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Introduction

Described for the first time as an adenoviral E1A-binding pro-

tein,[1] p300/CBP is part of the histone acetyltransferase (HAT)

enzyme family together with another four families, including

GCN5-related N-acetyltransferase (GNAT), MYST, nuclear recep-
tor coactivators, and TATA-binding protein (TBP)-associated

factor TAFII.
[2] p300 acts primarily as a histone acetyltransferase

and has the ability to transfer an acetyl group from acetyl-

coenzyme A (Ac-CoA) to the histone e-NH2 group of the lysine
side chain as a means to remodel chromatin to a relaxed su-
perstructure. This modification results in a change in histone–

DNA and histone–protein interactions. Histone acetylation can
occur in promoter regions, at which p300 acts as a transcription
cofactor for a variety of nuclear proteins (including oncopro-
teins,[3] viral proteins,[4] and tumor-suppressor proteins[5]), or

over large regions of chromatin, and it affects global gene ex-
pression levels.[6] p300 substrates are not limited to histone

proteins but include more than 75 different proteins.[7] Notably,

the acetylation activity of p300 can also be addressed to viral
proteins such as HIV-1 integrase, which contributes significant-

ly to viral replication.[8] Moreover, an extensive autoacetylation
process occurs in an intermolecular fashion, which regulates

the activation state and the mediated transcriptional regula-
tion of p300.[9]

By acetylating different substrates, p300 is implicated in

a wide array of cellular processes, such as cell-cycle regula-
tion,[10] differentiation,[11] and DNA damage response,[12] and it

can promote opposite cellular outcomes such as proliferation
and apoptosis.[13] Because of the biological importance of

p300, alteration of the gene sequence (mutation, chromosomal
translocation, and dysregulation) is correlated to many disease

Human p300 is a polyhedric transcriptional coactivator that
plays a crucial role in acetylating histones on specific lysine res-

idues. A great deal of evidence shows that p300 is involved in

several diseases, including leukemia, tumors, and viral infec-
tion. Its involvement in pleiotropic biological roles and connec-

tions to diseases provide the rationale to determine how its
modulation could represent an amenable drug target. Several

p300 inhibitors (i.e. , histone acetyltransferase inhibitors, HATis)
have been described so far, but they all suffer from low poten-

cy, lack of specificity, or low cell permeability, which thus high-

lights the need to find more effective inhibitors. Our cinnamoyl

derivative, 2,6-bis(3-bromo-4-hydroxybenzylidene)cyclohexa-
none (RC56), was identified as an active and selective p300 in-

hibitor and was proven to be a good hit candidate to investi-

gate the structure–activity relationship toward p300. Herein,
we describe the design, synthesis, and biological evaluation of

new HATis structurally related to our hit ; moreover, we investi-
gate the interactions between p300 and the best-emerged hits

by means of induced-fit docking and molecular-dynamics sim-
ulations, which provided insight into the peculiar chemical fea-

tures that influence their activity toward the targeted enzyme.
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conditions, including cancer,[14] chronic neuropathic pain,[15]

and cognitive and neurodegenerative disorder.[16] Most recent-

ly, implication of p300 was also described in ventricular remod-
eling after myocardial infarction.[17]

p300 is characterized by highly conserved regions that can
be distinguished by four different functional domains: one,

a catalytic HAT domain, in which histone and protein acetyla-
tion occurs; two, four recognized transactivation domains that
mediate protein–protein interactions with DNA-binding tran-

scription factors and transcription machinery; three, the bro-
modomain, which recognizes histone acetylated tails ; four, the

cysteine–histidine-rich region. Recently, mutagenesis studies
and resolution of the structure of the semisynthetic heterodi-

meric p300 HAT domain in complex with Lys-CoA revealed the
catalytic mechanism of p300, for which the Tyr1467 and

Trp1436 residues were shown to play a significant role in the
acetylation reaction.[18] Tyr1467 was reported to guide and pro-
tonate the sulfur atom of Ac-CoA, whereas Trp1436 was de-

scribed to orient the lysine side chain for nucleophilic attack of
the Ac-CoA cofactor. More recently, the resolution of the crys-

tal structure of the p300 HAT domain bound to Ac-CoA con-
firmed this hypothesis and gave insight into the design of

p300 inhibitors.[19]

Owing to its relevant role in different pathological condi-
tions, HAT p300 is considered an amenable target, and its

modulation holds promise for future therapeutic strategies.[20]

The p300 inhibitors (i.e. , HAT inhibitors, HATis) so far described

comprise natural compounds, some of them supplied from di-
etary plants (e.g. , anacardic acid,[21] curcumin,[22] garcinol,[23] ep-

igallocatechin-3-gallate,[24] and plumbagin)[25] and synthetic

small molecules (e.g. , Lys-CoA,[26] C646,[27] isothiazolones,[28] and
cinnamoyl compounds).[29]

Nevertheless, in the field of HATis, a huge investigation
margin is left owing to the necessity to find other inhibitors

endowed with good pharmacokinetic and pharmacodynamic

profiles and to establish the exact inhibition mode toward
p300. In the last decade, our research group was involved in

the identification of HATis,[29] and among them, RC56 [2,6-bis-
(3-bromo-4-hydroxybenzylidene)cyclohexanone] was identified

as the most active and selective p300 inhibitor ; it showed cel-
lular activity by down regulation of the histone H3 acetylation

level. Most recently, RC56 was used as an investigation tool to
evaluate the acetylation level in H3K4 by p300 and the expres-

sion of the multidrug resistance (MDR1) gene in drug-resistant

and drug-sensitive breast carcinoma cell lines.[30] We consid-
ered RC56 a good hit candidate to investigate the structure–
activity relationship toward p300. Herein, we report the design
of new HATis 1 a–s and 2 a by addressing six modifications to
the RC56 structure involving both the benzylidene moiety and
the central cyclohexanone portion to evaluate the role of the

arylidene substituents, the central ring, and the carbonyl
group in inhibiting the enzymatic target. In particular, 1) the
bromine atom in the 3-position of the benzylidene portion

was substituted with other atoms or groups: F (1 b), Cl (1 c), I
(1 d), methyl group (1 g), hydroxy group (1 e), hydrogen atom

