



| Title       | WHITTAKER FUNCTIONS ON Sp(2,R) AND ARCHIMEDEAN ZETA INTEGRALS (Automorphic Forms, Automorphic L-Functions and Related Topics) |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|
| Author(s)   | Ishii, Taku                                                                                                                   |
| Citation    | 数理解析研究所講究録 = RIMS Kokyuroku (2017), 2036: 1-7                                                                                 |
| Issue Date  | 2017-07                                                                                                                       |
| URL         | http://hdl.handle.net/2433/236830                                                                                             |
| Right       |                                                                                                                               |
| Туре        | Departmental Bulletin Paper                                                                                                   |
| Textversion | publisher                                                                                                                     |

# WHITTAKER FUNCTIONS ON Sp(2, R) AND ARCHIMEDEAN ZETA INTEGRALS

#### TAKU ISHII (SEIKEI UNIVERSITY)

# 1. Introduction

Let  $G = GSp(2) = \{g \in GL(4) \mid {}^tgJg = \nu(g)J \text{ for some } \nu(g) \in GL(1)\}, J = \begin{pmatrix} 0_2 & 1_2 \\ -1_2 & 0_2 \end{pmatrix}$  and  $\Pi = \bigotimes_v \Pi_v$  be a cuspidal automorphic representation of G(A) with  $A = A_Q$ . We take a maximal unipotent subgroup  $N_0$  of G by

$$\mathsf{N}_0 = \{n(x_0, x_1, x_2, x_3) = \left(egin{array}{c|cc} 1 & x_0 & & & \\ \hline & 1 & & & \\ \hline & & 1 & & \\ \hline & & -x_0 & 1 \end{array}
ight) \left(egin{array}{c|cc} 1 & x_1 & x_2 & & \\ \hline & 1 & x_2 & x_3 & \\ \hline & & 1 & \\ \hline & & 1 \end{array}
ight) \in \mathsf{G}\}.$$

We fix a nontrivial additive character  $\psi = \Pi_v \psi_v$ :  $\mathbf{A}/\mathbf{Q} \to \mathbf{C}^{(1)}$ , and define a nondegenerate unitary character  $\psi_{\mathbf{N}_0}$  of  $\mathbf{N}_0(\mathbf{A})$  by  $\psi_{\mathbf{N}_0}(n(x_0,x_1,x_2,x_3)) = \psi(x_0+x_3)$ . For a cusp form  $\varphi \in \Pi$ , the global Whittaker function  $W_{\varphi}$  is defined by

$$W_{\varphi}(g) = \int_{\mathsf{N}_0(\mathbf{Q}) \setminus \mathsf{N}_0(\mathbf{A})} \varphi(ng) \psi_{\mathsf{N}_0}(n^{-1}) dn.$$

We assume that  $W_{\varphi} \neq 0$  for some  $\varphi \in \Pi$ , that is,  $\Pi$  is (globally) generic. Then each local component  $\Pi_{v}$  is generic representation of  $G(\mathbf{Q}_{v})$ , that is,

$$\dim_{\mathbf{C}} \mathrm{Hom}_{\mathsf{G}(\mathbf{Q}_v)}(\Pi_v, \mathrm{Ind}_{\mathsf{N}_0(\mathbf{Q}_v)}^{\mathsf{G}(\mathbf{Q}_v)}(\psi_v)) = 1.$$

According to a result of Vogan [18], an irreducible generic representation  $\Pi_{\infty}$  of  $GSp(2, \mathbf{R})$  is isomorphic to one of the following:

- a (limit) of large discrete series representation;
- an irreducible principal series representation induced from proper parabolic subgroups  $P_i = P_i(\mathbf{R})$  (i = 0, 1, 2) of  $G(\mathbf{R})$  where

$$\mathsf{P}_0 = \{ \begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & 0 \\ 0 & 0 & * & * \end{pmatrix} \in \mathsf{G} \}, \quad \mathsf{P}_1 = \{ \begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & 0 \\ 0 & * & * & * \end{pmatrix} \in \mathsf{G} \}, \quad \mathsf{P}_2 = \{ \begin{pmatrix} * & * \\ 0_2 & * \end{pmatrix} \in \mathsf{G} \}.$$

For each generic representation above explicit formulas for Whittaker functions (at certain K-types) have been studied by several authors:

- Large discrete series /  $P_1$ -principal series: Oda [16] (LDS) and Miyazaki and Oda [10] ( $P_1$ ) obtained system of partial differential equations for Whittaker functions, and gave explicit integral expressions for moderate growth Whittaker functions. Moriyama [12] gave another integral expression.
- P<sub>0</sub>-principal series: Niwa [15] gave explicit formulas for class one principal series Whittaker functions. For general principal series, Miyazaki and Oda [11] obtained

a system of partial differential equations. The author [4] solved the system to get explicit integral expressions.

•  $P_2$ -principal series: Hasegawa [3] found a system of partial differential equations. Explicit integral expressions for Whittaker functions are given by the author [7].

