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Context: Sirtuins (SIRTs) are NAD+-dependent deacetylases, cellular sensors to detect

energy availability, and modulate metabolic processes. SIRT1, the most studied family

member, influences a number of tissues including adipose tissue. Expression and activity

of SIRT1 reduce with weight gain and increase in conditions of starvation.

Objective: To focus on SIRT1 plasma concentrations in different conditions of adiposity

and to correlate SIRT1 with fat content and distribution, energy homeostasis and

inflammation in under-weight, normal-weight, and obese individuals.

Materials and Methods: 21 patients with anorexia nervosa, 26 normal-weight and

75 patients with obesity were evaluated. Body fat composition by dual-energy X-ray

absorptiometry, ultrasound liver adiposity, echocardiographic epicardial fat thickness

(EFT), inflammatory (ESR, CRP, and fibrinogen), and metabolic (FPG, insulin, LDL- and

HDL-cholesterol, triglycerides) parameters, calculated basal metabolic rate (BMR) and

plasma SIRT1 (ELISA) were measured.

Results: SIRT1 was significantly higher in anorexic patients compared to normal-weight

and obese patients (3.27 ± 2.98, 2.27 ± 1.13, and 1.36 ± 1.31 ng/ml, respectively).

Linear regression models for each predictor variable adjusted for age and sex showed

that SIRT1 concentration was inversely and significantly correlated with EFT, fat mass %,

liver fat content, BMR, weight, BMI, WC, LDL-cholesterol, insulin, ESR. Stepwise multiple

regression analysis revealed that age and EFT were the best independent correlates

of SIRT1 (β = −0.026 ± 0.011, p = 0.025, and β = −0.516 ± 0.083, p < 0.001,

respectively).

Conclusions: Plasma SIRT1 shows a continuous pattern that inversely follows the

whole spectrum of adiposity. SIRT1 significantly associates with EFT, a strong index of

visceral fat phenotype, better than other indexes of adiposity studied here.
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INTRODUCTION

Sirtuins (SIRTs) are nutrient sensing, metabolic regulators,
and chromatin silencers (1). SIRT1, the most-studied SIRT, is
best known for mediating lifespan extension by consistently
improving health during aging. Results mainly derived from

animal studies show that SIRT1 protects against or delays the
onset of metabolic diseases, neurodegeneration, cardiovascular
diseases, and some types of cancers (1, 2). SIRT1 modifies
the acetylation status of many different targets in cytoplasm,
mitochondria, and nucleus, and it carries out its protective
roles by activating key transcription factors, improving lipid
metabolism, reducing inflammation, and acting as a tumor
suppressor by preserving genomic integrity. SIRT1 plays also
an essential role in adaptive metabolic and endocrine responses
(3). Several metabolic disorders such as liver steatosis, diabetes,

and obesity associate with defects in SIRT1 pathways. Obesity
is associated with low NAD(+)/SIRT pathway expression in
subcutaneous adipose tissue of BMI-discordant monozygotic
twins, highlighting a strong relationship of reduced SIRTs
expression with inflammation, insulin resistance, and impaired
mitochondrial homeostasis (4). Visceral adiposity negatively
correlates with SIRT1 expression (5, 6). Accordingly, we
have previously shown an inverse association between plasma
SIRT1 and ectopic fat distribution in patients affected by
obesity (7, 8) in particular with epicardial and liver fat
depots, both typical examples of visceral fat with particularly
detrimental effect because of localized and systemic toxic effects
(9, 10). Although the main source of circulating SIRT1 is

not known (11–13), these results indicate that the negative
metabolic effects of obesity could be related, at least in
part, to the reduced levels of SIRT1 in the blood. Moreover,
what regulates circulating SIRT1 vs. tissue SIRT1 is still
unknown.

Conversely, SIRTs tissue enzymatic activity increases
in conditions of nutrient depletion and starvation. SIRT1
expression rises in cultured cells, and in multiple tissues of
mice after overnight or 24 h fasting (14, 15). An increased
expression of SIRT1 is seen after long periods of calorie
restriction (CR) in mice (16). Analogously, in man, 30 days
and 7 weeks of CR cause a rise of tissue and plasma levels of
SIRT1, respectively (17, 18). Indeed, SIRT1 has been identified
as a novel factor responsible for some beneficial effects of
CR, and previous studies showed that weight loss induces
an increase in tissue and circulating SIRT1 levels in obese
patients (19, 20).