(1 a), and phenyl ring (1 f) ; 2) the hydroxy group in the 4-posi-
tion of the benzylidene portion was substituted with a bromine

atom (1 h) ; 3) a third substituent in the 5-position of the ben-

zylidene portion (Br, F, Cl) was introduced (1 i, 1 j) ; 4) the cyclo-
hexanone was reduced to cyclohexanol (2 a) ; 5) a carboxylic

acid function was introduced in the 4-position of the cyclohex-
anone ring (1 k, 1 l) ; 6) the cyclohexanone was substituted with

a five-membered ring (1 m) or tetrahydrothiopyranone (1 n)
and piperidinone (1 o–s) heterocycles. Thus, we report the syn-

thesis and biological evaluation of HATi 1 a–s and 2 a (Table 1).

All the synthesized compounds were tested on recombinant
p300 by using an in vitro radiometric assay. Cell-based assays

were performed with the most promising compounds to cor-
roborate and strengthen the activities. Moreover, theoretical in-

vestigation of the interactions between p300 HAT and the
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best-emerged hits (i.e. , 1 d and 1 i) was performed by means of

induced-molecular-modeling experiments.

Results and Discussion

Chemistry

Bis-arylidene derivatives 1 a–s were obtained by microwave-as-
sisted (for 1 a–j, 1 m, and 1 n) or acid-catalyzed (for 1 k, 1 l, and

1 o–s) condensation of the appropriate five- or six-membered
cycle (see Table 1) with the appropriate benzaldehyde follow-
ing a previously reported synthetic approach
(Scheme 1).[29, 31] Derivative 2 a was obtained by re-
duction of the carbonyl group of RC56 to a hydroxy
group in the presence of lithium aluminum hydride

(Scheme 2). All the benzaldehydes used as starting
materials were commercially available, except for 3 d
and 3 f. Benzaldehyde 3 d was obtained as reported
in Azoulay et al. ,[32] whereas 3 f was synthesized by
a Suzuki coupling reaction (Scheme 3).

Biological evaluation

Newly synthesized compounds 1 a–s and 2 a could be catego-
rized according to the nature of the central cycle (cyclohexa-

none derivatives 1 a–l, cyclopentanone derivative 1 m, tetrahy-
drothiopyranone derivative 1 n, piperidinone derivatives 1 o–s,

and cyclohexanol derivative 2 a). All of the compounds were
tested against recombinant p300 (0.025 mm) by using the stan-

Table 1. p300 inhibitory activity of compounds 1 a–s and 2 a in enzyme assays.

Compd X Y R1 R2 R3 Retaining activity [%][a] IC50 [mm][b]

1 a CH2 C=O H OH H 28.6
1 b CH2 C=O F OH H 6.3 38.9:10.1
1 c CH2 C=O Cl OH H 7.7 45.5:9.8
1 d CH2 C=O I OH H 5.8 8.1:2.1
1 e CH2 C=O OH OH H 89.0
1 f CH2 C=O Ph[c] OH H 92.2
1 g CH2 C=O CH3 OH H 3.0 26.8:11.2
1 h CH2 C=O Br Br H 85.1
1 i CH2 C=O Br OH Br 0 2.3:0.5
1 j CH2 C=O F OH Cl 41.1
1 k CH2CO2H C=O CO2H OH H 70.1
1 l CH2CH2CO2H C=O OH OH H 128
1 m 0 C=O Br OH H 41.2
1 n S C=O Br OH H 7.13 35.0:12.3
1 o[d] NH C=O OH OH H 114
1 p[d] NHCH3 C=O OH OH H 82.4
1 q[d] NHCH2CH3 C=O NO2 OH H 128
1 r[d] NHCH2Ph C=O OH OH H 19.4
1 s[d] NHCH2Ph C=O Br OH H 81.6
2 a CH2 CHOH Br OH H 12.5
RC56 CH2 C=O Br OH H 0 30.9:8.2
C646 3.6:0.6

[a] Activity of p300 in the presence of 100 mm inhibitor, relative to positive control, which has no inhibitor. [b] Determined from dose–response curves;
data are the mean:SD of at least duplicates. [c] Phenyl. [d] Compound tested as its HCl salt.

Scheme 1. Key synthetic step for the synthesis of bis-arylidene derivatives
1 a–s. Reagents and conditions : for 1 a–j, 1 m, 1 n : a) Montmorillonite K-10,
100 W, 100 8C, 5 min; for 1 k–l and 1 o–s : a) HCl(g), CH3CO2H, RT, 48 h.

Scheme 2. Synthesis of derivative 2 a. Reagents and conditions : a) THF, LiAlH4, 0 8C!RT,
2 h, 32 %.

