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A note on the decay estimates for the compressible
Navier-Stokes-Poisson system in critical Besov spaces

Noboru CHIKAMI* and Raphaél DANCHIN®

Abstract

This is a survey on the Cauchy problem for the Navier-Stokes-Poisson system in the
critical regularity framework. Under a suitable additional condition involving only the low
frequencies of the data, we establish optimal decay estimates in the L?-critical framework
for the global solutions around small perturbations of a linearly stable constant state.

1 Problem and formulation

This is a survey paper on [5]. We consider the Cauchy problem of the compressible Navier-
Stokes equations coupled with a Poisson equation, in the whole space R™ with n > 2. The
system reads

Bp + div (pu) = 0, (t,z) € Ry x R™,
B(pu) + div(pu @ u) + VP
=pAu+ A+ p)Vdive — kpVep,  (t,z) € Ry xR, (1)
— Ay =p-p, (t,z) € Ry xR?,
(p,u)le=0 = (po,u0), z e R™.

Above, the unknown functions p = p(t,z) € Ry, u = u(t,z) € R* and ¢ = ¢(t,z) € R
represent the fluid density, the velocity field and the potential force, respectively. The pressure
P = P(p) is given by a smooth function only depending on p. The Lamé coefficients u-and A
are assumed to be constant (just for simplicity) and to satisfy

w>0 and A+2u>0, (2)

so that the operator uA + (A + p)Vdiv is elliptic. Finally, we assume that p tends to some
background constant density g > 0 at infinity.

System (1) (that we shall sotnetimes designate by NSP) is often referred to as the com-
pressible Navier-Stokes-Poisson equations with a Coulomb potential. The first equation repre-
sents the mass conservation law, the second one corresponds to the momentum balance, and
the third equation is a Poisson type elliptic equation that determines the potential given by
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the electric or gravitational field. If x > 0 (repulsive case) then (1) describes the transport
of charged particles under the electric field of electrostatic potential force (cf. Markowich-
Ringhofer-Schmeiser [14]). When & < 0 (attractive case), it models the dynamics of a self-
gravitating gaseous star (cf. Chandrasekhar [2]). As may be seen by solving the linearized
equations around the equilibrium (p, ) = (p,0) in Fourier variables, the case £ > 0 is linearly
stable, while the case x < 0 is unstable. We shall focus on the repulsive case x > 0 in this

paper.

2 Statement of Results

Only a few works have been dedicated to the study of (1) in the so-called critical regularity
framework. By critical regularity, we mean that the solutions are looked for in a functional
space having the same invariance by time and space dilations as (1) itself, namely (¢, p,u) —
(%e, pesue) for all £ > 0, with

Yolt, x) := €202, £x), pe(t, x) = p(€3t,£x) and wy(t,z) = Lu(€?t, Lx). 3)

The idea of critical framework for the standard compressible Navier-Stokes system (that is
# = 0) has been successfully employed by many authors (see e.g. [7, 4, 3, 9]).

In the case of (1) with x > 0, Hao-Li [10] first adapted the method of [7], to prove global
existence in dimension n > 3, where the initial data satisfies critical regularity with somewhat
strong low frequency assumption. Later, still in dimension n > 3, Zheng [16] weakened the
regularity on the velocity and extended the global existence result to the L? critical framework.
The result in [16] has been extended to any dimensions n > 2 by [5], and the large data local
theory for (1) in critical framework is established by [6].

However, the long time behavior of the above solutions for (1) have not been fully inves-
tigated. In contrast, when x = 0, there have been a number of results concerning the decay
estimates for the solutions of barotropic compressible Navier-Stokes system. Matsumura-
Nishida [15] considered the global classical solution and proved the optimal decay rates for
the (1) with & = 0 for data with high Sobolev regularities. Okita recently showed that a
similar decay estimate holds for the critical solution, under an additional assumption that the
data belongs to L!, which was further extended to the L? critical framework to any dimension
n>2. .

