
Chatbots as a Novel Access Method
for Government Open Data?

Simone Porreca, Francesco Leotta, Massimo Mecella, and Tiziana Catarci

Sapienza Università di Roma
Dipartimento di Ingegneria Informatica

Automatica e Gestionale Antonio Ruberti
porreca.1673726@studenti.uniroma1.it,

{leotta,mecella,catarci}@diag.uniroma1.it

Abstract. In this discussion paper, we propose to employ chatbots as a
user-friendly interface for open data published by organizations, specifi-
cally focusing on public administrations. Open data are especially useful
in e-Government initiatives but their exploitation is currently hampered
to end users by the lack of user-friendly access methods. On the other
hand, current UX in social networks have made people used to chatting.
Building on cognitive technologies, we prototyped a chatbot on top of
the OpenCantieri dataset published by the Italian Ministero delle Infras-
trutture e Trasporti, and we argue that such a model can be extended
as a generally available access method to open data.

1 Introduction

Open data generally refers to the idea that some data should be freely avail-
able to everyone to use and republish as they wish, without restrictions from
copyright, patents or other mechanisms of control. In particular, according to
the Open Definition, “a piece of data is open if anyone can freely access, use,
modify, and share for any purpose (subject, at most, to requirements that pre-
serve provenance and openness)”1. Some characteristics should be granted to
provide open data, namely (i) accessibility – all the users can freely access to
data, mostly free or at a very low cost, (ii) machine readability – data can be
naturally “understood” and processed by machines, (iii) rights – data are re-
leased under certain licenses that bound softly the usage, the transformation
and the distribution of those data.

? An extended version of this paper appears as S. Porreca, F. Leotta, M. Mecella, S.
Vassos and T. Catarci: Accessing Government Open Data through Chatbots. Proc.
Int. Workshop on the Practice of the Open Web (practi-O-web 2017), at ICWE 2017,
Rome, Italy, June 2017, Springer. This work has been partly supported by the Italian
projects NEPTIS, SM&ST and RoMA, and the EU RISE prioject FIRST. The work
of Francesco Leotta has been partly supported by the Lazio regional project Sapientia
(FILAS-RU-2014-1186).

1 cf. http://opendefinition.org/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/188822855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://opendefinition.org/


Much related to open data, open government is the governing doctrine that
supports the right of citizens to access the documents and proceedings of the
government for an effective public oversight. Enabling interested citizens to get
more directly involved in the legislative process, making government information
available to the public as machine readable open data, can facilitate government
transparency, accountability and public participation. Opening up official infor-
mation can support technological innovation and economic growth by enabling
third parties to develop new kinds of digital applications and services.

Several national governments have created sites to distribute a portion of
the data they collect, e.g., the European Commission has created two portals
for the European Union: the EU Open Data Portal2 giving access to open data
from the EU institutions, agencies and other bodies, and the Public Data por-
tal3 providing datasets from local, regional and national public bodies across
Europe. In October 2015, the Open Government Partnership (OGP) launched
the International Open Data Charter, a set of principles and best practices for
the release of governmental open data formally adopted by seventeen countries
(including Italy4) during the OGP Global Summit in Mexico.

Despite all these initiatives, access from citizens to such open data is not al-
ways as large as expected. Technical issues often inhibit easy access from citizens,
if no specific user-friendly applications are built on top of such open data for
easy access and navigation. In this discussion paper, we present the disruptive
idea of adopting chatbots as user-friendly access and querying method to open
data. Nowadays persons are used to chat with friends over popular applications
(e.g., WhatsApp or Facebook Messenger), and the typical interaction is indeed
based on the paradigm ask – get a response. Citizens accessing open data would
appreciate the same paradigm in querying the data, for which a chatbot can be
a much more natural way of interaction than traditional web applications.

Developing chatbots over open data poses many challenges, such as inter-
preting the natural language adopted by users in querying the dataset, and
translating into effective queries over the dataset. In this paper, we present a
prototype of such a system built using the cognitive platform by IBM, namely
Bluemix and related APIs, in order to evaluate the technical feasibility of the
proposed idea.

