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Recently, Grabowska and Kaplan [Phys. Rev. Lett. 116, 211602 (2016); Phys. Rev. D 94, 114504
(2016)] suggested a nonperturbative formulation of a chiral gauge theory, which consists of the
conventional domain-wall fermion and a gauge field that evolves by gradient flow from one
domain wall to the other. In this paper, we discuss the U(1) axial-vector current in 4 dimensions
using this formulation. We introduce two sets of domain-wall fermions belonging to complex
conjugate representations so that the effective theory is a 4D vector-like gauge theory. Then, as a
natural definition of the axial-vector current, we consider a current that generates simultaneous
phase transformations for the massless modes in 4 dimensions. However, this current is exactly
conserved and does not reproduce the correct anomaly. In order to investigate this point precisely,
we consider the mechanism of the conservation. We find that this current includes not only the
axial current on the domain wall but also a contribution from the bulk, which is nonlocal in the
sense of 4D fields. Therefore, the local current is obtained by subtracting the bulk contribution
from it.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index B01, B33, B38

1. Introduction

Formulating a chiral gauge theory nonperturbatively is a long-standing problem [1–15]. Recently
[16,17], Grabowska and Kaplan suggested a formulation that consists of the domain-wall fermion
in 2n+1 dimensions and a gauge field that evolves by gradient flow from one domain wall to the
other. A long-distance flow makes the gauge field pure gauge, and thus one of the massless modes
(“fluffy mirror fermion” or “fluff”) does not couple with the gauge field. Therefore, we obtain a chiral
gauge theory including only the other massless mode that couples with the gauge field. However,
the heavy modes in the bulk induce some terms that cannot be renormalized to the 4D Lagrangian.
To cancel the bulk terms, Grabowska and Kaplan introduced a subtracting field, which has a loop
factor +1 and a constant mass. It is known that the cancellation is not complete, but there remains a
Chern–Simons-like term [18,19]. However, if the anomaly-free condition dabc = 0 is satisfied, the
Chern–Simons-like term vanishes and then we obtain the 4D local theory.

In order to investigate the consistency of this formulation, we consider a vector-like theory by intro-
ducing two sets of domain-wall fermions belonging to complex conjugate representations [17,20–22]
(H. Suzuki and O. Morikawa, personal communication). Each of the fermions induces one left-handed
physical fermion and one right-handed fluff fermion. Therefore, if the fluffs are decoupled correctly,
we have a 4D vector-like gauge theory with one right-handed and one left-handed chiral fermion
after we apply the charge conjugation to one of the physical fermions. In this paper, we consider the
U(1) axial-vector current and discuss how the anomaly arises. We first define a current that generates
simultaneous phase transformations for the left-handed physical fermions in 4 dimensions. From the
© The Author(s) 2017. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
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viewpoint of the effective theory, this current looks like the U(1) axial-vector current. However, it
is pointed out in Ref. [20] that this current is exactly conserved and does not reproduce the correct
anomaly (H. Suzuki and O. Morikawa, personal communication). In order to solve this paradox, we
investigate the mechanism of the conservation. We find that this current contains a bulk contribution
in addition to the axial-vector current on the domain wall. Therefore, the proper local current is
obtained by subtracting the bulk part.

This paper is organized as follows. In Sect. 2, we review the formulation of Grabowska and
Kaplan in the lattice space. In Sect. 3, we consider a regularization of this formulation in the con-
tinuum space in order to simplify the calculations in the subsequent sections. We find that one
needs to introduce Pauli–Villars fields for both the domain-wall fermion and the subtracting field.
In Sect. 4, we calculate the 1-loop effective action to the quadratic order in the gauge fields, and
confirm that the effective action consists of three parts. One is equal to the effective action of
a chiral fermion with Pauli–Villars-like regularization. The second is the Chern–Simons term in
the bulk. The third are various divergent terms, which will be canceled by our regularization. In
Sect. 5, we discuss the axial-vector current in 4 dimensions. In Sect. 6, we give a summary and
conclusions.

2. Review of Grabowska and Kaplan’s method

We review the formulation of Grabowska and Kaplan. There are recent studies [21–23] based on
this formulation. In this section, we consider the lattice space although we use the symbols in the
continuum space. We will discuss the continuum regularization in the next section.

We start with a domain-wall fermion in 2n+1 dimensions:

L = ψ̄
[
/∂2n+1 − Mε(s)

]
ψ . (2.1)

Here ψ is the Dirac field with 2n components. s is the 2n+1th coordinate, s ∈ [−L, L] with periodic
boundary condition, and ε(s) = sgn(s). In the limit of L → ∞, two massless modes are localized
on the 2n-dimensional wall s = 0 and s = L, which have the chirality −1 and +1 respectively. The
heavy modes that live in the bulk will be decoupled classically in the limit of M → ∞. In order to
obtain a chiral gauge theory, in which only the left-handed mode couples with the gauge field, the
2n+1-dimensional gauge field Āμ is constructed by the gradient flow [24–26] from s = 0 to s = ±L:

∂sĀν(x, s) = ε(s)

M ′ DμF̄μν , (2.2)

with Āμ(x, 0) = Aμ(x), μ, ν = 1, . . . , 2n, and Ā2n+1 = 0. F̄μν is the field strength of the gauge field
Āμ. We assume that M ′ � M so that Āμ(x, s) is close to Aμ(x) near the domain wall |s| � 1/M .
Since the gradient flow damps the physical degrees of freedom, the gauge field Āμ becomes pure
gauge1 at s = L in the limit of L → ∞. Thus the right-handed mode on s = L is decoupled and we
obtain the 2n-dimensional chiral gauge theory if the bulk degrees of freedom are decoupled.

1 More precisely, it is also possible for the gauge field to attain an instanton configuration. We do not consider
this case in this paper.
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In order to cancel the bulk degrees of freedom2, we introduce a “subtracting field”3, which has a
loop factor +1 and a constant mass −M . This setting is equivalent to defining the fermion determinant
as follows:

�(A) ≡
det

(
/D(R)

2n+1 − Mε(s)
)

det
(
/D(R)

2n+1 + M
) , (2.3)

where /D(R)
2n+1 is the 2n+1-dimensional Dirac operator belonging to the representation R. Indeed the

terms that are even functions of M in the bulk are canceled. On the other hand, for the odd terms,
the parity anomaly survives and the effective action contains a bulk term [18,19]:

S(CS)
2n+1 = c2n+1

M

|M |
∫

[ε(s)+ 1] ω2n+1. (2.4)

Here

c2n+1 = in

2n+1πn(n + 1)! , (2.5)

andω2n+1 is the 2n+1-dimensional Chern–Simons form. S(CS)
2n+1 vanishes if the representation satisfies

the condition for the anomaly cancellation in 2n dimensions.
In order to perform the calculation easily, we consider a continuum version of this formulation in

the following sections.

3. Regularization in the continuum formulation

In this section, we regularize the formulation given in Sect. 2 in the continuum space. The bare
effective action corresponding to Eq. (2.3) is given by4

log�(A) = Tr log
(
/D2n+1 − Mε(s)

)− Tr log
(
/D2n+1 + M

)
. (3.1)

Here, we adopt the Pauli–Villars regularization5.
We regularize the domain-wall fermion and the subtracting field respectively as follows:

Tr log
(
/D2n+1 − Mε(s)

) → Tr log
(
/D2n+1 − Mε(s)

)+
∑

i

CiTr log
(
/D2n+1 − Miε(s)

)
, (3.2)

Tr log
(
/D2n+1 + M

) → Tr log
(
/D2n+1 + M

)+
∑

i

C ′
iTr log

(
/D2n+1 + M ′

i

)
. (3.3)

Note that, while the subtracting field is regularized as usual, the domain-wall fermion is regularized by
additional domain-wall fermions with mass Miε(s). The parameters Ci, Mi, C ′

i , M ′
i will be determined

2 For the case that the gauge field is constant in the s direction, Āμ(x, s) = Aμ(x), we do not have to cancel
the bulk terms because they can be absorbed in the 4D Lagrangian. However, this is not possible when we
consider the gradient flow.