As for decay estimates of solutions for (1) when & > 0, little is known for critical solution.
Li-Matsumura-Zhang [13] proved the global existence of a classical solution and time decay
estimates in the three-dimensional case under the assumption that data are close to the
constant equilibrium state. However, the decay results in [13] do not cover the critical solutions
constructed in [5, 10, 16] as it treats data with high Sobolev regularity. It is our aim in this
paper to prove optimal decay estimates for the critical global solutions of (1), in the spirit of
those of Okita in [12] or Danchin [8] for the barotropic Navier-Stokes equations.

2.1 Notation

Before writing out our main statements, we need to introduce some notation. First of all, we
will denote by C' harmless generic ‘constants’ that may change from line to line, and we agree
that the notation A = B means that we have C~14 < B < CA.
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Next, we need to introduce some functional spaces. Let L? (1 < p < 00) be the standard
Lebesgue space on R™, and #° be the corresponding sequence space. To define Besov spaces,
we start with a dyadic decomposition of unity {¢;};cz in the Fourier space generated by some
non-negative radially symmetric function $ € S, that satisfies

supp ¢ C {¢ € R*;3/4 < [¢| < 8/3},
$i=027), jEL and Y $;(€)=1, £+0.
Jj€L
We set B(£) =1 $;(¢) and §; := B(27").
j=1
Definition 2.1 (Besov spaces). Let S’ be the space of all tempered distributions. For s € R
and 1 < p < 0o we define the homogeneous Besov space B, ; to be

E;’I ={ues;; ”u||B;,1 < o0},

with S, := {u es; E Aju=u in S'} and ||ullz. = E 29%|| Ajulle-
P>
JEZ JEL

Let us recall that if s < n/p then Bs 1 is a Banach space, and that the set 8o of functions in
S with Fourier transform supported away from the origin is dense. More properties of Besov
spaces may be found in e.g. [1].

Having fixed some k¢ € Z, we denote by uy, := S"kou := @y, * u the low frequencies of u;
and by ug := v — ur, the high frequencies of u. We shall also need the notation

lulf =Y 2°|Asullr and Julf, = > 27)Azul. ()
P,1 »1
j<ko J2ko—1

Note the (intentional) small overlap between low and high frequencies, ensuring that

. L . H
luclsy, < Clluly,  and Jumllsy, < Clluly . (%)

2.2 Main results
We introduce the set E,(T') of tempered distributions (a,u) satisfying

az, € ¢([0, T}; 32 73, up € C([O T] BETY), (Va,V?u); € L0, T; BEY),

an € C([0,T); B 1) ﬂL1(0 T;B 1), (6)
ug € C([0,T}; BZ, ) and Vuy € L'(0,T; B}, )
We shall denote

X(T) := "aL"L""(BQ -2 +|u L||L°°(BT1 + |(Va, V2u)L||L1 (B” 1
T 1

+|((Va,U)H§w 3 +[(Va, v2U)IlH U]
T ) T( ,1 )
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with the convention that |- ||z »(v) designates the norm of L” functions (or essentially bounded
functions if r = +o00) on the interval [0, T] with values in the Banach space Y, black and that

1 Dz vy = 1f gy + gl zs.v)-
The norms |- ||5= ¥ (82,) that are slightly stronger than the norms with no tilde are defined

in (44). Finally, in (6) we agreed that
CU(0,T}; B31) = {v € C(10, T} B) ; Il g g ) < o0}

Note that owing to (5) and Bernstein inequality, X (T") is equivalent to the ‘natural’ norm of
E,(T) stemming directly from Definition (6).

