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Abstract: Modern software applications increasingly benefit from accessing the
multifarious and heterogeneous Web of Data, thanks to the use of Web APIs and
Linked Data principles. In previous work the authors proposed a platform to develop
applications consuming Linked Data in a declarative and modular way. This paper
describes in detail the functional language the platform gives access to, which is based on
SPARQL (the standard query language for Linked Data) and on the dataflow paradigm.
The language features interactive and meta-programming capabilities so that complex
modules/applications can be developed. By adopting a declarative style, it favours the
development of modules that can be reused in various specific execution contexts.
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1 Introduction

Modern software applications increasingly rely on the
consumption of multiple and heterogeneous sources of
data, which are often online. This trend challenges the
classical model of client/server applications, typically
based on a centralized database and an enclosed set of
modules representing the logic of the system.

Two complementary paradigms are changing the
organization and distribution of data: (1) the ubiquity of
Web APIs as the primary means to access a distributed
and mutating landscape of data-sources; (2) the slow,
but growing, adoption of Semantic Web technologies
and principles to represent, in a non-centralized way,
the connections and relationships among different data
sources, collectively composing the Linked Data.

For software logic, there is a trend in modularization
and distribution at the Web scale, too. Modern package
managers, like npm or Maven, simplify the process
of using external libraries, favouring the progressive
atomization of modules that tend to offer minimal sets
of functionalities. The role of the developer is then
increasingly concerned with choosing and composing
existing modules, rather than developing new solutions
based on monolithic languages and standard libraries.

Still, reuse of logic across different contexts is
hindered by ties to specific execution paradigms.
For example, in imperative programming, a module
written for synchronous use must be rewritten to be
used in an asynchronous way. This paper, arguing
that reuse of application logic may be facilitated

by the use of declarative forms of programming,
describes a development platform, the Semantic Web
Open datafloW System (SWOWS), with an underlying
dataflow computational model making use of existing
Semantic Web standards, which allows distribution and
integration of the application logic, while providing
easy and transparent access to Linked Data. Data and
logic can thus be seen as SWOWS modules which can
interoperate and be integrated in several ways.

SWOWS uses a specific language, called DfPL, for
Dataflow Programming Language, equipped with two
equivalent forms of syntax: one which is expressed in
RDF and is based on a specific ontology, and one
which uses visual primitives and constructs to express
a computation. Previous works introduced the first
versions of the language and of the platform [Bottoni
et al., 2013, Bottoni and Ceriani, 2014a], then extended
them to allow for dynamic programming [Bottoni and
Ceriani, 2014b]. This paper provides details on this
extension, concerning the definition of both the ontology
and the visual components.

The rest of the paper is organised as follows. After
discussing some technological background in Sect. 2,
Sect. 3 presents a motivating example. Related work is
discussed in Sect. 4, while Sect. 5 presents the language,
the semantics of which are specified in Sect. 6. Sect. 7
describes the proposed platform and its user interface,
with hints on its implementation given in Sect. 8. Finally,
Sect. 9 discusses conclusions and future work.
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2 Technological Background

The DfPL language and the SWOWS platform are
based on existing Web and Semantic Web standards
and technologies. In this section the main adopted
technologies are briefly described.

2.1 RDF

The Resource Description Framework (RDF) [Klyne
et al., 2004] is a model for structuring data on the Web,
designed as basic layer for the Semantic Web [Berners-
Lee et al., 2001]. In the RDF data model, knowledge
is represented via statements about resources, where a
resource is an abstraction of any piece of information to
be modeled. An RDF statement (also called a triple) is
composed of subject (a resource), predicate (specified by
a resource as well) and object (a resource or a literal, i.e.
a value from a basic type). An RDF graph is therefore a
set of triples. Resources in a graph can be identified by
a URI if they have meaning outside of that graph, or by
a local identifier otherwise (in which case they are called
blank nodes). The resources used to specify predicates
are called properties. A resource may have one or more
types, specified by the predefined property rdf:type. An
RDF dataset is a set of graphs, each one associated with
a different name (a URI), plus a default graph without
a name. RDF is used through the platform to represent
any kind of information and its transformations.