The following of this paper is organized as it follows: Section 2 provides some
background information and relevant work; Section 3 describes the architecture
used to build a chatbot over the Open Cantieri dataset, published by the Italian
Ministero delle Infrastrutture e Trasporti at http://opencantieri.mit.gov.

it, by using a cognitive platform, and Section 4 describes the realization aspects.
Finally Section 5 concludes the paper, by remarking future work, including a
user evaluation to assess the usability of the approach, and to prove the argued
simplicity of use.

2 cf. http://data.europa.eu/euodp/en/data/
3 cf. http://publicdata.eu/
4 cf. https://www.opengovpartnership.org/country/italy

http://opencantieri.mit.gov.it
http://opencantieri.mit.gov.it
http://data.europa.eu/euodp/en/data/
http://publicdata.eu/
https://www.opengovpartnership.org/country/italy


2 Background and relevant work

Chatbots are computer programs able to hold up a conversation with a user,
either in textual or vocal form. Given the growing complexity of information
systems, chatbots are specifically designed to support the user interaction and
to make it as natural as possible. They do not only represent a faster and more
natural way to access information, but they will also be a significant key factor
in the process of humanizing machines in the near future [1,2].

In order to correctly and efficiently design a chatbot, many techniques have
to be not trivially combined, including pattern matching, parsing, artificial intel-
ligence, machine learning, and ontologies. There are numerous approaches and
methodologies proposed for this; in this work, we followed the approach that
divides the chatbot architecture in three parts: responder, classifier and graph-
master [1]. The responder is the interface by which users access the system. It
is responsible for taking the input and validate the output. The classifier is lo-
cated between the responder and the graphmaster. It is dedicated to normalize
the input to pass to the graphmaster and processing the output coming from
the latter (e.g., interacting with a database). Finally, the graphmaster is the
agent responsible to elaborate the correct output to the corresponding input. It
represents the pattern matching element of the chain.

Tim Berners-Lee suggested a 5-star deployment scheme for open data5, being
a star when an organization makes data available on the Web (whatever format)
under an open license, 2 stars when it makes data available as structured data
(e.g., Excel file instead of image scan of a table), 3 starts when data are available
in a non-proprietary open format (e.g., CSV as well as of Excel), 4 stars by
using URIs to denote things, so that people can point at them and 5 stars when
data are linked to other data to provide context [3]. Technologies supporting
this vision of linked open data are those ones commonly referred as Semantic
Web, including RDF/RDFS, OWL (ontologies) and SPARQL (for querying). In
Italy, the AgID - Agenzia per l’Italia Digitale, publishes every year guidelines for
Public Administrations on how to publish their data as open, including a model
for metadata consisting of 4 levels 6. In this work, we have built our prototype
on the basis of a dataset which can be ranked at most at level 3 of the above
classification.

During the last years, some attempts to apply chatbots to query and retrieve
data have been made. In [4], a chatbot was constructed on top of some open data.
Here the first step is to extract plain text from documents stored as PDF files
by employing an optical character recognition (OCR) software. At this point, a
set of possible questions about the extracted contents were constructed using a
“Overgenerating Transformations and Rankings” algorithm, which was imple-
mented using the question generation framework presented in [5]. Finally, the

5 cf. http://5stardata.info/en/
6 cf. http://www.agid.gov.it/agenda-digitale/open-data

http://5stardata.info/en/
http://www.agid.gov.it/agenda-digitale/open-data


matching patterns, essential to the chatbot’s answering capability, are defined
through Artificial Intelligence Markup Language (AIML).

