

A Note on Idempotent Monomial Clones －Two is Strong；One is Weak－

Hajime Machida＊
Tokyo，Japan

Jovanka Pantović ${ }^{\dagger}$
Novi Sad，Serbia

Csaba Szabó ${ }^{\ddagger}$
Budapest，Hungary

Abstract

Clones of polynomials are considered over Galois field $\mathrm{GF}(k)$ ．In particular，the class of clones generated by 2 －variable idempotent polynomials is the target of our study．Our results include that the clone generated by $x^{2} y^{k-2}$ is the largest among all such clones and the clone generated by $x y^{k-1}$ is the smallest among all such clones． Hence，observing the exponent of one variable，two is strong and one is weak．

Keywords：clone；monomial clone；lattice of clones $\dagger \ddagger$

1 Preliminaries

Let $k>1$ be fixed and $E_{k}=\{0,1, \ldots, k-1\}$ ．Denote by $\mathcal{O}_{k}^{(n)}$ for $n \geq 1$ the set of n－variable functions defined over E_{k} ，that is，the set of maps from E_{k}^{n} into E_{k} ．Also， \mathcal{O}_{k} denotes the set of functions defined over E_{k} ，i．e．， $\mathcal{O}_{k}=\bigcup_{n=1}^{\infty} \mathcal{O}_{k}^{(n)}$ ．A special class of functions is the set \mathcal{J}_{k} of projections e_{i}^{n} for any $n>0$ and $1 \leq i \leq n$ ，where e_{i}^{n} is the function in $\mathcal{O}_{k}^{(n)}$ which always takes the value of the i－th variable．

A clone over E_{k} is a subset C of \mathcal{O}_{k} which is closed under（functional）composition and includes \mathcal{J}_{k} ．The set of clones over E_{k} forms a lattice with respect to inclusion and is denoted by \mathcal{L}_{k} ．It is well－known that the lattice \mathcal{L}_{k} for $k>2$ has the cardinality of the continuum and its structure is extremely complex．

For arbitrary field K and a positive integer n ，an（ n－variable）polynomial over K is a finite sum of terms，that is，

$$
\sum_{0 \leq i_{1} \leq e_{1}, \ldots, 0 \leq i_{n} \leq e_{n}} a_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

for some $e_{1}, \ldots, e_{n} \in \mathbf{N}$ and $a_{i_{1}, \ldots, i_{n}} \in K$ for each n－tuple（ i_{1}, \ldots, i_{n} ）in the specified range． As a special case，an（ n－variable）monomial over K is an n－variable polynomial consisting of one term，i．e．，

$$
a x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

for some $a \in K$ and $i_{1}, \ldots, i_{n} \in \mathbf{N}$ ．

[^0]For a prime power k, i.e., $k=p^{e}$ for a prime p and a positive integer e, let us introduce the structure of a finite field into E_{k}, that is, we treat E_{k} as the Galois field $\operatorname{GF}(k)$. It is well-known that any n-variable function $f\left(x_{1}, \ldots, x_{n}\right)$ defined over $\operatorname{GF}(k)$ is uniquely expressed as a polynomial over $\operatorname{GF}(k)$. The following is a basic property of a finite field.
Property 1: For every $x \in \mathrm{GF}(k)$ it holds that $x^{k}=x$.
Hence, we have:
Property 2: An n-variable monomial m over $\mathrm{GF}(k)$, for $n>0$, is expressed as $a x_{1}^{r_{1}} \cdots x_{n}^{r_{n}}$ for some $a \in \operatorname{GF}(k)$ and integers r_{1}, \ldots, r_{n} with $0<r_{1}, \ldots, r_{n}<k$.

For a subset S of \mathcal{O}_{k}, the clone generated by S is the smallest clone containing S and denoted by $\langle S\rangle$. When $S=\{f\}$, the clone $\langle S\rangle$ is denoted by $\langle f\rangle$. A monomial clone is defined as follows.

Definition 1.1 A clone C over E_{k} is a monomial clone if C is generated by some monomial m over E_{k}, i.e., $C=\langle m\rangle$.

