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WHITTAKER FUNCTIONS ON Sp(2,R) AND ARCHIMEDEAN ZETA
INTEGRALS

TAKU ISHII (SEIKEI UNIVERSITY)

1. INTRODUCTION

Let G = GSp(2) = {g € GL(4) | tgJg = v(g)J for some v(g) € GL(1)}, J = (_0;2 (1):)
and II = ®,II, be a cuspidal automorphic representation of G(A) with A = Aq. We take
a maximal unipotent subgroup Ng of G by

1 o 1 1 X
1 llzy z

No = {n(zo, 21,22, 73) = i 12 | eG)
—To 1 ‘ 1

We fix a nontrivial additive character 1 = IT,3,: A/Q — C®), and define a nondegenerate
unitary character ¥y, of No(A) by ¥n,(n(zo, T1, 22, 23)) = P(Zo + z3). For a cusp form
¢ € II, the global Whittaker function W, is defined by

Wo(9) = / o(ng)n, (n~t)dn.
No(Q)\No(A)

We assume that W,, # 0 for some ¢ € II, that is, II is (globally) generic. Then each local
component II, is generic representation of G(Q,), that is,

dime Home(q,) (T, Indyig)) (#)) = 1.

According to a result of Vogan [18], an irreducible generic representation I1,, of GSp(2, R)
is isomorphic to one of the following:
e a (limit) of large discrete series representation;

e an irreducible principal series representation induced from proper parabolic sub-
groups P; = P;(R) (: = 0,1,2) of G(R) where

X ok ok k * ok ok X
0 * *x % 0 * % x* * %

Po={[o o o oleah P=t| 5 1ol e P=i(5 7) e
00 % % 0 * x *

For each generic representation above explicit formulas for Whittaker functions (at
certain K-types) have been studied by several authors:

o Large discrete series / P;-principal series: Oda [16] (LDS) and Miyazaki and Oda

[10] (P,) obtained system of partial differential equations for Whittaker functions,

and gave explicit integral expressions for moderate growth Whittaker functions.
Moriyama [12] gave another integral expression. '

e P,-principal series: Niwa [15] gave explicit formulas for class one principal series

Whittaker functions. For general principal series, Miyazaki and Oda [11] obtained



a system of partial differential equations. The author [4] solved the system to get
explicit integral expressions.
e Py-principal series: Hasegawa [3] found a system of partial differential equations.
Explicit integral expressions for Whittaker functions are given by the author [7].
Here is an application of explicit formulas to archimedean zeta integrals:

e Novodvorsky’s zeta integrals: Moriyama [13] computed in the cases of large dis-
crete series and P;-principal series, to show the entireness of spinor L-functions
and functional equations. Moriyama and the author [8] discussed Py-case. The
remaining P,-case is treated in [7].

o Bump-Friedberg-Ginzburg zeta integrals [2]: This zeta integral contains two com-
plex variables. In [2], it is shown that unramified zeta integrals become product
of the standard and the spinor L-functions. At the archimedean places, the cases
of class one principal series and large discrete series are treated in [5] and [6],
respectively. The remaining cases are recently done by the author.

2. REPRESENTATION THEORY OF GSp(2,R)
2.1. group structures. Let G = G(R) = GSp(2,R) and Gp, = Sp(2,R) = {g € G |
v(g) = 1}. We fix a maximal compact subgroup K (resp. Kj) of G (resp. Gp) by
K =GNO(4) (resp. Ko = GoN0O(4)) with O(4) = {g € GL(4,R) | *gg = 14}. Then K,
is isomorphic to the unitary group U(2) = {g € GL(2,C) | 'gg = 12} of degree two via
the homomorphism

K:U(2)9A+V—le—>kA,B:=(_AB g)GKo,

and we know K = {ka,p,vokan | A+ +v—1B € U(2)} with v, := diag(—1,-1,1,1).

2.2. Whittaker functions. A unitary character of the maximal unipotent subgroup
Ny = No(R) of G is of the form

P(eores) (10, T1, T2, T3)) = exp{27r\/—_1(coxo + c3z3)}

with real numbers ¢y and c3. We assume that t(c,,c;) is nondegenerate, that is, cocz # 0.
For a nondegenerate unitary character ¥ of Ny, we denote by C®(Np\G, ) the space
of smooth functions on G satisfying f(ng) = ¥(n)f(g), forall (n,g) € Ny x G. By the
right translation the space C™®(Ny\G, ) becomes smooth (gc, K)-module (g¢ is the
complexification of the Lie algebra of G). We denote by Cge(No\G, ) the subspace of
C®(No\G, ¥) consisting of moderate growth functions on G. Let (7, H,) be an irreducible
admissible representation of G. Wallach’s multiplicity one theorem [19] asserts that

dimg Homge, k) (Hr,x, Cag(No\G, ) < 1.