The following result of global solvability is proved in [5].
Theorem 2.2 ([5]). Assume that k > 0 and that P'(p) > 0. Let n > 2 and

[2,4) if n=2

pe .
[2%] if n>a4

Consider initial data (po,uo) satisfying infy po(x) > 0 and such that ag := (po — ) € B oy and

z_y
ug € BP

There exists an integer ko depending only on k, p and X and some small enough constant
¢ =c(n,p, 1, A\, K, P) such that if we have in addition

Xo := |laoz]l, si lluocll ;3 gt ||(Vao,UO)|| 21 5¢ 9)
pl
then there exists a unique global solution (p,u, V) to (1) satisfying for all T > 0, (a :=

p— pyu) € Ep(T) and V¢ has the same regularity as a. Moreover, for some, constant
C =C(n,p, u, A\, &, P), we have

X(T)<CXqy forall T>0. (10)

Under additional assumptions on the low frequencies of the initial data, one may obtain
time-decay estimates that are very similar to those of the standard compressible Navier-Stokes
equations. For simplicity, we focus on the result for L?-based critical Besov spaces.

Theorem 2.3 ([5]). Let the data (ao,uo) satisfy the assumptions of Theorem 2.2 with p = 2
and assume for simplicity that P'(1) = 1 and that & = 1. There exists a positive constant c
so that if in addition

Do = ||610”g—g—1 + ||’U0”g—;;, sc (11)
2,00 2,00

then the global solution (a,u) given by Theorem 2.2 satisfies for all t > 0,

D@ <C L, L il i 12
< (IlaoIIB_ 1+IIUOIIB;2+IIao|IB§1+Iluollﬁzl_l) (12)

-
2,00
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with, denoting (t) := (1 +1t) and o := % + § — ¢ for sufficiently small € > 0, black and
agreeing that the notation (7)° f (with f € {a,Va,u,Vu} and o € R) designates the function
() = (1) f(7,2),

DW= swp (0 Eakn gy + 10 by )
6—5’7
1) (Va0 o +IrVulZ o (13)
2,1

The rest of the survey is dedicated to the proof of Theorem 2.3. For the proof of Theorem
2.2, we refer to [5, 16]. In Appendix, for the reader convenience, we list some results concerning
product and commutator in the Besov spaces.

3 Linear analy_sis

In the case where p — p is in Sp then the last equation of (1) allows to compute V4 from p
by the formula

Vi =V(=A)" (o - p).
As Sy is dense in B;yl whenever s < n/p, we deduce that in the functional setting of e.g.
Theorem 2.2 and if p is positive, then System (1) may be equivalently written as

&a + pdivu = —div (au),

Byu — [,u+Pl(p)Va+nV( A)ta 19)
. Pp) Ppl+a)\g 1 u
- Vu+< p p(L+a) )V p<a+p>£’

where we denoted a := p — g and £ := pA + (A + p)Vdiv.
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The following change of variables allows us to normalize the coefﬁcieﬁts of the linear terms

to 1 (except for those pertaining to the viscous stress tensor):

( \/1_ \/__:c) with c:=+/P'(p). (15)

at,) =+ (J_F) ii(t, z) =

Then System (14) is transformed to

&a + diva = F(a, @),
{ata — Lu+Va+V(-A)"1a = G(3, ), (16)
with £ = g,\/'c A+ (A + ) Vdiv,
F(a, %) := —div (3u),
and G(&,%) :=—u-Va+ (1 - %ﬁ((llj%) e (%)Za. (1?)

From now on, we drop the tilde on (@, %) as well as on X and 1, and consider the normalized
system (16). Let us decompose u into v = w + Plu, with w := Pu where P and Pt



are the projectors onto divergence-free and potential vector-fields, respectively (hence w :=
(Id + Vdiv (=A)~u). Setting v := A~ldivu = A~ldivPLu with A~1 := (—A)~1/2, the
system for (a,v,w) reads

Oa+ Av =F
B —vAv — Aa— A" la = A71divG, (18)
Sw — pAw = PG,

where A := (—A)Y/2, v := A+ 2u, and F and G have been defined in (17).

At the linear level, the interaction between the velocity and the density only involves the
compressible part of the velocity, namely v. The incompressible part w, as for it, satisfies a
mere heat equation. In the second equation of (18), we immediately notice that Aa + A~ la

S
should have the same regularity a8 uAv that is L' (0 T; B}, ). Assuch, it suffices to estimate

n__

ain Bp, Bp 1 ie. ,A"lap € B ” Whlle ag € B » 1 This turns out to be useful observation

when estimating the decay rates m low frequency as we shall see soon.