Authors in [6] presents a system, called OntBot, which employs a mapping
technique to transform an ontology into a relational database and then uses that
knowledge to construct answers. Therefore, likewise our solution, OntBot does
not need to handwrite all the knowledge base that stands behind the system. The
main drawback of traditional chatbots, implemented for example through AIML,
is the fact that the knowledge base has to be constructed ad-hoc by handwriting
thousands of possible responses. OntBot, likewise our system, does not construct
answers by looking for a matching one inside the database. Instead, it retrieves
information from the database, which will be then used to build up the response.

3 Case study and proposed architecture

Open Cantieri, offered by the Italian Ministero delle Infrastrutture e dei
Trasporti (MIT), is an open, complete and up-to-date repository about the re-
alization status and history of the public infrastructures. All the available data
are generated and published by public sources. Open Cantieri offers a unified
platform, with specific views, in which all these different datasets are collected
together. The platform is a collection of open data in a very raw form: datasets
can be downloaded as single CSV files, sometimes grouped in archives. Very
often, unfortunately, different files do not employ the same keys to represent
concepts (e.g., cities are represented using their code in some files whereas their
names is used in others) and manual mapping between different representations
was needed. More generally, the files do not follow any standard on field names
and reported values.

Figure 1 shows the architecture of the proposed solution. The user interface to
the system is implemented as a Facebook Messenger application. The back-end
core of the system is deployed on the IBM Bluemix cloud computing platform.
In particular, a Java Server Page (JSP) handles the requests and constructs
the corresponding responses by orchestrating two Bluemix service instances: (i)
an instance of Watson Conversation, specifically created and trained, which is
responsible for processing, and (ii) an instance of Compose for MySQL, which
handles the connection and the query to the back-end database. In particular,
the user interacts through the chat interface, e.g., issuing a question as “How
much money have been invested in public infrastructures in the south of Italy
in 2015?” (step 1). The sentence is forwarded to the JSP, which handles it in
order to construct the appropriate response (step 2). The Watson Conversation
instance receives a request constructed starting from the user’s input, and gen-
erates the corresponding response (step 3). According to the provided response,
the JSP page defines an SQL query to be issued to the database through Com-
pose (step 4). Once all the elements needed to construct the output are collected,
the JSP will proceed to generate the response to be shown through the Facebook
Messenger chat.



User Interface Application

Compose

Watson 
Conversation

1. “How much money 
have been invested in 
public infrastructures in 
the south of Italy in 
2015?”

2. Pass the 
input to the 
application

3. Send request 
to the 
Conversation 
service 
instance

4. Retrieve data 
from the database 
for constructing the 
response

Server-Side

Database

Fig. 1. Architecture

In order to generate the response, Watson Conversation performs the follow-
ing operations (the reader should also refer to following subsections): intents and
entities extraction; verification of which node, within the Dialog Tree, has con-
ditions satisfied by these information; and, finally, return of the nodes response.
In our specific case, the intent is triggered by “How much money”, which is
associated to the intention of knowing the investment amount about the high-
way management, regarding the intent “#Investment”. The entities are: “South
of Italy”, which is a specific value of the entity “@Geographical Region” and
“2015”, which is a value of “Year”. In the Conversation response, the applica-
tion is able to find all the essential information for constructing the output. First
of all, a flag, called “DB Search”, is retrieved from the Conversation response
in order to understand if a database search is required. This is achieved by con-
structing the SQL query, starting from the information obtained from Watson
Conversation, and by send it to Compose for MySQL, which will retrieve the
desired data from the database. The SQL query is specifically constructed with
the “Text” included into the Conversation response, which is one of many JSON
variables returned with the response itself. Once all the elements needed to con-
struct the output are collected, the application will proceed to generate the users
output and send it back through the interface.

In the following, we describe the single components.

3.1 Watson Developer Cloud and Conversation

IBM Watson Developer Cloud (WDC) offers a set of services for developing
Cognitive Applications, which consists of programs able to take advantage of the



most modern technologies in artificial intelligence, machine learning, and natural
language processing. Each WDC service provides a REST API for interacting
with it, and most of these services also includes Software Development Kits
(SDKs) for various programming languages. In our work we used the Java one.

