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CONTRACTIVE PROJECTIONS ON SUBSPACES OF CONTINUOUS

FUNCTIONS

FERNANDA BOTELHO AND TAKESHI MIURA

ABSTRACT. This paper deals with the structure of contractive and bi‐contractive projec‐
tions on spaces of continuous functions defined on a compact and Hausdorff topological
space.

1. INTRODUCTION

This paper deals with contractive and bi‐contractive projections on subspaces of con‐

tinuous functions. More precisely, the underlying spaces are closed subspaces of C( $\Omega$) ,

with  $\Omega$ a compact Hausdorff space, endowed with the standard infinite norm. A generic
closed subspace of  C( $\Omega$) is denoted by A . The operators under investigation are projec‐
tions which are idempotent bounded operators on A . Each projection P determines a

new projection P^{\perp}=I-P
, called theJcomplement of P . Within the class of projections,

we are interested in those that are contractive, meaning \Vert P\Vert=1 , and also those that are

bi‐contractive, i.e. \Vert P\Vert=\Vert P^{\perp}\Vert=1.
Friedman and Russo in [10] showed that contractive projections in C( $\Omega$) can be de‐

scribed by its essential part. This is represented by an operator Q , taking values in the

space of continuous and bounded functions defined on a speciàl Borel subset of  $\Omega$, C_{b}(S)
also endowed with the infinite norm. The operator Q : C( $\Omega$) \rightarrow  C_{b}(S) simply restricts

the action of P on f to S while preserving the norm \Vert Q(f)\Vert_{\infty}=\Vert P(f)\Vert_{\infty} . Furthermore,
P is then retrieved from Q via an isometric simultaneous extension from the range of Q
to the entire C( $\Omega$) .

As for contractive projections on C( $\Omega$) , a contractive projection on A can be represented
by its essential part followed by an isometric simultaneous extension. The proof follows

steps presented in [10] that are outlined in the section 2 of this paper.

The Friedman‐Russo decomposition of contractive projections on C( $\Omega$) has very pow‐

erful corollaries, one of which is the representation for the bi‐contractive projections.
Proposition 1.19 in [10] formulates that bi‐contractive projections on C( $\Omega$) are given as

the average of the identity with an isometric reflection. This is a very interesting result

since the bi‐contractive projections on C( $\Omega$) and the generalized bi‐circular projections
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have exactly the same form. In this paper we explore this feature for some subspaces of

continuous functions.

Bi‐circular projections were introduced in 2004 by Stachó and Zalar. Bi‐circular pro‐

jections appeared as a characterization for Hilbert spaces among \mathrm{J}\mathrm{B}^{*} triples, see [20]. For

the structure of these projections on spaces of operator algebras we refer the reader to

[19]. This notion was generalized by Fošner, Iliševic and Li to the so‐called generalized
bi‐circular projections and, in [9], they found a representation of these projections on

spaces of matrices.

Generalized bi‐circular projections have been characterized on several Banach spaces,
and often they can be represented as the average of the identity with an isometric reflec‐

tion. These new settings include, spaces of continuous functions, Lipschitz functions and

spaces of analytic functions, see [1, 5, 7] and many references therein.

It is known that generalized bi‐circular projections are contractive, see [12] and [14].
It is also easy to see that generalized bi‐circular projections are bi‐contractive. It is not

clear when the bi‐contractive projections of \mathrm{a}
.