Therefore, SIRT1 may act differently in states of nutritional
excess compared with states of nutritional deprivation.

Circulating SIRT1 has not been studied yet in underweight
individuals or in subjects who restrict eating. Thus, in relation
to its opposite behavior in condition of hyper- or hypo-
nutrition, we evaluated SIRT1 blood concentration, body fat
composition, markers of energy homeostasis, inflammation and
some metabolic parameters in underweight, normal-weight, and
obese individuals, i.e., in subjects with defect or excess of body
fat mass. The aim of the study was to investigate the plasma
SIRT1 concentration across the whole spectrum of adiposity, and

its relationship with fat distribution andmetabolic, inflammatory
and energy settings.

SUBJECTS AND METHODS

Study participants were recruited among subjects referring to the
High Specialization Center for the Care of Obesity (CASCO),
Department of Experimental Medicine, “Sapienza” University of
Rome, and from the ItalianHospital Group, “Villa Pia,” Guidonia,
Italy, from January 2015 to February 2017. The study was
approved by the ethical committee of the Sapienza University of
Rome, Policlinico Umberto I, and was concordant with Helsinki
Declaration. Each patient gave a written informed consent before
admission to the study.

Over the 2 year recruitment period, a total of 50 patients with
anorexia nervosa (AN), 400 obese individuals and 150 normal-
weight consecutive subjects were screened. After screening, 122
patients were included. 21 underweight patients with AN based
on the diagnostic criteria of the DSM-5 (3 males, 18 females, age
range 16–68 year, BMI range 10.63–20.23 Kg/m2); 26 normal-
weight control individuals (7 males, 19 females, age range 20–59
year, BMI range 20.22–24.83 kg/m2); 75 patients affected by
obesity (19 males, 56 females, age range 18–65 year, BMI range
31.36–59.0 kg/m2). The subjects were excluded either on the basis
of the criteria reported below or declined to participate. A portion
of the obese and normal-weight patients were included in two
previous studies (7, 8).

The exclusion criteria were: uncontrolled hypertension,
heart diseases, lung diseases, type 1 diabetes, uncontrolled type
2 diabetes, corticosteroids for systemic use, any medication
potentially affecting body weight or body composition,
cirrhosis and other chronic liver diseases, acromegaly,
hypothyroidism, acute illness, current or past presence of
hepatitis B surface antigen and antibody to hepatitis C virus,
excessive alcohol intake (≥140 g/week for men or 70 g/week for
women).

All patients underwent complete medical examination and
anthropometric measurements [body weight (kg), height (m),
waist circumference (WC) at the level of umbilicus (cm)]. Body
weight was measured by Tanita BWB-800A digital medical scale
(Tanita Corporation, Arlington Heights, IL, USA). BMI was
calculated by the formula weight (kg)/height(m)2.

Fasting plasma glucose (FPG, mg/dl) and insulin (mU/L),
total cholesterol (TC, mg/dl), high-density lipoprotein (HDL)-
cholesterol (mg/dl), low-density lipoprotein (LDL)-cholesterol
(mg/dl), triglycerides (TG, mg/dl), erythrocyte sedimentation
rate (ESR, mm/h), C-reactive protein (CRP, µg/L), fibrinogen
(g/L), and SIRT1 (ng/ml) were assessed after a 12-h overnight
fast. Plasma samples for SIRT1 analyses were frozen at −80◦C
until measurement. Because intermittent fasting might influence
the circulating levels of SIRT1, a special attention was paid to
withdrawing the blood at the same 12 h time interval from the last
meal for all patients. Dual energy X-ray absorptiometry (DXA)
body composition, echocardiographic epicardial fat thickness
measurements (mm) and liver adiposity by ultrasound were also
recorded.
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The estimated BMR value was calculated using the Harris
& Benedict equation and expressed in kcal/day. Following the
equations for men and women:

Men = 66.4+ 13.75×(Wt)+ 5×(Ht)− 6.8×(Age)

Women = 655+ 9.6×(Wt)+ 1.85×(Ht)− 4.7×(Age)

SIRT1 Assay
SIRT1 was determined by a monoclonal antibody-based ELISA
method using a commercially available human SIRT1 ELISA kit
(MyBioSource, Cod. GDMBS705558) with an inter- and intra-
assay coefficient of variation of 10 and 8%, respectively, and a
detection limit of 0.039 ng/mL.