Here is an application of explicit formulas to archimedean zeta integrals:

- Novodvorsky's zeta integrals: Moriyama [13] computed in the cases of large discrete series and  $P_1$ -principal series, to show the entireness of spinor L-functions and functional equations. Moriyama and the author [8] discussed  $P_0$ -case. The remaining  $P_2$ -case is treated in [7].
- Bump-Friedberg-Ginzburg zeta integrals [2]: This zeta integral contains two complex variables. In [2], it is shown that unramified zeta integrals become product of the standard and the spinor *L*-functions. At the archimedean places, the cases of class one principal series and large discrete series are treated in [5] and [6], respectively. The remaining cases are recently done by the author.

# 2. Representation theory of $GSp(2, \mathbf{R})$

2.1. **group structures.** Let  $G = G(\mathbf{R}) = G\mathrm{Sp}(2,\mathbf{R})$  and  $G_0 = \mathrm{Sp}(2,\mathbf{R}) = \{g \in G \mid \nu(g) = 1\}$ . We fix a maximal compact subgroup K (resp.  $K_0$ ) of G (resp.  $G_0$ ) by  $K = G \cap O(4)$  (resp.  $K_0 = G_0 \cap O(4)$ ) with  $O(4) = \{g \in \mathrm{GL}(4,\mathbf{R}) \mid {}^t gg = 1_4\}$ . Then  $K_0$  is isomorphic to the unitary group  $U(2) = \{g \in \mathrm{GL}(2,\mathbf{C}) \mid {}^t \overline{g}g = 1_2\}$  of degree two via the homomorphism

$$\kappa: \mathrm{U}(2) 
i A + \sqrt{-1}B \mapsto k_{A,B} := \left( egin{array}{cc} A & B \ -B & A \end{array} 
ight) \in K_0,$$

and we know  $K = \{k_{A,B}, \gamma_0 k_{A,B} \mid A + \sqrt{-1}B \in U(2)\}$  with  $\gamma_0 := diag(-1, -1, 1, 1)$ .

2.2. Whittaker functions. A unitary character of the maximal unipotent subgroup  $N_0 = N_0(\mathbf{R})$  of G is of the form

$$\psi_{(c_0,c_3)}(n(x_0,x_1,x_2,x_3)) = \exp\{2\pi\sqrt{-1}(c_0x_0+c_3x_3)\}$$

with real numbers  $c_0$  and  $c_3$ . We assume that  $\psi_{(c_0,c_3)}$  is nondegenerate, that is,  $c_0c_3 \neq 0$ . For a nondegenerate unitary character  $\psi$  of  $N_0$ , we denote by  $C^{\infty}(N_0 \setminus G, \psi)$  the space of smooth functions on G satisfying  $f(ng) = \psi(n)f(g)$ , for all  $(n,g) \in N_0 \times G$ . By the right translation the space  $C^{\infty}(N_0 \setminus G, \psi)$  becomes smooth  $(\mathfrak{g}_{\mathbb{C}}, K)$ -module  $(\mathfrak{g}_{\mathbb{C}}$  is the complexification of the Lie algebra of G). We denote by  $C^{\infty}_{mg}(N_0 \setminus G, \psi)$  the subspace of  $C^{\infty}(N_0 \setminus G, \psi)$  consisting of moderate growth functions on G. Let  $(\pi, H_{\pi})$  be an irreducible admissible representation of G. Wallach's multiplicity one theorem [19] asserts that

$$\dim_{\mathbf{C}} \operatorname{Hom}_{(\mathfrak{g}_{\mathbf{C}},K)}(H_{\pi,K}, C^{\infty}_{\operatorname{mg}}(N_0 \backslash G, \psi)) \leq 1.$$

Here  $H_{\pi,K}$  means the space of K-finite vectors in  $H_{\pi}$ . For a nonzero intertwining operator  $\Phi \in \operatorname{Hom}_{(\mathfrak{g}_{\mathbb{C}},K)}(H_{\pi,K}, C^{\infty}_{\operatorname{ng}}(N_0 \backslash G, \psi))$  and a function  $f \in H_{\pi,K}$ , we call the image  $\Phi(f)$  (moderate growth) Whittaker function corresponding to f, and denote by

$$\mathcal{W}(\pi,\psi) = \{\Phi(f) \mid \Phi \in \mathrm{Hom}_{(\mathfrak{g}_{\mathbf{C}},K)}(H_{\pi,K}, C^{\infty}_{\mathrm{mg}}(N_0 \backslash G, \psi)), f \in H_{\pi,K}\}.$$

Let  $(\tau, V_{\tau})$  be a K-type of  $(\pi, H_{\pi})$ . For  $v \in V_{\tau}$ , we denote by  $W(v; *) \in \mathcal{W}(\pi, \psi)$  the image of v under K-embedding  $V_{\tau} \to \mathcal{W}(\pi, \psi)$ . Since we have

$$W(v; ngk) = \psi(n)W(\tau(k)v; g), \quad \forall (n, g, k) \in N_0 \times G \times K,$$

the Iwasawa decomposition  $G = N_0 AK$  implies that W(v; \*) is determined by its restriction  $W(v;*)|_A$  to A, where  $A = \{z \operatorname{diag}(a_1, a_2, a_1^{-1}, a_2^{-1}) \mid z, a_1, a_2 > 0\}$ . We call  $W(v;*)|_A$ the radial part of W(v;\*).