3 In Refs. [16,17], this field is called a “Pauli–Villars field”. But we distinguish this field from a conventional
Pauli–Villars field, whose role is regularization.

4 We drop the superscript “(R)” in /D2n+1.
5 The dimensional regularization cannot be used for the 2n-component Dirac field in 2n + 1 dimensions.
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later so that the regularized effective action converges as usual. Here, we choose C ′
i = Ci and

M ′
i = Mi so that the Pauli–Villars fields do not generate extra bulk effective action. In other words,

we introduce pairs of Pauli–Villars fields consisting of a domain-wall fermion and a subtracting field,
which we call Pauli–Villars pairs. Thus the regularized effective action is

log�(A)reg. = Tr log
(
/D2n+1 − Mε(s)

)− Tr log
(
/D2n+1 + M

)
+
∑

i

Ci
[
Tr log

(
/D2n+1 − Miε(s)

)− Tr log
(
/D2n+1 + Mi

)]
. (3.4)

Let us write down the condition for the effective action to converge. For a necessary condition,
divergences arising on the walls should be canceled. As we will see in Eq. (4.76), a pair of a domain-
wall fermion and a subtracting field behaves like a chiral fermion with a Pauli–Villars-like field6

around s = 0. Therefore, all pairs including the Pauli–Villars pairs give the following contribution
to the effective action from the near-wall region:

Tr log
(
/D2n+1 − Mε(s)

)− Tr log
(
/D2n+1 + M

)
+
∑

i

Ci
[
Tr log

(
/D2n+1 − Miε(s)

)− Tr log
(
/D2n+1 + Mi

)]
around s=0−−−−−−→ [

Tr log( /D2nP− + /∂2nP+)− Tr log( /D2nP− + /∂2nP+ − M )
]

+
∑

i

Ci
[
Tr log( /D2nP− + /∂2nP+)− Tr log( /D2nP− + /∂2nP+ − Mi)

]
, (3.5)

where P− and P+ are the chirality projection operators. Tr log( /D2nP−+ /∂2nP+) and Tr log( /D2nP−+
/∂2nP+ − M ) are the effective action of the left-handed chiral fermion and the Pauli–Villars-like
field, respectively. We will derive Eq. (3.5) in Sect. 4. The conditions to cancel the divergences in
Eq. (3.5) are7

M +
∑

i

CiMi = 0,

M 2 +
∑

i

Ci(Mi)
2 = 0,

M 3 +
∑

i

Ci(Mi)
3 = 0,

... .

(3.6)

Note that the leading divergences in Eq. (3.5), which are independent of M and Mi, are canceled in
each pair.

Equations (3.6) are also sufficient to cancel the divergences from the bulk. In the bulk region
−L < s < 0, the cancellation is trivial because the domain-wall fermions and the subtracting fields

6 This 2n-dimensional Pauli–Villars-like field is not the Pauli–Villars field that we have introduced in Eq. (3.2)
and Eq. (3.3).

7 Generally, we need d conditions in d dimensions.
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have the same mass in each pair. In the bulk region 0 < s < L, Eq. (3.4) reduces to

Tr log
(
/D2n+1 − M

)− Tr log
(
/D2n+1 + M

)
+
∑

i

Ci
[
Tr log

(
/D2n+1 − Mi

)− Tr log
(
/D2n+1 + Mi

)]
. (3.7)

In Eq. (3.7), terms that are even functions of M and Mi are trivially canceled. On the other hand, the
odd terms are canceled if the following conditions are satisfied:

M +
∑

i

CiMi = 0,

M 3 +
∑

i

Ci(Mi)
3 = 0,

... ,

(3.8)

which are part of Eq. (3.6). Therefore, Eq. (3.6) is the necessary and sufficient condition for the
effective action to converge.

However, we need to prevent the Pauli–Villars fields from changing the physical degrees of free-
dom. In fact, each of the Pauli–Villars pairs induces a massless mode on the wall and a Chern–Simons
term in the bulk, which will not be decoupled even if we take the limit Mi → ∞. Thus one observes∑

i Ci additional massless modes and Chern–Simons terms. These extra contributions vanish by
imposing an additional condition:

∑
i

Ci = 0, (3.9)

which we will confirm in Eq. (4.79).
Thus we conclude that a continuum version of the regularized effective action is given by Eq. (3.4)

with Eqs. (3.6) and (3.9).

4. Calculation of the effective action

In this section, we calculate the regularized effective action, Eq. (3.4), by expanding with respect to
the gauge field Āμ. In order to do this, it is sufficient to calculate one pair of a domain-wall fermion
and a subtracting field:

Tr log( /D2n+1 − Mε(s))− Tr log( /D2n+1 + M ). (4.1)

The other pairs are obtained by replacing the mass and loop factor. As we will see later, Eq. (4.1)
consists of three parts. One is the effective action of the 2n-dimensional chiral fermions with a Pauli–
Villars-like regularization. This confirms that the massless modes localized on the walls behave as
chiral fermions even at the quantum level. The second is the Chern–Simons term in 2n+1 dimensions.
The third are various divergent terms, which will be canceled after summing up with the Pauli–
Villars pairs.
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4.1. Propagator of the domain-wall fermion

We begin with deriving the propagator of the domain-wall fermion in the continuum8. As we will
see below, this propagator can be regarded as the sum of two processes. One is the bulk propagation
with a constant mass ±M . The other is the massless propagation along the domain walls. Thus this
propagator includes both the heavy bulk modes and the massless domain-wall modes.

The propagator is a solution of the following equation:[
i/p + γ 5∂s − ε(s)M

]
G(p, s; s′) = δ(s − s′), (4.2)

where G(p, s; s′) is the Fourier transform of the propagator in 2n directions:

G(x, s; x′, s′) =
∫

d2np

(2π)2n e−ip·(x−x′) G(p, s; s′). (4.3)

We use the symbol γ 5 as the chirality matrix even in 2n+1 dimensions, i.e., γ 5 ≡ γ 1 · · · γ 2n.
In order to concentrate on the modes around s = 0, we take the limit L → ∞, and obtain the

following expression (see Appendix A):

G(p, s; s′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S(+)(p, s − s′) + D(+)(p) e−(s′+s)
√

p2+M 2
(0 < s, s′)

S(−)(p, s − s′) + D(−)(p) e(s
′+s)

√
p2+M 2

(s, s′ < 0)

D(−+)(p) e(s−s′)
√

p2+M 2
(s < 0 < s′)

D(+−)(p) e(s
′−s)

√
p2+M 2

(s′ < 0 < s),

(4.4)

where

S(+)(p, s − s′) = −θ(s − s′)
i/p + M −√

p2 + M 2γ 5

2
√

p2 + M 2
e(s

′−s)
√

p2+M 2

− θ(s′ − s)
i/p + M +√

p2 + M 2γ 5

2
√

p2 + M 2
e(s−s′)

√
p2+M 2

, (4.5)

D(+)(p) = − i/pM (M +√
p2 + M 2γ 5)

2p2
√

p2 + M 2
+ M

2
√

p2 + M 2
, (4.6)

D(−+)(p) = − i/p(
√

p2 + M 2 + Mγ 5)

2p2 − 1

2
γ 5, (4.7)

and θ(s − s′) is the step function. S(−) is obtained by replacing M → −M in S(+). D(−), D(+−)
are obtained from D(+), D(−+), respectively, by replacing M → −M and γ 5 → −γ 5. Note that
S(+) and S(−) are the conventional propagators in 2n+1 dimensions with constant mass M and −M ,
respectively, and represent the heavy modes. The other terms in Eq. (4.4) represent the massless
modes localized on the wall s = 0.