Microtiter plates were coated with equal amount of primary
mouse anti-human SIRT1 monoclonal IgG. 100 µL standard
and plasma samples were pipetted in each well and the
protocol was followed by using secondary avidin conjugated
horseradish peroxidase. The formation of horseradish peroxidase
was measured at 405 nm using ELISA reader (Quanta Biotech,
UK). Seven different concentrations of purified SIRT1 (0.15,
0.312, 0.625, 1.25, 2.5, 5.0, and 10 ng/mL) were used to plot a
standard curve. A calibration curve was added to each plate used.

Body Composition Evaluation by DXA
Analysis
DXA was performed by one single experienced technician using
a DXA scan (Hologic Inc., Bedford, MA, USA, QDR 4500W).
The coefficient of variation for fat mass (FM) was <1.5%. Body
composition wasmeasured in the whole body and, with the use of
specific anatomic landmarks determined by a standard software
(Hologic Inc., S/N 47168 VER. 11.2), in the trunk, which included
neck, chest, abdominal, and pelvic areas. The upper perimeter
was the inferior edge of the chin and the lower borders intersect
the middle of the femoral necks without touching the brim of
the pelvis. Scans were performed according to the manufacturer’s
instructions.

Determination of Liver Adiposity
The determination of liver fat content was based on liver-kidney
contrast measured with ultrasonography by one single trained
radiologist with extensive experience in abdominal ultrasound
examinations. The analysis was carried out using a EsaoteMedica
apparatus equipped with a convex 3.5 MHz probe (Esaote
MyLab40, Esaote Europe B.V., The Netherlands). The severity
of liver adiposity was based according to the brightness of the
liver estimated as a numerical value: 0 = absent; 1 = mild lipid
accumulation; and 2=moderate/severe lipid accumulation.

Echocardiographic Epicardial Fat
Thickness Measurements
Epicardial Fat Thickness (EFT) wasmeasured through a validated
echocardiographic procedure (21). Participants underwent high-
resolution M-B-mode transthoracic echocardiography using a
2.5-MHz probe, and spectral Doppler exam of the common
carotid artery using a 7.5- MHz probe (Esaote MyLab40, Esaote
Europe B.V., The Netherlands). The EFT was identified as the
echo-free space between the outer wall of the myocardium and

the visceral layer of the pericardium, and its thickness was
measured perpendicularly on the free wall of the right ventricle
(RV) at end-systole in three cardiac cycles. The average value
of three cardiac cycles from each echocardiographic view was
considered. All echocardiograms were recorded by the same
experienced operator who was blinded to the other study data.

Statistical Analysis
Variables were expressed as mean ± SD. Differences between
groups were analyzed using Student’s T-test. Amatrix correlation
among variables was calculated. Each variable, in relation to
SIRT1, was tested by the use of regression analyses, taking
into account sex and age for their potential confounding
effect. Violations of normality of the regression models were
tested through the Shapiro-Wilk test. In the stepwise regression
analysis, we included significant (p < 0.05) predictors from
linear regression along with variables deemed important, a
priori, on clinical grounds. To avoid colinearity, the correlation
between variables was assessed and the more clinically relevant
variable of a pair of highly correlated variables was included. To
arrive to a parsimonious model, covariates were selected with
a stepwise regression procedure using backward elimination.
The parameters selected were age, sex, waist circumference, EFT,
liver steatosis, HDL-cholesterol, ESR, and basal metabolic rate.
All p-values presented were two-tailed, and values <0.05 were
considered statistically significant. Data were analyzed with the
use of STATISTICA software, version 6.1 (Stat Soft, Inc., Tulsa,
Oklahoma).