Scheme 3. Preparation of benzaldehyde 3 f. Reagents and conditions :
a) PhB(OH)2, Pd(PPh3)4, Ba(OH)2·8 H2O, 1,2-dimethoxyethane/H2O, reflux, 4 h,
32 %.
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dard filter binding assay. Conditions for this assay included
100 mm H3-20 peptide and 1 mm [14C] Ac-CoA with incubation

at 30 8C for 6 min (Table 1). The activity of p300 was measured
in the presence of the individual compounds, each at a fixed

concentration of 100 mm. The positive control contained no in-
hibitor. The activity of each inhibitor solution was compared

with that of the positive control to calculate the percentage of
p300 retaining activity, which was the quantitative representa-

tion of the potency of each inhibitor. The IC50 values were fur-

ther determined for those compounds showing less than 10 %
of p300 retaining activity at 100 mm (i.e. , compounds 1 b–d,
1 g, 1 i, and 1 n). RC56 was found previously by us to be
a potent p300 inhibitor and, thus, was used as the reference
compound. In this experiment, RC56 revealed an IC50 value of
30.9 mm, which is six times greater than that already report-

ed.[29] The difference in the IC50 values of RC56 was attributed

to altered assay conditions. In the previous study, the GST-
p300 HAT domain was used to acetylate a histone protein mix-

ture with [14C] Ac-CoA as cofactor. The acetylated products
were visualized by phosphorimaging after SDS-PAGE separa-

tion. In the present study, tag-free p300 was used as the
enzyme source, and a high concentration of H3 peptide was

used as the substrate. The reaction yields were controlled

under the initial reaction conditions (product conversion typi-
cally was less than 20 %).

Among the tested compounds, cyclohexanone derivative 1 i
was the most active, and it showed complete inhibition to

p300 activity at 100 mm. Its IC50 value was measured to be
(2.3:0.5) mm, which is 15 times lower than that of RC56

[(30.9:8.2) mm] . Of note, we also measured the IC50 value of

C646 to be (3.6:0.6) mm under the same conditions. C646 is
regarded as one of the most potent p300 inhibitors.[27] There-

fore, the potency of 1 i is at the same level as that of C646.
Among cyclohexanone derivatives 1 a–l, we discuss the pre-

liminary structure–activity relationships according to the sub-
stituents on the benzylidene portion. Substitution of the bro-

mine atom of RC56 with a hydrogen atom (as in 1 a), a hydroxy

group (as in 1 e), and a phenyl ring (as in 1 f) resulted in a de-
crease in the inhibitory activity (residual acetylation: 28.6, 89.0,
and 92.2 %, respectively). Substitution of the bromine atom of
RC56 with other halogen atoms (as in 1 b–d) as well as with

a methyl group (as in 1 g) led to compounds with good inhibi-
tory activity. In fact, compounds 1 b, 1 c, and 1 g showed IC50

values similar to that of RC56 (IC50 = 38.9, 45.5, and 26.8 mm, re-
spectively). Notably, substitution of the bromine atom of RC56
with an iodine atom (as in 1 d) led to a compound that was

five times more active (IC50 = 8.1 mm). The introduction of
a second bromine atom on the benzylidene portion (as in 1 i)
generated the most potent compound (IC50 = 2.3 mm), and con-
versely, substitution of the two bromine atoms of 1 i with fluo-

rine and chlorine atoms (as in 1 j) decreased the activity (resid-

ual acetylation: 41.1 %). The biological data also suggest a key
role of the hydroxy groups on the benzene rings, as highlight-

ed by comparison between RC56 (IC50 = 30.9 mm) and deriva-
tive 1 h (residual acetylation: 85.1 % at 100 mm).

The cyclohexanone and tetrahydrothiopyranone derivatives
showed similar activities (RC56 and 1 n, IC50 = 30.9 and 35.0 mm,

respectively), whereas substitution of the cyclohexanone ring
with cyclopentanone (as in 1 m), piperidinone (as in 1 o–s), and
cyclohexanol (as in 2 a) led to a decrease in the inhibition po-
tency (residual acetylation: 12.5 to 128 %).

Among the piperidinone series featuring a 3,4-dihydroxy-
benzylidene substitution pattern, 1 o, 1 p, and 1 r, the most

active compound was N-benzyl-substituted piperidinone 1 r. In
this series, the introduction of a benzyl group in the 4-position

of the piperidinone ring to give 1 r increased the inhibition po-
tency relative to that of unsubstituted counterpart 1 o (residual
acetylation: 19.4 and 114 %, respectively). Moreover, comparing

derivative 1 r with analogue 1 s, characterized by substitution
of the hydroxy group in the 3-position of the benzylidene

ring with a bromine atom, a decrease in the activity was ob-
served (residual acetylation: 19.4 and 81.6 %, respectively). In-

terestingly, replacement of the cyclohexanone moiety of RC56

with an N-benzyl-substituted piperidinone ring (as in 1 s) led
to a decrease in the inhibitory activity (residual acetylation:

81.6 %).
Interestingly, 1 l, 1 o, and 1 q showed slight activation of

p300 activity. This phenomenon is not unusual. In our previous
study of anacardic acid analogues for HAT inhibition, we simi-

larly observed that certain HAT inhibitors showed an activating

effect on the activities of p300 and p300/CBP-associated factor
(PCAF).[33] The exact mechanism is not clear. Possibly, some in-

hibitor analogues can bind to the HAT enzyme in a different
conformation and, thus, work as agonists instead of antago-

nists.

Influence on cell-cycle regulation

Some of the compounds displaying activity against p300 were

also tested in a “cell-based assay” to verify their capability to

modify cell-cycle progression and to induce cell death. Leuke-
mic monoblast U937 cells were treated with 50 mm of each

compound (as reported in Figure 1) for 30 h. Next, the cell-
cycle distribution and percentage of cell death were both ana-

lyzed. As shown in Figure 1, compound 1 d induced a weak G2
phase accumulation, whereas compounds 1 a, 1 b, 1 f, 1 g, and

1 n caused an increase in the percentage of cell numbers in
the S phase.