4 Proof of Theorem 2.3

We refer to [5] for the proof of Theorem 2.2. We focus on the proof of Theorem 2.3, which
is divided into three steps, corresponding to the three terms of the time weighted functional
defined in (13). Recall the following elementary inequality.

Lemma 4.1 ([5, 8]). For any a,b > 0 with max(a,b) > 1, there exists a positive constant C
such that: ,
/ ()"t —r)y"bdr < C(t)~ ™D forall t>0.
0

Step 1: Bounds for the low frequencies. As pointed out in the previous section, for low
frequencies, it suffices to bound (a,v,w) where v := A~'divu and w = A~lrot u. At the
linear level, the incompressible component w satisfies a mere heat equation, while (a, v) fulfills

o, Av =F,
{ ra + Av (19)

8 —vAv—Aa—A"la =A"1G.
In the low-frequency regime, we may also expect to work at the same level of regularity for

@ := A~ la, v and w, so that it is natural to consider the following linear system:

8a+v=A"'F,
{ it v (20)

A —vAv — (1 + A%)a = A7 ldivG.

The Green matrix H(t,-) corresponding to the semi-group etA of (20) may be deduced from
the Green matrix G(t,-) of (19) by the relation

H(t,6) = ( e 0 )G(t 5)( €l 0 )
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Using the expression of @(t, &) given in Prop. 5.2, we discover that

~ _ 1 )‘+eA_t — A_eMt _(6A+t _ e)\_t)
B8 = 3= ( (€2 + (Mt — 1) Ayert—r At )

2
where Ay (€) = —%V|§|2 (1 +4/1- %T:Tl—))

One can thus easily conclude that for all kg € Z, there exist positive constants ¢y and C
depending only on kp such that

|H(t,8)| < Ce~™P  forall |¢| < 2o, (21)

Combining (21) along with the parabolic estimate for the incompressible part, we may obtain
the linear decay estimate via Fourier-Plancherel theorem and the localization property of A;.
Denoting by e® the semi-group associated to System (30) written in terms of (A™a, u), we
get for all s > —n/2, '
o2y tBra—1 L -1 L
up T e (A0, )y, < Coll(A a0, w0l (22)
Since it is expected that a small solution to (1) behaves asymptotically like a linear solution,
the above estimate gives us some clues on the decay rate for the nonlinear problem. More
concretely, rewriting (1) as (16), using (22) and Duhamel formula, we see that the solution
(a,u) to (1) fulfills for all s > —n/2 and ¢ > 0,

I a, 0015, < (0400, w0l g
5 2,00

]
+/ t—7)"173
0

We claim that if s € (—%, § + 1], then we have

[e=nris

with X and D defined in (7) and (13), respectively.
Note that, in light of the following inequality:

(A'F,G) (r)||f§;z dr) - (23)

n

(AEG)(ll -5 dr < O "5 (D) + XP() (24)

-2 =
2,00

IRl% g < Clihllge < Cliklss, (25)
B. 1,00

it is sufficient to prove (24) with ||(A~1F,G)| 1 instead of ||(A~1F, G)||g_%.
2,00

For bounding A~—1F = —A~ldiv (au), we use the fact that A~div is continuous on B,, i

(being a homogeneous multiplier of degree 0). Hence, owing to (25), it suffices to bound

|lau| 1. Now, from Cauchy-Schwarz inequality, the definition of D(t) and Lemma 4.1, one
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may write, if -% <s< %41,

N3

[ =t ol < ( s 0Futr)lia) (sup ()7 Hla(r) )

/ (t— )13 (r)5-dar
n_s n, 1
C(t)~%75( sup (1)¥[lu(r)l|z2) ( sup (7)4*2||a(r)]L2):
0<r<t 0<7<t
We claim that .
(r)#|lu(r)ll> < CD(7)- (26)
Indeed we have . . .
(M)allu(r)lz2 < (r)*llun()llge + (1)« lua (1)l 2
On one hand, according to the definition of D and to a > n/4, one may write
M lua()lz < (N Y 1Au(r)] 2
k>ko

<27 RED()E Y 2*ED || Agu(r)| 2
“k>ko

< 27RE () u(r)| Ty
2 1

On the other hand, taking s = 0 in the definition of D and using that Bgl — L? yields
(1) llu(r)IZ= < CD(7).