RESULTS

The characteristics of the study population, stratified according
to the patients BMI, are summarized in Table 1. Statistical
significances presented for participant characteristics are all
obtained from unadjusted analysis. The mean BMI was 16.22
± 2.44 kg/m2, 23.39 ± 1.24 kg/m2, and 40.95 ± 6.83 kg/m2 in
anorexic patients, normal weight and obesity group, respectively.
WC was constantly ≥80 cm in females and ≥94 cm in males
affected by obesity. The differences in weight, BMI, WC, EFT,
total-FM%, trunk-FM% were statistically significant (p < 0.001)
across the groups. BMR was significantly higher in obese patients
compared to underweight (p < 0.0001) and normal-weight
(p < 0.0001) patients and between underweight and normal-
weight patients as well (p < 0.05).

Circulating SIRT1 Levels
Underweight patients showed the highest values of SIRT1
followed by normal-weight and obese individuals. The
differences in SIRT1 levels were statistically significant between
obese subjects and both normal-weight (p = 0.002) and
underweight patients (p < 0.0001).

Fat Amount and Distribution
The characteristics of the adiposity of the patients are
summarized in Table 1. EFT, total FM % and truncal FM %
were significantly reduced in underweight patients compared
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to both normal-weight subjects and patients affected by obesity
(p < 0.001).

Both underweight and obese patients had an abnormally
high accumulation of liver fat evaluated by ultrasonography
compared to normal-weight. However, the degree of liver
steatosis was significantly lower in underweight patients (mild
degree) compared to obese patients (moderate/severe degree)
(p < 0.0001).

Metabolic and Inflammatory Parameters
There were important metabolic differences between the
categories of patients (Table 1). FPG was lower in underweight
patients compared to normal-weight and obese patients
(p < 0.0001). As expected, the highest basal insulin was found
in the obesity group. The differences in insulin levels between
underweight and normal-weight subjects (p = 0.013), and
between normal-weight and obese patients (p = 0.002) were
statistically significant.

LDL-cholesterol levels were comparable in underweight
and normal-weight patients, while obese individuals showed
higher values of both total and LDL-C (p < 0.05). Indeed,

TABLE 1 | Demographic, anthropometric and clinical characteristics of the

patients.

Variables Underweight

(n = 21)

Normal weight

(n = 26)

Obese subjects

(n = 75)

Age (years) 32.42 ± 14.62 42.53 ± 10.97 40.88 ± 12.59

Sex (male/female) 3/18 7/19 19/56

SIRT1 (ng/ml) 3.27 ± 2.98 2.27 ± 1.13 1.36 ± 1.31

Weight (kg) 43.79 ± 10.47 65.44 ± 6.71 114.98 ± 22.56

BMI (kg/m2) 16.22 ± 2.44 23.39 ± 1.24 40.95 ± 6.83

WC (cm) 66.76 ± 8.13 76.50 ± 8.61 125.86 ± 15.34

Fat Mass (%) 16.83 ± 6.21 25.90 ± 4.30 40.08 ± 5.34

Truncal Fat Mass (%) 12.04 ± 5.03 19.78 ± 3.06 38.39 ± 5.20

EFT (mm) 4.01 ± 0.62 6.86 ± 0.55 8.64 ± 0.86

Liver steatosis

(degrees)*

Mild Absent Moderate/Severe

FPG (mg/dl) 74.23 ± 8.84 96.84 ± 13.73 102.12 ± 20.82

Insulin (µIU/ml) 5.98 ± 3.90 8.97 ± 3.34 17.25 ± 13.65

HDL-C (mg/dl) 72.71 ± 15.81 50.38 ± 17.23 48.67 ± 12.90

LDL-C (mg/dl) 90.80 ± 48.60 103.73 ± 25.96 122.65 ± 28.62

Triglycerides (mg/dl) 99.52 ± 65.85 111.61 ± 44.24 139.62 ± 63.23

ESR (mm/h) 12.70 ± 11.03 22.80 ± 7.84 31.58 ± 18.14

CRP (µg/L) 712.5 ± 788.7 5065 ± 2358.6 6662.6 ± 4221.9

Fibrinogen (g/L) 2.89 ± 0.57 3.50 ± 0.70 3.84 ± 0.77

BMR (kcal/day) 1245.1 ± 149.3 1389.0 ± 303.8 1964.5 ± 349.7

SIRT1, sirtuin1; BMI, body mass index; WC, waist circumference; EFT, epicardial fat

thickness; FPG, fasting plasma glucose; HDL-C, high-density lipoprotein-cholesterol;