The study of monomial clones is partly motivated by the following property. The proof is immediate as any polynomial which is not a monomial cannot be produced from monomials by means of composition.

Lemma 1.1 Let C be a monomial clone over E_{k}. If C is minimal in the set of monomial clones then C is a minimal clone (in \mathcal{L}_{k}).

In the rest of the paper we consider a limited class of monomials and monomial clones generated by them.

2 Idempotent Monomial Clones

An n-variable function f defined over E_{k} is said to be idempotent if f satisfies $f(a \ldots, a)=a$ for all a in E_{k}. Let $m=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ be an n-variable monomial with coefficient 1 over $\operatorname{GF}(k)$. Evidently (by Property 1), m is idempotent if and only if $\sum_{j=1}^{n} i_{j} \equiv 1(\bmod k-1)$. (We abuse the term idempotent for polynomials in an obvious way.)

Throughout the rest of the paper, we consider 2-variable idempotent monomials over E_{k} and monomial clones generated by them. Hereafter, by a monomial clone we shall mean a monomial clone generated by a 2 -variable idempotent monomial. Let us denote by \mathcal{M}_{k} the set of such monomial clones over E_{k}.

2.1 Monomials $x^{s} y^{t}$

As was stated above, we consider 2-variable monomials $x^{s} y^{t}$ for $0<s, t<k$ with the additional condition $s+t=k$. (For convenience we use x and y, instead of x_{1} and x_{2}, for the variable symbols.) Clearly, $s+t=k$ is an equivalent condition for $x^{s} y^{t}$ to be idempotent when the exponents s and t satisfy $0<s, t<k$.

Note: If m is a monomial which generates a non-unary minimal clone (in \mathcal{L}_{k}) then, clearly, (1) m must be a 2 -variable monomial $x^{s} y^{t}$ and (2) the condition $s+t=k$ must be satisfied,

Figure 1: Monomial clones for $k=5,7,11$
since $\left\langle x^{s} y^{t}\right\rangle$ does not contain any non-trivial unary functions.

The next lemma shows that the condition " $s+t=k$ " on the exponents is preserved by composition. The proof is straightforward.

Lemma 2.1 For integers u, v satisfying $0<u, v<k$, if $x^{u} y^{v}$ is obtained from $x^{s} y^{t}$ (together with \mathcal{J}_{k}) by composition, i.e., $x^{u} y^{v} \in\left\langle x^{s} y^{t}\right\rangle$, then we have $u+v=k$.

Some easy consequences are presented.
Lemma 2.2 Let k be a prime power. For clones on $\mathrm{GF}(\mathrm{k})$ we have the following.
(1) $\left\langle x y^{k-1}\right\rangle \subseteq\left\langle x^{2} y^{k-2}\right\rangle$
(2) $\left\langle x^{4} y^{k-4}\right\rangle \subseteq\left\langle x^{3} y^{k-3}\right\rangle$

Proof (i) From

$$
(k-2)^{2}=((k-1)-1)^{2} \equiv 1(\bmod k-1)
$$

it follows that $x^{2}\left(x^{2} y^{k-2}\right)^{k-2}=x^{k-1} y$.
(ii) Similarly,

$$
(k-3)^{2}=((k-1)-2)^{2} \equiv 4(\bmod k-1)
$$

implies $\quad x^{3}\left(x^{3} y^{k-3}\right)^{k-3}=x^{k-4} y^{4}$.

3 Two is strong; One is weak

In Figures 1 and 2 the set \mathcal{M}_{k} of the monomial clones is shown for the cases $k=5,7,11$ and 13. An observation we get from these diagrams is the following (where two and one refer the exponents of one variable): Two is strong and one is weak!

$$
k=13
$$

Figure 2: Monomial clones for $k=13$

3.1 Two is strong

Proposition 3.1 For any prime power $k>1$ and any $0<s<k$, it holds that

$$
\left\langle x^{s} y^{k-s}\right\rangle \subseteq\left\langle x^{2} y^{k-2}\right\rangle
$$