2.2 SPARQL

SPARQL is the standard query language for RDF
datasets [Harris et al., 2013]. It has a relational algebra
semantics, analogous to those of traditional relational
languages such as SQL. A SPARQL Construct takes
as input an RDF dataset and produces an RDF graph.
While the SPARQL Query Language is “read-only”,
the SPARQL Update standard [Schenk et al., 2013]
enables updates of an RDF graph store, the “modifiable”
version of an RDF Dataset. A SPARQL Update
request is composed of SPARQL Update operations,
each describing a specific type of update on the RDF
graph store. The current version of the standard is
SPARQL 1.1, but much of the existing work in literature
refers to SPARQL 1.0 [Prud’hommeaux and Seaborne,
2008]. SPARQL 1.1 algebra offers an expanded set of
operators, effectively allowing the expression of a new
class of queries. SPARQL is the basis for DfPL, which
define Linked Data applications through a network of
SPARQL queries and SPARQL Update requests.

2.3 Rich Web Clients

The ubiquity of Web browsers and Web document
formats across a range of platforms and devices
drives developers to choose to build applications on
the Web and its standards. From the point of view
of the requirements for browser, there has been a

dramatic change from the first days of the Web.
Nowadays, a browser is an interface to an ever
growing set of client capabilities. All modern browsers
natively support the Scalable Vector Graphics (SVG)
standard [Dahlström et al., 2011], an XML-based
language representing mixed vector and raster content.
Together with the long established Document Object
Model (DOM) Events [Pixley, 2000, Kacmarcik et al.,
2000] and JavaScript support, it allows the realisation of
complete interactive visualisation applications. Indeed,
JavaScript libraries for interactive data visualization are
proliferating, from standard visualisations [Google, 2010,
Belmonte, 2011, Bostock et al., 2011] to specialized
visualisations for specific domains [Smits and Ouverney,
2010], leveraging especially SVG technology.

3 An Example Application

As a concrete example, the general design of an example
Web application, PoIShow, is discussed. PoIShow will
present to users points of interest (POIs) close to their
current location. The data for these POIs may be taken
from different data sources containing information on
geo-located places. In the case of multiple data sources,
the data could be integrated either by materializing
a local view or by requesting the resources from the
sources on demand. For the sake of simplicity, it is
assumed that data come from a single source: Wikidata,
a collaboratively edited knowledge base operated by
the Wikimedia Foundation (sort of ”the Wikipedia of
the Data”) for which a public SPARQL endpoint is
available, although a private replica of the relevant part
of Wikidata could be used as well.

The Graphical User Interface (GUI) of PoIShow will
provide a presentation of the POIs dynamically found
in an area centred on the user, for example in the form
of a simple list with a short description of each POI, or
of a map with icons corresponding to the POIs in the
corresponding positions. Upon activation, and whenever
the user position changes, PoIShow will need to update
the POI list/map by executing the corresponding query
on the Wikidata SPARQL endpoint.

Using established methods, PoIShow will typically
consist of three main components: client-side, a single
page HTML+CSS+JavaScript application interacting
with the back-end to get data; front-end, the server-side
application that generates the client-side code to be sent
to the client; back-end, the server-side application that
gives access to data, by relying requests as queries to
the SPARQL endpoint. It should be noted that while
the client-side is certainly needed, each of the other two
components could possibly be dispensed with: the front-
end could be absent if no logic is needed to generate the
client-side, i.e. all the Web resources are static; the back-
end could be avoided by accessing directly the SPARQL
endpoint from the client-side.

In any case the application logic will have to
guarantee the following activities: 1. build the query,
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including binding some latitude/longitude variables with
the location of the user; 2. run the query against the
endpoint and get the results (the POIs); 3. update the
client-side view based on the loaded POIs; 4. upon
changes in the user’s location, reiterate the procedure.

The essential aspect of this logic is that a new query
is dynamically created each time, so that a suitable
mechanism is needed.

To that, it should be added that different categories of
POIs can be defined, corresponding to different filters on
the geo-localised data available from Wikidata. Finding a
way to represent these filters, and devising a mechanism
to build the dynamic query according to both the used
filters and the user position, adds another layer of
complexity to the application.

In DfPL, queries and transformations are represented
in RDF, and hence first class citizenships, like any other
RDF graph of data. An application such as PoIShow can
be programmed and modified incrementally in a natural
way, by leveraging functionality, modularity, and meta-
programming capabilities of DfPL.

4 Related Work

This section reports on usage of declarative languages
and paradigms in the context of applications that
consume Linked Data.

4.1 View Definition Languages

Several languages have been proposed for the definition
of SPARQL views, in a way analogous to SQL views. A
SPARQL view is a graph intensionally defined through
a SPARQL Construct query; the input dataset of
the query can be composed by both “real” graphs
(extensionally defined) and views.

