaking, nonlinear) restoring function GRF , defined from the one-dof system

equation of motion mẍ + GRF (x, ẋ) = F (t), hence GRF (x, ẋ) = F (t) −mẍ and,

ultimately, estimating the restoring force surface G̃RF by an approximate function

expressed (provided that non-linearity does not involve cross-product terms) as

the summation of two orthogonal polynomials g(x) and h(ẋ) (G̃RF = g(x) + h(ẋ)).

For linear oscillator, the RFS is a plane in the space x, ẋ, GRF (Figure 5.9) the

latter functions simply result in g = k1x and h = b1ẋ (Figures 5.10(a) and 5.10(b)
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Figure 5.9: RFS approximation G̃RF to the experimental data (blue dots) for the linear system.

(a) (b)

Figure 5.10: State-variable plot for the linear system. Blue line: experimental data, red line: computed
restoring force.

respectively). The curve fitting is here performed using the Least Square method.

The identified LO damping b1 revealed higher than the optimal one (cfr. Table

4.2); nevertheless, the variation of this parameter has no significant effect on the

overall response and energy harvesting performance of the system.

With regard to the energy harvesting device, the objective was to attain a linear

stiffness coefficient k3 such that k3m1/(k1m2) = −0.6, hence k3 ≈ −513 N/m. The

dimensional one-dof analytical model from Section 3.2.2 was used for the pre-

dimensioning of the beam. For a beam with dimensions 165× 15.8 mm and 0.2 mm

thick with an initial deflection at the midspan of 0.55 mm, the parameters computed
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as in (3.33) result: m = 1.52× 10−3 kg, k2 = 1.70× 109 N/m3, k3 = −515 N/m.

Once designed the beam with its support (see drawings of Figure 5.11) and

fabricated and assembled the whole system, the identification of the BNEH stiffness

and damping coefficients has been refined by fitting experimental acceleration and

velocity time histories and corresponding FFTs with the same output of the

numerical model (3.52), as, for example, in Figure 5.12. Practical limitations were

encountered in adjusting the initial deflection of the beam: a small axial load yields

the beam to snap to the buckled configuration with a rise at the midspan of 2.5 mm.

Hence, the development of a finite element model (FEM) of the thin beam was

deemed to be necessary to either confirm or adjust the parameters experimentally

identified. The FEM was developed in Abaqus environment and a multiple-step

nonlinear static analysis carried out to characterize the mechanical behaviour in

the transverse direction and extract the force-displacement nonlinear relationship.

Operationally, the finite element analysis (FEA) involved two subsequent steps.

First, the buckled configuration is obtained by applying to the initially straight

beam a compressive axial load of maximum magnitude greater than the first

critical buckling load; a small initial imperfection has been introduced to initiate

the instability. The second step applies to the buckled beam at the desired

configuration (here, in particular, when the span deflection is of 2.5 mm, which is

the deflection set in the experiment) and consists of applying a transverse load at

the midspan section, causing the snap-through instability to occur and the other

stable position to be reached. Consistently, the starting point for the second step

was the deformed state at the end of the first step, as in Figure 5.13. Figure 5.14

locates the starting point of the second step on the buckling curve relative to the

imperfect beam. The theoretical critical load is 3.05 N.

Because of the unstable nature of the snap-through problem (the tangent stiffness

from the load-displacement response curve changes signs when system changes its

stability status), the classical Newton’s method performs poorly in this situation

because the corrections for approaching equilibrium solutions during iterations
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Figure 5.11: Technical drawing of the support.
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may become difficult to determine when the tangent to the equilibrium path

becomes horizontal (i.e. at the limit point). There are different approaches to

solve such problems, as switching to dynamic analysis or using displacement

controlled static analysis. Alternatively, static equilibrium states during the

unstable phase of the response can be found by using the modified Riks method (or,

arch-length method), which is implemented in Abaqus. The basic Riks algorithm is

essentially Newton’s method with load magnitude as an additional unknown to solve

simultaneously for loads and displacements (the solution is viewed as the discovery

of a single equilibrium path in a space defined by the nodal variables and the loading

parameter), thus, can provide solutions even in cases of complex and unstable

response. The displacement of the midspan of the beam is plotted as a function

of the reaction force at that point in Figure 5.15). This plot shows the negative

force that develops during snap-through. A series of deformed configurations

are also depicted in Figure 5.16. The negative linear and cubic coefficients of
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Figure 5.13: Configuration of the beam at the end of the first step (i.e. second step starting configuration).
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Figure 5.14: Bifurcation curve for the beam with imperfection.