LDL-C, low-density lipoprotein-cholesterol; ESR, erythrocyte sedimentation rate; CRP, C-

reactive protein; BMR, basal metabolic rate. Values are expressed as means ± SD. *The

severity of liver adiposity was based according to the brightness of the liver estimated as

a numerical value: 0 = absent; 1 = mild lipid accumulation; and 2 = moderate/severe

lipid accumulation. For each variable, missing values were < 2%. Information on missing

values is therefore not provided in the table.

HDL-C was higher in anorexic patients compared to normal-
weight (p < 0.0001) and obese (p < 0.0001), while there
were not differences between normal-weight and obese patients
(p= 0.534).

Analogously, the triglycerides concentrations did not differ
between underweight and normal-weight subjects (p= 0.45), but
were significantly higher in patient affected by obesity compared
to normal-weight individuals (p = 0.03). All the markers of
inflammation followed a clear pattern with a statistical significant
increase from underweight, to normal-weight, to obese patients.

Regression Analysis
Table 2 shows the regression analysis results for each predictor
variable in relation to SIRT1 adjusted for age and sex. SIRT1
was inversely associated with EFT, total FM%, liver steatosis,
body weight, BMI, and WC. Concerning the metabolic variables,
SIRT1 was negatively associated with LDL-cholesterol, insulin,
and BMR. Finally, SIRT1 was inversely correlated with ESR.

There was no significant association between SIRT1 and
triglycerides, HDL-cholesterol, fasting glycaemia, trunk FM%,
fibrinogen and CRP.

Given that metabolic and inflammatory markers are
influenced by degree of adiposity, we ran an additional set of
analyses that included adjustment for WC, beyond age and
sex, to assess whether the associations observed for SIRT1 were
independent from adiposity. We found that the association
between SIRT1 and either inflammatory (ESR, CRP, fibrinogen)
or metabolic (FPG, insulin, HDL-cholesterol, LDL-cholesterol,
triglycerides) parameters was abolished once adjusted for WC,
suggesting that the major drive for the variation of circulating
SIRT1 levels is the adiposity per se (data not shown). WC was

TABLE 2 | Age- and sex-adjusted linear regression analysis of SIRT1.

Variables β Coeff. SE p

Weight (kg) −0.02 0.00 <0.001

BMI (kg/m2) −0.055 0.01 <0.001

WC (cm) −0.026 0.01 <0.001

Fat Mass (%) −0.060 0.02 <0.001

Truncal Fat Mass (%) 0.04 0.04 0.34

EFT (mm) −0.396 0.07 <0.001

Liver steatosis (degrees) −0.585 0.23 0.01

FPG (mg/dl) −0.010 0.01 0.26

Insulin (µIU/ml) −0.028 0.01 0.03

HDL-C (mg/dl) 0.019 0.01 0.07

LDL-C (mg/dl) −0.011 0.00 0.03

Triglycerides (mg/dl) 0.00 0.00 0.36

ESR (mm/h) −0.024 0.01 0.02

CRP (µg/L) 0.000 0.00 0.07

Fibrinogen (g/L) −0.38 0.20 0.06

BMR (kcal/day) −0.002 0.00 <0.001

BMI, body mass index; WC, waist circumference; EFT, epicardial fat thickness; FPG,

fasting plasma glucose; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density

lipoprotein-cholesterol; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein;

BMR, basal metabolic rate.
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adjusted for because WC is a reliable representative of adiposity
and SIRT1 expression parallels visceral fat.