These results are consistent with the physical intuition that the propagator G(p, s; s′) reduces to
the conventional one with constant mass ±M in the region far from the domain wall, s, s′ 
 −1/M
or 1/M 
 s, s′.

8 The propagator in the lattice theory is derived in Refs. [11,12].

6/24



PTEP 2017, 063B09 Y. Hamada and H. Kawai

4.2. Calculation of effective action: vacuum polarization

Let us expand Eq. (4.1) as follows:

Tr log( /D2n+1 − ε(s)M )− Tr log( /D2n+1 + M ) (4.8)

=
∑

m

1

m

(
m∏
i

∫
ddki

(2π)d

)(
m∏
i

∫ L

−L
dsi

)
(2π)d δ(d)(

∑
i

ki)

tr
[
Āμ1(k1, s1) · · · Āμm(km, sm)

]
�μ1···μm({ki}, {si}) (4.9)

≡
∑

m

1

m
I (L)m , (4.10)

where d = 2n and �μ1···μm is the sum of the fermion loops with m vertices for the domain-wall
fermion and the subtracting field. Note that ki(i = 1, . . . , m) are the 2n-dimensional momenta, and
si are the 2n+1th coordinates. As in the previous section, we take the limit L → ∞ and consider

lim
L→∞ I (L)m ≡ Im. (4.11)

In the following, we give an explicit calculation for I2, which is nothing but the vacuum polarization
loop:

I2 =
∫

ddk

(2π)d

∫ ∞

−∞
ds
∫ ∞

−∞
ds′ tr

[
Āμ(−k , s′)Āν(k , s)

]
�μν(k , s, s′), (4.12)

where

�μν(k , s, s′) =
∫

ddp

(2π)d

[
tr
[
γ μG(p, s′; s)γ νG(p′, s; s′)

]− tr
[
γ μS(−)(p, s′; s)γ νS(−)(p′, s; s′)

]]
.

(4.13)
Here p′ stands for p + k so that we must substitute p′ = p + k in Eq. (4.13) before integrating with
respect to p. The second term in Eq. (4.13) comes from the subtracting field.

It is convenient to divide the range of s and s′ into six regions:

I : {s′ < s < 0} ⊕ II : {s < 0 < s′} ⊕ III : {0 < s′ < s} ⊕ I′ ⊕ II′ ⊕ III′, (4.14)

where the regions I, II, III correspond to diagrams in Fig. 1. I′, II′, III′ are obtained by interchanging
s ↔ s′ in I, II, III, respectively.

We denote the contribution from region I by I:

I ≡
∫∫

(I)
tr
[
Āμ(−k , s′)Āν(k , s)

]
�μν(k , s, s′). (4.15)

In this region, the propagator G can be written as (see Eq. (4.4)):

G(p′, s; s′) = S(−)(p′, s − s′)+ D(−)(p′, s + s′), (4.16)

and

G(p, s′; s) = S(−)(p, s′ − s)+ D(−)(p, s + s′), (4.17)

7/24
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Fig. 1. Feynman diagrams for three regions I, II, III.

where

D(−)(p, s + s′) ≡ D(−)(p) e(s
′+s)

√
p2+M 2

. (4.18)

Thus �μν(k , s, s′) is9

�μν(k , s, s′) (4.19)

=
∫

ddp

(2π)d

[
tr
[
γ μG γ νG′ ]− tr

[
γ μS(−)γ νS ′(−)]] (4.20)

=
∫

ddp

(2π)d

[
tr
[
γ μ

(
S(−) + D(−)) γ ν (S ′(−) + D′(−))]− tr

[
γ μS(−)γ νS ′(−)]] (4.21)

=
∫

ddp

(2π)d

[
tr
[
γ μD(−)γ νD′(−)]+ tr

[
γ μD(−)γ νS ′(−)]+ tr

[
γ μS(−)γ νD′(−)]] (4.22)

≡
∫

ddp

(2π)d
T (−)local(p, p′, s, s′), (4.23)

where T (−)local(p, p′, s, s′) depends on s, s′ as follows:

T (−)local(p, p′, s, s′) = α(p, p′) e(s+s′)(
√

p2+M 2+
√

p′2+M 2)

+ β(p, p′) e(s
′+s)

√
p2+M 2

e(s
′−s)

√
p′2+M 2

+ γ (p, p′) e(s
′+s)

√
p′2+M 2

e(s
′−s)

√
p2+M 2

. (4.24)

Here, α,β, γ are functions of p, p′ and obtained from tr
[
γ μD(−)γ νD′(−)], tr

[
γ μD(−)γ νS ′(−)],

tr
[
γ μS(−)γ νD′(−)], respectively (see Appendix B). Note that the bulk term from the domain-wall

fermion, tr
[
γ μS(−)γ νS(−)

]
, has been canceled by the subtracting field, and there remains only

9 We drop the arguments p, p′, s, s′ for simplicity. The symbols without primes such as G, S(−), D(−) mean
that their arguments are (p, s′; s). On the other hand, the symbols with primes stand for the arguments (p′, s; s′).
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T (−)local, which damps exponentially in s, s′. Therefore, �μν(k , s, s′) in region I has values only in
−1/M � s′, s < 0 .

Using this fact, we evaluate the integral with respect to s, s′ in Eq. (4.15) as follows. First, we
approximate that Ā(x, s), which evolves by the gradient flow, is constant in the region −1/M �
s′, s < 0. Thus we can write

I =
∫∫

(I)
tr
[
Āμ(−k , s′)Āν(k , s)

] ∫ ddp

(2π)d
T (−)local(p, p′, s, s′) (4.25)

∼ tr
[
Āμ(−k , 0)Āν(k , 0)

] ∫∫
(I)

∫
ddp

(2π)d
T (−)local(p, p′, s, s′) (4.26)

= tr
[
Aμ(−k)Aν(k)

] ∫ ddp

(2π)d

∫∫
(I)

T (−)local(p, p′, s, s′). (4.27)

The approximation “∼” will be exact if we take the limit M ′ → ∞. Then, e.g., for the first term in
Eq. (4.24), we have

∫∫
(I)
α(p, p′) e(s+s′)(

√
p2+M 2+

√
p′2+M 2) (4.28)

=
∫ 0

−∞
ds
∫ s

−∞
ds′ α(p, p′) e(s+s′)(

√
p2+M 2+

√
p′2+M 2) (4.29)

= α(p, p′)
∫ 0

−∞
ds

(
e(s

′+s)(
√

p2+M 2+
√

p′2+M 2)√
p2 + M 2 +√

p′2 + M 2

∣∣∣∣∣
s′=s

)
(4.30)

= α(p, p′) e2s(
√

p2+M 2+
√

p′2+M 2)

2(
√

p2 + M 2 +√
p′2 + M 2)2

∣∣∣∣∣
s=0

(4.31)

= α(p, p′) 1

2(
√

p2 + M 2 +√
p′2 + M 2)2

. (4.32)

The other exponentials in Eq. (4.24) can be integrated in the same way and we obtain the expression
Eq. (B.11).