In other words, $\left\langle x^{2} y^{k-2}\right\rangle$ is the largest clone in \mathcal{M}_{k}.
Proof We shall prove $x^{s} y^{k-s} \in\left\langle x^{2} y^{k-2}\right\rangle$ for any $0<s<k$ by induction on s.
Basis: The monomial with $s=1$, i.e., $x y^{k-1}$, is obtained from $x^{2} y^{k-2}$ in the following way.

$$
y^{2}\left(y^{2} x^{k-2}\right)^{k-2}=x^{(k-2)^{2}} y^{2 k-2}=x y^{k-1}
$$

Thus we have $x^{s} y^{k-s} \in\left\langle x^{2} y^{k-2}\right\rangle$ for $s=1,2$.
Inductive Step: For any $1<t<\left\lfloor\frac{k}{2}\right\rfloor$, we obtain $x^{2 t-1} y^{k-2 s+1}$ and $x^{2 t} y^{k-2 s}$ from $x^{t} y^{k-t}$ and $x^{2} y^{k-2}$ as shown below.

$$
\left\{\begin{array}{l}
\left(x^{t} y^{k-t}\right)^{2} x^{k-2}=x^{2 t+k-2} y^{2 k-2 t}=x^{2 t-1} y^{k-2 t+1} \\
\left(x^{t} y^{k-t}\right)^{2} y^{k-2}=x^{2 t} y^{3 k-2 t-2}=x^{2 t} y^{k-2 t}
\end{array}\right.
$$

This completes the proof.

3.2 One is weak

Lemma 3.2 The clone $\left\langle x y^{k-1}\right\rangle$ is minimal in \mathcal{M}_{k}.
Proof For any monomial m in $\left\langle x y^{k-1}\right\rangle \backslash \mathcal{J}_{k}$, it is easy to verify that $x y^{k-1} \in\langle m\rangle$. This shows the minimality of $\left\langle x y^{k-1}\right\rangle$ in \mathcal{M}_{k}.

Now a question arises, which we shall call Question A.

Question A: Is the clone $\left\langle x y^{k-1}\right\rangle$ uniquely minimal in \mathcal{M}_{k} ? That is to say, is it true that $\left\langle x y^{k-1}\right\rangle \subseteq\left\langle x^{s} y^{k-s}\right\rangle$, i.e.,

$$
x y^{k-1} \in\left\langle x^{s} y^{k-s}\right\rangle
$$

holds for any prime power $k>1$ and any $0<s<k$?
Remark: It may happen that $\left\langle x^{s} y^{k-s}\right\rangle=\left\langle x y^{k-1}\right\rangle$ for some $s>1$, in which case $\left\langle x^{s} y^{k-s}\right\rangle$ may also be said to be minimal in \mathcal{M}_{k}. What we want to know is whether $\left\langle x^{s} y^{k-s}\right\rangle$ for $2 \leq s<k$ is not minimal in \mathcal{M}_{k} if $\left\langle x^{s} y^{k-s}\right\rangle$ is distinct from $\left\langle x y^{k-1}\right\rangle$.

3.3 Partial results Concerning Question A

Lemma 3.3 Let $k=2 h+1$. Then $x y^{k-1} \in\left\langle x^{h} y^{k-h}\right\rangle$.
Proof We get

$$
\left(x^{h} y^{h+1}\right)^{h}\left(y^{h} x^{h+1}\right)^{h+1}=x^{h^{2}+(h+1)^{2}} y^{2 h(h+1)}=x y^{2 h}=x y^{k-1}
$$

since $2 h=k-1$.

Lemma 3.4 For $k>2$ and $1<a<k$, if there exists $e>1$ satisfying

$$
\text { (i) } a^{e} \equiv 1 \quad(\bmod k-1) \quad \text { or } \quad \text { (ii) } a^{e} \equiv a \quad(\bmod k-1)
$$

then

$$
x y^{k-1} \in\left\langle x^{a} y^{k-a}\right\rangle
$$

Proof Since (ii) follows from (i), it suffices to show the result under the condition (ii). However, in order to enjoy a kind of symmetry in the proof we present the proof separately.
(i) By repeating substitution of $x^{a} y^{k-a}$ into $x e$ times, we obtain:

$$
\left(\left(\cdots\left(\left(x^{a} y^{k-a}\right)^{a} y^{k-a}\right)^{a} \cdots\right)^{a} y^{k-a}\right)^{a} y^{k-a}=x^{a^{e}} y^{*}=x y^{k-1}
$$