Compounds 1 b and 1 g also showed a G1 block coupled

with induction of cell death (Figure 1 b) greater than that of
RC56. Although compound 1 i did not change the cell-cycle

distribution relative to the untreated control (ctrl), it induced
weak cellular death (&8.5 %). Notably, for compounds 1 b, 1 d,
1 g, and 1 i a strong correlation between the percentage of
p300 inhibition (shown in Table 1) and the biological effect, re-
ported here as the inhibition of proliferation and induction of

cell death (Figure 1 a, b), exists. The effects of compounds 1 b
and 1 g seem to be very similar to the effects of RC56, as they
show S phase accumulation and p300 IC50 values ranging from
(38.9:10.1) to (8.1:2.1) mm. However, for both compounds

the percentage of cell death induced was greater than that ob-
tained with RC56.
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Molecular modeling study

An in-depth theoretical investigation of the interactions be-

tween p300 HAT and the best-emerged hits (i.e. , 1 i and 1 d)
was performed by means of induced-fit docking (IFD), molecu-
lar-mechanics-generalized Born/Poisson Boltzmann surface

area (MM-GBSA) experiments, and molecular dynamics (MD)
simulations. RC56 was analyzed as well as a reference com-

pound.

Induced-fit docking experiments

Prior to docking, the compounds were built by using the

Schrçdinger Maestro interface[34] and then submitted to the
LigPrep utility,[35] which rapidly produced low-energy 3 D struc-

tures taking into account ionization states, tautomerism, ste-
reochemistry, and ring conformations at the desired pH value.

For our study, the default pH range of 6 to 8 was kept. This
analysis suggested that three molecules could exist in a neutral
(N), monoanionic (M), or dianionic (D) form. Given that, nine
different structures were obtained: RC56-N, RC56-M, and RC56-
D; 1 i-N, 1 i-M, and 1 i-D; and 1 d-N, 1 d-M, and 1 d-D.

Then, docking experiments were performed by using the

available crystal structure of the p300 HAT–Lys-CoA complex
(PDB ID: 3BIY) and the IFD procedure,[36–40] which took into ac-

count receptor flexibility upon ligand binding in an attempt to
describe the binding mode of the inhibitor.

The IFD of the nine structures into the Lys-CoA binding
domain generated a number of protein–ligand complexes, and
the best ten scoring poses for each ionization state were re-
tained and further analyzed. A comparison between the IFD
conformations for each ligand in the different N, M, and D

forms highlighted that all the docked positions could be clus-

tered into two main distinct binding modes, A and B
(Figure 2), independent of the ionization state of the inhibitor.

Notably, a binding mode similar to A was also predicted for
RC56 by Devipriya and Kumaradhas by using a different dock-

ing protocol.[41]

MM-GBSA experiments

In an attempt to gain a more accurate ranking of the ligand

docking poses, the ligand–protein complexes were rescored by
using the MM-GBSA approach implemented in the Schrçding-
er’s Maestro suite,[41] and the results are summarized in Table 2.

Binding pose A was predicted to be the most favorable for

both the RC56 and 1 d inhibitors, although the lowest-energy
orientations were obtained for two different ionization states.
Comparable MM-GBSA-dG values emerged for binding
modes A and B of compound 1 i-M, which suggests that both
poses could be reliable. It is also notable that for both binding

modes the predicted binding energies reproduced the trend
observed for the activity of the p300 HAT inhibitory, that is, the

most interesting compound was 1 i, followed by 1 d, and finally
RC56.

MD simulations

To assess the stability of binding modes A and B previously
identified for compound 1 i-M and to identify the most ener-

Figure 1. Cell-cycle distribution: a) percent of cells in cell-cycle phases and
b) apoptosis induction. SAHA was used as a reference compound. Experi-
ments were performed as independent biological triplicates. Error bars show
the standard deviation of triplicates.

Table 2. MM-GBSA DG values obtained for ligand–protein complexes se-
lected by the IFD procedure.

Ligand in complex with HAT p300 DG [kcal mol@1]
Binding mode A Binding mode B

RC56-N @135.53 @127.95
RC56-M @126.98 @120.15
RC56-D @113.05 @117.82

1 d-N @136.46 @131.57
1 d-M @147.15 @128.09
1 d-D @120.63 @112.70
1 i-N @145.42 @137.21
1 i-M @154.93 @154.47
1 i-D @136.29 @111.96
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getically favorable structure, the two ligand–p300 HAT com-

plexes were submitted to 28 ns molecular dynamics simula-
tions in explicit solvent.

Superimposition of the final structures and the initial mod-

eled structures showed that there were structural rearrange-
ments within the binding sites of both complexes (see Fig-

ure S2, Supporting Information). Upon analyzing the dynamic
behavior of the complex between p300 HAT and the ligand

with binding mode A, we observed that the ligand tended to
move more internally into the pocket to maximize the interac-

tion with Arg1410 (more than 110 % occupancy), whereas the
hydrogen bond with Tyr1467 was lost and the interactions

with this residue were later mainly hydrophobic in nature. In
its final pose, the ligand established hydrophobic interactions

with Ile1457, Leu1463, Leu1398, Trp1466, Tyr1414, Ile1395, and
Ile1435 and made a weak hydrogen bond in turn with the car-

bonyl backbone of Ser1396 or Trp1436 (Figure 3 a, c). On the
other hand, a marked rearrangement of the residues of the

binding site was observed for complex B. In its final position,

the ligand made polar interactions with Arg1410 (over 70 % oc-
cupancy), Tyr1467 (67 % occupancy), and the carbonyl back-

bone of Trp1436 (&22 % occupancy) (Figure 3 b, d). Hydropho-
bic contacts were also detected between 1 i-M and Trp1466,

Tyr1414, Leu1398, Trp1436, Tyr1446, Ile1435, and Tyr1467. In
this final complex, polar interactions as well as hydrophobic
contacts were maximized. Accordingly, complex B was the

most energetically favorable one in terms of free energy of
binding between the ligand and protein, and the difference
between the DG values of the two complexes was substantial
(DDG of 9.47 kcal mol@1 in favor of complex B). The outputs of

this study provide some useful information to aid the rational
design of new cinnamoyl inhibitors of p300 HAT in the future.