Inside IBM WDC, the Watson Conversation service allows to create an ap-
plication that understands natural language input and uses machine learning to
respond to users in a way that simulates a conversation between humans. When
an instance of this service is created, it is able to contains several workspaces.
A workspace is a container for all the artifacts that define the conversation flow
and it is responsible for the natural language processing operations. A workspace
includes the following elements:

Intents. An intent represents the intention and the purpose behind user input.
It could be associated with the “goal” the user wants to achieve with every
request and thus it is important to define one intent for each type of user
request the application has to support. Each intent is prefixed with the char-
acter “#” and, during its creation, the developer is encouraged to provide
“positive examples”, in order to allow the system to construct the corre-
sponding model. A positive example is a sentence that clarifies the way in
which the intent could be presented to the system. By collecting at least five
positive examples, the instance of the Conversation service will be able to
perform a deep learning process, which will train the service itself to recog-
nize that specific intent. The most important fact is to distinctly define each
intent from the others. The “borders” between intents should be clear in
order to allows the system to correctly recognize them inside user requests.
If there is the need for an intent to have more “interpretations”, depending
on a particular user request, it is possible to make use of another Watson
Conversation’s element: the Entity.

Entities. An entity is an element, corresponding to a term or an object, that
could be used in order to better specify the intention behind a user request.
They are frequently used in combination with intents to increase their range
of possible interpretations and meanings. Each entity is prefixed with the
character “@” and is associated with a set of values. Each value of a specific
entity represents an object or a term that belongs to the same category
defined by the entity itself. In this way, an entity called “day of the week”,
could be include values as “Monday”, “Thursday”, etc. Associated with each
value, the developer has the possibility to insert synonyms, in order to be
sure that the system will recognize a specific value of the entity even if the
user provides it with a different word.

Dialog. The dialog represents the flow of the conversation, divided in several
branches, which defines how the application responds when it recognizes the
defined intents and entities. The dialog is composed by several nodes, struc-
tured in a tree-like graph. At a very basic level, each node is defined by two
main elements: the condition and the response. When the condition, com-
posed by elements like intents and entities, is satisfied, the node is considered
“activated” and hence its response will be returned as output. The response



could be a sentence, another node, or it can be defined by the developer.
In order to maintain the state of the conversation through each interaction
with the user, the instance service keeps a JSON variable called “context”.
In this element there are several variables, which can be customized by the
developer, and, among them, there is the “Dialog Stack”, which contains the
stack of all the nodes visited during the conversation and the first one, the
“Contextual Node”, is the ID of the node that should be returned when the
user will start another interaction, within the same session, with the instance
of the service Watson Conversation.

3.2 Compose for MySQL

IBM Compose for MySQL is a platform able to simplify the maintenance and
the management of a MySQL database; it automatically executes some common
operations as backups, scaling and health check. Even though the database can
be accessed as a normal MySQL database, the main benefit offered by Compose
is that no management aspects (such as security issues or scaling) has to be
manually handled.

4 Realization aspects

As seen in the previous sections, at a certain point of the interaction with the
user, the system (through the Compose component) requires to retrieve data
from a database in order to build answers. As stated above, the Open Cantieri
dataset does not follow any standard, thus a database schema able to rationalize
the information contained in the different CSVs has been defined. The result
of this operation is a schema that does not match anymore in terms of tables
and columns with the original file, making it necessary to proceed to an ETL
(Extract, Transform and Load) operation.

Once the database was set up, we had to configure the Watson Conversation
service to be able (i) to understand user requests, (ii) to find out if a database
search is needed to fulfill the request, and (iii) to present a response template
to the user. The response template is filled by the JSP using the data retrieved
from the database through the Compose component.