Here H, x means the space of K-finite vectors in H,. For a nonzero intertwining operator
® € Homye k) (Hr k), Cog(No\G, %)) and a function f € Hyx, we call the image ®(f)
(moderate growth) Whittaker function corresponding to f, and denote by
W(ﬂ-’ "/)) = {(D(f) | ®e Hom(BC,K)(HW,K7 Czc:g(NO\G: w)); f € Hﬂ',K}'
Let (7,V;) be a K-type of (w, H;). For v € V;, we denote by W(v;*) € W(x, ) the
image of v under K-embedding V, — W(w, ). Since we have

W (v; ngk) = p(n)W(r(k)v;g), V(n,g,k) € Nox G x K,



the Iwasawa decomposition G = NyAK implies that W (v; *) is determined by its restric-
tion W (v; *)|4 to A, where A = {zdiag(a1,a2,a7",a5") | 2, a1, a2 > 0}. We call W(v;*)|4
the radial part of W(v; ).

2.3. Representation theory of K. Let (70, V)) be the irreducible finite dimensional
representation of U(2) with highest weight A = (A, A2), (A1 > XA). Here V¥ = {f €
Clz1,22] | homogeneous, deg(f) = A; — A2} on which U(2) acts by (72(k)f)(z1,z2) =
(detk)*2f((z1,72) - k) (k € U(2), f € V). Via the isomorphism & : U(2) & Ky, we
regard 7y as a representation of K.

Let {v]° = = 2423* 7| 0 <4 < A; — Ay} be the standard basis of V2. We define
U(2)-invariant inner product { , ) on VY by (v, v9) = & ; ()“:)")_1. For A = (A1, A2), we
put X\* = (—Ag, —A1). Then the contragredient representation of 7¥ is isomorphic to 7%..
We introduce a new basis {w}® = w? | 0 <i < A; — A} by

ol (z122)% (22 + 22)M2)/2-38(2 — 22)i  if A} — Ay € 2Z5o,
2+s izy 0 (22 4+ 23)M 2 D/2 (52— g2) i A — Ay € 2Z59+ 1
with ¢ € {0,1}.
Let m, = Indﬁoff. Then 7, is irreducible if and only if A # A*. In that case a basis of
the representation space Vj, of 7, is {v;,v} | 0 < ¢ < A; — A2} where the K-action is given
by

Al—z\z '\1—'\2
nakas)vi= Y kap)v;, ma(kasyf= Y o} (kas)],
j=0 =0
T)\('Yo)vi = (—l)zv;‘q—kz—i’ TI\(’YO)'U; = (_1)/\1'A2—10A1_A2_i,

where c}y(kap) = (12(k a,5)0}"° v}"o) / ('UJ’-\’O vJ’-\’o). Similarly we introduce another basis
{w;, wi |0 <3< A — A2} of Vj, from the basis {w? [ 0 <3 < A; — A2} of VY.

When A = A*, 7, has an irreducible decomposition 7, = 7f @ 75. A basis of the
representation space V,\i of Tit is {'ufE | 0 <@ < A — A2 = 2)\;} where the K-action is
given by

A1—A2

Ekas)vE= Y lkan)vE, (ot = (g, (0 = (=1 y
Jj=0

We S()enoteo by ¢+ the isomorphism V(i,—/\l) = V(?\l,—h) of C-vector spaces given by
() = vj.

2.4. P,-principal series representations. Let P, = Po(R) = M;A; N, be Siegel para-
bolic subgroup of G with M, = {(*™.,__,) | m € SL*(2,R)}, A; = {z diag(as, a1,a7",a7") |
z,a1 > 0}, and N = Np(R). Let € be a character of the group {1,7}. We denote
by D, = dgt?z(ji?) (D;jr) where D} is the discrete series representation of SL(2,R)
with Blattner parameter n(> 2). For ¢,v € C, we define a quasi-character x., by
Xew(zdiag(as, a1, a7, a7t)) = 2°ay ™. From the data above, we define P;-principal series
representation by 7 5 = Indgz((e ® Dp) ® Xew Q 1n,)-

Via the Langlands parameters of P,-principal series representation 7 = 7 pncy, We
define L- and e-factors for 7 by

L(s,m,spin) = I‘R(s+ HTV +51)FR(S+ ?;_V +52)Fc(s+ c+72L— 1)’



L(s,m,std) =Tr(s)I'r (s + H—n—l)FR(S + :i/j:ll‘:—l')a

2 2
(8, T, Yoo, SPIN) = (,/_1)61+62+n,
(8, T, Yoo, std) = (—1)"
where &; € {0,1} (¢ = 1,2) are determined by (—1)* = &(yo) and (—1) = (=1)"e(r0).