2.3. Representation theory of K. Let  $(\tau_{\lambda}^0, V_{\lambda}^0)$  be the irreducible finite dimensional representation of U(2) with highest weight  $\lambda = (\lambda_1, \lambda_2)$ ,  $(\lambda_1 \geq \lambda_2)$ . Here  $V_{\lambda}^0 = \{f \in \mathcal{C}_{\lambda}^0 \mid \lambda_1 \geq \lambda_2\}$  $\mathbf{C}[x_1, x_2] \mid \text{homogeneous, deg}(f) = \lambda_1 - \lambda_2 \}$  on which  $\mathbf{U}(2)$  acts by  $(\tau_{\lambda}^0(k)f)(x_1, x_2) = (\det k)^{\lambda_2} f((x_1, x_2) \cdot k)$   $(k \in \mathbf{U}(2), f \in V_{\lambda}^0)$ . Via the isomorphism  $\kappa : \mathbf{U}(2) \cong K_0$ , we regard  $\tau_{\lambda}^{0}$  as a representation of  $K_{0}$ .

Let  $\{v_i^{\lambda,0} \equiv v_i^0 = x_1^i x_2^{\lambda_1 - \lambda_2 - i} \mid 0 \le i \le \lambda_1 - \lambda_2\}$  be the standard basis of  $V_{\lambda}^0$ . We define U(2)-invariant inner product  $\langle \ , \ \rangle$  on  $V^0_\lambda$  by  $\langle v^0_i, v^0_j \rangle = \delta_{i,j} {\lambda_1 - \lambda_2 \choose i}^{-1}$ . For  $\lambda = (\lambda_1, \lambda_2)$ , we put  $\lambda^* = (-\lambda_2, -\lambda_1)$ . Then the contragredient representation of  $\tau^0_\lambda$  is isomorphic to  $\tau^0_{\lambda^*}$ . We introduce a new basis  $\{w^{\lambda,0}_i \equiv w^0_i \mid 0 \le i \le \lambda_1 - \lambda_2\}$  by

$$w^0_{2j+\delta} = \begin{cases} (x_1x_2)^{\delta}(x_1^2 + x_2^2)^{(\lambda_1 - \lambda_2)/2 - j - \delta}(x_2^2 - x_1^2)^j & \text{if } \lambda_1 - \lambda_2 \in 2\mathbf{Z}_{\geq 0}, \\ x_1^{\delta}x_2^{1 - \delta}(x_1^2 + x_2^2)^{(\lambda_1 - \lambda_2 - 1)/2 - j}(x_2^2 - x_1^2)^j & \text{if } \lambda_1 - \lambda_2 \in 2\mathbf{Z}_{\geq 0} + 1 \end{cases}$$

Let  $\tau_{\lambda} = \operatorname{Ind}_{K_0}^K \tau_{\lambda}^0$ . Then  $\tau_{\lambda}$  is irreducible if and only if  $\lambda \neq \lambda^*$ . In that case a basis of the representation space  $V_{\lambda}$  of  $\tau_{\lambda}$  is  $\{v_i, v_i^* \mid 0 \leq i \leq \lambda_1 - \lambda_2\}$  where the K-action is given

$$\begin{split} \tau_{\lambda}(k_{A,B})v_{i} &= \sum_{j=0}^{\lambda_{1}-\lambda_{2}} c_{ij}^{\lambda}(k_{A,B})v_{j}, \quad \tau_{\lambda}(k_{A,B})v_{i}^{*} &= \sum_{j=0}^{\lambda_{1}-\lambda_{2}} c_{ij}^{\lambda^{*}}(k_{A,B})v_{j}^{*}, \\ \tau_{\lambda}(\gamma_{0})v_{i} &= (-1)^{i}v_{\lambda_{1}-\lambda_{2}-i}^{*}, \qquad \tau_{\lambda}(\gamma_{0})v_{i}^{*} &= (-1)^{\lambda_{1}-\lambda_{2}-i}v_{\lambda_{1}-\lambda_{2}-i}, \end{split}$$

where  $c_{ij}^{\lambda}(k_{A,B}) = \langle \tau_{\lambda}^{0}(k_{A,B})v_{i}^{\lambda,0}, v_{j}^{\lambda,0} \rangle / \langle v_{j}^{\lambda,0}, v_{j}^{\lambda,0} \rangle$ . Similarly we introduce another basis  $\{w_{i}, w_{i}^{*} \mid 0 \leq i \leq \lambda_{1} - \lambda_{2}\}$  of  $V_{\lambda}$  from the basis  $\{w_{i}^{0} \mid 0 \leq i \leq \lambda_{1} - \lambda_{2}\}$  of  $V_{\lambda}^{0}$ . When  $\lambda = \lambda^{*}$ ,  $\tau_{\lambda}$  has an irreducible decomposition  $\tau_{\lambda} = \tau_{\lambda}^{+} \oplus \tau_{\lambda}^{-}$ . A basis of the representation space  $V_{\lambda}^{\pm}$  of  $\tau_{\lambda}^{\pm}$  is  $\{v_{i}^{\pm} \mid 0 \leq i \leq \lambda_{1} - \lambda_{2} = 2\lambda_{1}\}$  where the K-action is