Figure 5.15: Polynomial fitting (blue line) of the force-displacement curve (red dotted line) of the buckled
beam (Abaqus)
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Figure 5.16: Series of deformed shapes during snap-through
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Figure 5.17: Total energy harvested as a function of the electro-mechanically induced damping, with
ke = 11 T m and Rc = 32.1 Ω.

the restoring force are detected by fitting the load-displacement curve. For the

beam with aforesaid dimensions and post-buckling displacement at the midspan

of 2.5 mm, the identified cubic coefficient k2 matches with the one experimentally

identified; the linear stiffness coefficient k3 is found to be slightly smaller than the

one predicted with the FEA. In fact, the FEA has some limitations, including the

strong dependence of the results on the initial imperfection assigned. The final

values are reported in Table 5.1.

The identification of the coil parameters is provided in [68]. Keeping fixed the

transduction factor and once measured the coil resistance Rc, the load resistance has

been chosen in order to maximize the power output (cfr. Figure 5.17). The inherent
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Description, symbol Value

LO mass, m1 7.81 kg
LO natural frequency, f1 8.2464 Hz
LO linear stiffness, k1 2.097× 104 N/m
LO damping factor, ζ 0.25%
LO linear viscous damping, b1 2.05 Ns/m
BNEH mass, m2 0.2845 kg
BNEH cubic stiffness, k2 1.29× 108 N/m3

BNEH linear stiffness, k3 −819 N/m
BNEH linear viscous damping, b2 5 Ns/m

Table 5.1: Mechanical parameters

Description, symbol Value

Load resistance, RL 47 Ω
Coil resistance, Rc 32.1 Ω
Transduction factor, ke 11 T m
Electromechanical damping coefficient, be 1.53 Ns/m

Table 5.2: Electromagnetic parameters

damping coefficient b2 is found to be rather high and only partly controllable due to

physical and experimental limitations. It is important to highlight that the BNEH

damping plays a crucial role in the dynamics of the coupled system, thus on the

energy harvesting performance. As expected, very weak damping in the coupling

is desirable in order to optimize the performance of the harvester. The causes of

high damping in the coupling may include a non perfect alignment between ball

bearings and shaft, friction at the bearing-rod interface, damping of the lubrication

film within the contact zone between the rolling elements and the shaft.

In conclusion, the measured and experimentally identified parameters for the

physical apparatus are summarized in Tables 5.1 and 5.2.

5.3 Results

A series of experimental trials were conducted over a wide range of excitation

magnitudes, corresponding to a range of initial velocities spanning (0.05−0.4) m/s,

and, for the repeated impulses case, over various frequencies of application of the
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pulse train. The configuration of the system is such that the midspan deflection of

the buckled beam is 2.5 mm.

System (3.52) was solved numerically and compared to the experimental results.

To explore the case of single impulsive forcing excitation, the numerical simulation

has been carried out using the forcing data of the experimental trials for single

impulse and checked the validity of the Dirac forcing assumption, according to

which an impulsive force F (t) = Xδ(t), with δ(t) the Dirac delta function and X

the magnitude of the impulse, applied to the system at rest at t = 0−, can be

equivalently expressed as an initial velocity X/m1 and no external forcing. Denoting

by I0 = X/m1 the initial velocity of the primary system directly following the

applied impulse, the following initial conditions can be set:

y1(0+) = 0 , ẏ1(0+) = I0 , z(0+) = 0 , ż(0+) = −I0 , Q(0+) = 0 (5.1)

letting F (t) = 0. Multiple impacts are, instead, modelled as in 3.59.