Conclusions

Herein we reported a new series of cell-permeable cinnamoyl
derivatives as inhibitors of p300 histone acetyltransferase (HAT)

by addressing various structural modifications to our hit RC56

[2,6-bis(3-bromo-4-hydroxybenzylidene)cyclohexanone] , involv-
ing both the benzylidene moiety and the central cyclohexa-

none portion. Among the tested derivatives, substituting the
cyclohexanone moiety with another central ring highlighted

a decreasing trend in the inhibition potency (see compounds
1 m, 1 s, and 2 a), with the sole exception of the tetrahydro-

thiopyranone derivative, (3Z,5Z)-3,5-bis[(3-bromo-4-hydroxy-

phenyl)methylidene]thian-4-one (1 n), characterized by activity
similar to that of RC56. As regards the cyclohexanone deriva-

tives, replacing the bromine atom of RC56 with other halogen
atoms (as in 1 b–d) as well as a methyl group (as in 1 g) led to

derivatives with IC50 values similar to that of our hit. In particu-
lar, among them 2,6-bis(4-hydroxy-3-iodobenzylidene)cyclohex-

an-1-one (1 d) showed good inhibitory activity and was proven
to be five times more active (IC50 = 8.1 mm) than the reference

compound, though data arising from a cell-based assay
showed a higher percentage of cell death induction in leuke-
mic monoblast cells for (2E,6E)-2,6-bis[(3-fluoro-4-hydroxyphe-

nyl)methylidene]cyclohexan-1-one (1 b) and (2E,6E)-2,6-bis[(4-
hydroxy-3-methylphenyl)methylidene]cyclohexan-1-one (1 g)

that was even greater than that obtained with RC56. Notably,
(2E,6E)-2,6-bis[(3,5-dibromo-4-hydroxyphenyl)methylidene]cy-

clohexan-1-one (1 i), characterized by the introduction of

a second bromine atom on the benzylidene portion, proved to
be the most active compound with complete inhibition of

p300 activity at 100 mm and an IC50 value [(2.3:0.5) mm] 15
times lower than that of RC56 [(30.9:8.2) mm] and, notably,

very similar to that of C646 [(3.6:0.6) mm] , which is regarded
as one of the most potent p300 inhibitors. Furthermore, mo-

Figure 2. Alternative binding modes obtained for the cinnamoyl-based in-
hibitors at the p300 HAT domain. a, b) Schematic representations of the in-
teractions between the protein and 1 i, as a representative inhibitor, for
binding modes A and B, respectively. c) Superimposition of the two binding
modes (A: yellow, B: green) and the Lys-CoA (violet) substrate.
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lecular-modeling studies highlighted the main structural fea-
tures involved in the formation of a ligand–protein complex

for the key role played by the phenolate moieties in establish-
ing a salt bridge with the amino acid residues at the active

site, as stated by the biological data (indeed, substitution of

the hydroxy groups with bromine atoms in derivative 1 h led
to a remarkable decrease in inhibition potency). Interestingly,
two distinct binding modes within the p300 HAT domain, one
for RC56 and 1 d and another for 1 i, were identified, which

suggests that the introduction of a second bromine atom may
have caused a rearrangement of the inhibitor within the enzy-

matic binding site.
In conclusion, this study provided useful insight for the

future development of novel small molecules as p300 HAT in-

hibitors. In particular, 1 i as a low-micromolar inhibitor repre-
sents a very interesting compound, additional rational modifi-

cations of which might represent a line of inquiry for antitu-
mor and antiviral vanguard chemotherapies.

Experimental Section

General procedures

Melting points were determined with a Bechi 530 capillary appara-
tus and are uncorrected. The purities of the compounds were

always >95 %, as determined by high-pressure liquid chromatogra-
phy (HPLC). HPLC analyses were performed with a Shimadzu LC-
10AD VP CTO-10AC VP by using a Discovery Bio Wide Pore C18
(10 cm V 4.6 mm, 3 mm) column. Infrared (IR) spectra were recorded
with a PerkinElmer Spectrum-one spectrophotometer. 1H NMR
spectra were recorded with a Bruker AC 400 spectrometer. Merck
silica gel 60 F254 plates were used for analytical TLC (thin-layer chro-
matography). Developed plates were visualized by UV light.
Column chromatography was performed on silica gel (Merck; 70–
230 mesh). Concentration of solutions upon completion of the re-
actions and after extraction was performed with a rotary evapora-
tor operating at reduced pressure. Analytical results agreed to
within :0.40 % of the theoretical values. [D6]DMSO (99.9 %, code
44 139-2) and CDCl3 (98.8 %, code 41 675-4) of isotopic purity (Al-
drich) were used. Solvents were reagent grade and, if necessary,
were purified and dried by standard methods. Organic solutions
were dried with anhydrous sodium sulfate (Merck).

Microwave reactions were conduced by using a CEM Discover
system unit (CEM. Corp. , Matthews, NC). The machine consisted of
a continuous focused microwave-power delivery system with an
operator-selectable power output of 0 to 300 W. The temperature
of the contents of the vessel was monitored by using a calibrated
infrared temperature control mounted under the reaction vessel.
All experiments were performed by using a stirring option, where-
by the contents of the vessel were stirred by means of a rotating
magnetic plate located below the floor of the microwave cavity
and a Teflon-coated magnetic stir bar in the vessel.