Banach space are exactly the generalized
bi‐circular projections of that space. There are many spaces where these two classes of

projections coincide, as for example Hilbert spaces, C( $\Omega$) and some vector valued spaces of

continuous functions, to list a few examples. When this happens we say that the Banach

space has GBPs=BCPs for short. In this paper we discuss some spaces of continuous

functions with this property and also pose some questions.
In section 2, we followed the Friedman‐Russo approach for a decomposition of a con‐

tractive projection for closed subspaces of C( $\Omega$) and from this, we draw some observations

about the existence of bi‐contractive projections.
In section 3, we consider a class of spaces of continously differentiable functions defined

on [0 ,
1 ] , endowed with a variety of norms (KKM spaces). These spaces can be viewed as

subspaces of C( $\Omega$) . We give conditions under which KKM spaces are Banach algebras.
The Gelfand theory provides powerful tools for the study of these algebras but in this

case the Banach algebras are not self‐adjoint and then the Gelfand transform is not an

isometry. This leaves the problem of finding the bi‐contractive projections supported by
this new class of spaces. It is interesting to mention that the form of the generalized
bi‐circular projections supported by a given space is directly linked to the form of the

respective surjective isometries. The form of the surjective isometries supported by the

KKM spaces was derived by Kawamura, Koshimizu and Miura in [13]. This opens a

pathway for a characterization of a class of bi‐contractive projections on these new spaces,
to be presented in a forthcoming work [8].

In section 4, we give an overview of some results of bi‐contractive projections supported
by spaces of vector valued continuous functions, details shall be available soon in [4].

2. RESULTS ON CONTRACTIVE PROJECTIONS ON SUBSPACES OF C( $\Omega$)
We review the characterization of the contractive projections on C( $\Omega$) due to Friedman

and Russo adapted to closed subspaces of C( $\Omega$) , cf. [10].
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Throughout this paper  $\Omega$ denotes a compact Hausdorff space and  C( $\Omega$) denotes the

space of all continuous functions endowed with the standard \Vert\cdot\Vert_{\infty} norm. A contractive

projection P:C( $\Omega$)\rightarrow C( $\Omega$) is an idempotent bounded operator of norm 1,

We first observe that a contractive projection P induces projections of the same norm

on the dual and double dual spaces, P^{*} and P^{**} respectively.
The Riesz‐Fisher‐Markov Theorem identifies the dual space C( $\Omega$)^{*} with the space of

all regular Borel measures of bounded variation, defined on the a‐algebra of the Borel

subsets of  $\Omega$
,

for details we refer the reader to [16, 17].
Given a closed subspace of  C( $\Omega$) ,

A
,

and an element  $\tau$ in  A^{*}
,

we denote by \tilde{ $\tau$} any
Hahn‐Banach extension of  $\tau$ to  C( $\Omega$)^{*} such that \Vert $\tau$\Vert=\Vert\tilde{ $\tau$}\Vert . We associate to \tilde{ $\tau$} the unique
regular Borel measure  $\mu$ representing \tilde{ $\tau$}

\displaystyle \tilde{ $\tau$}(f)=\int_{ $\Omega$}fd $\mu$,
for every f \in  C( $\Omega$) . We observe that all measures representing some Hahn‐Uanach

extension of  $\tau$ yield the same value when restricted to the functions in  A . Hence for

 $\tau$ \in A^{*} , when we say that a measure represents  $\tau$ we refer to any measure representing
some Hahn‐Uanach extension of  $\tau$.

We pursue by reviewing some additional definitions and by setting notation to be

followed throughout this paper. Given a subspace of  $\Omega$
, say  $\Omega$_{0} , we denote by A_{$\Omega$_{0}} =

{g : $\Omega$_{0} \rightarrow \mathbb{C} : g=f|_{$\Omega$_{0}} , for some f \in  A}. We also define support of a Borel measure

 $\nu$ as a Borel subset of  $\Omega$, S_{ $\nu$} , such that x \in  S_{ $\nu$} if and only if | $\nu$|(U) > 0 for every open

neighborhood U of x , where |\mathrm{v}| denotes the total variation measure of  $\nu$.

We now prove a result that, following the approach in [10], also describes the form of

a contractive projection on A
,

with A a closed subspace of C( $\Omega$) . The next proposition
follows an argument due to Atalla applied to the extreme points of P^{*}(A_{1}^{*}) , see [2].

Definition 2.1. Let A be a subspace of C( $\Omega$) and let P be a contractive projection on A.