5.3.1 Single impulse scenario

For the single impulse forcing scenario, the energy harvesting capacity of the

investigated system is represented in the graph of Figure 5.18(a), where the total

amount of energy harvested Eh is plotted as a function of the magnitude of the

impulse imparted to the primary mass up to the time instant when the system

dynamics completely damps out. As shown by the solid line in the same plot,

the numerical results are in good agreement with the experimental measurements,

suggesting that the modeling captures the main features of the dynamics of the

system. Up to ≈ 80 m J can be experimentally extracted over a duration of ≈ 2 s

in the range of impulse magnitudes studied, providing an average output power of

≈ 40 m W and ≈ 40 m A for the selected load.

Damping in the coupling is the most uncertain parameter of the experimental

fixture. Although the main source of damping is related to squeezing the oil film
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Figure 5.18: Total energy harvested by single impulse as a function of the input energy magnitude
(solid line: numerical simulation, markers: experiments), a) modeling with b2 as from Table 5.1; b)
b2 varying according to the energy level: I) b2 = 11 Ns/m for I0 < 0.12 m/s, II) b2 = 5.4 Ns/m for
I0 ∈ [0.12, 0.18) m/s, III) b2 = 4.4 Ns/m for I0 ∈ [0.18, 0.24) m/s, IV) b2 = 3.4 Ns/m for I0 > 0.24 m/s

at the lubricated ball-shaft contacts, which provides a linear damping, additional

sources of damping may be present, as, for example, a misalignment effect, which

may cause the film thickness to decrease and some friction to arise. The distribution

of the points in the graph 5.18(a) suggests the possibility to refine the choice of

the parameters of the numerical model according to the initial energy level. In

fact, four regions of different ranges of input energy can be distinguished- very low

(I), low (II), intermediate (III) and high (IV) energy regions- to each of which can

be associated a different damping factor, as shown in Figure 5.18(b).

The observed effective passive energy transfer mechanism from the LO to the

nonlinear attachment observed is given by cross-well oscillations of the BNEH,

with high frequency dynamic instability triggered by sufficiently high input energy,

occurring at the first cycles of oscillation following the impact for a duration

that depends on the energy level initially imparted to the LO. However, as the

instantaneous energy in the system gradually reduces due to damping dissipation,

the dynamic regime changes to in-well oscillations and no significant energy is

harvested. Only acceleration and velocities are accounted for the comparison of the

experimental results with the numerical model, the reason being that the high-pass

filter applied to the displacement time history, derived from numerical integration
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Figure 5.19: Dynamics of the two-DOF system for the very low input energy level (I0 = 0.10 m/s):
time histories of the LO velocity (a) and BNEH relative velocity (b); (d) and (e) corresponding wavelet
transform spectra; (c) measured voltage; (f) total energy harvested by the BNEH. —– experimental trial,
—– corresponding numerical simulation.

of the velocity signal, distorts the output, preventing the depiction of transition

between the two potential wells (arising due to bistability) in the early, highly

energetic regime of the response. This issue arises because of the low frequency

associated with such a transition.

The typical dynamics exploited for energy harvesting is shown in Figures 5.19 5.20

and 5.21, for three different energy levels.

Figure 5.22 shows the comparison of the energy harvesting capability of the

BNEH under exam with its monostable counterpart, achieved with the straight

(unbuckled) configuration of the thin beam, and with its linear counterpart (k2 = 0)

with optimized positive linear stiffness k3 > 0. Also, bistable and cubic harvester

systems with optimal stiffness and damping parameters are shown in the same

graph. The nonlinear stiffness coefficients for the straight beam were computed

analytically and verified through a nonlinear static analysis of the FEM of the beam,
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Figure 5.20: Dynamics of the two-DOF system for the low input energy level (I0 = 0.14 m/s): time
histories of the LO velocity (a) and BNEH relative velocity (b); (d) and (e) corresponding wavelet trans-
form spectra; (c) measured voltage; (f) total energy harvested by the BNEH. —– experimental trial,
—– corresponding numerical simulation.

similarly to that described in Section 5.2 for the buckled beam. The computed

stiffness coefficients, complemented with further considerations, are provided in

Appendix A.