$$\tau_{\lambda}^{\pm}(k_{A,B})v_{i}^{\pm} = \sum_{j=0}^{\lambda_{1}-\lambda_{2}}c_{ij}^{\lambda}(k_{A,B})v_{j}^{\pm}, \quad \tau_{\lambda}^{+}(\gamma_{0})v_{i}^{+} = (-1)^{i}v_{2\lambda_{1}-i}^{+}, \quad \tau_{\lambda}^{-}(\gamma_{0})v_{i}^{-} = (-1)^{i+1}v_{2\lambda_{1}-i}^{-}.$$

We denote by  $\iota_{\pm}$  the isomorphism  $V^{\pm}_{(\lambda_1,-\lambda_1)}\cong V^0_{(\lambda_1,-\lambda_1)}$  of C-vector spaces given by  $\iota_{\pm}(v_i^{\pm}) = v_i^0.$ 

2.4.  $P_2$ -principal series representations. Let  $P_2 = P_2(\mathbf{R}) = M_2A_2N_2$  be Siegel parabolic subgroup of G with  $M_2 = \{ \begin{pmatrix} \pm m \\ t_{m^{-1}} \end{pmatrix} \mid m \in \mathrm{SL}^{\pm}(2,\mathbf{R}) \}, A_2 = \{ z \operatorname{diag}(a_1,a_1,a_1^{-1},a_1^{-1}) \mid z,a_1 > 0 \}$ , and  $N_2 = \mathsf{N}_2(\mathbf{R})$ . Let  $\varepsilon$  be a character of the group  $\{1,\gamma_0\}$ . We denote by  $D_n = \operatorname{Ind}_{\operatorname{SL}(2,\mathbf{R})}^{\operatorname{SL}^{\pm}(2,\mathbf{R})}(D_n^+)$  where  $D_n^+$  is the discrete series representation of  $\operatorname{SL}(2,\mathbf{R})$ with Blattner parameter  $n(\geq 2)$ . For  $c, \nu \in \mathbb{C}$ , we define a quasi-character  $\chi_{c,\nu}$  by  $\chi_{c,\nu}(z\operatorname{diag}(a_1,a_1,a_1^{-1},a_1^{-1}))=z^ca_1^{\nu+3}$ . From the data above, we define  $P_2$ -principal series representation by  $\pi_{\varepsilon,n,c,\nu} = \operatorname{Ind}_{P_2}^G((\varepsilon \otimes D_n) \otimes \chi_{c,\nu} \otimes 1_{N_2}).$ 

Via the Langlands parameters of  $P_2$ -principal series representation  $\pi = \pi_{\varepsilon,n,c,\nu}$ , we define L- and  $\varepsilon$ -factors for  $\pi$  by

$$L(s,\pi,\mathrm{spin}) = \Gamma_{\mathbf{R}}\left(s + \frac{c+\nu}{2} + \delta_1\right)\Gamma_{\mathbf{R}}\left(s + \frac{c-\nu}{2} + \delta_2\right)\Gamma_{\mathbf{C}}\left(s + \frac{c+n-1}{2}\right),$$

$$\begin{split} L(s,\pi,\mathrm{std}) &= \Gamma_{\mathbf{R}}(s) \Gamma_{\mathbf{R}} \Big( s + \frac{\nu + n - 1}{2} \Big) \Gamma_{\mathbf{R}} \Big( s + \frac{-\nu + n - 1}{2} \Big), \\ \varepsilon(s,\pi,\psi_{\infty},\mathrm{spin}) &= (\sqrt{-1})^{\delta_1 + \delta_2 + n}, \\ \varepsilon(s,\pi,\psi_{\infty},\mathrm{std}) &= (-1)^n \end{split}$$

where  $\delta_i \in \{0,1\}$  (i=1,2) are determined by  $(-1)^{\delta_1} = \varepsilon(\gamma_0)$  and  $(-1)^{\delta_2} = (-1)^n \varepsilon(\gamma_0)$ . Here we denote by  $\Gamma_{\mathbf{R}}(s) = \pi^{-s/2} \Gamma(s/2)$ ,  $\Gamma_{\mathbf{C}}(s) = 2(2\pi)^{-s} \Gamma(s)$ , and  $\psi_{\infty}(x) = \exp(2\pi \sqrt{-1}x)$ ,  $(x \in \mathbf{R}^{\times})$ .

### 3. Explicit formulas for Whittaker functions

We describe  $P_2$ -principal series Whittaker functions at certain multiplicity one K-types. More precisely we consider Whittaker functions at the following K-types.

- n = 2m and  $\varepsilon(\gamma_0)(-1)^m = \pm 1$ :  $\tau^{\pm}_{(m,-m)}$ ;
- n = 2m + 1:  $\tau_{(m+1,-m)}$ .