Regarding sup (r)3+ %Ila(r)” 12, let us use that a > 2 + 1 if ¢ > 0 is taken small enough
0<7r<t

in the definition of a. Now, because

(M Has(r)lls < (TN sl

and
(1) lag (e < (N3 Y [Ava(r)] 1
k>ko
<27E ()33 37 2| Aga(r) |2

k>ko
kol .
<278 ()2 a(r) |y,
3,1

we conclude that .
(rya*2la(7)l2> < CD(7). 27
Therefore, we have

t
/0 (t — 7)~F5 | (au)(r) || dr < CD(). (28)
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Bounding the second term of G is similar: whenever k is a smooth function vanishing at 0, -

we have

/ (t— 7)1 3||(k(@)Va)(r) | rdr < ( sup (r)F+E|a(r)[z2) ( sup (r)E*|Va(r)llp2)
o 0<r<t 0<7<it

< ()~¥7ED%(t)
as a consequence of (27), of the fact that 2 + 5 < 2+ 1 for all s <-§ + 1 and of

M Van (D)l < M3 Y 1A6Va(r)lzs
k>ko

<27RE-(r)e Y kG “Akva(T)”L2
k>ko
= G () V() |y

2,1

To handle the term with u - Vu, we use the decomposition:
u~Vu=u~VuL+_it-VuH.

The term u - Vur, may be treated similarly as the previous term au. Indeed,

[ =17 V) Ol dr < ( sup (Elu(r)lz2)( sup ()T IVus(r) 1)

¢
x [(-niimihar
0
< O@t)~173iDA(t),

where we used the inequality (26) and the fact that, by definition of D(t),

sup (r)3+3||Vu(7)|| g2 < CD().

0<r<t
The term u - Vug has to be treated differently since in low dimension, we do not have

the control of |Vug ()| itself, only on 7#||Vug(7)| 12 for some appropriate 8 > 0. More
precisely, if 2 < n < 4 then, by interpolation,

2 1-2 R 1)—
IVur@)llz: < ClIVur (Ol g o Vua @)l 5" < O 1@ D=1p()
2,1 2,1

and if n > 5, just by embedding, we have
Vur@liz2 < ClVua (@)l y3-2 < Ct7D(®).
2,1

Therefore, if ¢ > 2 then we can write for 8 := min(a, (o — 1) + 1)
¢
[ =1 Ve lpdr

<0 [[(t= 7180 (o) (o) s PNl

n

< C{t)~ 173 D(t),



because we have § < min(a, (e —1)+ 1) foralls <1+ % and a = %+%—ew1thsmall
enough e.

Obviously, thanks to (26), we may write (still for £ > 2)

/ -yt

1
(- Veg)()l| prdr S/o (t = 1) 3 3 u()l 2l Vus ()| 2 dr

SO iiDX (1),

and thus u - Vuy satisfies the estimate (24) if ¢ > 2. The case t < 2 is easy as (¢) = 1 and
(t—7)=1for 0 <7 <t<2and one may write

/0 - Vugllpdr < |lullpgez2)IVuall i g2y < CDE)X(2)
The last term of G may be written I(a)Cur, + I(a)Cug for some smooth function I
vanishing at 0. Now we have
t ~
[ =t @ L)@l dr