Here we denote by T'r(s) = 77%/?I'(s/2), Tc(s) = 2(27)°T(s), and ¢ (z) = exp(2mv/~1z),
(z e R¥).

3. EXPLICIT FORMULAS FOR WHITTAKER FUNCTIONS
We describe P,-principal series Whittaker functions at certain multiplicity one K-types.
More precisely we consider Whittaker functions at the following K-types.
e n.=2m and e(y)(-1)™ = +1: 7,
o n=2m+1: Toni1,—m)-
Hasegawa [3] obtained a system of partial differential equations for Whittaker functions
belonging to the above K-types. For simplicity we assume ¢y = c3 = 1 for ¥(¢,c5) € 1\70.

Proposition 3.1. ([3]) Let

W™ ™%, 2 diag(ay, as, a7, a31)) = 2°a3az pi(a1, a3), (0<i<n=2m)
be the radial part of Whittaker function at K-type T(:::n’_m). If we sety; = may/as, y» = mal,
then {@i(y1,v2) | 0 < i < 2m} satisfies the following.

® (205 — 2m + 1)(@i + @it2) + 4Y2(pi — Pira) = 0;
o (201 — 205 — i+ 1)(ips — Piva) +2(—2y2 + m— i — 1) (@i + Pir2) — 8V —1tn1s41 = 0;
o {0} +20% — 20,0, — 49} — 8y3 + 4(m — i)yo — (V2 + (2m — 1))}
—2v/=Ty{(2m — i) i1 — tpi1} = 0,
where 8; = yi%.

—m)?

Here is a Mellin-Barnes integral representation for P;-principal series Whittaker func-
tion at the K-type 'rg‘n’_m). A convenience basis is {w{™ ™% |0 < i < 2m}.

Theorem 3.2. ([7], The case of n = 2m) Up to a constant, we have
W (w{™™™*; 2 diag(ay, as, 07", a3 %))
angaa 62+\/—Tl-00 ‘/‘0'1+\/—_100

2 : G\ g
- (27“/_—1)2 2/ =Too ‘/2(81,82)(71'(12) (wa3)™* dsids,,

a1—v/=Too
where
7{.81+82+2m Ta+v/—1oo  prit+v/—1c0
%(31,32)=m/ - / - Ir(s1+m+ 6)[r(s1 — ty —ta +m)
- To—y/—100 m—v—100

X FR(32 —t1+m— (S)FR(SZ — 1o+ m)
X FR_(tl + V/2)FR(t1 - V/Q)FR(tz + 1/2)FR(t2 — 1/2) dtydts,
Vajrs(s1,82) = 2797 (V=1)°(s2 — j +m — 1/2); - Vs(s1, 82 — ),

foré € {0,1}. Here(a), = I'(a+n)/T(a), and 0;,7; € R are taken so that o1 > T1+72—m,
o2 > max{m, 2}, 1 > |[Re(v)/2|, » > 1/2.



4. NOVODVORSKY’S ZETA INTEGRALS

Let IT = ®,I1, be a generic cuspidal automorphic representation of G(A). We denote
by II = ®, 11, its contragredient. We fix 1 € Ny such that 9(n(zo, Z1, T2, T3)) = Yoo(o +
z3) where ¥o(z) = exp(2mv/—1z). For W € W(Ily, %) and s € C, Novodvorsky’s
archimedean zeta integral Z,(s, W) is defined by

Zoo(s,W)=/Rx/RW(

which converges absolutely for Re(s) > 0.

Theorem 4.1 (Moriyama [13] (Large d.s., P;), Moriyama-I [8] (B), I [7] (P,)). For each
irreducible generic representation I, of G = GSp(2,R), there ezists W € W(Ils, %¥oo)
such that

dy
a—3/2d$_,
Myl ]

Zoo(1 — 5, W) Zoo(s, W)
L(1 — s, 11, spin) L(s, Mg, spin)’
and the ratio Zy(s, W)/L(s, 1, spin)(# 0) is an entire function of s € C. Here L-and
e-factors are defined by Langlands parameters of Il,, and W is contragredient Whittaker
function defined by W(g) = wn,, (v(9) YW (gr (_\33 o 1)) where wi,, is the central
character of .

= &(8, o0, Yoo, SPIN)

(m!_m)ri.

Example Il = 7, 5., with n = 2m and () = 1: If we take W(g) = W (wy,, 9),
then we have
Zoo(‘g’ W) _ C /T+\/—_1°° PR(t + %)PR(t — %)Fc(t B %)
L(s,Ile,8pin)  27v/=1 J;_ /1o TR+ s+ TR{E+1—5—%)
with some constant C.