Due to the small thickness of the beam cross-section and the absence of any

pretension, the (positive) linear component in the coupling stiffness is very small

(k3 = 90.65 N/m) compared to the cubic component; thus, it does not affect

significantly the strongly nonlinear dynamical response of the system, which, in

essence, behaves as purely cubic. The performance comparison demonstrates

that exploiting the bistability of the post-buckling beam leads to a significant

enhancement of the energy harvesting capability with respect to its monostable

counterpart. It is known, in fact, that a bistable device can overcome the deficiency

of a cubic strongly nonlinear or essentially cubic harvesting system at low magnitude

excitations.
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Figure 5.21: Dynamics of the two-DOF system for the high input energy level (I0 = 0.25 m/s): time
histories of the LO velocity (a) and BNEH relative velocity (b); (d) and (e) corresponding wavelet trans-
form spectra; (c) measured voltage; (f) total energy harvested by the BNEH. —– experimental trial,
—– corresponding numerical simulation.

The linear energy harvester, if optimized in terms of optimal stiffness, performs

similarly to the BNEH, although the main disadvantage of this type of coupling

is observed in case of periodic or multi-impact excitations, for which it works

optimally only when the natural frequency of the system is tuned to the excita-

tion frequency. Operating far from the fundamental frequency causes its energy

harvesting performance to decay. Moreover, energy harvesting performance of

the (theoretical) optimized system is depicted in Figure 5.22 to highlight the

appreciable gain expected though an improvement of the physical apparatus. At

last, it can be seen the increase of energy harvested by the optimal BNEH, for low

excitation levels, even if compared to the optimal cubic EH.
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Figure 5.22: Comparison of the total energy harvested by single impulse by different types of Energy
Harvesters (EH): —— current bistable EH, −−− current monostable EH, —— optimal bistable EH,
−−− optimal cubic EH, − · −· linear EH with optimal linear stiffness coefficient.

5.3.2 Repeated impulses scenario

For the second excitation scenario considered, which contemplates periodically

repeated impacts, data have been collected, for various forcing magnitudes, by

varying the inter-arrival time of the pulses tp. As discussed in Section 3.1, the

interval between the application of two consecutive pulses tp is here normalized by

the LO fundamental period T1, so that the impulse period is defined as µT = tp/T1,

with T1 = 0.1213 s. For the experimental trials, µT spans the range [2.5−15], where

the lower bound is related to physical limitations encountered while attempting

to excite the system at a higher frequency, and the upper bound is due to the

fact that at lower forcing frequencies the impacts can be regarded as isolated,

since the system goes to rest before that the next pulse is applied. Performance

contour plots for the system (3.52) are developed numerically (Dirac forcing) using

energy harvesting measure (3.61). The contour plot of Figure 5.23 shows the

typical numerical finding [94, 69] of discrete “ribs” of higher performance occurring

at discrete ranges of impulse periods, nearly multiples of the primary system

fundamental period, indicating strong dependence upon the dynamic state of

the primary system when excited. On the high performance ribs energy peaks
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Figure 5.23: Total energy harvested after 15 impulses as a function of the input magnitude and period of
application of the pulse train: a) contour plot: numerical model, markers: experiments; b) red markers:
numerical simulation, blue markers: experimental trials (the vertical dashed lines recall the position of
the high-performance ribs).

of 280 m J are attained. The inspection of the system response time histories

and corresponding wavelet spectra confirms a change of the dynamics in those

regions, where a high-frequency dynamic instability in the harvester response can

be observed, as shown in the plots of Figure B.1 and discussed in Appendix B. By

the superposition of the discrete experimental points on the plots of Figure 5.23,

it becomes apparent that this promising result is not replicated experimentally.

The numerical model is able to recover the whole dynamics of the experimental

fixture, despite the strong approximation of it (1 d-o-f), when outside the high-

performance ribs (cfr., for example, Figures B.4 and B.5), but differs for input

periods that approach multiples of the primary system fundamental period. Unlike

the numerical simulation, in fact, the primary system response grows to a bounded

size rather than continually increasing for the whole observed response duration

(cfr. Figures B.3 and B.1).