= (0§2§t<T)%+%||a(T)IIL2)(Oggr;t(ﬂ%“IIV2uL(T)IlL2) / (t— )i H(r)E2ar

Hence, thanks to Lemma 4.1 and (27), I(a)Luz fulfills (24)
Finally, to bound 7 (a)EuH, we use the fact that, by interpolation if 2 <n < 6

n_ 1 3_n
IV2ur®lle < CIVPun ()32, IVun ()13 3%, < o @G -heri-Dpgy
21 21

and just by embedding if n > 7,

IVua®)lz2 < CIVun (@)l 3-» < Ct*D()

Therefore, if ¢ > 2 then we can write for v := min(e, (§

2-Pati-B)

[e-n-r4y (I(a)ZuHxT)uler

<Ot —%-% D(t),

where we have used the fact that § < v+ Lforals<1+ %, if € > 0 has been chosen small
enough in the definition of a.

As it is clear that thanks to (27), we have for ¢ > 2

n

- @b @l < [ -0
0 0

y"i-3

la(T)ll 2 IV2ua (1) 2 dr
< O@W)TiTED()X (1),
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the term (I(a)Lug)(r) satisfies the estimate (24) if ¢ > 2. The easy case t < 2 is left to the
reader, which completes the proof of (24).

Combining with (23), we conclude that for all ¢ > 0 and s € (%, § +1], we have for some
constant C depending continuously on s,

T+, | < C(Do+ DO+ X*@)). @)

Step 2:. Bounds for the high frequencies of (Va,u). Recall that the solution given by Theorem

2.2 satisfies
{ata +u-Va+divu = ﬁ, (30)

Bu+u-Vu— pAu— (A + p)Vdivu + Va + V(-A) e =G,
where F and G are defined by

7 ; 5 P'(p(1+a)) '
F = —qadive and G——u-Vu+(1—m Va— +1 Lu.
We next want to establish bounds for the second term of D(z). Recall that Theorem 2.2
already ensures that

[(Va,u)|| ~ .z_1, <CX(0) forall t>0. (31)

Lm(B? ) -

Therefore, it suffices to bound ||7%(Va, u)||~ a_;_for, say, t > 2.

L=@2tBE, )
Denote ay := Aka, ug := Apu and so on, and set
= (v + v YlukllZz + vIIVarllZa + 2(ue | Var) .

By an appropriate energy method including the convection term in the spirit of [7], we
may see that there exist an integer ko and two positive real numbers ¢g and C (all of them
depending only on v) so that for all k > ko, we have

5 o€+ g < O(I(VFk, Gullza + 1Re( w)lze + 1 Belos )12 + [Vl o) (32)

with F := —adivu, G = —k(a)Va — I(a)Lu, Rk(u u) := Ag(u - Vu) — u - VAgu and
Ri(u,a) := &;Ax(u-Va) —u-V&lAgafori=1,--- ,n. See [5] for the details of this proof.
Performing a time integration yields

e®tE(t) < E(0) +C /0 t e (1(VFx, Gi)ll g2 + | Re(u, w)l| g2 + | Ri(u, @)l g2 + | V]| oo E ) dr

Multiplying both sides by t®e~%t2kK(3-1) taking the supremum on [2,¢], and summing up
over k > ko, we thus get

*(Va, )| o ( Vag, uo)|| =
(Ve I as) < O(I(Ta0, w0 o

T
+ Z sup (Ta/ eCO(T’_T)2k(%_1)Sk d,,_l)) (33)
k>ko 0<7<t 0
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with Sy := Y5, S and

St = I(VF, Gz, SE = |Ri(u, w2,
St = |Bs(w,a)lipz, SE = |Vulz=l(AeVa, Axu)|| 2.

Here, note that if kg is large enough then
& = ||(AxVa, Agu)||2  for all k> ko. (34)

To bound the supremum on [2,], we split the integral on [0, 7] into integrals on [0, 1] and
[1,7], respectively. We first handle the [0,1] part of the integral : for 0 < 7/ < 1 (hence
7' < 7), we have

1 1
> aup (7o [ oD ) <O g e [P

hihy 257t Koko 2SS

<c) / 2FG-D g, (r') dr'.

k>ko

Hence, bounding VF and G as in the proof of Theorem 2.2 leads to

, |
sup (7 /0 e IPHEDg, (1) dr') < CX2(1). (35)

k>ko 2<7<t

To handle the [1, 7] part of the integral for 2 < 7 < ¢, we shall use repeatedly the following
inequality

I7Vull 7= 53 , < €D@), (36)

L°°(B’ )y~
which is obvious for the high frequencies of w.