We denote the contribution from region II by II:

II ≡
∫∫

(II)
tr
[
Āμ(−k , s′)Āν(k , s)

]
�μν(k , s, s′). (4.33)

The propagator G in this region is given by (see Eq. (4.4))

G(p′, s; s′) = D(−+)(p′) e(s−s′)
√

p′2+M 2
(4.34)

≡ D(−+)(p′, s − s′), (4.35)

G(p, s′; s) = D(+−)(p) e(s−s′)
√

p2+M 2
(4.36)

≡ D(+−)(p, s − s′). (4.37)
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Thus �μν(k , s, s′) is

�μν(k , s, s′) (4.38)

=
∫

ddp

(2π)d

[
tr
[
γ μG(p, s′; s) γ νG′(p′, s; s′)

]− tr
[
γ μS(−)γ νS ′(−)]] (4.39)

=
∫

ddp

(2π)d

[
tr
[
γ μD(+−)γ νD′(−+)]− tr

[
γ μS(−)γ νS ′(−)]] . (4.40)

Note that �μν has values only when −1/M � s < 0 < s′ � 1/M because the integrand in
Eq. (4.40) is proportional to exp[(s − s′)(

√
p2 + M 2 +√

p′2 + M 2)]. Therefore, the calculation can
be performed similarly to region I, and we obtain the resulting expression Eq. (B.13).

We denote the contribution from region III by III:

III ≡
∫∫

(III)
tr
[
Āμ(−k , s′)Āν(k , s)

]
�μν(k , s, s′). (4.41)

In this region, the propagator G can be written as

G(p′, s; s′) = S(+)(p′, s − s′)+ D(+)(p′, s + s′), (4.42)

and

G(p, s′; s) = S(+)(p, s′ − s)+ D(+)(p, s + s′), (4.43)

where

D(+)(p, s + s′) ≡ D(+)(p) e−(s′+s)
√

p2+M 2
. (4.44)

Thus �μν(k , s, s′) is calculated as

�μν(k , s, s′) (4.45)

=
∫

ddp

(2π)d

[
tr
[
γ μG γ νG′ ]− tr

[
γ μS(−)γ νS ′(−)]] (4.46)

=
∫

ddp

(2π)d

[
tr
[
γ μ

(
S(+) + D(+)) γ ν (S ′(+) + D′(+))]− tr

[
γ μS(−)γ νS ′(−)]] (4.47)

=
∫

ddp

(2π)d

[
tr
[
γ μD(+)γ νD′(+)]+ tr

[
γ μD(+)γ νS ′(+)]+ tr

[
γ μS(+)γ νD′(+)]]

+
∫

ddp

(2π)d

[
tr
[
γ μS(+)γ νS ′(+)]− tr

[
γ μS(−)γ νS ′(−)]] (4.48)

≡
∫

ddp

(2π)d

[
T (+)local(p, p′, s, s′)+ Tbulk(p, p′, s, s′)

]
, (4.49)
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where

Tbulk ≡ tr
[
γ μS(+)γ νS ′(+)]− tr

[
γ μS(−)γ νS ′(−)] , (4.50)

T (+)local ≡ tr
[
γ μD(+)γ νD′(+)]+ tr

[
γ μD(+)γ νS ′(+)]+ tr

[
γ μS(+)γ νD′(+)] (4.51)

= α(p, p′) e−(s+s′)(
√

p2+M 2+
√

p′2+M 2)

+ β(p, p′) e−(s′+s)
√

p2+M 2
e(s

′−s)
√

p′2+M 2

+ γ (p, p′) e−(s′+s)
√

p′2+M 2
e(s

′−s)
√

p2+M 2
. (4.52)

Here, α,β, γ in Eq. (4.52) are the same as those in Eq. (4.24) (see Appendix B). Note that T (+)local,

which is localized on s = 0, gives the same contribution as T (−)local after integrating over s and s′. On
the other hand, Tbulk is the bulk term, which does not vanish, unlike region I, because of the opposite
signs of the masses. We will discuss this point in the next subsection.

Next, we consider the other regions I′, II′, III′. The net effect of interchanging s ↔ s′ is to change
the signs of γ 5 in S(+) and S(−) (see Eq. (4.5)). Therefore the contributions from I′, II′, III′ are
obtained from those of I, II, III, respectively, by changing the signs of γ 5 in S(+) and S(−) (see the
discussions below Eqs. (B.11) and (B.13)).

All contributions (Eqs. (B.11), (B.13), (4.49)) sum up to

I2 =
∫

ddk

(2π)d
(
I + II + III + I′ + II′ + III′

)
(4.53)

=
∫

ddk

(2π)d
tr[Aμ(−k)Aν(k)]

(
�
μν

(nonanomalous) +�
μν

(anomalous)

)
+ I bulk

2 (Ā), (4.54)

where

�
μν

(nonanomalous) ≡
∫

ddp

(2π)d

[
2nM 2(p2 + p′2 + M 2)Nμν

2p2p′2(p2 + M 2)(p′2 + M 2)
− 2nM 2δμν

2(p2 + M 2)(p′2 + M 2)

]
, (4.55)

�
μν

(anomalous) ≡
∫

ddp

(2π)d

−M tr
[
γ μ/pγ ν/p′γ 5

] (
p2 + p′2 + M 2 +√

p2 + M 2
√

p′2 + M 2
)

2p2p′2√p2 + M 2
√

p′2 + M 2(
√

p2 + M 2 +√
p′2 + M 2)

, (4.56)

I bulk
2 (Ā) ≡

∫
ddk

(2π)d

∫ ∞

0
ds
∫ ∞

0
ds′ tr[Āμ(−k , s′)Āν(k , s)]

∫
ddp

(2π)d
Tbulk(p, p′, s, s′). (4.57)

Here, Nμν ≡ p · p′δμν − pμp′ν − pνp′μ. The first term in Eq. (4.54) represents the contribution from
the localized terms. �μν

(anomalous) and �μν
(nonanomalous) are the parts with and without γ 5, respectively.

As we will see in the next subsection,

�
μν

(nonanomalous) +�
μν

(anomalous) (4.58)

is equal to the vacuum polarization of a left-handed chiral fermion with a Pauli–Villars-like regulator
of mass M . I bulk

2 represents the contribution from the bulk region 0 < s, s′ < ∞.
Note that there are no leading ultraviolet (UV) divergences, terms that have degree of divergence

d − 2, in Eqs. (4.55)–(4.57). Therefore, all UV divergences are canceled by the Pauli–Villars pairs
under the conditions of Eq. (3.6).
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4.3. Comparison with chiral fermion in 2n dimensions

We first consider the vacuum polarization of a left-handed chiral fermion:∫
ddp

(2π)d
tr
[
γ μP−

i/p

p2 γ
νP−

i/p′

p′2

]
, (4.59)

where P− = 1−γ 5

2 . By introducing one Pauli–Villars field, we have

∫
ddp

(2π)d

(
tr
[
γ μP−

i/p

p2 γ
νP−

i/p′

p′2

]
− tr

[
γ μP−

i/p + M

p2 + M 2 γ
νP−

i/p′ + M

p′2 + M 2

])
(4.60)

= Vμν

(nonanomalous) + Vμν

(anomalous), (4.61)

where

Vμν

(nonanomalous) ≡
∫

ddp

(2π)d

(
−M 2(p2 + p′2 + M 2) tr

[
γ μ/pγ ν/p′]