In investigating the causes of the loss of adherence to the real case, the first aspect

to consider is that, generally, the forces applied to the linear oscillator are not of

the same magnitude and are only nearly periodic. The instant at which the stinger
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of the shaker strikes the linear frame and the magnitude of the force depend on the

ratio between the period of the shaker excitation and the eigenperiod of the linear

oscillator. To explore the effect of non perfect periodicity and of the non-uniform

amplitude of excitation, and to exclude this aspect from the possible reasons of

numerical and experimental mismatch, pseudo-experimental tests have been carried

out, by inputting the real forcing signal into the numerical model; these confirmed

that those aspects do not appreciably affect the numerical outcome as seen, for

example, in Figures B.1, B.2 and B.3. The discrepancy so far discussed can be

sought either in the lack of higher modes in the current single-dof numerical model

of the beam, or in the difficulty of tuning the frequency of the impulses when the

dynamics is considered in the neighborhood of the frequency ranges of interest.

The one-dof modeling of the harvester, in fact, does not account for the possible

nonlinear scattering of energy from the fundamental mode to higher modes of

the beam – in other words, the redistribution of the energy in the modal space

when impulsive energy is scattered to higher frequencies. This energy scattering

would reduce the overall amplitude of the transient response, with the final effect

of decreasing the amount of energy harvested. To this aim, a more accurate

multi-modal model is being set up. On the other end, further experimental tests

may still confirm the presence of the narrow high-performance regions.

The inability of the single-dof model to capture accurately energy harvesting

by repetitive impulses in the high-performance regime can also be attributed to

phasing issues. That is, in the experimental beam many modes are excited during

the application of each impulse, and the relative phase between the input force

and a particular mode plays a critical role in the energy transfered from the shaker

to that mode by the applied impulse. Hence, certain beam modes are excited more

efficiently than others, depending on their relative phase with the excitation at the

time instant of application of each impulse. The numerical single-dof model clearly

cannot capture this effect since it takes into account only one (the fundamental)

beam mode and ignores the others. For the case of a single impulse phasing is not
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Figure 5.24: Numerical mean energy harvested over 100 impulses, I0 = 0.25 m/s: —— bistable EH,
−−− monostable EH, • experimental trials.

important and there is good agreement between the model and the experimental

results. In the high-performance energy harvesting regimes the issue of how much

energy is absorbed by the beam modes from the applied impulses is critical, and

the single-dof model is not suitable anymore.

However, up to ≈ 20 mJ have been experimentally harvested, which results in an

average harvested power of 20 mW within the range of energy level considered.

Having proved that the numerical model predicts with reasonable accuracy the

experimental results, except for the case discussed above, it has been used to prove

the enhancement in energy harvesting capacity of the bistable attachment with

respect to its monostable counterpart. The comparison reveals a gain of above 4

times of total energy harvested outside the high-performance ribs, as illustrated in

the graph of Figure 5.24, reporting the mean energy harvested over 100 pulses for

the energy level I0 = 0.25 m/s.
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Chapter 6

Conclusion

The main results obtained in the present research work and possible future devel-

opments are summarized in this concluding chapter.

6.1 Research summary and concluding remarks

The research documented in this work presents a computational and experimental

study of the impulsive dynamics of a electromagnetic bistable energy harvesting

system (BNEH) coupled to a directly excited, weakly damped linear primary

system (LO). The coupling is realized by means of a cubic stiffness nonlinearity

and negative linear stiffness, that makes the harvesting system to be bistable. The

strong nonlinearity results from the transverse displacement of a linearly elastic

beam (nonlinear effects appear due to midplane stretching of the elastic beam),

whereas the bistability arises from the post-buckling configuration of the beam

itself.

A parametric analysis is performed numerically in order to study the effect of

sensitive parameters on the energy harvesting capability of the system. Special

attention is devoted to the case of low energy level impulses, below the inefficiency

threshold characterizing the purely cubic NEH. Mass ratio, negative stiffness and

137
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damping in the coupling, which is provided by both the mechanical inherent

damping of the BNEH and the electromechanical coupling, are found to be the key

parameters governing the energy harvesting performance. Under a single impulse,

by decreasing the energy level, three different mechanisms are exploited to attain a

fast energy capture and harvesting: periodic cross-well oscillations, a chaotic regime

of aperiodic cross- and in-well oscillations, and nonlinear beats in a fully in-well

oscillation. By comparing the energy harvesting capabilities of the system with and

without the negative linear coupling stiffness, a significant enhancement in terms

of both energy harvesting efficiency and total energy harvested due to the addition

of the bistability is observed. For the considered set of parameters, the nonlinear

device is found to be able to absorb and harvest above 40 mJ at the highest energy

level, 90% of which is harvested in the first 0.4 seconds, whereas energy of the order

of mJ can still be harvested at very low input energy regimes. The numerical study

conducted on the same system subjected to periodically repeated impulses reveals

that greater robustness is achieved by the bistable configuration, resulting from

a lesser dependence upon the inter-arrival time of the impulses when compared

to the monostable configuration, for which narrow, high-performance ranges of

impulse period exist. Energy harvesting capability greater than 400 mJ per applied

impulse is theoretically achievable for the high-energy inputs and for optimal

impulse periods.