RVL [Magkanaraki et al., 2003] is an early effort,
using an imperative language for defining views
based on an independently defined query language
(RQL [Karvounarakis et al., 2002]). Views are associated
with “namespaces” (identified through unique URIs),
representing virtual RDF/S datasets. Namespaces
can be both extensionally and intensionally defined,
as RQL queries of other namespaces. The query
language offers some relations and operators to deal
with RDF/S concepts (rdf:type, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:domain, rdfs:range).

vSPARQL [Shaw et al., 2011] is an extension of the
SPARQL 1.0 grammar allowing named views defined
with Construct queries and reusable in other queries.

Schenk and Staab, working on Networked
Graphs [Schenk and Staab, 2008], propose an RDF-
based syntax to specify views as graphs resulting from
the execution of SPARQL 1.0 Construct queries on
explicitly identified graphs and other views. Although
powerful enough to define read-only applications
(possibly together with visualization tools described
below), network of views do not easily model interactive

applications. In particular, they face the problem of how
to represent events and time-dependent information,
including the application state.

4.2 Pipeline Languages and Linked Data
Visualization Tools

Two pipeline languages have been proposed for
the (visual) specification of RDF transformations,
namely DERI Pipes [Le-Phuoc et al., 2009] and
SPARQLMotion [Knublauch et al., 2010]. They offer
a set of basic operators on RDF graphs to build the
pipelines, which are then typically executed in the
context of a batch or Web application (within a Web
site or a Web service), in response to GET or POST
requests. Both languages are endowed with a graphical
environment to create the pipelines using the available
operators (free for DERI Pipes, in a commercial software
for SPARQLMotion).

In DERI Pipes, pipelines are defined in XML, with
SPARQL queries in textual form. The set of operators
includes one that loads RDF graphs from files or as
result of a query to a SPARQL End Point (FETCH), one
that transforms RDF graphs using SPARQL Construct

queries (CONSTRUCT) and one that merges a set of
RDF graphs into one (MIX). The operators have no side-
effects and the pipelines are stateless.

In SPARQLMotion, both pipelines and queries
are represented in RDF (for queries using the
SPIN-SPARQL syntax [Fürber and Hepp, 2010]).
SPARQLMotion has operators similar to DERI Pipes
together with a number of operators converting to and
from a number of data formats (XML among them)
and RDF. The main difference with DERI Pipes is the
presence of operators with side-effects, e.g. to save to file,
update the active RDF Graph, or send emails.

Visualbox [Graves, 2013] and Callimachus [Battle
et al., 2012] have been explicitly developed for
linked data visualisation. In their two-step model/view
approach, SPARQL queries select data and a template
language generates the (XML-based) visualisation.

SPARQL Web Pages (SWP) is an RDF-based
framework (to be used with SPARQL Motion or on its
own) to describe and render HTML+SVG visualisations
of linked data. HTML and SVG are mapped to
two corresponding vocabularies and, together with the
UISPIN Core Vocabulary, allow the association of a RDF
resource with the description of its visualisation. The
description may be also statically associated with a class
of resources, with each specific resource mapping defined
through a SPARQL query (in SPIN-SPARQL syntax).

In all these proposals, the execution model
corresponds to the management of a single HTTP
request, as with typical application server technologies
like Java Servlet or PHP. Persistence and logical
relationships between requests and client state must be
managed explicitly (e.g. saving/loading data related to
a session and encoding parameters in requests).
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4.3 RDF-Based Transformation Languages

Besides Networked Graphs and SPARQLMotion,
other proposals for RDF-based declarative languages
operating on RDF include the functional and stack-
oriented Ripple language [Shinavier, 2007], which takes a
resource-centric approach (in contrast with the SPARQL
relational approach) and a language to apply Algebraic
Graph Transformations to RDF Graphs [Braatz and
Brandt, 2010]. These otherwise interesting alternative
approaches are impervious from the point of view of the
developer, because of the need to learn from scratch a
non-standard language.