2p2p′2(p2 + M 2)(p′2 + M 2)
− M 2tr [γ μγ ν]

2(p2 + M 2)(p′2 + M 2)

)
,

(4.62)

Vμν

(anomalous) ≡
∫

ddp

(2π)d

(
− tr

[
γ μ/pγ ν/p′γ 5

]
2p2p′2 + tr

[
γ μ/pγ ν/p′γ 5

]
2(p2 + M 2)(p′2 + M 2)

)
. (4.63)

The nonanomalous part Vμν

(nonanomalous) is precisely equal to Eq. (4.55).
We evaluate the difference between Eq. (4.56) and Eq. (4.63), and show that it is zero in the limit

of M → ∞. This is trivial for d > 2 since both of them vanish. Thus we consider the case d = 2.
The difference is calculated as:

FM (k) ≡ Vμν

(anomalous) −�
μν

(anomalous)

=
∫

d2p

(2π)2

[
−M 2(p2 + p′2 + M 2) tr

[
γ μ/pγ ν/p′γ 5

]
2p2p′2(p2 + M 2)(p′2 + M 2)

+
M tr

[
γ μ/pγ ν/p′γ 5

] (
p2 + p′2 + M 2 +√

p2 + M 2
√

p′2 + M 2
)

2p2p′2√p2 + M 2
√

p′2 + M 2(
√

p2 + M 2 +√
p′2 + M 2)

⎤
⎦ .

(4.64)

Because this integral is finite at k = 0, we can expand it around k = 0:

FM (k) = FM (0)+ O
(

k

M

)
, (4.65)

where

FM (0)

=
∫

d2p

(2π)2
M tr

[
γ μ/pγ ν/pγ 5

]
(p2)2(p2 + M 2)2

(
−1

2
M (2p2 + M 2)+ 1

4

√
p2 + M 2(3p2 + 2M 2)

)
(4.66)

∝ tr
[
γ μγ λγ νγλγ

5] (4.67)

= 0. (4.68)

12/24



PTEP 2017, 063B09 Y. Hamada and H. Kawai

Thus we obtain

lim
M→∞ FM (k) = 0. (4.69)

Therefore, Eq. (4.58) is equal to Eq. (4.61) in the limit of M → ∞.
We extend the above result to general cases m > 2. It is expected that Im given by Eq. (4.11) is

also written as

Im = I s=0
m + I bulk

m , (4.70)

where I s=0
m is the m-vertex loop of the left-handed chiral fermion with the Pauli–Villars field on the

domain wall s = 0. I bulk
m is the m-vertex loop of the heavy mode and the subtracting field in the bulk

region 0 < s < ∞. Note that the divergent terms that are included in I s=0
m and I bulk

m will be canceled
by adding the Pauli–Villars pairs. Then, from Eq. (4.70), we have

lim
L→∞

[
Tr log( /D2n+1 − ε(s)M )− Tr log( /D2n+1 + M )

]
(4.71)

=
∑

m

1

m
I s=0
m +

∑
m

1

m
I bulk
m . (4.72)

The first term in Eq. (4.72) can be regarded as

∑
m

1

m
I s=0
m = Tr log( /D2nP− + /∂2nP+)− Tr log( /D2nP− + /∂2nP+ − M ). (4.73)

Here, the first and second terms in Eq. (4.73) are the effective actions of the left-handed chiral
fermion and the Pauli–Villars field, respectively. On the other hand, the second term in Eq. (4.72)
can be written as [18,19]:

∑
m

1

m
I bulk
m = S(CS)

2n+1 + δS2n+1(M ), (4.74)

where S(CS)
2n+1 is the Chern–Simons term given by Eq. (2.4). The UV divergence in δS2n+1(M ) is

canceled after combining with the Pauli–Villars pairs.
So far, we have neglected the domain wall s = L by taking the limit L → ∞. There, a similar

result for the right-handed chiral fermion to Eq. (4.73) should be obtained. Therefore the effective
action Eq. (4.8) is

Tr log( /D2n+1 − ε(s)M )− Tr log( /D2n+1 + M ) (4.75)

= Tr log( /D2nP− + /∂2nP+)s=0 − Tr log( /D2nP− + /∂2nP+ − M )s=0

+ Tr log( /D2nP+ + /∂2nP−)s=L − Tr log( /D2nP+ + /∂2nP− − M )s=L

+ S(CS)
2n+1 + δS2n+1(M ). (4.76)

Here, ()s=0 and ()s=L stand for substituting the gauge fields Ā(x, s = 0) and Ā(x, s = L) into the
covariant derivative, respectively.
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By adding the Pauli–Villars pairs, the regularized effective action is obtained as follows. For the
sake of simplicity, we write Eq. (3.4) as

log�(A)reg. =
∑
i=0

Ci
[
Tr log

(
/D2n+1 − Miε(s)

)− Tr log
(
/D2n+1 + Mi

)]
, (4.77)

where C0 = 1 and M0 = M . By applying Eq. (4.76) to each pair, we have

log�(A)reg. =
∑
i=0

Ci
[
Tr log( /D2nP− + /∂2nP+)s=0 − Tr log( /D2nP− + /∂2nP+ − Mi)s=0

]

+
∑
i=0

Ci
[
Tr log( /D2nP+ + /∂2nP−)s=L − Tr log( /D2nP+ + /∂2nP− − Mi)s=L

]

+
∑
i=0

Ci S(CS)
2n+1 +

∑
i=0

Ci δS2n+1(Mi) (4.78)

= Tr log( /D2nP− + /∂2nP+)s=0 −
∑
i=0

Ci Tr log( /D2nP− + /∂2nP+ − Mi)s=0

+ Tr log( /D2nP+ + /∂2nP−)s=L −
∑
i=0

Ci Tr log( /D2nP+ + /∂2nP− − Mi)s=L

+ S(CS)
2n+1. (4.79)

The last term in Eq. (4.78) is UV finite and vanishes in the limit of M , Mi → ∞, which we drop in
the following expressions. As argued in Sect. 3, the extra massless modes and Chern–Simons terms
have vanished by the condition

∑
i=1 Ci = 0. Thus there are no artificial degrees of freedom. In

addition, the regularized effective action Eq. (4.79) converges under the condition of Eq. (3.6).
Note that Eq. (4.79) is gauge invariant because gauge anomalies from the three lines are canceled.

For example, for n = 2, the gauge variation of the Chern–Simons term is

δχS(CS)
5 = −1

48π2

∫
d4x εμνλρ tr

[
χ ∂μ

(
ĀνĀλĀρ + 2Āν∂λĀρ

)]∣∣s=L
s=0 , (4.80)

where χ is the gauge function. On the other hand, the first and second lines in Eq. (4.79) give the
anomaly of the left- and right-handed chiral fermions in 4 dimensions, respectively, which cancel
with Eq. (4.80). This cancellation agrees with the manifestly gauge-invariant construction, Eq. (3.4).