Also the scenario of stochastic impulsive excitation has been explored and it revealed

that a random distribution of the impulse amplitude provides for a considerable

gain of energy harvested by the bistable device compared to the monostable case,

in the low energy regime and, also, for an enhancement of the energy harvesting

capability if compared to the periodic impulses scenario, regardless the particular

configuration (bi- or mono-stable) of the coupling. If random interarrival time of

the impulses are considered instead, a deterioration of the harvester performance

and less robustness and reliability can be observed, although the bistable system

still performs better than the cubic one.
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It followed the experimental study of the integrated system. The experimental

fixture and set-up is described. The mechanical coupling between the hosting

system and the nonlinear attachment is realized by means of a steel beam axially

compressed until the post-buckling configuration is reached, in order to provide

a negative linear stiffness component to the coupling. The apparatus design was

based on the previous numerical study of the system, which led to the detection of

optimal parameters for best energy harvesting performance, although the physical

system is still not optimized, due to physical/operational limitations.

Under isolated impulse scenario, the snap-through instability of the buckled beam,

with high-frequency transient resonance captures, enables efficient energy harvesting

during the first cycles of motion: the nonlinear device is found to be able to absorb

and harvest up to 80 mJ of energy, with average power of 40 mW for the excitation

level range considered (0.05 - 0.45) m/s. Such a behaviour is confirmed by the

numerical model. The comparison with the monostable configuration of the same

system, that is a cubic nonlinear configuration with negligible linear stiffness

component, reveals the advantage offered by the bistable device in harvesting

energy at the low excitation levels considered. On the other hand, an improvement

of the physical apparatus towards the optimization would lead to a considerable

gain in term of energy harvesting performance.

Under periodically repeated pulses, the engagement in high-frequency dynamic

instability allows the bistable attachment to harvest tens of millijoule, attaining

up to 40 mW of mean power experimentally extracted in the energy level range

considered. On the other hand, promising numerical findings report a magnification

of the energy harvesting performance, achievable by virtue of sustained high-

frequency resonance captures occurring for periods of the pulse train multiple of

the LO fundamental period. Energy peaks of 280 m J are attained on the high-

performance ribs numerically obtained. However, the numerical model agrees with

the physical system only when outside the higher-performance ribs. It differs, in

fact, for input periods that approach multiples of the LO fundamental period.
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6.2 Novel contributions

• Unlike the case of vibration control, where the linear (tuned mass damper,

TMD) or nonlinear (the so-called nonlinear energy sink, NES) device which

is entrusted with the task of mitigation is generally studied in coupling with

the host structure, it is common practice in the energy harvesting field to

investigate the behaviour of the auxiliary device by itself, testing it under

base excitation. In the first case, of course, the reason relies in the necessity

of monitoring the effect of adding the auxiliary mass on the motion of the

primary system, in order to establish the efficiency in reducing/controlling the

vibration of the main structure. In the second case, however, the coupling of

the energy harvesting device to the main system is all but irrelevant: in fact,

the external excitation is, more realistically, filtered by the primary system

and interesting dynamics can arise depending on the nonlinear characteristics

of the coupling. Hence, coupling the energy harvesting system to a primary,

hosting, system represents the main novelty of this work, allowing the analysis

of the dynamic interaction and energy exchange between the two sub-systems.

This approach turns out to be more realistic, howbeit, it increases the

complexity of the mathematical problem, because of the addition of one

degree of freedom to the global system.

• The system has been investigated contemplating typically non-stationary

response regimes resulting from single or periodically and randomly repeated

impulsive excitation, contrary to the common approach that consists of

applying typically a harmonic or, in some cases, random, base excitation to

the (one-degree-of-freedom modeled) harvester.