(ii) Similarly, we have:

$$
\begin{aligned}
\left(\left(\cdots\left(\left(x^{a} y^{k-a}\right)^{a} y^{k-a}\right)^{a} \cdots\right)^{a} y^{k-a}\right)^{a} x^{k-a} & =x^{a^{e}+(k-a)} y^{*}=x^{a+(k-a)} y^{*} \\
& =x^{k} y^{k-1}=x y^{k-1}
\end{aligned}
$$

Here the symbol * put on y designates a suitable exponent.
Note that the condition (i) in Lemma 3.4 is equivalent to saying that a and $k-1$ are coprime, i.e., $\operatorname{GCD}(a, k-1)=1$.

3.4 One is Provably Weak

We answer Question A affirmatively. The next lemma plays a key rôle in the proof.
Lemma 3.5 For any $k>0$ and $s \in E_{k}$ there exists $n>0$ satisfying

$$
s^{n} \equiv\left(s^{n}\right)^{2} \quad(\bmod k-1)
$$

Proof Since k is finite, there exist $i>0$ and $p>0$ such that $s^{i} \equiv s^{i+p}(\bmod k-1)$. This obviously implies $s^{i} \equiv s^{i+r p}(\bmod k-1)$ for any $r>0$. Take an integer $c>0$ which satisfies $c p \geq i$ (e.g., $c=\lceil i / p\rceil$) and let $a=c p-i$. Then, we have:

$$
\begin{array}{rlr}
s^{i+a} & \equiv s^{i+c p+a} & (\bmod k-1) \\
& \equiv s^{2 i+2 a} & (\bmod k-1) \\
& \equiv\left(s^{i+a}\right)^{2} & (\bmod k-1)
\end{array}
$$

Let $n=i+a$. Then n has the required property.
Proposition 3.6 For any prime power $k>1$ and all $0<s<k$, it holds that

$$
\left\langle x y^{k-1}\right\rangle \subseteq\left\langle x^{s} y^{k-s}\right\rangle,
$$

that is, $\left\langle x y^{k-1}\right\rangle$ is uniquely minimal in \mathcal{M}_{k}.
Proof We show $x y^{k-1} \in\left\langle x^{s} y^{k-s}\right\rangle$ for any $0<s<k$. According to Lemma 3.5 there exists $n>0$ such that $s^{n} \equiv\left(s^{n}\right)^{2}(\bmod k-1)$. Denote s^{n} by t.

Thus, t satisfies $t^{2} \equiv t(\bmod k-1)$ and $x^{t} y^{k-t} \in\left\langle x^{s} y^{k-s}\right\rangle$. Now, from $x^{t} y^{k-t}$ construct a monomial

$$
\left(x^{t} y^{k-t}\right)^{t} x^{k-t}=x^{t^{2}-t+1} y^{t(k-t)} .
$$

Since $t^{2}-t \equiv 0(\bmod k-1)$, we have

$$
x^{t^{2}-t+1} y^{t(k-t)}=x y^{k-1}
$$

from which it follows that $x y^{k-1} \in\left\langle x^{t} y^{k-t}\right\rangle$. Together with $x^{t} y^{k-t} \in\left\langle x^{s} y^{k-s}\right\rangle$, we conclude that $x y^{k-1} \in\left\langle x^{s} y^{k-s}\right\rangle$.

Note: Some of the contents presented in this article appeared in [MP17].

References

[MP17] Machida, H. and Pantović, J., Three Classes of Closed Sets of Monomials, Proceedings 47 th International Symposium on Multiple-Valued Logic, IEEE, 2017, 100-105.

[^0]: ＊machida．zauber＠gmail．com ${ }^{\dagger}$ pantovic＠uns．ac．rs $\quad \ddagger$ csaba＠cs．elte．hu