4.4 Dynamic Query Generation

Generation/manipulation of queries at runtime is widely
used both in SQL and in SPARQL. Several systems
(for a SPARQL example, see Jena [McBride, 2002])
provide basic support in the form of parameterised
queries, in which some parameters are bound (via
some external mechanism) to actual (scalar) values at
execution time. This mechanism is not sufficient when
the structure of the query must be changed dynamically
(e.g. for multiple or complex search criteria and/or
ordering rules). Generic dynamic query generation is
usually achieved through string-based, semantically-
unaware manipulation, or through a programmatic
interface offered by the host language. There have
been efforts to represent queries using semantically rich
structures not tied to a specific host language [Van den
Bussche et al., 2005], e.g. the already mentioned
SPIN-SPARQL [Fürber and Hepp, 2010] vocabulary
for SPARQL. While this vocabulary potentially allows
dynamic query generation, its use for this purpose
is documented only for a specific case of query
rewriting [Follenfant et al., 2012] (SPIN-SPARQL
vocabulary is as a fact widely used, but mainly as a way
to attach SPARQL rules to RDF resources).

5 Language Description

This section describes the Dataflow Pipeline Language
(DfPL), a declarative language for RDF-based
applications.

As DfPL is aimed at creating applications and
modules that can be shared and reused, any module
should be as independent and self-contained as possible.
Hence, DfPL is built using side-effect-free operators.

While languages considered in Sect. 4 are either
stateless or have operators with side-effects that modify
the system state, e.g. updating some RDF Store, DfPL
offers special operators (like the simple graph store) to
define a portion of the application state. In other words,
the state is distributed and bound directly to the related
functional module.

In DfPL the basic functional module is the Dataflow.
A Dataflow defines how to build an output RDF

dataset from an input one, through a configuration RDF
graph, called the dataflow graph. The content of the
output dataset is defined as the result of the cascaded
application of graph operators to the input dataset.

5.1 Dataflow Ontology

The syntax for specifying a dataflow is based on a
suitably defined ontology, with namespace http://www.

swows.org/2012/06/dataflow, denoted in this paper
by the prefix df:. The ontology reuses classes and
properties from the SPIN SPARQL Syntax [Fürber and
Hepp, 2010] (http://spinrdf.org/sp, prefix sp:).

The classes defined by the ontology are described in
Table 1, which also shows the hierarchy relations between
classes – represented with rdfs:subClassOf. Table 2
shows their properties, presenting for each property its
domain, along with the range and cardinality restrictions
associated with it – domain and range are represented
with RDFS, while restrictions on the corresponding
domain are represented with OWL. A dataflow is
described using a resource of type df:Dataflow. The
property df:hasComponent associates a dataflow resource
with each of its components.

A resource corresponding to a component of the
dataflow must have as type one of the (disjoint)
subclasses of the class df:DataflowComponent. Of special
interest are the resources of class df:Transformer. They
read the input RDF dataset from another component
and apply a transformation on it, defined via a resource
of type df:DatasetTransformation. This resource can be
in the same RDF graph as the dataflow, connected
with the property df:inlineConfig, or in an RDF
graph dynamically generated by another component,
connected with the property df:config. In the latter
case the property df:configRoot is used to identify the
dataset transformation resource in the RDF graph. The
df:DatasetTransformation class is subclassed to provide
four kinds of transformation. Three of the subclasses,
sp:Construct, sp:Select, and sp:Update, are SPIN SPARQL
classes used to describe a query or an update request in
the SPIN SPARQL Syntax. They are interpreted so that
the request is executed against the input RDF dataset
and the output is defined in the following table:

Operation Output
CONSTRUCT query query result
SELECT query query result represented as RDF graph
update request the input RDF dataset after applying

the update request

Finally, df:DatasetTransformation is subclassed also
by df:Dataflow, used to describe the transformation
through a dataflow, following the syntax described in the
present section. By using a dataflow as an RDF dataset
transformation, it becomes possible to build a dataflow
composing other (sub)dataflows.

The df:Transitioner is the dataflow component
dealing with the internal state of the dataflow. It
maintains its output until the input changes, at which
point the input is propagated to the output but with a
new timestamp – meaning that a transition has occurred.

http://www.swows.org/2012/06/dataflow
http://www.swows.org/2012/06/dataflow
http://spinrdf.org/sp
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Table 1 Classes of the dataflow ontology (only direct relationships are shown).