Backward Stepwise Regression Analysis
Multivariate stepwise regression analysis was used to identify
factors that influence circulating SIRT1 across AN, obese and
normal-weight groups. We considered only a sub-set of the
variables initially tested in linear regressions for the backward
stepwise analysis (age, sex, WC, EFT, liver steatosis, HDL-
cholesterol, ESR and BMR), depending on both preliminary
statistics and clinical appraisal.

The results from the analysis provide the set of independent
variables that best explain the variance in plasma SIRT1 levels in
the current sample, although the results are limited by the small
sample size. In the study population, age and EFT were the sole
determinants of circulating SIRT1 with a β-coefficient of −0.026
(p = 0.025) and −0.516 (p = < 0.001), respectively, and a R2

value of 0.3698 (Table 3).

DISCUSSION

In this study, we compared the circulating levels of SIRT1
in condition of deficiency, normal content or excess body fat
in underweight, normal-weight, and obese patients. We found
a significant negative correlation between plasma SIRT1 and
adipose tissue, with the highest levels observed in participants
with extremely reduced fat content (Figure 1). This observation
is novel and opens new questions dealing with the regulation of
SIRT1 production and its function in relation to adipose tissue.

Several studies have provided insights into the mechanisms
underlying endocrine, metabolic, and adaptive changes in states
of chronic starvation (22).

SIRT1 concentrations were negatively correlated with
insulinemia and LDL-cholesterol. This is likely explained by the
compelling evidence that SIRT1 overexpression offers substantial
benefits on serum cholesterol and insulin levels and increased
resistance to high-fat diet induced glucose intolerance and
insulin resistance (23–25). No association was found between
SIRT1 levels and triglycerides, although contradictory results
have been obtained with resveratrol, a potent SIRT1 activator,
that was found either to reduce (26) or to have no effects (27) on
plasma triglycerides.

TABLE 3 | Stepwise multiple regression analysis results to identify predictor

variables associated with circulating SIRT1 (ng/ml).

Variables β Coeff. SE p

Age (yr) −0.026 0.011 0.025

EFT (mm) −0.516 0.083 <0.001

EFT, epicardial fat thickness. Variables included in the starting model for circulating

SIRT1 were: age, sex, waist circumference, EFT, liver steatosis, high-density lipoprotein

cholesterol, erythrocyte sedimentation rate and basal metabolic rate. We left in the

model all variables that met the 0.15 significance level for entry into the stepwise model.

R-squared value = 0.3698.

SIRT1 is an essential negative inflammatory regulator in
high-fat diet or alcohol induced fatty liver diseases, mainly
through deacetylating NF-κB and down-modulating NF-κB
transcriptional activity, thereby reducingmacrophage infiltration
and pro-inflammatory cytokines production in the liver as well
as in the adipose tissue (28). Indeed, in line with other studies
(29, 30), we found that underweight patients were less inflamed
compared to normal-weight and obese patients and ESR was
inversely associated to the pattern of SIRT1 and proportional to
fat mass. This coincides with the assumption that obese patients,
generally, show a pro-inflammatory phenotype and express less
SIRT1 than lean subjects.

It is worth to be mentioned that additional adjusted regression
models for WC, a reliable predictor of visceral adiposity,
abolished the association between SIRT1 and inflammatory and
metabolic parameters, indicating that fat content is the most
relevant determinant of SIRT1 circulating levels in this study.

In the stepwise regression analysis, epicardial fat, out of
all the markers of adiposity included in the study whose
expression is linearly associated with SIRT1, is the variable
most strongly associated with SIRT1. The strict association
between EFT and blood SIRT1 was not unexpected, being
already seen previously (8). But, then again, human studies have
shown that SIRT1 is expressed in visceral adipose tissue and
reduced by obesity (31) and echocardiographic measurement

FIGURE 1 | Graphical representation of the inverse relationship between

circulating levels of SIRT1 and weight, fat abundance and distribution,

inflammatory, and metabolic parameters in underweight, normal weight, and

obese individuals.
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of epicardial fat can provide a more specific and sensitive
measurement of intraabdominal visceral fat (32). Therefore, a
possible explanation for the preferred association between EFT
and SIRT1 might depend on the robust representativeness of
epicardial fat as visceral fat as opposed to other measures of
adiposity used and SIRT1. In line with previous studies (8),
partly based on the same study sample, the inverse relationship
between SIRT1 and EFT adds a new potential mechanism to
the evidence supporting the role of epicardial adipose tissue
in the development of atherosclerosis and its complications,
inflammation, and metabolic syndrome in obese patients.