Hasegawa [3] obtained a system of partial differential equations for Whittaker functions belonging to the above K-types. For simplicity we assume  $c_0 = c_3 = 1$  for  $\psi_{(c_0,c_3)} \in \hat{N}_0$ .

Proposition 3.1. ([3]) Let

$$W(v_i^{(m,-m),\pm}; z \operatorname{diag}(a_1, a_2, a_1^{-1}, a_2^{-1})) = z^c a_1^2 a_2 \varphi_i(a_1, a_2), \ (0 \le i \le n = 2m)$$

be the radial part of Whittaker function at K-type  $\tau_{(m,-m)}^{\pm}$ . If we set  $y_1 = \pi a_1/a_2$ ,  $y_2 = \pi a_2^2$ , then  $\{\varphi_i(y_1, y_2) \mid 0 \le i \le 2m\}$  satisfies the following.

- $(2\partial_2 2m + 1)(\varphi_i + \varphi_{i+2}) + 4y_2(\varphi_i \varphi_{i+2}) = 0;$
- $(2\partial_1 2\partial_2 i + 1)(\varphi_i \varphi_{i+2}) + 2(-2y_2 + m i 1)(\varphi_i + \varphi_{i+2}) 8\sqrt{-1}y_1\varphi_{i+1} = 0;$
- $\{\partial_1^2 + 2\partial_2^2 2\partial_1\partial_2 4y_1^2 8y_2^2 + 4(m-i)y_2 \frac{1}{4}(\nu^2 + (2m-1)^2)\}\varphi_i 2\sqrt{-1}y_1\{(2m-i)\varphi_{i+1} i\varphi_{i-1}\} = 0,$

where  $\partial_i = y_i \frac{\partial}{\partial y_i}$ .

Here is a Mellin-Barnes integral representation for  $P_2$ -principal series Whittaker function at the K-type  $\tau^{\pm}_{(m,-m)}$ . A convenience basis is  $\{w_i^{(m,-m),\pm}\mid 0\leq i\leq 2m\}$ .

**Theorem 3.2.** ([7], The case of n = 2m) Up to a constant, we have

$$\begin{split} &W(w_i^{(m,-m),\pm};z\operatorname{diag}(a_1,a_2,a_1^{-1},a_2^{-1}))\\ &=\frac{z^ca_1^2a_2}{(2\pi\sqrt{-1})^2}\int_{\sigma_2-\sqrt{-1}\infty}^{\sigma_2+\sqrt{-1}\infty}\int_{\sigma_1-\sqrt{-1}\infty}^{\sigma_1+\sqrt{-1}\infty}V_i(s_1,s_2)\Big(\pi\frac{a_1}{a_2}\Big)^{-s_1}(\pi a_2^2)^{-s_2}\,ds_1ds_2, \end{split}$$

where

$$\begin{split} V_{\delta}(s_1, s_2) &= \frac{\pi^{s_1 + s_2 + 2m}}{(2\pi\sqrt{-1})^2} \int_{\tau_2 - \sqrt{-1}\infty}^{\tau_2 + \sqrt{-1}\infty} \int_{\tau_1 - \sqrt{-1}\infty}^{\tau_1 + \sqrt{-1}\infty} \Gamma_{\mathbf{R}}(s_1 + m + \delta) \Gamma_{\mathbf{R}}(s_1 - t_1 - t_2 + m) \\ &\times \Gamma_{\mathbf{R}}(s_2 - t_1 + m - \delta) \Gamma_{\mathbf{R}}(s_2 - t_2 + m) \\ &\times \Gamma_{\mathbf{R}}(t_1 + \nu/2) \Gamma_{\mathbf{R}}(t_1 - \nu/2) \Gamma_{\mathbf{R}}(t_2 + 1/2) \Gamma_{\mathbf{R}}(t_2 - 1/2) dt_1 dt_2, \\ V_{2i+\delta}(s_1, s_2) &= 2^{-j-\delta} (\sqrt{-1})^{\delta} (s_2 - j + m - 1/2)_j \cdot V_{\delta}(s_1, s_2 - j), \end{split}$$

for  $\delta \in \{0, 1\}$ . Here  $(a)_n = \Gamma(a+n)/\Gamma(a)$ , and  $\sigma_i, \tau_i \in \mathbf{R}$  are taken so that  $\sigma_1 > \tau_1 + \tau_2 - m$ ,  $\sigma_2 > \max\{\tau_1, \tau_2\}, \ \tau_1 > |\operatorname{Re}(\nu)/2|, \ \tau_2 > 1/2$ .

# 4. Novodvorsky's zeta integrals

Let  $\Pi = \bigotimes_v' \Pi_v$  be a generic cuspidal automorphic representation of G(A). We denote by  $\widetilde{\Pi} = \bigotimes_v' \widetilde{\Pi}_v$  its contragredient. We fix  $\psi \in \hat{N}_0$  such that  $\psi(n(x_0, x_1, x_2, x_3)) = \psi_{\infty}(x_0 + x_3)$  where  $\psi_{\infty}(x) = \exp(2\pi\sqrt{-1}x)$ . For  $W \in \mathcal{W}(\Pi_{\infty}, \psi_{\infty})$  and  $s \in \mathbb{C}$ , Novodvorsky's archimedean zeta integral  $Z_{\infty}(s, W)$  is defined by

$$Z_{\infty}(s,W) = \int_{\mathbf{R}^{\times}} \int_{\mathbf{R}} W(\left(egin{array}{c|c} y & & & \ & y & & \ \hline & y & & \ \hline & & 1 & \ & & 1 \end{array}
ight) |y|^{s-3/2} dx rac{dy}{|y|},$$

which converges absolutely for  $Re(s) \gg 0$ .