• The resort to the particular coupling, which adds bistability to the more

traditional cubic one, was previously studied only for vibration suppression

purpose. Its application to the energy harvesting represents a point of

novelty, that leads to the increase of the dimension of the problem, since the
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mathematical model contains the equation that describes the circuit part

and, in particular, governs the electromagnetic interaction.

• The experimental realization of the combined physical system, aiming to

explore experimentally its energy harvesting performance, required the op-

timization of the electromagnetic components, the design of the supports

and connection systems between the two masses, the identification of the

mechanical and electro-mechanical parameters and detection of the optimal

procedures for the correct execution of the experimental tests.

• Another original contribution consisted in the design and realization of

the element responsible for the desired nonlinearity and bistability and its

integration in the global system. These steps presupposed the evaluation of

reasonable and accessible solutions, then required the modeling of the chosen

solution (the post-buckling beam) for the characterization of the mechanical

parameters of the bistable element.

6.3 Future research

Since the numerical findings, for the case of repeated impulses, have been only partly

confirmed experimentally, ongoing research activity is aiming to explore the cause

of the mismatch between experimental findings and numerical computation. Future

work will seek to comprehend whether further experimental trials will succeed in

achieving it or interaction of higher modes not accounted in the numerical model

prevents it to physically realise.

Experimental tests under stochastic impulsive excitation are, also, intended to be

performed in order to assess the efficacy of the proposed energy harvesting device

over a broad variety of excitations, including the more realistic scenario of random

pulse-like vibrations. The optimal experimental apparatus is also intended to be

realized, to maximize energy harvesting performance.

Furthermore, having ascertained the benefit produced by the energy harvesting
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device on the mitigation of the primary system oscillations, future research activity

is intended to investigate the double role of vibration suppression and energy

harvesting for some relevant cases of engineering interest, as for slender pedestrian

bridges, which easily violate the comfort criterion because of the excessive oscilla-

tions (either in the vertical or lateral directions) caused by the vicinity of their

natural frequencies to that of the dynamic loads typical of human activity. One of

the main features of the dynamic loading of pedestrian is, in fact, its low intensity.

Applied to very stiff and massive structures, this load could hardly make them

vibrate significantly. However, aesthetic, technical and technological developments

lead to ever more slender and flexible structures, which, as a consequence, more

frequently suffer excessive vibration problem.



Appendix A

Static analysis of the straight

beam

The characterisation of the mechanical parameters of the straight beam (with no

prestress) is here addressed, being necessary in order to establish a comparison

between the energy harvesting capability of the harvester with and without the

buckled configuration of the beam.

The effective structural stiffness of the clamped-clamped (linear elastic) straight

beam supporting a concentrated load at the midspan, which is the critical point, is

Kst = 192EJ/L3 = 90.45 N/m. This is confirmed by the numerical evaluation by

means of modal analysis. The computed mode shapes has been normalized relative

to the maximum displacement. If the single-mode Galerkin discretization method

is used, the linear stiffness coefficient k3 is given by the expression in (3.33), with

P = 0:

Kl,m ≈ k̃1 = 91.10 N/m

The linear natural frequency of the beam is f1 = 38.86 Hz. Kl,m can be refined

using a multi-mode discretization. The static stiffness can be expressed as the

inverse of the maximum displacement induced by a unit force. If the static
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equilibrium is written referred to the modal coordinates qi, i.e. [K̃]{q̃} = {p̃},

with [K̃] the modal stiffness matrix and {p̃} the generalized load vector, it is

k̃iqi = p̃i = piφi(L/2). For pi = 1, qi = φi(L/2)/k̃i. The structural response

at the critical point and in the load direction is w(L/2) =
∑n

i=1 φi(L/2)qi, thus

1/Kl,m = w(L/2) =
∑n

i=1 φi(L/2)φi(L/2)/k̃i =
∑n

i=1 φi(L/2)2/k̃i, thus

1

Kst
≈

n∑
i=1

φi(L/2)2

k̃i
(A.1)

Equation (A.1) provides the relationship between the static stiffness and the modal

stiffness of a structure. The symbol of approximation is due to the fact that the

sum is truncated to a finite number of modes. Kl,m calculated including 5 modes

is equal to 90.65 N/m, which is slightly greater than Kst. In fact,

1

Kst
>
φ1(L/2)2

k̃1

+
φ3(L/2)2

k̃3

+
φ5(L/2)2

k̃5

since the series is truncated, thus

Kst < Kl,m

The ratio Kl,m/Kst is 1.002, thus the modal and static stiffness are in very good

agreement [95].