Class Name Description has super-classes
df:GraphProducer has an RDF graph as output
df:GraphConsumer has an RDF graph as input
df:DatasetProducer has an RDF dataset as output
df:DatasetConsumer has an RDF dataset as input
df:DatasetTransformation a transformation from an RDF dataset to another

a dataflow, described through its components
df:DatasetTransformation

df:Dataflow df:DatasetConsumer
df:DatasetProducer

df:DataflowComponent a component of a dataflow
df:GraphNamer

gives a name to a graph for building an RDF dataset
df:DataflowComponent
df:GraphConsumer

df:NamedGraphSelector
selects a named graph from an RDF dataset

df:DataflowComponent
df:GraphProducer

df:DefaultGraphSelector
selects the default graph from an RDF dataset

df:DataflowComponent
df:GraphProducer

df:ConstantTriple
generates an RDF graph consisting of a single triple

df:DataflowComponent
df:GraphProducer

df:Merger
applies the RDF union operation to all the input RDF graphs

df:DataflowComponent
df:GraphProducer

df:Transformer
applies a df:DatasetTransformation on the input RDF dataset,
obtaining another RDF dataset in output

df:DataflowComponent
df:DatasetProducer
df:DatasetConsumer

df:Transitioner
if the input is changed, copy it to the output performing a transition to
a new state

df:DataflowComponent
df:GraphProducer
df:GraphConsumer

df:SingleGraphStore based on the effect of a df:DatasetTransformation on the default
graph, performs a transition on the state of an initially empty local
graph; it is just syntactic sugar on top of a df:Transformer and a
df:Transitioner

df:DataflowComponent
df:GraphProducer
df:DatasetConsumer

df:NumericRange df:DataflowComponent
df:GraphProducer

sp:Construct describes a SPARQL CONSTRUCT query df:DatasetTransformation
sp:Select describes a SPARQL SELECT query df:DatasetTransformation
sp:Update describes a SPARQL update request df:DatasetTransformation

Table 2 Properties of the dataflow ontology (only direct relationships are shown).

Property Name Description Domain Range & Cardinality
df:hasComponent component of dataflow df:Dataflow df:DataflowComponent 0–∞
df:input

input RDF graph
df:GraphConsumer df:GraphProducer 1
df:Merger df:GraphProducer 0–∞

df:defaultInput default graph for input RDF dataset df:DatasetConsumer df:GraphProducer 0–1
df:namedInput named graph for input RDF dataset df:DatasetConsumer df:GraphNamer 0–∞
df:name

name of named graph
df:GraphNamer xsd:anyURI 1
df:NamedGraphSelector xsd:anyURI 1

df:datasetProducer
associated RDF dataset producer

df:DefaultGraphSelector df:DatasetProducer 1
df:NamedGraphSelector df:DatasetProducer 1

df:subject subject of triple df:ConstantTriple 1
df:predicate predicate of triple df:ConstantTriple 1
df:object object of triple df:ConstantTriple 1
df:config

input from which configuration graph is read
df:Transformer df:GraphProducer 0–1
df:FixpointFinder df:GraphProducer 0–1

df:configRoot relevant resource in configuration graph,
must be of type
df:DatasetTransformation

df:Transformer xsd:anyURI 0–1
df:FixpointFinder xsd:anyURI 0–1

df:inlineConfig configuration resource, directly in current
graph

df:Transformer df:DatasetTransformation 0–1
df:FixpointFinder df:DatasetTransformation 0–1
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The aforementioned df:SingleGraphStore is defined
as syntactic sugar on top of the df:Transformer

and df:Transitioner components. Specifically, a
df:SingleGraphStore can be represented by a
df:Transformer, whose output default graph is sent to a
df:Transitioner and then feedbacked as its input default
graph. So, for example, each occurrence of

1 ? s a df : S ingleGraphStore ;
2 df : i n l i n e C o n f i g ? c ;
3 df : namedInput ? i .

can be interpreted as replaced by

1 ? s a df : Tran s i t i one r ;
2 df : input [
3 a df : Defau l tGraphSe lector ;
4 df : datasetProducer [
5 a df : Transformer ;
6 df : i n l i n e C o n f i g ? c ;
7 df : de f au l t Input ? s ;
8 df : namedInput ? i ] ] .

The classes df:(Graph/Dataset)(Producer/Consumer)
represent different roles in a dataflow and are subclassed
by the specific component classes. In particular, a
df:Dataflow resource is in turn both a df:DatasetProducer

and a df:DatasetConsumer for its internal components. It
produces the input RDF dataset to be transformed and
consumes the output RDF dataset.

The dataflow obtained by excluding df:Transitioner

components (hence df:SingleGraphStore components) is
required to be acyclic. This requirement will affect
the language semantics, in the sense that no recursive
computations can be made without triggering a state
transition event.

