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A Note on Idempotent Monomial Clones

— T'wo is Strong; One is Weak —

Hajime Machida *  Jovanka Pantovié¢ ! Csaba Szabé ¥
Tokyo, Japan Novi Sad, Serbia Budapest, Hungary

Abstract

Clones of polynomials are considered over Galois field GF(k). In particular, the
class of clones generated by 2-variable idempotent polynomials is the target of our
study. Our results include that the clone generated by z? y*~2 is the largest among all
such clones and the clone generated by xy*~* is the smallest among all such clones.
Hence, observing the exponent of one variable, two is strong and one is weak.

Keywords: clone; monomial clone; lattice of clones T

1 Preliminaries

Let k£ > 1 be fixed and Ex = {0,1,...,k—1}. Denote by 0,?) for n > 1 the set of n-variable
functions defined over Ey, that is, the set of maps from E} into Ej. Also, O denotes the

o0

set of functions defined over Fy, ie., O = U, O,(c"). A special class of functions is the
set Ji of projections e} for any n > 0 and 1 < i < n, where e} is the function in O,(c”) which

always takes the value of the ¢-th variable.

A clone over Ej, is a subset C of O which is closed under (functional) composition and
includes Ji. The set of clones over Ej forms a lattice with respect to inclusion and is
denoted by Li. It is well-known that the lattice £y for k& > 2 has the cardinality of the

continuum and its structure is extremely complex.

For arbitrary field K and a positive integer n, an (n-variable) polynomial over K is a

finite sum of terms, that is,

91 i.
§ : Qiy,...in Ty~ Ty

0<i 1 <Ley, ..., 0<i,<ep

for some ey,...,e, € N and a;,,..;, € K for each n-tuple (¢1,...,%,) in the specified range.
As a special case, an (n-variable) monomial over K is an n-variable polynomial consisting

of one term, i.e.,
azl -z

for some a € K and 4y,...,%, € N.
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For a prime power k, i.e., k = p® for a prime p and a positive integer e, let us introduce
the structure of a finite field into Ej, that is, we treat Ej as the Galois field GF(k). It is
well-known that any n-variable function f(z1,...,2,) defined over GF(k) is uniquely ex-
pressed as a polynomial over GF(k). The following is a basic property of a finite field.

Property 1: For every z € GF(k) it holds that z* = z.
Hence, we have:

Property 2: An n-variable monomial m over GF(k), for n > 0, is expressed as az(* --- zi»
for some a € GF(k) and integers ry1,...,7, with 0 <7y,...,7, < k.

For a subset S of O, the clone generated by S is the smallest clone containing S and
denoted by (S). When S = {f}, the clone (S) is denoted by (f). A monomial clone is
defined as follows.

Definition 1.1 A clone C over Ey, is a monomial clone if C is generated by some monomial
m over Ey, i.e., C = (m).

The study of monomial clones is partly motivated by the following property. The proof is
immediate as any polynomial which is not a monomial cannot be produced from monomials
by means of composition.

Lemma 1.1 Let C be a monomial clone over Ei. If C is minimal in the set of monomial
clones then C is a minimal clone (in Ly).

In the rest of the paper we consider a limited class of monomials and monomial clones
generated by them.

2 Idempotent Monomial Clones

An n-variable function f defined over E}, is said to be idempotent if f satisfies f(a....,a) =a
for all a in Ey. Let m = x’i‘ ---zin be an n-variable monomial with coefficient 1 over GF(k).
Evidently (by Property 1), m is idempotent if and only if Z;;l i;=1 (modk—1). (We
abuse the term idempotent for polynomials in an obvious way.)

Throughout the rest of the paper, we consider 2-variable idempotent monomials over Ej
and monomial clones generated by them. Hereafter, by a monomial clone we shall mean a
monomial clone generated by a 2-variable idempotent monomial. Let us denote by My, the
set of such monomial clones over Ej.

2.1 Monomials z°y?

As was stated above, we consider 2-variable monomials z®y' for 0 < s, t < k with the
additional condition s+t = k. (For convenience we use z and y, instead of z; and z2, for
the variable symbols.) Clearly, s+t = k is an equivalent condition for z° * to be idempotent
when the exponents s and ¢ satisfy 0 < s, t < k.

Note: If m is a monomial which generates a non-unary minimal clone (in L) then, clearly,
(1) m must be a 2-variable monomial 2* y* and (2) the condition s+¢ = k must be satisfied,
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((z°%°) ) ((£°) ) {(=24°) }(ways)

=(z*y")

Figure 1: Monomial clones for £ =5,7,11

since (z® y*) does not contain any non-trivial unary functions.

The next lemma shows that the condition “s + ¢ = k” on the exponents is preserved by
composition. The proof is straightforward.

Lemma 2.1 For integers u, v satisfying 0 < u, v < k, if z%y¥ is obtained from z°yt
(together with Jy) by composition, i.e., x%y® € {(x°yt), then we have u+v = k.

Some easy consequences are presented.
Lemma 2.2 Let k be a prime power. For clones on GF(k) we have the following.
(1) {zy*1) C (a?y*2) (2) (z*y*F~*) C (z®y*3)

Proof (i) From

(k-2? = ((k-1)—1)> = 1 (modk-1)
it follows that — x2(x2yk—2)k—2 = gh-1y,
(ii) Similarly,
(k-3 = (k-1)-2)* = 4 (modk—1)
implies a3 (z3yk—3)k—3 = gh—4y4, .