Figure 3. Minimized structures resulting from MD simulations of 1 i-M/p300 complexes A and B. a, b) 2 D schematic representations of the interactions be-
tween the protein and 1 i for binding modes A and B, respectively. c, d) 3 D perspectives of the same information. For the sake of clarity, only a few key resi-
dues are labeled and hydrogen-bonding interactions are represented by black dashed lines.
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Final compounds 1 a–s and 2 a were synthesized according to a re-
ported procedure[29, 31] and described in Scheme 1. Spectroscopic,
chemical, and physical data of compounds 1 a, 1 b, 1 e, 1 g, 1 i, 1 l,
and 1 n–r are already described in the literature.[29, 31, 42] Spectro-
scopic, chemical, and physical data of derivatives 1 c, 1 d, 1 f, 1 h,
1 j, 1 k, 1 m, and 1 s are reported below. Experimental procedures,
yields, melting points, recrystallization solvents, IR spectroscopy
data, and 1H NMR spectroscopy data of derivatives 2 a and 3 f are
reported below.

Synthesis

6-Hydroxy-1,1’-biphenyl-3-carboxaldehyde (3 f): Phenylboronic
acid (15.76 mmol), tetrakis(triphenylphosphine)palladium(0)
(0.77 mmol), Ba(OH)2·8 H2O (19.73 mmol), and H2O (22.6 mL) were
sequentially added to a solution of 3 k (13.15 mmol) in 1,2-dime-
thoxyethane (180 mL). The mixture was stirred at reflux under an
argon atmosphere for 4 h. The reaction was quenched with water,
and the mixture was extracted with ethyl acetate. The combined
organic layers were washed with brine, dried (Na2SO4), filtered, and
concentrated under reduced pressure to give the crude product as
a yellow oil (6 g). Purification of the crude product was performed
by column chromatography on silica gel (chloroform/ethyl ace-
tate = 3:1) to afford the pure product as a yellow oil (880 mg,
32 %). Spectroscopic data as per Zhao et al.[43]

2,6-Bis(3-chloro-4-hydroxybenzylidene)cyclohexan-1-one (1 c):
Yield: 79 mg (40 %); oil ; 1H NMR (400 MHz, [D6]DMSO): d= 1.72–
1.75 (m, 2 H, CH2), 2.85 (t, JCH2

= 8 Hz, 4 H, CH2), 7.04 (d, Jo = 8.4 Hz,
2 H), 7.41 (d, Jo = 8.4 Hz, Jm = 1.8 Hz, 2 H), 7.50 (s, 2 H, = CH@), 7.54
(d, Jm = 1.8 Hz, 2 H), 10.4 ppm (br s, 2 H, OH); IR (KBr): ñ= 3401 (OH),
1639 cm@1 (C=O); elemental analysis calcd (%) for C20H16Cl2O3

(375.25): C 64.02, H 4.30, Cl 18.89; found: C 63.70, H 4.02, Cl 18.55.

2,6-Bis(4-hydroxy-3-iodobenzylidene)cyclohexan-1-one (1 d):
Yield: 98 mg (22 %); mp: 183 8C (methanol); 1H NMR (400 MHz,
[D6]DMSO): d= 1.71–1.74 (m, 2 H, CH2), 2.84 (t, JCH2

= 8 Hz, 4 H, CH2),
6.95 (d, Jo = 8.4 Hz, 2 H), 7.43 (d, Jo = 8.4 Hz, Jm = 2.1 Hz, 2 H), 7.48 (s,
2 H, = CH@), 7.86 (d, Jm = 2.1 Hz, 2 H), 11 ppm (br s, 2 H, OH); IR (KBr):
ñ= 3223 (OH), 1651 cm@1 (C=O); elemental analysis calcd (%) for
C20H16I2O3 (558.15): C 43.04, H 2.89, I 45.47; found: C 42.68, H 2.58, I
45.21.

2,6-Bis[(6-hydroxy-1,1’-biphenyl-3-yl)methylene]cyclohexan-1-
one (1 f): Yield: 125 mg (42 %); oil ; 1H NMR (400 MHz, [D6]DMSO):
d= 1.73–1.76 (m, 2 H, CH2), 2.91 (t, JCH2

= 8 Hz, 4 H, CH2), 7.05 (d,
Jo = 8 Hz, 2 H), 7.31 (d, Jo = 8 Hz, 2 H), 7.42–7.46 (m, 8 H), 7.86–7.89
(m, 6 H), 10.1 ppm (br s, 2 H, OH); IR (KBr): ñ= 3223 (s, br),
1664 cm@1 (C=O); elemental analysis calcd (%) for C32H26O3 (458.55):
C 83.82, H 5.72; found: C 83.60, H 6.08.

2,6-Bis(3,4-dibromobenzylidene)cyclohexan-1-one (1 h): Yield:
111 mg (36 %); mp: 165 8C (benzene); 1H NMR (400 MHz,
[D6]DMSO): d= 1.72–1.75 (m, 2 H, CH2), 2.86 (t, JCH2

= 8 Hz, 4 H, CH2),
7.43 (d, Jo = 8.3 Hz, Jm = 1.9 Hz, 2 H), 7.54 (s, 2 H, = CH@), 7.83 (d, Jo =
8.3 Hz, 2 H), 7.91 ppm (d, Jm = 1.8 Hz, 2 H); IR (KBr): ñ= 1661 cm@1

(C=O); elemental analysis calcd (%) for C20H14Br4O (589.94): C 40.72,
H 2.39, Br 54.18; found: C 40.37, H 1.99, Br 53.89.