Furthermore, it is relevant the negative association seen
between age and circulating SIRT1 levels. This observation
confirms what previously reported in a comprehensive study
aimed at identifying the pattern of serum SIRT1 activity
according to age (33).

Individuals with AN have lower resting energy expenditure
than normal-weight controls (34) and CR is a powerful stimulus
for SIRT1 activation (18), likely an adaptive mechanism to
preserve energy for vital functions. Accordingly, in SIRT1
gain-of-function transgenic mice, SIRT1 behaves as a “thrifty
gene” that protects against metabolic diseases by instructing the
organism to limit energy consumption and expenditure (23).
Although our data are purely associative in nature, they seem to
confirm the hypothesis that SIRT1 levels have the tendency to
match with energy saving since the higher the SIRT1 values the
lower the BMR values. Further studies to reveal the relationship
between SIRT1 and BMR are warranted.

Although dysregulations of peripheral adipokines, gut-
secreted peptides and central neurotransmitters involved in
appetite modulation have been detected in patients with
AN (35), the significance of these derangements for the
development, course and prognosis of eating disorders is
still not clear. Actually, there are no conclusive data as to
whether alterations of feeding regulatory substances precede
the appearance of an eating disorder or are the consequence
of the nutritional aberrations occurring in the disorder. It has
been suggested, although not definitively proved, that those
alterations, even when secondary to malnutrition and/or to
aberrant eating behaviors, might contribute to the genesis
and the maintenance of some symptomatic aspects of AN,
thus affecting the course and the prognosis of the disease.
Whether the high levels of circulating SIRT1 in AN individuals
is a consequence of the feeding behavior of these patients
and whether they may modulate eating-related or non-eating-
related psychopathological aspects of AN deserve to be deeply
investigated. Interestingly, hypothalamic SIRT1 stimulates food
intake and weight gain (36), raising the hypothesis that
forms of AN might associate with SIRT resistance. These
considerations may be an interesting starting point to study
whether SIRT resistance might play a role in the pathogenesis of
AN.

SIRT1 is found in a wide range of tissues and organs,
highly expressed in liver and adipose tissue and regulated
by nutritional status. In general CR stimulates SIRT
expression (17, 18, 37) while high calorie diet reduces it.
Thus, SIRT1 tissue expression and activity is influenced

by the availability of energy suggesting that SIRT1 could
have a role in the regulation of normal energy balance.
Accordingly, plasma SIRT1 levels and fat mass are inversely
regulated, with SIRT1 concentrations being increased in a
catabolic condition and decreased in conditions of extreme
BMIs.

Remarkably, CR dependent changes occur in a highly tissue-
specific manner, as demonstrated by comparing circadian gene
expression in the liver vs. epidermal and skeletal muscle stem cells
(38). De novo oscillating genes under CR show an enrichment in
SIRT1 targets in the liver due to enhanced SIRT1 activity (39).
Therefore, we hypothesize that the increased circulating SIRT1
levels recorded in severely underweight patients may reflect the
reorganization of metabolic pathway linked to SIRT1 in the liver
of calorie restricted anorexic individuals.

The measurement of the circulating SIRT1 in severely
underweight patients may provide new pathogenetic hypothesis
for some of the features of AN.

Limitations of our study are the relatively small number of
study subgroups and the use of calculated BMR values. Moreover,
males and females were not analyzed separately because of the
scarcity of males in our sample. We recognize that our results
and conclusions are based on observational data and that the
associations between SIRT1 levels and the variables measured
do not establish causative roles. The strength of our study is the
separation and comparison of different weight subgroups.

In conclusion, circulating SIRT1 inversely parallels the entire
spectrum of fat phenotype, basal metabolic rate, inflammatory
status, and eating behavior from anorexia to obesity through
normal weight.
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