**Theorem 4.1** (Moriyama [13] (Large d.s.,  $P_1$ ), Moriyama-I [8] ( $P_0$ ), I [7] ( $P_2$ )). For each irreducible generic representation  $\Pi_{\infty}$  of  $G = \mathrm{GSp}(2,\mathbf{R})$ , there exists  $W \in \mathcal{W}(\Pi_{\infty},\psi_{\infty})$  such that

$$\frac{Z_{\infty}(1-s,\widetilde{W})}{L(1-s,\widetilde{\Pi}_{\infty},\mathrm{spin})} = \varepsilon(s,\Pi_{\infty},\psi_{\infty},\mathrm{spin}) \frac{Z_{\infty}(s,W)}{L(s,\Pi_{\infty},\mathrm{spin})},$$

and the ratio  $Z_{\infty}(s,W)/L(s,\Pi_{\infty},\mathrm{spin})(\neq 0)$  is an entire function of  $s \in \mathbb{C}$ . Here L-and  $\varepsilon$ -factors are defined by Langlands parameters of  $\Pi_{\infty}$ , and  $\widetilde{W}$  is contragredient Whittaker function defined by  $\widetilde{W}(g) = \varpi_{\Pi_{\infty}}(\nu(g)^{-1})W(g\kappa\begin{pmatrix} 0 & \sqrt{-1} \\ -\sqrt{-1} & 0 \end{pmatrix})$  where  $\varpi_{\Pi_{\infty}}$  is the central character of  $\Pi_{\infty}$ .

**Example**  $\Pi_{\infty} \cong \pi_{\varepsilon,n.c.\nu}$  with n = 2m and  $\varepsilon(\gamma_0) = 1$ : If we take  $W(g) = W(w_{2m}^{(m,-m),\pm}; g)$ , then we have

$$\frac{Z_{\infty}(s,W)}{L(s,\Pi_{\infty},\mathrm{spin})} = \frac{C}{2\pi\sqrt{-1}} \int_{\tau-\sqrt{-1}\infty}^{\tau+\sqrt{-1}\infty} \frac{\Gamma_{\mathbf{R}}(t+\frac{\nu}{2})\Gamma_{\mathbf{R}}(t-\frac{\nu}{2})\Gamma_{\mathbf{C}}(t-\frac{1}{2})}{\Gamma_{\mathbf{R}}(t+s+\frac{c}{2})\Gamma_{\mathbf{R}}(t+1-s-\frac{c}{2})} dt,$$

with some constant C.

**Remark 1.** Miyazaki [9] obtained a similar result for the principal series of GSp(2, C).

Combined with non-archimedean results of Takloo-Bighash [17], we can find the following:

Corollary 4.2. Let  $\Pi = \bigotimes_v' \Pi_v$  be a generic cuspidal representation of  $GSp(2, \mathbf{A})$ . Then the completed spinor L-function  $L(s, \Pi, spin) = \prod_{v \leq \infty} L(s, \Pi_v, spin)$  is continued to an entire function of  $s \in \mathbf{C}$ , and has the functional equation

$$L(s,\Pi,\mathrm{spin}) = \varepsilon(s,\Pi,\mathrm{spin})L(1-s,\widetilde{\Pi},\mathrm{spin})$$

with  $\varepsilon(s, \Pi, \text{spin}) = \prod_{v \leq \infty} \varepsilon(s, \Pi_v, \psi_v, \text{spin}).$ 

Remark 2. Asgari-Shahidi [1] proved the results above by Langlands-Shahidi method.

#### 5. Bump-Friedberg-Ginzburg zeta integrals

We recall the zeta integral discovered by Bump, Friedberg and Ginzburg [2]. The unipotent radical  $N_i$  (i = 1, 2) of  $P_i$  is given by  $N_1 = \{n(x_0, x_1, x_2, 0) \in G\}$  and  $N_2 = \{n(x_0, x_1, x_2, 0) \in G\}$ 

 $\{n(0,x_1,x_2,x_3)\in G\}$ . The Levi part of  $P_i$  is isomorphic to  $GL(2)\times GL(1)$  embed-

ded via the maps 
$$\iota_i$$
:  $\iota_1(\alpha, g) = \begin{pmatrix} \alpha & & & b \\ & a & & b \\ & & \alpha^{-1} \det g & b \end{pmatrix}$ ,  $\iota_2(\alpha, g) = \begin{pmatrix} \alpha g & & \\ & t g^{-1} \end{pmatrix}$ , where