5.2 XML DOM Elements

As many of the intended applications of DfPL rely on
XML formats, RDF graphs are used also to represent
XML documents. Hence, an ontology to describe
XML documents in RDF has been defined (namespace
http://www.swows.org/2013/07/xml-dom and prefix
xml:), based on the XML Document Object Model
(DOM) [Apparao et al., 1998].

The ontology offers classes such as xml:Element,
xml:Attr, xml:Text for representing the basic XML node
types. The engine provides also some methods to avoid
explicitly subclassing the known elements, so that they
can be used directly.

The hierarchical relation between DOM nodes is
represented using the property xml:hasChild. In case
the relative order of the children in the DOM tree is
important, there are two ways to express it: 1) using
the xml:orderKey property on each child one wants to
order, or 2) using the xml:childrenOrderedBy property
on the parent. The xml:childrenOrderedBy property takes
as value the name of the property that will be used
to order the children. In both cases, elements are
ordered following the semantics of the operator < in
SPARQL; the order can be reversed to descending,
by using the xml:childrenOrderType property with the
value xml:Descending on the parent. This allows SPARQL
developers to flexibly define orders, instead of being

forced to indicate the exact index of a child or to create
a linked list of children. Moreover, in this model, a single
RDF node can be used as child of different parents,
and thus converted into different XML DOM nodes
(this can be useful if the same DOM subtree is needed
in different places of a document) that can be even
ordered in different ways (depending on the properties
of each parent). If an element uses an id attribute, this
corresponds, in the RDF model, to a resource with the
URI for the fragment identifier syntax in XML. This
allows easy reference from SPARQL queries to specific
elements inside a XML document.

5.3 DOM Events

In order to bridge SWOWS to existing event
management infrastructures, another ontology has been
defined to represent DOM Events [Pixley, 2000], from
generic to specific ones, e.g. mouse events, mimicking the
interfaces of the W3C DOM standard. In the output,
each node of type xml:Element can have one or more
values for the property xml:listenedEventType, describing
the event types that the application needs to listen to.

5.4 Application Context

A dataflow can be designed just for reuse by other
dataflows. If a dataflow has to be executed as a complete
application (i.e. it is a top-level dataflow), its inputs
and outputs will depend on its context of use. The
engine running the dataflow may provide adapters for
different contexts. Here the context of a GUI application
is considered.

For the developer of a GUI application, the output is
an image to be drawn in the application window while
the input is given by events generated by the system as
a result of user interaction.

The image is represented using HTML and
SVG [Dahlström et al., 2011]. The incoming events
are associated with RDF nodes corresponding to target
HTML and SVG elements.

The default graph of the input dataset contains
information about the latest event (if one has been fired
and it must still be used). Of the output dataset, also
the default graph is considered: it is the HTML+SVG
document, defined through the XML DOM ontology (see
5.2). The running engine has to generate and update the
screen graphics as this graph changes.

6 Language Semantics

This section describes the intended language semantics
for DfPL. An RDF time model is introduced, such that
dynamic RDF data sources may be considered, instead
of static RDF graphs. The semantics is first presented
for the stateless fragment and later extended to the full
language by adding a representation of state transitions.

http://www.swows.org/2013/07/xml-dom
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6.1 Time Model

In the standard terminology, an RDF source [Cyganiak
et al., 2014] is a mutable (in time) source of RDF graphs;
a snapshot of the state of an RDF source is an RDF
graph. The input dataset of a dataflow is a set of named
RDF sources plus a default RDF source; we can say that
this dataflow is “applied” to a set of RDF sources. The
result (represented by the output dataset) is another set
of named RDF sources.

Given a set T representing the time – the set of
instants one is interested in – an RDF graph source GS

is defined as a function

GS : T → G
t 7→ G

where G is the snapshot of GS at time t.
Similarly an RDF dataset source DS is defined as

DS : T → D
t 7→ D

where D is the snapshot of DS at time t.
An explicit characterization of instants and of the set

T is avoided by design. In a simple application, instants
can be timestamps generated by the local processor,
while in a more complex scenario, e.g. of a distributed
system and with time order critical, a centralized service
can generate representations for those instants. Even
with an explicit representation for the instants, the set
T is not necessarily fixed or uniquely defined.