5. Axial-vector current in vector-like gauge theory

We investigate the consistency of this formulation by introducing two sets of domain-wall fermions
belonging to complex conjugate representations. As a simple example, we consider a 5D U(1) gauge
theory. We assume that each set of fermions consists of a domain-wall fermion, a subtracting field,
and Pauli–Villars pairs. The two domain-wall fermionsψ andψ ′ have U(1) charge ±1, respectively.
While left-handed physical fermions are localized on s = 0, right-handed fluff fermions are localized
on s = L. We denote the former coming from ψ and ψ ′ by qL and q′

L, respectively. Because the
gradient flow makes the fluff fermions decouple, we obtain a 4D effective theory consisting of the left-
handed physical fermions qL, q′

L. Here, the Chern–Simons term vanishes due to the representations,
and the effective theory is equivalent to the vector-like theory after applying the charge conjugation:
qR ≡ q′C

L . In the following, we will show that the axial-vector current that is defined naturally
does not reproduce the correct anomaly (H. Suzuki and O. Morikawa, personal communication, and
Ref. [20]).
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One natural way to define such current is to introduce a fictitious U(1) gauge field Bμ that couples
to qL and q′

L with charge +1. Then the current is defined by the variation with respect to the gauge
field Bμ(x). In order to realize it, we consider the bulk U(1) gauge field B̄μ(x, s) that couples to ψ
and ψ ′ with charge +1. We assume that B̄μ also evolves by the gradient flow from s = 0 to s = ±L:

∂sB̄ν = ε(s)

M ′′ ∂μF̄ (B)μν , (5.1)

with μ, ν = 1, . . . , 4, B̄μ(x, 0) = Bμ(x), and B̄5 = 0. F̄ (B)μν denotes the field strength of B̄μ, and
M ′′ � M as M ′ in Eq. (2.2). Then, we define J B

μ(x) by

〈J B
μ(x)〉A ≡ δSeff [Ā, B̄]

δBμ(x)

∣∣∣∣
Bμ=0

, (5.2)

where μ = 1, . . . , 4. Seff [Ā, B̄] is the effective action obtained by integrating out ψ and ψ ′. The
symbol 〈〉A stands for the expectation value in the presence of the background gauge field Aμ, which
we drop in the expressions below. J B

μ seems to be the U(1) axial-vector current:

J B
μ(x) ∼ q̄Lγ

μqL + q̄′
Lγ

μq′
L (5.3)

= q̄Lγ
μqL − q̄Rγ

μqR. (5.4)

However, it does not reproduce the correct axial anomaly. Indeed, as we will see below, J B
μ is exactly

conserved (H. Suzuki and O. Morikawa, personal communication, and Ref. [20]):

∂μJ B
μ(x) = 0. (5.5)

On the other hand, from the viewpoint of the 5D theory, this conservation is natural because this cur-
rent is a Noether current of this system. In order to solve this paradox, we investigate the mechanism
of this conservation.

First we discuss how the effective action changes under the gauge transformation of Bμ(x):

Bμ(x) �→ Bμ(x)+ ∂μχ(x). (5.6)

Because B̄μ(x, s) is changed as follows:

B̄μ(x, s) �→ B̄μ(x, s)+ ∂μχ(x), (5.7)

the variation of the effective action Seff [Ā, B̄] can be written in the following two ways:

δSeff =
∫

d4x ∂μχ(x)
δSeff [Ā, B̄]
δBμ(x)

(5.8)

=
∫

d4x
∫

ds ∂μχ(x)
δSeff [Ā, B̄]
δB̄μ(x, s)

. (5.9)

Thus we obtain

∂μJ B
μ(x) =

∫ L

0
ds ∂μ jB

μ(x, s), (5.10)
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where

jB
μ(x, s) ≡ δSeff [Ā, B̄]

δB̄μ(x, s)

∣∣∣∣
B̄μ=0

. (5.11)

Note that the region −L < s < 0 has no contribution to Eq. (5.10) because no terms are induced
there, as we have seen in Sect. 4.2. The above expression indicates that there is a contribution from
the bulk to the divergence of the current as well as that from the domain wall, Eq. (5.3).

As we have seen in the previous section, Seff [Ā, B̄] consists of the effective action of the chiral
fermions on s = 0, L and the Chern–Simons term in the bulk, in the limit of M → ∞. Thus we
can write ∫ L

0
ds jB

μ(x, s) = J (qL,qR)
μ (x)+ J (fluff )

μ (x)+ J (CS)
μ (x), (5.12)

where J (qL,qR)
μ , J (fluff )

μ are currents of the chiral fermions on each boundary, and

J (CS)
μ (x) ≡

∫ L

0
ds j(CS)

μ (x, s). (5.13)

j(CS)
μ (x, s) is the Chern–Simons current:

j(CS)
μ (x, s) ≡ δ

δB̄μ
S(CS)

5 (Ā, B̄)

∣∣∣∣
B̄=0

(5.14)

= −1

24π2

δ

δB̄μ

∫
ω5(Ā, B̄)

∣∣∣∣
B̄=0

. (5.15)

In the presence of the gauge fields Ā and B̄, the Chern–Simons form ω5 is∫
ω5(Ā, B̄) (5.16)

=
∫

[ {d(Ā + B̄)}2 (Ā + B̄)+ {d(−Ā + B̄)}2 (−Ā + B̄) ] (5.17)

=
∫

[ 2(dĀ)2B̄ + 4 dĀ dB̄ Ā + O(B̄2) ]. (5.18)

Note that the B̄-dependent part does not vanish although the anomaly-free condition for Ā is satisfied.
By substituting Eq. (5.18) into Eq. (5.15), we obtain

j(CS)
μ (x, s) = −1

4π2 εμabcd ∂aĀb∂cĀd(x, s), (5.19)

where μ = 1, . . . , 4 because B̄5 = 0, and a, b, c, d = 1, . . . , 5. Then, the divergence of J (CS)
μ is

calculated as follows:

∂μJ (CS)
μ (x) = ∂μ

∫ L

0
ds j(CS)

μ (x, s) (5.20)

= −1

4π2

∫ L

0
ds ∂μ

(
εμabcd ∂aĀb∂cĀd

)
(5.21)
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= −1

2π2

∫ L

0
ds εμ5bcd

(
∂μ∂5Āb

)
∂cĀd (5.22)

= 1

4π2

∫ L

0
ds ∂5

(
ε5μbcd ∂μĀb∂cĀd

)
(5.23)

= 1

4π2 εμνλρ ∂μĀν∂λĀρ
∣∣s=L
s=0 (5.24)

= −1

16π2 εμνλρFμνFλρ(x, 0), (5.25)

with μ, ν, λ, ρ = 1, . . . , 4. We have used the notion that Āμ(x, s = L) is pure gauge in the last line.
On the other hand, the anomaly of J (qL,qR)

μ is the same as the conventional axial anomaly of the
vector-like fermion [27,28]:

∂μJ (qL,qR)
μ (x) = 1

16π2 εμνλρFμνFλρ(x, s = 0). (5.26)

∂μJ (fluff )
μ is similar, but vanishes because Ā(x, s = L) is pure gauge10.