Then a family of extreme points of P^{*}(A_{1}^{*}) is said to have the maximal support property if
and only if any two distinct elements in the family have disjoint supports and the support
of any given extreme point of P^{*}(A_{1}^{*}) is equal to the support of some element in the family.

The next proposition ensures that a family with the maximal support property asso‐

ciated with a contractive projection exists and it determines in a natural way the form

of the elements in the range of the projection restricted to points in the support of any
measure belonging to the family.

Proposition 2.2. (cf. [10]) Let A be a closed subspace of C( $\Omega$) and let P be a contractive

projection on A. Then there exists a family of extreme points of P^{*}(A_{1}^{*}) , \{$\mu$_{i}\}_{i\in I} which

satisfies the maximal support property and there exist functions $\phi$_{i} \in A such that, for
every f\in A, P(f)\cdot\overline{$\phi$_{i}} is constant on S_{ $\mu$}.

Proof. We observe that A_{1}^{*} is a convex and closed subset of A^{*}
, and since P^{*} is a contractive

projection, then P^{*}(A_{1}^{*}) is also a convex and closed subset of A_{1}^{*}.
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The Krein‐Milman Theorem implies the existence of an extreme point  $\mu$ of  P^{*}(A_{1}^{*}) , cf.

[15]. We denote the support of  $\mu$ by  S_{ $\mu$} . The measure  $\mu$ represents the functional on  A

given by $\tau$_{ $\mu$}(f)=\displaystyle \int_{ $\Omega$}fd $\mu$.
This measure can be decomposed as  $\mu$= | $\mu$|\cdot $\varphi$ ,

with | $\mu$| denoting the variation of  $\mu$
and  $\varphi$ the Radon‐Nikodym derivative of  $\mu$ with respect to | $\mu$| . As such,  $\varphi$ is a function

in  L_{1}(| $\mu$|) with values in \mathrm{S}^{1} . Therefore, for every integrable function h ,
in particular all

functions in A
,

we have \displaystyle \int_{ $\Omega$}hd $\mu$=\int_{ $\Omega$}h\cdot $\varphi$ d| $\mu$| . For details on this decomposition we refer

the reader to [16] or [17].
We claim that  P(f)\cdot $\varphi$ is | $\mu$|-\mathrm{a}.\mathrm{e} . constant. Suppose otherwise, this means that there

exists f \in A such that  P(f)\cdot $\varphi$ is not | $\mu$|-\mathrm{a}.\mathrm{e} . constant on S_{ $\mu$} . Therefore, there should

exist a real number a such that either

| $\mu$| (\{x\in $\Omega$ : {\rm Re}((P(f)\cdot $\varphi$)(x))\geq a\})>0 and | $\mu$|(\{x\in $\Omega$ : {\rm Re}((P(f)\cdot $\varphi$)(x))<a\})>0
or

| $\mu$| (\{x\in $\Omega$ : {\rm Im}((P(f)\cdot $\varphi$)(x))\geq a\})>0 and | $\mu$|(\{x\in $\Omega$ : {\rm Im}((P(f)\cdot $\varphi$)(x))<a\})>0,
where {\rm Re} and {\rm Im} represent the real and imaginary parts of a complex number.

Without loss of generality, we assume that | $\mu$| (\{x\in $\Omega$ : {\rm Re}((P(f)\cdot $\varphi$)(x)) \geq a\}) > 0

and | $\mu$| (\{x\in $\Omega$ : {\rm Re}((P(f)\cdot $\varphi$)(x))<a\})>0.
We set $\Omega$_{1}=\{x\in $\Omega$ : {\rm Re}((P(f)\cdot $\varphi$)(x))\geq a\} and  $\Omega$_{2}=\{x\in $\Omega$ : {\rm Re}((P(f)\cdot $\varphi$)(x))<

a\} then

| $\mu$|($\Omega$_{1})=t>0 and | $\mu$|($\Omega$_{2})=1-t>0,
since the total variation of  $\mu$ is equal to 1.