In order to define and create a Watson Conversation instance, we need to
define intents and entities useful for our purposes. An intent, in our case, repre-
sents an argument the user is interested to, e.g., the highway management or the
airport system. In order to correctly define them, we have collected all the pos-
sible ways in which a user could refer to them, and then we passed these ones as
positive examples in the intent’s creation process. An entity, on the other hand,
corresponds to the values that may concern a specific intent, e.g., the concession-
aire societies for the highway management or the airports of the airport system.
All these elements were then used in order to construct the dialog of the Watson
Conversation instance. Here, we had to figure out all the possible questions the
user might ask and the ways in which he might do it. The user may, for example,



specify an argument, and then ask for more specific data about it through other
questions. He may specify, as argument, the highway s management and then
asks for the name of all the concessionaire societies. The user may, at anytime,
specify a new argument or asks for more questions, in a human-like conversation.
The system can also recognize when the user insert an invalid input and it will
help him to correct it.

5 Concluding remarks

We have presented our preliminary idea of combining a chatbot with open data.
It involves the employment of several novel instruments and services that are
increasingly employed by the researchers and practitioners involved in the de-
velopment of smart services. Our intent was to take advantage of these new
technologies in order to make something new, able to improve the accessibility
of open government data.

Open data should be accessible to the public; with our prototype, we would
like to showcase a new mean to consult them, in such a way that allows the user
to easily retrieve and analyze them.

Future work will include an extensive validation of the approach on a sam-
ple of users. Additionally, structured data represents only a face of government
complexity. Next steps will include automatic analysis of procedures in order
to provide users with a mean to explore bureaucracy in a simpler manner. The
conjunction of structured data with unstructured ones may provide public ad-
ministrations a useful tool to turn open data into something directly usable by
citizens.

References

1. S.A. Abdul-Kader, J. Woods. Survey on Chatbot Design Techniques in Speech
Conversation Systems International Journal of Advanced Computer Science
and Applications, 6 (7), 2015, https://thesai.org/Downloads/Volume6No7/

Paper_12-Survey_on_Chatbot_Design_Techniques_in_Speech_Conversation_

Systems.pdf.
2. Y.P. Yang. An Innovative Distributed Speech Recognition Platform for Portable,

Personalized and Humanized Wireless Devices Computational Linguistics and Chi-
nese Language Processing, 9 (2), pp. 77-94, 2004.

3. C. Bizer, T. Heath, T. Berners-Lee. Linked DataThe Story So Far. International
Journal on Semantic Web and Information Systems, 5 (3), pp. 122, 2009.

4. L. Pichponreay, C.H. Choi, W.S. Cho, J.H. Kim, K.H. Lee. Smart Answering
Chatbot based on OCR and Overgenerating Transformations and Ranking. Proc.
ICUFN 2016, IEEE, DOI: 10.1109/ICUFN.2016.7536948

5. M. Heilman, N.A. Question Generation via Overgenerating Transformations and
Ranking. Language Technologies Institute, Carnegie Mellon University, Tech-
nical Report CMU-LTI-09-013, 2009, http://www.cs.cmu.edu/~ark/mheilman/

questions/papers/heilman-smith-qg-tech-report.pdf.
6. H. Al-Zubaide, A.A. Issa. OntBot : Ontology based ChatBot. Proc. ISIICT 2011,

IEEE, DOI: 10.1109/ISIICT.2011.6149594

https://thesai.org/Downloads/Volume6No7/Paper_12-Survey_on_Chatbot_Design_Techniques_in_Speech_Conversation_Systems.pdf
https://thesai.org/Downloads/Volume6No7/Paper_12-Survey_on_Chatbot_Design_Techniques_in_Speech_Conversation_Systems.pdf
https://thesai.org/Downloads/Volume6No7/Paper_12-Survey_on_Chatbot_Design_Techniques_in_Speech_Conversation_Systems.pdf
http://www.cs.cmu.edu/~ark/mheilman/questions/papers/heilman-smith-qg-tech-report.pdf
http://www.cs.cmu.edu/~ark/mheilman/questions/papers/heilman-smith-qg-tech-report.pdf

	Chatbots as a Novel Access Method for Government Open Data