The model of time that has been chosen is linear and
discrete, as typical for user interface event management
and data management models. Linearity means that
there is a total – chronological – order relation, <,
defined on T so that any two distinct instants can
be compared. Discreteness means that the variation
of content of a data source happens in a finite or
countably infinite set of instants. Two specific cases of
RDF graph sources are considered: RDF graph stream
(Rgs) and temporal RDF graph (tRg), which can be
both defined as an ordered sequence GS of pairs: GS =
((t1, G1), (t2, G2), . . . ), where ti ∈ T is a instant in time
such that ti < ti+1 and Gi is the snapshot at time ti, but
with two different interpretations:

• for an Rgs, Gi is associated only with the instant
ti and no content is associated with the instants
that are not in the sequence (in general {ti} ⊂ T );

• for atRg, Gi is associated with the open time
interval [ti, ti+1) – that is, valid until it changes –
so that every t ∈ T has some associated content.

Streams are used to model events, for which content
has meaning only while they are handled (for example,
for the application described in Section 3, they would
be user interface events). Temporal RDF graphs,
instead, represent content that changes in time, typically

depicting a state, internal or external to the application
(such as the current location in the example application).
Similar definitions can be applied on RDF datasets to
define temporal RDF datasets and RDF dataset streams.

The set T depends from the context in which
the source is used. It should also be noted that this
model of time is used in the language to coherently
define content modifications, event streams, and state
transitions. Hence the obvious limitation is that there is
no way to express the content of a source at an instant
t1 as depending from contents of any resource at any
instant t2 in the future ( t1 < t2 ).

6.2 Stateless Semantics

By excluding df:Transitioner components, one obtains
the stateless (combinatorial) and acyclic fragment of the
language. A stateless dataflow calculates the state of the
output RDF sources as a function of the state of the
input RDF sources. The semantics of these calculation
are given directly by the execution of the corresponding
SPARQL queries and the other stateless operators.

6.3 Semantics of Stateful Dataflows

The semantic interpretation for stateless dataflows with
internal stateless operators is easily extended to the
framework of RDF graph (dataset) sources. For all the
stateless components the output sequence of instants is
the (ordered) union of the input sequences; the snapshot
of the output at a certain instant can be computed from
the snapshot of the inputs at the same instant.

A stateful dataflow is one containing at least
an instance of the df:Transitioner component. To
interpret such a dataflow, one can assume that all
the df:Transitioner components are removed from the
dataflow, considering then each input (output) of a
df:Transitioner as an output (input) of the dataflow.
Whenever the input of the df:Transitioner changes, a new
instant is added to the sequence, meaning an action has
been executed.

Note that – due to state transitions – the output
sequence may contain more instants than the input. The
implementation may keep track of the last produced
output dataset to avoid generating the pair (t,D′) if D′

is not changed. In this case the output sequence may
contain fewer instants than the input.

It should be noted that the execution of the step
function is considered exclusive – it cannot be called
simultaneously by different processes for the same
dataflow instance. This means that if each event is
associated with a distinct time instant, the engine must
fully handle an event before considering the following
one. In practice – as some parts of a dataflow can be
independent from some inputs or certain changes – the
implementation may handle events in parallel as long as
the semantics are preserved.
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7 The SWOWS Platform

The proposed platform allows users to design and
execute linked data applications using DfPL. Users
create pipelines in a modular way via a visual
representation provided by a Web-based editor (see
Sect. 7.5), which in turn interacts with a pipeline
repository. At the back-end, the dataflow engine executes
the pipeline (after downloading the corresponding RDF
Graph from the repository) on a possibly separate server,
offering a Web-based interface as well. An edited pipeline
can be saved into a directly controlled repository, from
which it can be extracted to be used “as is” or to be
incorporated and reused in other pipelines.

7.1 The Repository

The pipeline repository is embedded in the Callimachus
web server [Battle et al., 2012], a Content Management
System based on linked data. Callimachus contains an
OpenRDF Sesame triple store, maintaining data that
represents the content structure. The actual content of
each uploaded file is stored in blobs (in the case of
RDF files both as blobs and as triples). Any content
that is managed by Callimachus is an instance of
specific OWL class such as Page, Folder, File, User
(full ontology at http://callimachusproject.org/

rdf/2009/framework).
The Web interface of Callimachus exposes the content

of a server instance in three ways:

• Web pages for view, creation, editing of resources
associated via templates to each class;

• REST API for programmatic access to resources,
also dependent on their class;

• direct SPARQL access to the triple store.

Callimachus applications are composed of instances
of existing classes, possibly new classes and supporting
resources and code. For the pipeline repository, a
Callimachus application has been developed: it contains
the new class SWOWS Pipeline, associated with the
pipeline editor code. A SWOWS Pipeline is represented
in Callimachus using DfPL and the vocabulary described
in the following section.