2,6-Bis(3-chloro-5-fluoro-4-hydroxybenzylidene)cyclohexan-1-
one (1 j): Yield: 90 mg (22 %); mp: 160–161 8C (toluene); 1H NMR
(400 MHz, [D6]DMSO): d= 1.73–1.76 (m, 2 H, CH2), 2.86 (t, JCH2

=
8 Hz, 4 H, CH2), 7.42–7.47 (m, 6 H), 10.97 ppm (br s, 2 H, OH); IR
(KBr): ñ= 1664 cm@1 (C=O); elemental analysis calcd (%) for
C20H14Cl2F2O3 (411.23): C 58.42, H 3.43, Cl 17.24, F 9.24; found: C
58.71, H 3.22, Cl 17.61, F 9.49.

5,5’-[(5-Carboxy-2-oxocyclohexane-1,3-diylidene)bis(methanylyli-
dene)]bis(2-hydroxybenzoic acid) (1 k): Yield: 131 mg (40 %); mp:
170–173 8C (toluene); 1H NMR (400 MHz, [D6]DMSO): d= 2.80–2.82
(m, 2 H, CH2), 3.06–3.09 (m, 2 H, CH2), 7.06 (d, Jo = 8.6 Hz, 2 H), 7.61
(s, 2 H, = CH@), 7.72 (d, Jo = 8.6 Hz, Jm = 1.2 Hz, 2 H), 7.98 (d, Jm =

1.2 Hz, 2 H), 12–13 ppm (br s, 2 H, OH); IR (KBr): ñ= 3500-2500 (OH),
1650 cm@1 (C=O); elemental analysis calcd (%) for C23H18O9 (438.38):
C 63.02, H 4.14; found: C 63.34, H 3.89.

2,5-Bis[(E)-3-bromo-4-hydroxybenzylidene]cyclopentan-1-one
(1 m): Yield: 110 mg (33 %); mp: 154–156 8C (toluene); 1H NMR
(400 MHz, [D6]DMSO): d= 2.99 (s, 4 H, CH2), 6.89 (d, Jo = 8.6 Hz, 2 H),
7.42 (s, 2 H,= CH@), 7.58 (d, Jo = 8.6 Hz, Jm = 1.2 Hz, 2 H), 7.91 (d,
Jm = 1.2 Hz, 2 H), 10.2 ppm (br s, 2 H, OH); IR (KBr): ñ= 3229 (OH),
1671 cm@1 (C=O); elemental analysis calcd (%) for C19H14Br2O3

(450.12): C 50.70, H 3.14, Br 35.50; found: C 50.98, H 3.00, Br 35.29.

1-Benzyl-3,5-bis[(E)-3-bromo-4-hydroxybenzylidene]piperidin-4-
one (1 s): Yield: 94 mg (38 %); mp: 180 8C (dioxane/diethyl ether) ;
1H NMR (400 MHz, [D6]DMSO): d= 3.42 (s, 4 H, CH2 piperidinone),
3.57 (s, 2 H, CH2Bz), 6.69 (d, Jo = 7.5 Hz, Jm = 1.2 Hz, 2 H), 7.22–7.31
(m, 5 H, Ph), 7.43 (d, Jo = 7.5 Hz, Jm = 1.2 Hz, 2 H), 7.59 (s, 2 H, = CH@),
8.26 (d, Jm = 1.2 Hz, 2 H), 9.98 ppm (br s, 2 H, OH); IR (KBr): ñ= 3225
(OH), 1674 cm@1 (C=O); elemental analysis calcd (%) for
C21H19Br2NO3 (493.19): C 51.14, H 3.88, Br 32.40, N 2.84; found: C
51.41, H 3.70, Br 32.79, N 2.99.

4,4’-(2-Hydroxycyclohexane-1,3-diylidene)bis(methanylylidene)-
bis(2-bromophenol) (2 a): A solution of RC56 (0.75 g, 1.63 mmol)
in anhydrous THF (53 mL) was added dropwise to a well-stirred
suspension of lithium aluminum hydride (50 mmol) in anhydrous
THF (494 mL) cooled to 0 8C. The mixture was then stirred at room
temperature for 4 h. Crushed ice was added to the mixture until
the formation of hydrogen vapors stopped. The produced alumi-
num hydroxide was filtered off by means of a Bechner filter, and
the resulting solution was evaporated under reduced pressure to
give the crude product (0.74 g). Purification of the crude product
by column chromatography on silica gel (chloroform) gave the
pure product as a yellow oil (250 mg, 32 %). 1H NMR (400 MHz,
[D6]DMSO): d= 1.73–1.76 (m, 2 H, CH2), 2.84–2.87 (m, 4 H, CH2), 7.02
(d, Jo = 8.44 Hz, 2 H), 7.41 (d, Jo = 8.50 Hz, 2 H), 7.49 (s, 1 H, = CH@),
7.68 (s, 1H = CH@), 10.79 ppm (br s, 1 H, OH); IR (KBr): ñ= 3468 (OH),
3234 cm@1 (OH); elemental analysis calcd (%) for C20H18Br2O3

(466.16): C 51.53, H 3.89, Br 34.28; found: C 51.69, H 4.13, 33.92.