To estimate S} = ||(VEy, Gi)| 12, we notice that

sup ('r"‘/1 e -Tgk(F -1 gl (/) dT’)

Koy 25T<t
. T !
< Z ( sup 2k(§_1)( sup (TI)QS,}:(TI)) T"‘/ (')~ e('=T) d'r’)
E>k 2<r<t 1<7r'< 1 1

and a variant of the proof of Lemma 4.1 guarantees that

7 /1 (1) et =) 4! < € (37)
Hence
sup. (= / eIV ar') < Clr(VF, Olgsspry @)
Kok 25T 1
Now, product laws in tilde spaces give
P VI sy S O™l g e lrdivul g e



The high frequencies of the first term of the r.h.s. are obviously bounded by D(t). As for the
low frequencies, we notice that

al L n <C a—-1_1L _ < CD(t 39
el 3 ) < Ol amee <D (39)
provided o < § +g — . Therefore, using (36), we get
IFVFIE 4a-s) < CD).
Next, we have
o a
I7(k(@) V)l g 31, < Ol Il 3 < CX(OD()
and according to (39),
o a—1 2
I (k@) g1, < Cllralzg sa I ol n | < D).
We also see that
@ r 2 a—1 a—1 ”
17000 Bl g3, < Ol g (I onl g, + 1ol )

The first term of the r.h.s. may be bounded by virtue of (36), and it is also clear that the
last term is bounded by D(t). As for the second one, we use again (39). Resuming to (38),
we end up with

sup (v [ e P ADsY) dr') < 0D

k>ko 2<7<t

The terms SZ, S3 and Si may be treated aiong the same lines. For details, see [5].

Putting all estimates together, we conclude that

> sup (50 [ et RGNS () dr') < CDOX (W) + D).
kaO2STSt 1

Then plugging this latter inequality, (31) and (35) into (33) yields

Il (Va, e as) < C(I(Vao gy +X°O +D°0)- (40

Step 3: Decay estimates and gain of regularity for the high frequencies of Vu.

To complete the proof of Theorem 2.3, there only remains to bound ||1'Vu||g,( o -To
(B
t

21)

this end, we shall use that the velocity u satisfies
du—Lu=f:=-(1+ka)Va—u- Vu— I(a)Lu — V(-A)a, (41)

whence _ _ _ .
O (tLu) — L(tLu) = Lu+ tLF.
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39

Because the maximal regularity estimates for the Lamé semi-group are the same as for the
heat semi-group, we deduce that

H H H
(L o 2 LI

_3)

whence, using the bounds given in Theorem 2.2,

||tVuH%(B§1 < c(X(0)+|Irf|IH '(B,_l) (42)-

In order to bound the first term of the r.h.s. of (41), we note that, as a > 1, we have

H o, <Clr)*Va|
I7VallZ g1, < O Vall g,
Product and composition estimates give
T(k(@)Va)|2L .. T3al?
@V ) < Cllrtallg g
H
I (u Vu)llzt;(B?_l C”u”Lw(B‘Z -1 ||TV“||L°°(B’1)
H 2
IrT@ LNz 51, < Cllalzg o IVl 51
and lastly
' 7(V(=A)ta)||Z <C "
I7(V(-2) o) sy < OUD Vol g

Therefore, reverting to (42), we get

||tVu||f{; 1) S C(X(O) +D()X(t) + D(t) + ||<T)aw||Lw(B% 1))

2
2,

Finally, bounding the last term according to (40), and adding up the final inequality to (29)
and (40) yields
D(t) < C(Do+ | (Vao, uO)”g-’r}—l +X2(t) + D*(¢))-
2,1

As Theorem 2.2 ensures that X (t) is small, one can now conclude that the decay estimate is
fulfilled for all times if Dy and ||(Vao, uo)||&. 531 are sufficiently small.
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5 Appendix

For the reader convenience, we here recall some technical results without proof that were
needed in the previous sections.