The coefficient of the cubic term of the equation (3.32) related to the first mode of

vibration is:

Kc,1 = 1.70× 109 N/m3

A nonlinear static analysis has been carried out for the steel beam subjected to a

point load in the center of the beam. The force-displacement curve is obtained by

assigning a ramped load and measuring the total deformation resulting at each load

increment ∆F = 0.01N . The best fit of the data points of the force-displacement

curve within the range 0−0.001 mm of rise at the midspan, using a cubic polynomial



145

x10-3

Figure A.1: Polynomial fitting of the force-displacement curve of the straight beam (red dotted line).

of the form f(w) = kl,sw + kc,sw
3, provides the following coefficients:

kl,s = 92 N/m, kc,s = 1.40× 109 N/m3
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Appendix B

System response under

repeated impacts

Case 1: upon one of the high-performance ribs

The system response found numerically operates in the 2:1 frequency regime, since

a 2:1 resonance capture is maintained for the duration of the response between

two consecutive impulses. The BNEH oscillates faster than the primary mass,

which increases the energy harvesting capability of the system, and the response

continually grows with each consecutive impulse. The transient response of the

BNEH occurring for the first impulses initially engages in 3:1 or 2:1 resonance

captures at the beginning of each applied impulse but it does not maintain this

regime until the next impulse is applied. In fact, it transitions to 1:1 internal

resonance capture, where energy is harvested at a slower rate (Figures B.2 and

B.1). The experimental response grows slightly with each consecutive impulse

and does not engage in any high-frequency dynamics (Figure B.3).
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Figure B.1: Numerical system response for I0 = 0.1 m/s and µT = 3.06 (on a rib): velocity time history
of LO (a) and BNEH (b); (d) and (e) corresponding wavelet transform spectra; (c) measured voltage; (f)
total energy harvested by the BNEH
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Figure B.2: Pseudo-experimental system response for I0 = 0.1 m/s and µT = 3.06 (on a rib): velocity
time history of LO (a) and BNEH (b); (d) and (e) corresponding wavelet transform spectra; (c) measured
voltage; (f) total energy harvested by the BNEH
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Figure B.3: Experimental system response for I0 = 0.1 m/s and µT = 3.06 (on a rib): velocity time
history of LO (a) and BNEH (b); (d) and (e) corresponding wavelet transform spectra; (c) measured
voltage; (f) total energy harvested by the BNEH

Case 2: outside the high-performance ribs

Both in numerical and experimental results, high frequency harmonics can be

observed in the initial phase of the relative response for each impulse, in particular

the transient response of the BNEH initially engages 2:1 and 3:1 internal resonance

captures in the numerical simulation and 2:1 for the experimental trial, for each

applied impulse. Frequency transitions above the primary system fundamental

frequency correspond to oscillations of the BNEH faster than the primary system,

which increases the energy harvesting capability of the system. As energy is

dissipated and harvested by the system, the dynamics transitions to 1:1 internal

resonance capture, where energy is still harvested, but at a slower rate. The initial

energy input in the primary system is enough to excite the high-frequency dynamic

instabilities, but not maintain them for long, meaning that no high-frequency

sustained resonance capture are observed and the system operates in the 1:1

frequency regime (Figures B.4 and B.4).
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Figure B.4: Experimental system response for I0 = 0.19 m/s and µT = 4.34 (outside the ribs): velocity
time history of LO (a) and BNEH (b); (d) and (e) corresponding wavelet transform spectra; (c) measured
voltage; (f) total energy harvested by the BNEH
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Figure B.5: Numerical system response for I0 = 0.19 m/s and µT = 4.34 (outside the ribs): velocity time
history of LO (a) and BNEH (b); (d) and (e) corresponding wavelet transform spectra; (c) measured
voltage; (f) total energy harvested by the BNEH
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