Thus the 4D current J B
μ is conserved as mentioned above:

∂μJ B
μ(x) = ∂μJ (qL,qR)

μ (x)+ ∂μJ (fluff )
μ + ∂μJ (CS)

μ (x) (5.27)

= 0. (5.28)

In addition, the current is nonlocal in the sense of the 4D field theory because it includes the bulk
contribution. Therefore we cannot regard J B

μ as the local U(1) axial current in the effective theory.
In order to obtain the local and correctly anomalous current, we subtract the bulk contribution

from J B
μ :

J axial
μ (x) ≡ J B

μ(x)−
∫

d4y
∫ L

0
ds j(CS)

ν (y, s)
δB̄ν(y, s)

δBμ(x)
. (5.29)

Indeed, Eq. (5.29) can be written as

J axial
μ (x) =

∫
d4y

∫ L

0
ds
(

jB
ν (y, s)− j(CS)

ν (y, s)
) δB̄ν(y, s)

δBμ(x)
, (5.30)

which is manifestly local and reproduces the correct anomaly:

∂μJ axial
μ = 1

16π2 εμνλρFμνFλρ(x). (5.31)

Note that the Chern–Simons current j(CS)
μ (x, s) and jB

μ(x, s) are gauge invariant (see Eqs. (5.19)
and (5.11)). Therefore J axial

μ (x) is also gauge invariant. This is also true when the gauge group of the
gauge field Āμ is non-Abelian. In such case, indeed, the Chern–Simons form is∫

ω5(Ā, B̄) (5.32)

=
∑

R=r,r̄

∫
trR

[
(d(Ā + B̄))2(Ā + B̄)+ 3

2
(Ā + B̄)3d(Ā + B̄)+ 3

5
(Ā + B̄)5

]
, (5.33)

10 The fluff fermions are indeed decoupled even for the anomaly.
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where r and r̄ are the representations of the two fermions ψ and ψ ′, respectively. Thus the Chern–
Simons current is written as

j(CS)
μ (x, s) = −1

32π2

∑
R=r,r̄

εμabcd trR F̄abF̄cd , (5.34)

which is manifestly gauge invariant.

6. Summary and conclusions

In this paper, we have studied the formulation in Refs. [16,17] in the continuum. In Sect. 3, we have
given the regularization by Eq. (3.4) with Eqs. (3.6) and (3.9). The Pauli–Villars pairs could generate
extra massless modes on the walls and Chern–Simons terms in the bulk. However, the condition of
Eq. (3.9) eliminates these extra contributions.

In Sect. 4, we have calculated the effective action to the quadratic order in the gauge field, and we
have found that the effective action consists of three parts. One is the effective action of the chiral
fermions on the domain walls with Pauli–Villars-like regularization. The second is the Chern–Simons
term in the bulk. The third are divergent terms, which are canceled by the Pauli–Villars pairs.

In Sect. 5, we have argued the axial-vector current in 4 dimensions. We have introduced two sets
of domain-wall fermions belonging to complex conjugate representations so that the effective theory
is the vector-like gauge theory. Then we have considered the axial-vector current that generates
the simultaneous phase transformations for the fermions. This current is exactly conserved, but it
contains the contribution from the bulk, which is nonlocal from the viewpoint of the 4D theory.
Therefore the local gauge-invariant axial-vector current is obtained by subtracting the bulk part.
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Appendix A. Propagator of the domain-wall fermion

The propagator of the domain-wall fermion is a solution of the following equation:

[i/p + γ 5∂s − ε(s)M ]G(p, s; s′) = δ(s − s′), (A.1)

where G(p, s; s′) is the Fourier transform of the propagator in 2n directions:

G(x, s; x′, s′) =
∫

d2np

(2π)2n e−ip·(x−x′) G(p, s; s′). (A.2)

We first consider the region s′ > 0. Then we have three cases for s:⎧⎪⎨
⎪⎩
(i) 0 < s′ < s
(ii) 0 < s < s′
(iii) s < 0 < s′

(A.3)
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We denote the propagators for (i), (ii), (iii) by G(1), G(2), G(3), respectively. From Eq. (A.1),
we have

G(1)(p, s; s′) = e(i/p+M )γ 5s C1(s
′), (A.4)

G(2)(p, s; s′) = e(i/p+M )γ 5s C2(s
′). (A.5)

G(3)(p, s; s′) = e(i/p−M )γ 5s C3(s
′), (A.6)

where C1, C2, C3 are s-independent matrices. Note that the sign of the mass in G(3) is different from
the others. We impose the following boundary conditions:⎧⎪⎪⎨

⎪⎪⎩
G(1)(s = s′)− G(2)(s = s′) = γ 5

G(2)(s = 0) = G(3)(s = 0)

G(1)(s = L) = G(3)(s = −L).

(A.7)

The first equation is obtained from Eq. (A.1) by integrating for s around s′. The second is to connect
G continuously at s = 0. The third is the periodic boundary condition. Thus matrices C1, C2, C3 are
all determined. Then, by using the identity

e(i/p+M )γ 5s = cosh
(

s
√

p2 + M 2

)
+ (i/p + M )γ 5√

p2 + M 2
sinh

(
s
√

p2 + M 2

)
,

we obtain

G(1)(p, s; s′) = −√p2 + M 2

2 sinh(L
√

p2 + M 2)

i/p

p2 e−(i/p+M )γ 5(s−L) e(i/p−M )γ 5s′
, (A.8)

G(2)(p, s; s′) = −√p2 + M 2

2 sinh(L
√

p2 + M 2)

i/p

p2 e−(i/p+M )γ 5s e(i/p−M )γ 5(s′−L), (A.9)

G(3)(p, s; s′) = −√p2 + M 2

2 sinh(L
√

p2 + M 2)

i/p

p2 e−(i/p+M )γ 5(s−s′+L). (A.10)

In the following, we consider the limit of L → ∞. Then, G(1) becomes

G(1)(p, s; s′)

= i/p

p2

−√p2 + M 2

eL
√

p2+M 2 − e−L
√

p2+M 2

×
[

cosh{(s − L)
√

p2 + M 2} − (i/p + M )γ 5√
p2 + M 2

sinh{(s − L)
√

p2 + M 2}
]

e(i/p−M )γ 5s′

→ − i/p

2p2 e−s
√

p2+M 2
[√

p2 + M 2 + (i/p + M )γ 5
]

×
[

cosh
(

s′
√

p2 + M 2

)
+ (i/p − M )γ 5√

p2 + M 2
sinh

(
s′
√

p2 + M 2

)]

= − i/p + M −√
p2 + M 2 γ 5

2
√

p2 + M 2
e(s

′−s)
√

p2+M 2

− i/pM (i/p +√
p2 + M 2 γ 5 + M )

2p2
√

p2 + M 2
e−(s+s′)

√
p2+M 2

. (A.11)
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G(2) and G(3) can be calculated similarly. The result can be summarized as⎧⎪⎪⎨
⎪⎪⎩

G(1)(p, s; s′) = S(+)(p, s − s′)+ D(+)(p) e−(s′+s)
√

p2+M 2
(0 < s′ < s)

G(2)(p, s; s′) = S(+)(p, s − s′)+ D(+)(p) e−(s′+s)
√

p2+M 2
(0 < s < s′)

G(3)(p, s; s′) = D(−+)(p) e(s−s′)
√

p2+M 2
(s < 0 < s′),

(A.12)

where

S(+)(p, s − s′) = −θ(s − s′)
i/p + M −√

p2 + M 2γ 5

2
√

p2 + M 2
e(s

′−s)
√

p2+M 2

− θ(s′ − s)
i/p + M +√

p2 + M 2γ 5

2
√

p2 + M 2
e(s−s′)

√
p2+M 2

, (A.13)

D(+)(p) = − i/pM (i/p +√
p2 + M 2γ 5 + M )

2p2
√

p2 + M 2
, (A.14)

D(−+)(p) = − i/p(
√

p2 + M 2 − (i/p − M )γ 5)

2p2 . (A.15)

The propagator for s′ < 0 is obtained by replacing M → −M and γ 5 → −γ 5 in the above
expressions (A.12)–(A.15):⎧⎪⎪⎨

⎪⎪⎩
G(4)(p, s; s′) = S(−) (p, s − s′)+ D(−)(p) e(s

′+s)
√

p2+M 2
(s < s′ < 0)

G(5)(p, s; s′) = S(−) (p, s − s′)+ D(−)(p) e(s
′−s)