5.1 Regularity estimates for the linear heat equation

Consider

— ulAu = f, t>0, e R”,
{Btu uldu = f T (43)

u|t=0 = Uo, z € R,

where p > 0 and wug, f are given.



It is known that optimal regularity estimates in Besov spaces for (43) have to be stated
in terms of the following norms:

lellzz s,y = 3 27 VAsullroany (44)
jeZ

Proposition 5.1 ([1, 8]). Let u : Ry x R™ — R satisfy the heat equa,tzon (43). Then for all
1<p<,s€R, 1< q <¢q <00, we have :

Il o, < Clluolsg, + 1l v ) Joralt €20 (45)
) By )

't
5.2 Green matrix of the linearized NSP
Here we compute the green matrix of the following (reduced) linearized NSP system:

8ta +Av = O,
1 (46)
Oww—vAv—Aa—A""a=0.

Proposition 5.2 ([5]). In Fourier variables, the green matriz G of System (46) is given bQ

G(t,€) = o - }if*‘ e (47)
(S ) el + el Aeid=e=
where
2
)\i(f):=~—éu|£|2(1:|: 1- 4(15,1,';';1))

5.3 Estimates for product, composition'and commutators

For any couple (u,v) of tempered distributions, we have the following (formal) decomposition

of uv:
uv = Z Sj_lu Ajv + Z S’j_lv Aju + Z Z Aju Akv
i€z J€Z JEL [k—j|<1 (48)

=: Ty + Tyu + R(u,v).

Clearly, the first two terms are defined for any couple (u,v) in &’ as the series is locally
finite in the Fourier space. As for the last so-called remainder term, it is also defined if,
roughly speaking, the sum of the regularity indices of u and of v is positive. This is detailed
in the following lemma, the proof of which may be found in e.g. [1, 8].

Lemma 5.3. Let (s,p,7) € R X [1,00]? and t < 0. We have
ITuoll gy, < Cllullz=llvllgy and | Tuvl ggse < Cllullge, lollg, - (49)
Let (sj,pj,7;) € R x [1,00)? for j =1,2. We have
® ifs1+s89>0, %:=51T+% <1 and% :=%+TLS 1 then

I8 (u, v)l| gorrer < Cllullgg, Mvllggz 5 (50)

P1,71
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® ifsi+s2=0 l'=;11-+51;§1and%+%21then

b P .
1R, 0)ll gy _ < Cllullsz, Ivllsz, (51)

P1,T1
As a corollary of the above lemma, we have the following general product estimate.
Lemma 5.4. Let § > 0 and — min (E, 1%) <o< % — 4. Then we have
p
Il < Cllll -l gye-
Lemma 5.5 ([5]). Let I be an open interval of R containing 0, and F : I — R, a smooth

function vanishing at 0. Then for any s > 0, 1 < p < 0o and interval J compactly supported
in I there exists a constant C such that

||F(a)||3; S C’|]a||B;1 for any a € B;,l valued in J.

In the case s > —min(n/p,n/p’) if in addition to the above hypotheses we have a € B: 1
then F(a) € Bp;’ N B;yl and
. . / n
1P, < lallg, (PO +Clal 3 ).
The following commutator estimates are classical (see e.g. [1] and the references therein).

Lemma 5.6. Let 1 < p < oo and —(-g, -;i,) <s<1l+ %- Then we have

S 2l ¥, Aglalzs < CIVul 3 flals,

jEZ 21
Z 2.7'(8—1)“[u : V’ aiAj]a’”L” < C”VUHB% ”V(l”B;—ll, i= 17 e,
JEZ 'p,1
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