 $\alpha \in \operatorname{GL}(1)$  and  $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}(2)$ . The modulus characters  $\delta_i$  of  $\mathsf{P}_i$  are given by and  $\delta_1(\iota_1(\alpha,g)) = |\det g|^{-2}|\alpha|^4$  and  $\delta_2(\iota_2(\alpha,g)) = |\det g|^3|\alpha|^3$ . For a complex number s, we denote by  $\operatorname{Ind}_{\mathsf{P}_i(\mathbf{A})}^{\mathsf{G}(\mathbf{A})}(\delta_i^s)$  the space of smooth functions  $f_i(s,g)$  on  $\mathsf{G}(\mathbf{A})$  satisfying  $f_i(s,pg) = \delta_i^s(p) f_i(s,g)$  for all  $p \in P_i(\mathbf{A})$  and  $g \in G(\mathbf{A})$ . For complete sumbers  $s_1$  and  $s_2$ , we take a global sections  $f_1 \in \operatorname{Ind}_{P_1(\mathbf{A})}^{G(\mathbf{A})}(\delta_1^{s_1/2+1/4})$  and  $f_2 \in \operatorname{Ind}_{P_2(\mathbf{A})}^{G(\mathbf{A})}(\delta_2^{(s_2+1)/3})$ . We define Eisenstein series  $E_i(s_i, f_i, g)$  as usual manner:  $E_i(s_i, f_i, g) = \sum_{\gamma \in P_i(\mathbf{Q}) \setminus G(\mathbf{Q})} f_i(s_i, \gamma g)$ . For a generic cusp form  $\varphi \in \Pi$ , the global zeta integral is defined by

$$Z(s_1, s_2, \varphi, f_1, f_2) = \int_{\mathsf{Z}(\mathbf{A})\mathsf{G}(\mathbf{Q})\backslash\mathsf{G}(\mathbf{A})} \varphi(g) E_1(s_1, f_1, g) E_2(s_2, f_2, g) \, dg.$$

Here we denote by Z the center of G. Unfolding two Eisenstein series, one can find the basic identity:

$$Z(s_1, s_2, \varphi, f_1, f_2) = \int_{\mathsf{Z}(\mathbf{A})\mathsf{N}_{12}(\mathbf{A})\backslash\mathsf{G}(\mathbf{A})} W_{\varphi}(g) f_1(s_1, w_2 g) f_2(s_2, w_1 g) \, dg$$

for  $\operatorname{Re}(s_1)$  and  $\operatorname{Re}(s_2)$  sufficiently large. Here  $\mathsf{N}_{12}=\mathsf{N}_1\cap\mathsf{N}_2=\{n(0,x_1,x_2,0)\in\mathsf{G}\},\,w_1=0$  $\begin{pmatrix} 1 & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{pmatrix}$  and  $w_2 = \begin{pmatrix} & 1 & & \\ & & & \\ & & & \\ \end{pmatrix}$ . Suppose that  $\Pi$ ,  $f_1$  and  $f_2$  are factorizable.

Then the global zeta integral is the product of local zeta integrals

$$Z_v(s_1, s_2, W_v, f_{1,v}, f_{2,v}) = \int_{\mathsf{Z}(\mathbf{Q}_v) \mathsf{N}_{12}(\mathbf{Q}_v) \backslash \mathsf{G}(\mathbf{Q}_v)} W_v(g) f_{1,v}(s_1, w_2 g) f_{2,v}(s_2, w_1 g) \, dg,$$

where the subscripts denote the local analogues. Bump, Friedberg and Ginzburg performed the unramified computation.

As for the archimedean zeta integrals we can show the following.

**Theorem 5.1.** For each generic representation  $\Pi_{\infty}$  of  $G = \mathrm{GSp}(2, \mathbb{R})$ , there exists a tuple  $\{W_{\infty}, f_{1,\infty}, f_{2,\infty}\}$  such that

$$Z_{\infty}(s_1,s_2,W_{\infty},f_{1,\infty},f_{2,\infty}) = L(s_1,\Pi_{\infty},\mathrm{spin})L(s_2,\Pi_{\infty},\mathrm{std}),$$

and

$$\begin{split} &\frac{\widetilde{Z}_{\infty}(s_{1}, s_{2}, W_{\infty}, f_{1,\infty}, f_{2,\infty})}{L(1 - s_{1}, \widetilde{\Pi}_{\infty}, \text{spin})L(1 - s_{2}, \widetilde{\Pi}_{\infty}, \text{std})} \\ &= \varepsilon(s_{1}, \Pi_{\infty}, \psi_{\infty}, \text{spin})\varepsilon(s_{2}, \Pi_{\infty}, \psi_{\infty}, \text{std}) \frac{Z_{\infty}(s_{1}, s_{2}, W_{\infty}, f_{1,\infty}, f_{2,\infty})}{L(s_{1}, \Pi_{\infty}, \text{spin})L(s_{2}, \Pi_{\infty}, \text{std})}, \end{split}$$

where

$$\widetilde{Z}_{\infty}(s_1, s_2, W_{\infty}, f_{1,\infty}, f_{2,\infty}) = \int_{\mathsf{Z}(\mathbf{R})\mathsf{N}_{12}(\mathbf{R})\backslash\mathsf{G}(\mathbf{R})} W_{\infty}(g) M_{1,\infty}^* f_{1,\infty}(s_1, w_2 g) M_{2,\infty}^* f_{2,\infty}(s_2, w_1 g) \, dg,$$
 with normalized intertwining operators  $M_{i,\infty}^*$ .