Biological methods

Enzyme assays : The expression and purification of the tag-free re-
combinant human p300 HAT domain enzyme (residues 1287–1666)
was done by using the method developed by Cole’s laboratory.[44]

The standard filter binding assay was used to measure the acetyl-
transferase activity of p300 in the presence of various inhibitors. A
histone H3 peptide containing the amino-terminal 20 residues (H3-
20) was used as the substrate, and the concentration was set at
100 mm. 1 mm [14C]-Ac-CoA was used as the acetyl donor. The reac-
tion buffer contained 50 mm 4-(2-hydroxyethyl)-1-piperazineetha-
nesulfonic acid (HEPES; pH 8), 1 mm ethylenediaminetetraacetic
acid (EDTA), and 0.5 mm dithiothreitol (DTT). The reaction time was
6 min at 30 8C. An aliquot (30 mL) comprising the inhibitor, peptide,
and cofactor was incubated at 30 8C for 5 min, which was followed
by the addition of p300 (final at 0.025 mm). After incubating for
6 min, the reaction was quenched by spreading the reaction mix-
ture (20 mL) over a Whatman P81 filter disc. Once the filter discs
were dried, they were washed with 50 mm NaHCO3 (pH 9.0, 3 V)
and redried. The acetylated products were quantified by using a Mi-
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croBeta2 (PerkinElmer) after the addition of scintillation cocktail.
The enzymatic reaction was controlled in the initial linear phase,
with a typical conversion yield of less than 20 %. Each measure-
ment was done at least in duplicate with errors less than 20 %.

Cell-based assays

Drugs : SAHA (Merck, Readington, NJ, USA) was dissolved in DMSO
and used at 5 mm concentration.

Cell lines : U937 cells (ATCC) were cultured by using standard proce-
dures in RPMI (Euroclone) supplemented with 10 % fetal bovine
serum (FBS; Sigma), 50 mg mL@1 penicillin–streptomycin, and 2 mm
glutamine.

Cell-cycle analysis : The cells were plated (2 V 105 cells mL@1) and
stimulated for 30 h with compounds at 50 mm. Treated and un-
treated U937 cells were harvested and resuspended in staining so-
lution containing RNaseA, PI (50 mg mL@1), sodium citrate (0.1 %),
and NP40 (0.1 %) in cold phosphate-buffered saline (PBS) for
30 min in the dark. Cell-cycle distribution was assessed with a FACS-
calibur flow cytometer by using the Cell Quest software (Becton
Dickinson, Milan, Italy). ModFit LT version 3 Software (Verity, Top-
sham, ME, USA) was used for analysis.

Cell-death analysis : After stimulation with selected compounds for
30 h at 50 mm, treated an untreated U937 cells were collected in
0.1 % sodium citrate and 50 mg mL@1 PI. After incubating for
30 min, the percentage of cells with sub-G1 DNA was analyzed
with FACS (FACScalibur; BD Biosciences, San Jose, CA).

Molecular modeling studies

Protein and ligand preparation : The crystal structure of p300 HAT
domain in complex with a bisubstrate inhibitor, that is, Lys-CoA,
was retrieved from the RCSB Protein Data Bank (PDB ID: 3BIY)[18]

and was used as a target for the modeling studies. The inhibitor
and the water molecules were deleted, and the Schrçdinger Pro-
tein Preparation Wizard[45] was then used to obtain a satisfactory
starting structure for docking studies. This facility is designed to
ensure chemical correctness and to optimize a protein structure
for further analysis. In particular, hydrogen atoms were added, and
bond orders and charges were assigned; the orientation of the hy-
droxy groups on Ser, Thr, and Tyr; the side chains of the Asn and
Gln residues; and the protonation state of the His residues were
optimized. Steric clashes were relieved by performing a small
number of minimization steps not intended to minimize the
system completely. In our study, the minimization (OPLS force
field) was stopped if the RMSD of the non-hydrogen atoms
reached 0.30 a. The analyzed compounds, RC56, 1 d, and 1 i, were
constructed by using Maestro 9.9[34] and were then submitted to
the LigPrep module[35] by using the default parameters.

Docking studies : The IFD protocol,[36–39] developed by Schrçdinger,
was employed to predict the ligand binding modes and concomi-
tant structural changes in the p300 HAT receptor. The prepared
protein structure was used to generate the receptor grid, which
was centered on the crystallographic position of the Lys-CoA sub-
strate; afterward, the simulations were run by setting the “Extend-
ed Sampling” protocol and by refining residues within 6 a of all
ligand poses. All the other parameters were left at the default
values. Binding free-energy estimates were evaluated for the top-
docked complexes by using MM-GBSA calculations.

MD simulations : Molecular dynamics (MD) simulations were per-
formed through the use of the AMBER 12 suite of programs[46] and

the ff03.r1 force field. An appropriate number of counterions was
added to neutralize the system, and complexes were placed in an
octagonal box of TIP3P water molecules. The distance between the
box walls and the protein was set to 10 a. MD runs were per-
formed with a protocol previously validated.[47–49] Before MD simu-
lation, two stages of energy minimization were performed to
remove bad contacts. In the first stage, we kept the protein fixed
with a constraint of 500 kcal mol@1 and we minimized the positions
of the water molecules. Then, in the second stage, we minimized
the entire system by applying a constraint of 10 kcal mol@1 on the
a carbon atoms. MD trajectories were run by using the minimized
structure as the starting input. Constant volume simulations were
performed for 50 ps, during which time the temperature was
raised from 0 to 300 K by using the Langevin dynamics method.
Then, 150 ps of constant-pressure MD simulations were performed
at 300 K in three steps of 50 ps each. During the three periods of
this second stage, the a carbon atoms were blocked with harmon-
ic force constants of 10, 5, and 1 kcal mol@1·a, respectively. Finally
a 28 ns MD simulation without restraint was run at a constant tem-
perature of 300 K and a constant pressure of 0.1 MPa. The RMSDs
of the a-carbon atoms were then calculated throughout the simu-
lations with respect to the starting structure for both systems.
After the first nanosecond, both 1 i-M/p300 HAT complexes
reached an equilibrium state, and stable RMSDs were detected
during the remaining time of the MD simulations (see Figure S1).
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