3 Two is strong; One is weak

In Figures 1 and 2 the set My, of the monomial clones is shown for the cases k = 5, 7, 11
and 13. An observation we get from these diagrams is the following (where two and one
refer the exponents of one variable): Two is strong and one is weak !



Figure 2: Monomial clones for k = 13

3.1 Two is strong

Proposition 3.1 For any prime power k > 1 and any 0 < s < k, it holds that
(xsyk—S) C <£L‘2yk.‘2>.
In other words, (x*y*~2) is the largest clone in Mj,.

Proof We shall prove z°y*~° € (z%y*~2) for any 0 < s < k by induction on s.
Basis: The monomial with s = 1, i.e., zy* !, is obtained from z2y*~2 in the following way.

2
2pk-2)k=2 (k=27 2k-2 _ o k-1

vy
Thus we have z°y*~° € (z%y*~2?) for s =1,2.

Inductive Step: For any 1 < t < [£|, we obtain z?*~1y*=25+1 and 22ty*=2° from xzty*~*
and z%y*~? as shown below.

(ztyk—t)2gh=2 = g2tth-22k=2t _  20-1pk-2t+1
(ztyf—t)2yk=2 = g%y Bk—2-2 = g2tyk-2
This completes the proof. O

3.2 One is weak

Lemma 3.2 The clone {zy*~') is minimal in M.

Proof For any monomial m in (zy*~1)\ Ji, it is easy to verify that zy*~' € (m). This
shows the minimality of (zy*~1) in M. m]

Now a question arises, which we shall call Question A.
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Question A: Is the clone (zy*~!) uniquely minimal in M? That is to say, is it true

that (zy*~1) C (z°y*~%), ie.,
.’L‘yk'_l c (xsyk—s>

holds for any prime power £k > 1 and any 0 < s <k ?

Remark: It may happen that (z°y*~*) = (zy*~!) for some s > 1, in which case (z°y*~*)
may also be said to be minimal in M. What we want to know is whether (z°y*~°) for

2 < s < k is not minimal in My, if (z°y*~°) is distinct from (zy*~1).

3.3 Partial results Concerning Question A
Lemma 3.3 Letk=2h+1. Then xy*~! € (zhyF~h).
Proof We get

(xhyh+1)h(yhmh+1)h+1 — mh"’+(h+1)2y2h(h+l) _ xy2h _ xyk—l

since 2h = k- 1.

Lemma 3.4 For k> 2 and 1 < a <k, if there exists e > 1 satisfying
(i) a*=1 (modk—-1) or (i) a®=a (modk—1)

then
.'Eyk_l c <$ayk—~a>

Proof Since (ii) follows from (i), it suffices to show the result under the condition (ii).
However, in order to enjoy a kind of symmetry in the proof we present the proof separately.

(i) By repeating substitution of z%y*~¢ into x e times, we obtain:
(( .. ((xayk—a)ayk—a)a . _)ayk—a)ayk—a — xaey* —- 33yic—l

(ii) Similarly, we have:

(( .. ((:ank_a)ayk_a)a . .)ayk—a)axk—a — xae.,_(k—a)y* — ma+(k_a)y*

ZhyEl = gk

Here the symbol * put on y designates a suitable exponent.

O

Note that the condition (i) in Lemma 3.4 is equivalent to saying that a and k — 1 are

coprime, i.e., GCD(a,k — 1) = 1.
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3.4 One is Provably Weak

We answer Question A affirmatively. The next lemma plays a key role in the proof.
Lemma 3.5 For any k > 0 and s € Ey;, there exists n > 0 satisfying
s" = (s")? (mod k — 1).

Proof Since k is finite, there exist i > 0 and p > 0 such that s* = s*? (mod k — 1).
This obviously implies s' = s**™ (mod k — 1) for any r > 0. Take an integer ¢ > 0 which
satisfies ¢p > i (e.g., ¢ = [i/p]) and let a = ¢p — ¢. Then, we have:
gite = gitepta (mod k— 1)
g2it2a (mod k — 1)

= (s"%)?  (mod k—1)
Let n =14+ a. Then n has the required property. a
Proposition 3.6 For any prime power k > 1 and all 0 < s < k, it holds that

{@y*™1) < (2*y*°),
that is, {xy*~1) is uniquely minimal in My.

Proof We show zy*~! € (z°y*~*) for any 0 < s < k. According to Lemma 3.5 there exists
n > 0 such that s = (s")? (mod k — 1). Denote s” by t.
Thus, t satisfies t* = ¢ (mod k — 1) and zty*~t € (z°y*~*). Now, from zty*~? construct
a monomial
(xtyk—t)txk—t - xtz—t+1yt(k—t).
Since t> —t = 0 (mod k — 1), we have

t2—t+1, t(k—t k—1
gt Tttt o gkl

from which it follows that zy*~! € (z'y*~*). Together with zty*~t € (z°y*~*), we conclude
that zy*~1 € (z5y*~*). o

Note: Some of the contents presented in this article appeared in [MP17].
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