√
p2+M 2

(s′ < s < 0′)
G(6)(p, s; s′) = D(+−)(p) (s′ < 0 < s),

(A.16)

where

S(−)(p, s − s′) = −θ(s − s′)
i/p − M −√

p2 + M 2γ 5

2
√

p2 + M 2
e(s

′−s)
√

p2+M 2

− θ(s′ − s)
i/p − M +√

p2 + M 2γ 5

2
√

p2 + M 2
e(s−s′)

√
p2+M 2

, (A.17)

D(−)(p) = + i/pM (i/p −√
p2 + M 2γ 5 − M )

2p2
√

p2 + M 2
, (A.18)

D(+−)(p) = − i/p(
√

p2 + M 2 + (i/p + M )γ 5)

2p2 . (A.19)

Appendix B. Vacuum polarization

We give concrete expressions for I, II, III, defined in Eqs. (4.15), (4.33), (4.41), respectively. I is
given by

I =
∫∫

(I)
tr
[
Āμ(−k , s′)Āν(k , s)

] ∫ ddp

(2π)d
T (−)local(p, p′, s, s′), (B.1)
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where

T (−)local(p, p′, s, s′)

= tr
[
γ μD(−)γ νD′(−)]+ tr

[
γ μD(−)γ νS ′(−)]+ tr

[
γ μS(−)γ νD′(−)] . (B.2)

Here, tr
[
γ μD(−)γ νD′(−)] is calculated as follows:

tr
[
γ μD(−)(p, s′; s)γ νD(−)(p′, s; s′)

]
(B.3)

= −M 2e−(s+s′)(
√

p2+M 2+
√

p′2+M 2)

4p2p′2√p2 + M 2
√

p′2 + M 2

× tr
[
γ μ /p(i/p −

√
p2 + M 2γ 5 − M )γ ν /p′(i/p′ −

√
p′2 + M 2γ 5 − M )

]
(B.4)

≡ α(p, p′) e(s+s′)(
√

p2+M 2+
√

p′2+M 2), (B.5)

where

α(p, p′) = M 2

4p2p′2√p2 + M 2
√

p′2 + M 2

×
[

2np2p′2 δμν + 2n(

√
p2 + M 2

√
p′2 + M 2 + M 2)Nμν

− M (

√
p2 + M 2 +

√
p′2 + M 2)tr

[
γ μ/pγ ν/p′γ 5]] , (B.6)

and Nμν = p · p′δμν − pμp′ν − pνp′μ .
Similarly, tr

[
γ μD(−)γ νS ′(−)] is given by

tr
[
γ μD(−)γ νS ′(−)] ≡ β(p, p′) e(s

′+s)
√

p2+M 2
e(s

′−s)
√

p′2+M 2
, (B.7)

where

β(p, p′) = M

4p2
√

p2 + M 2
√

p′2 + M 2

×
[

2nM (−p2δμν + Nμν)−
√

p2 + M 2 tr
[
γ μ/pγ ν/p′γ 5]

+ p2
√

p′2 + M 2 tr
[
γ μγ νγ 5]] . (B.8)

tr
[
γ μS(−)γ νD′(−)] is given by

tr
[
γ μS(−)γ νD′(−)] ≡ γ (p, p′) e(s

′+s)
√

p′2+M 2
e(s

′−s)
√

p2+M 2
, (B.9)
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where

γ (p, p′) = M

4p′2√p′2 + M 2
√

p2 + M 2

×
[

2nM (−p′2δμν + Nμν)−
√

p′2 + M 2 tr
[
γ μ/pγ ν/p′γ 5]

+ p′2
√

p2 + M 2 tr
[
γ μγ νγ 5]] . (B.10)

Consequently, I is obtained as follows:

I = tr
[
Aμ(−k)Aν(k)

]
×
∫

ddp

(2π)d

[
− 2nM 2δμν

8(p2 + M 2)(p′2 + M 2)

+ 2nM 2(p′2√p′2 + M 2 + p2
√

p2 + M 2)Nμν

8p2p′2(p2 + M 2)(p′2 + M 2)(
√

p2 + M 2 +√
p′2 + M 2)

+ 2nM 2(p2p′2δμν + (
√

p2 + M 2
√

p′2 + M 2 + M 2)Nμν)

8p2p′2(
√

p2 + M 2 +√
p′2 + M 2)2

√
p2 + M 2

√
p′2 + M 2

− M (p2 + p′2 + M 2) tr
[
γ μ/pγ ν/p′γ 5

]
8p2p′2√p2 + M 2

√
p′2 + M 2(

√
p2 + M 2 +√

p′2 + M 2)

+ M (p2 + p′2 + 2M 2) tr
[
γ μγ νγ 5

]
8(p2 + M 2)(p′2 + M 2)(

√
p2 + M 2 +√

p′2 + M 2)

]
. (B.11)

The last term that includes tr
[
γ μγ νγ 5

]
will be canceled with the contribution from region I′ because

the net effect of interchanging s ↔ s′ changes the sign of γ 5 in S(−).
Similarly, II is given by

II =
∫∫

(II)
tr
[
Āμ(−k , s′)Āν(k , s)

]
∫

ddp

(2π)d

[
tr
[
γ μD(+−)γ νD′(−+)]− tr

[
γ μS(−)γ νS ′(−)]] (B.12)

= tr[Aμ(−k)Aν(k)]∫
ddp

(2π)d

[
− 2nM 2δμν

4
√

p2 + M 2
√

p′2 + M 2(
√

p2 + M 2 +√
p′2 + M 2)2

+ 2nM 2Nμν(p2 + p′2 + M 2 +√
p2 + M 2

√
p′2 + M 2)

4p2p′2√p2 + M 2
√

p′2 + M 2(
√

p2 + M 2 +√
p′2 + M 2)2

− M tr
[
γ μ/pγ ν/p′γ 5

]
4p2p′2(

√
p2 + M 2

√
p′2 + M 2)

+ M tr[γ μγ νγ 5]
4
√

p2 + M 2
√

p′2 + M 2(
√

p2 + M 2 +√
p′2 + M 2)

]
. (B.13)

Again, the last term will be canceled with the contribution from region II′.
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III is given by

III =
∫∫

(III)
tr
[
Āμ(−k , s′)Āν(k , s)

]

×
∫

ddp

(2π)d

[
T (+)local(p, p′, s, s′)+ Tbulk(p, p′, s, s′)

]
, (B.14)

where

Tbulk = tr
[
γ μS(+)γ νS ′(+)]− tr

[
γ μS(−)γ νS ′(−)] , (B.15)

T (+)local = tr
[
γ μD(+)γ νD′(+)]+ tr

[
γ μD(+)γ νS ′(+)]+ tr

[
γ μS(+)γ νD′(+)] . (B.16)

Here, tr
[
γ μD(+)γ νD′(+)] is calculated similarly to Eq. (B.5):

tr
[
γ μD(+)γ νD′(+)] (B.17)

= −M 2e−(s+s′)(
√

p2+M 2+
√

p′2+M 2)

4p2p′2√p2 + M 2
√

p′2 + M 2

× tr
[
γ μ /p(i/p +

√
p2 + M 2γ 5 + M )γ ν /p′(i/p′ +

√
p′2 + M 2γ 5 + M )

]
(B.18)

= α(p, p′) e−(s+s′)(
√

p2+M 2+
√

p′2+M 2). (B.19)

Note that α(p, p′) in Eq. (B.19) is equal to Eq. (B.6). We obtain similar results for tr
[
γ μD(+)γ νS ′(+)]

and tr
[
γ μS(+)γ νD′(+)], and T (+)local is written as Eq. (4.52).
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