7.2 Pipeline layout representation

The pipeline is saved for execution using DfPL which,
however, does not directly represent how the pipeline
is visually manipulated in the editor. Hence, a different
vocabulary to represent the pipeline visual aspects
is added, with a one-to-one matching between visual
components and RDF representations. This also allows a
decoupling of the editor from the engine: the same editor
could generate executable programs according to other
syntaxes (e.g. SPARQLMotion syntax [Knublauch et al.,
2010]), while different kinds of editor could generate

dataflows. The ontology for this visual vocabulary is an
extension of: (1) the myExperiment ontology [Newman
et al., 2009] for dataflow components; (2) the Dublin
Core meta-data ontology; and (3) the GRAPHIC module
of Visualization Ontology (VISO) for describing data
visualizations [Polowinski and Voigt, 2013].

7.3 The Execution Engine

The dataflow engine is the software component that
executes DfPL pipelines. It downloads the pipeline
description and other file sources through URLs and,
during execution, it can connect to SPARQL endpoints
to get data on demand. The engine is neutral with
respect to the specific inputs and outputs used by a
dataflow, which are defined by the execution context.

7.4 Web Interface of the Engine

The Web interface of the dataflow engine consists of
a service that manages a pool of running dataflows,
identified by the dataflow graph URI and a unique code.
Currently, two operations are available:

• creation of a new instance of a dataflow,
returning the initial Web page together with added
JavaScript code to support interaction;

• pushing a user interface event to the input of an
existing instance of a dataflow and returning the
changes to be applied client side.

The content of the Web page sent to the client can
be any XML document represented by the vocabulary
described in Sect. 5.2, typically HTML and/or SVG.
The added JavaScript code manages the user interface
events and sends them to the server as RDF graphs. The
server replies with a piece of JavaScript code that, when
executed, changes the XML DOM as needed.

7.5 Editor User Interface

The editor is contained in a Web page (see Figure 1)
providing tools to create and modify dataflows saved
as RDF graphs on a Graph Store [Ogbuji, 2013]. The
dataflows are built visually as pipelines of components
that loosely correspond to the components in the
dataflow ontology.

The user interface of the editor is composed of:

• a component panel (left), with the available
components;

• the editor area (center), where the pipeline is built
by dragging, linking, and configuring the desired
components selected from the panel;

• the command panel (upper right), containing
buttons for operations related to the whole
pipeline, e.g. saving it or executing it;

http://callimachusproject.org/rdf/2009/framework
http://callimachusproject.org/rdf/2009/framework
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Figure 1 A screenshot of the Web-based editor.

• the helper area (bottom-left corner), for contextual
help on components.

The components are: 1. the default input graph
and the named input graphs, corresponding respectively
to the default graph and the named graphs of the
input RDF dataset; 2. the default output graph and
the named output graphs, corresponding respectively
to the default graph and the named graphs of the
output RDF dataset; 3. the transform processor, for
the df:Transformer component; 4. the single graph store,
for the df:SingleGraphStore component; and 5. file data
sources, RDF graphs generated by loading local or
remote files (serialized in one of the standard RDF
formats). Apart form file data sources, data from outside
the pipeline can be accessed through SPARQL Federated
Queries [Prud’hommeaux and Buil-Aranda, 2013], used
in transform processors or simple graph stores.

8 Implementation

The editor is a rich Web application with its client side
logic coded in HTML+CSS+JavaScript. The pipeline
repository is an instance of Graph Store that must be
located in the same host as the editor. The dataflow
engine is a Java based (using Apache Jena [McBride,
2002]) Web application maintaining the state of each
running pipeline instance; when a new instance is
launched (e.g., from the editor) the engine initialises the
pipeline and returns its output to the client, along with
JavaScript code to report handled events back to the
server; each time an event is fired on the client, the
dataflow engine is notified and answers with the changes
to be executed on the client content. On the client side,
any modern browser supporting JavaScript can use both
the editor and the generated application. The software
is free and available at http://www.swows.org/.

9 Conclusions and Future Work

The DfPL language, and the asssociated interactive
platform, SWOWS, for visual composition and execution
of sentences, are designed to build data manipulation
and visualisation applications through a declarative
approach, based on Semantic Web technologies as RDF
and SPARQL. The language is novel in being fully
based on SPARQL query language, while at the same
time providing support for interactive applications and
meta-programming techniques. While the language was
already introduced in previous work, in this paper
the RDF-syntax is fully specified and the semantics
described.
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