Remark 1. Miyazaki [9] obtained a similar result for the principal series of GSp(2, C).

Combined with non-archimedean results of Takloo-Bighash [17], we can find the fol-
lowing;:

dt,

Corollary 4.2. Let Il = Q.II, be a generic cuspidal representation of GSp(2,A). Then
the completed spinor L-function L(s,I1,spin) = [[,<, L(s, I, spin) is continued to an
entire function of s € C, and has the functional equation

L(s, 1, spin) = &(s, I1, spin) L(1 — s, I, spin)
with &(s, 11, spin) = [, <., €(s, 1Ly, %y, spin).
Remark 2. Asgari-Shahidi [1] proved the results above by Langlands-Shahidi method.

5. BUMP-FRIEDBERG-GINZBURG ZETA INTEGRALS

We recall the zeta integral discovered by Bump, Friedberg and Ginzburg [2]. The
unipotent radical N; (¢ = 1,2) of P; is given by N; = {n(=o, z1,22,0) € G} and N; =



{n(0,z1,%2,73) € G}. The Levi part of P; is isomorphic to GL(2) x GL(1) embed-

. : b
ded via the maps ¢;: t1(a,g) = a a-ldetg , 2, g) = (ag tg_l) , where
c d
a € GL(1) and g = (¢4) € GL(2). The modulus characters d; of P; are given by
and 0;(1(c, g)) = |det g|~%|a|* and 3(t2(a,g)) = |det g|*|a|®. For a complex number
s, we denote by Indgf&)) 7) the space of smooth functions fi(s,g) on G(A) satisfying
fi(s,pg) = 6 (p) fi(s, g) for all p € P;(A) and g € G(A). For complex numbers s, and s,
we take a global sections f, € Indg sy (07/**"/4) and f, € Indg'ga (65 ™7%). We define
Eisenstein ser%es E(si, f;,g) as usual manner: E;(s;, fi,g) = E,,e,,‘_(q)\c,(q) fi(si,79)-
For a generic cusp form ¢ € II, the global zeta integral is defined by

Z (81,82, ¢, f1, f2) = / ©(9)Ex(s1, f1, 9) Ea(82, f2,9) dg.
Z(A)G(Q)\G(A)

Here we denote by Z the center of G. Unfolding two Eisenstein series, one can find the

basic identity:

Z(s1, 82,9, f1, f2) = / Wo(9) f1(81, w2g) fa(s2, w1g) dg
Z(A)N12(A)\G(A)

for Re(s;) and Re(sz) sufficiently large. Here Nyz = Ny NNy = {n(0, 21, %,,0) € G}, w; =
1 1
( I =L ] and wy, = |2 | . Suppose that II, f; and f; are factorizable.
1 1

Then the global zeta integral is the product of local zeta integrals

Zy(81, 82, Wy, S f2,v) = / Wv(g)fl,v(sla w2g)f2,v(52’ wyg) dg,
Z(Qu)N12(Qu)\G(Qv)

where the subscripts denote the local analogues. Bump, Friedberg and Ginzburg per-
formed the unramified computation.

As for the archimedean zeta integrals we can show the following.

Theorem 5.1. For each generic reprensetation I, of G = GSp(2,R), there exists a
tuple {Woo’ fl,oo, f2,oo} such that

Zoo(sl) 82, Woo, fl,om f2,oo) = L(sh Hco, Spin)L(SZ, Hooa Std))

and
Zoo(sl, 82, Weo, fl,ooa f2,oo)
L(1 — 81,115, spin)L(1 — s2, I, std)
. Zoo(81, 82, Woo, f1,00, J2,00)
= H 009 9 Hm’ ) t . * . b
5(51; 003 ¢ spm)s(sz "/’oo s d) L(Sl, Hooa SplIl)L(Sg, Hoo, Std)
where
Zoo(sh 82, Wooa fl,ooa f2,oo) = / Woo(g)M;,oofl,oo(sla w2g)M;,oof2,oo(s2: wlg) dga
Z(R)N12(R)\G(R)

with normalized intertwining operators M; ..



Example Iy & 7,5, with n =2m and (—1)™e(y) = 1: If we take {Wo, f1,00, fo,00}
as

o Wo(9) = W(v;9), v €V, 5

® fi,00(51,k0) =1 for ko € Ky;

® faoo(s2,k0) = (T{ _my (Ko)?', wi™ ™™ for ko € Ko, v’ € Vion,—my»
then we have

Zoo(sl’ 82, Woo’ fl,oo’ f2,00) = C<L+('U)’ 'U,)

. L('Sh Hooa SpiD)L(Sz, HOO) Std)
FR(281 + 1)FR(82 +m+ I)FR(282 + 2m) ’
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