**Example**  $\Pi_{\infty} \cong \pi_{\varepsilon,n,c,\nu}$  with n = 2m and  $(-1)^m \varepsilon(\gamma_0) = 1$ : If we take  $\{W_{\infty}, f_{1,\infty}, f_{2,\infty}\}$ 

- $W_{\infty}(g) = W(v; g), v \in V_{(m,-m)}^+;$
- $f_{1,\infty}(s_1, k_0) = \frac{1 \text{ for } k_0 \in K_0;}{\langle \tau_{(m,-m)}^0(k_0)v', w_0^{(m,-m),0} \rangle} \text{ for } k_0 \in K_0, v' \in V_{(m,-m)}^0,$

then we have

$$Z_{\infty}(s_1, s_2, W_{\infty}, f_{1,\infty}, f_{2,\infty}) = C\langle \iota_+(v), v' \rangle \cdot \frac{L(s_1, \Pi_{\infty}, \text{spin})L(s_2, \Pi_{\infty}, \text{std})}{\Gamma_{\mathbf{R}}(2s_1 + 1)\Gamma_{\mathbf{R}}(s_2 + m + 1)\Gamma_{\mathbf{R}}(2s_2 + 2m)}.$$

#### References

- M. Asgari, F. Shahidi, Generic transfer from GSp(4) to GL(4). Comps. Math. 142 (2006), 541-550.
- [2] D. Bump, S. Friedberg and D. Ginzburg, Rankin-Selberg integrals in two complex variables, Math. Ann. 313 (1999), no. 4, 731–761.
- [3] Y. Hasagawa, Principal series and generalized principal series Whittaker functions with peripheral K-types on the real symplectic group of rank 2. Manuscripta Math. 134 (2011), no. 1-2, 91-122.
- T. Ishii, On principal series Whittaker functions on Sp(2, R), J. Funct. Anal. 225 (2005), no. 1, 1-32.
- [5] T. Ishii, Whittaker functions on real semisimple Lie groups of rank two, Canad. J. Math. 62 (2010), 563-581.
- [6] T. Ishii, Archimedean L-factors for standard L-functions attached to non-holomorphic Siegel modular forms of degree 2 RIMS, kokyuroku 1871 (2013), 84-89.
- [7] T. Ishii, Whittaker functions for generalized principal series representations of GSp(2, R), preprint.
- [8] T. Ishii and T. Moriyama, Spinor L-functions for generic cusp forms on GSp(2) belonging to principal series representations, Trans. Amer. Math. Soc. **360** (2008), no. 11, 5683-5709.
- [9] T. Miyazaki, Principal series Whittaker functions on  $Sp(2, \mathbb{C})$ . J. Funct. Anal. 261 (2011), no. 4, 1083-1131.
- [10] T. Miyazaki and T. Oda, Principal series Whittaker functions on  $Sp(2; \mathbf{R})$ . Explicit formulae of differential equations. Automorphic forms and related topics (Seoul, 1993), 59-92, Pyungsan Inst. Math. Sci., Seoul, 1993.
- [11] T. Miyazaki and T. Oda, Principal series Whittaker functions on  $Sp(2; \mathbf{R})$ . II. Tohoku Math. J. (2) 50 (1998), no. 2, 243-260. Errata: Tohoku Math. J. (2) 54 (2002), no. 1, 161-162.
- [12] T. Morivama, A remark on Whittaker functions on  $Sp(2, \mathbb{R})$ , J. Math. Sci. Univ. Tokyo 9 (2002), no. 4, 627-635.
- [13] T. Moriyama, Entireness of the spinor L-functions for certain generic cusp forms on GSp(2), Amer. J. Math. 126 (2004), no. 4, 899-920.
- [14] T. Moriyama, L-functions for GSp(2) × GL(2): Archimedean theory and applications, Canad. J. Math. **61** (2009), no. 2, 395–426.
- [15] S. Niwa, Commutation relations of differential operators and Whittaker functions on  $Sp_2(\mathbf{R})$ . Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), no. 8, 189-191.
- [16] T. Oda, An explicit integral representation of Whittaker functions on  $Sp(2; \mathbf{R})$  for the large discrete series representations, Tohoku Math. J. (2) 46 (1994), no. 2, 261-279.
- [17] R. Takloo-Bighash, L-functions for the p-adic group GSp(4). Amer. J. Math. 122 (2000), no. 6,
- [18] D. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), 75-98.
- [19] N. Wallach, Asymptotic expansions of generalized matrix entries of representations of real reductive groups, Lect. Notes in Math., 1024, (1983), 287-369.

FACULTY OF SCIENCE AND TECHNOLOGY, SEIKEI UNIVERSITY, 3-3-1 KICHIJOJI-KITAMACHI, MUSASHINO, TOKYO, 180-8633, JAPAN

E-mail address: ishii@st.seikei.ac.jp