We use these sets to define the following two measures:

 $\mu$_{1}=\displaystyle \frac{1}{t} $\mu$|_{$\Omega$_{1}} and $\mu$_{2}=\displaystyle \frac{1}{1-t} $\mu$|_{$\Omega$_{2}}.
Therefore  $\mu$=t$\mu$_{1}+(1-t)$\mu$_{2} . Since P^{*} is a projection and  $\mu$ is in the image of  P^{*} then

 P^{*}( $\mu$)= $\mu$ . Thus  $\mu$=tP^{*}($\mu$_{1})+(1-t)P^{*}($\mu$_{2}) and

(1)  $\mu$=P^{*}($\mu$_{1})=P^{*}($\mu$_{2}) .

On the other hand, we have

P^{*}($\mu$_{1})(f)=\displaystyle \frac{1}{t}\int_{$\Omega$_{1}}P(f)d $\mu$=\frac{1}{t}\int_{$\Omega$_{1}}P(f)\cdot $\varphi$ d| $\mu$|
and

P^{*}($\mu$_{2})(f)=\displaystyle \frac{1}{1-t}\int_{$\Omega$_{2}}P(f)\cdot $\varphi$ d| $\mu$|,
thus {\rm Re}(P^{*}($\mu$_{1})(f))\geq a and {\rm Re}(P^{*}($\mu$_{2})(f))<a , contradicting the equation displayed in

(1). This proves that

P(f)\cdot $\varphi$=c_{f} | $\mu$|-\mathrm{a}.\mathrm{e}..
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Integrating this last equation with respect to | $\mu$| we have

c_{f}=\displaystyle \int_{ $\Omega$}P(f)  $\varphi$ d| $\mu$|=\int_{ $\Omega$}P(f)d $\mu$=\int_{ $\Omega$}fd(P^{*} $\mu$)=\int_{ $\Omega$}fd $\mu$.
Since  $\mu$ is an extreme point of  P^{*}(A_{1}^{*}) , there exists g \in A such that \displaystyle \int_{ $\Omega$}gd $\mu$\neq 0 and

P(g) = (\displaystyle \int_{ $\Omega$}gd $\mu$)\overline{ $\varphi$}, | $\mu$|-\mathrm{a}.\mathrm{e} . on  $\Omega$ . Therefore, setting \overline{ $\varphi$}= \displaystyle \frac{P(g)}{\int_{ $\Omega$}gd $\mu$} , we may assume that

\overline{ $\varphi$}\in  A . Now we prove that P(f) = (\displaystyle \int_{ $\Omega$}fd $\mu$)\overline{ $\varphi$} on S_{ $\mu$} for every f \in  A . Suppose that

 P(f)(x)\neq (\displaystyle \int_{ $\Omega$}fd $\mu$) \overline{ $\varphi$}(x) for some f\in A and x\in S_{ $\mu$} . By the continuity of P(f) and 9,
there exists an open set U of  $\Omega$

, containing  x
,

such that P(f)\displaystyle \neq(\int_{ $\Omega$}fd $\mu$)\overline{ $\varphi$} on U . Since

x\in S_{ $\mu$} , we have | $\mu$|(U) >0 . On the other hand, P(f) = (\displaystyle \int_{ $\Omega$}fd $\mu$) \overline{ $\varphi$}, | $\mu$|-\mathrm{a}.\mathrm{e} . as proved
above. By the choice of U, | $\mu$|(U) =0 , which is a contradiction. We have proved that

P(f)= (\displaystyle \int_{ $\Omega$}fd $\mu$) \overline{ $\varphi$} on S_{ $\mu$} for every f\in A.
It remains to be shown the existence of a family of extreme points of P^{*}(A_{1}^{*}) that

satisfies the maximal support property. Towards this, we show that given two different

extreme points of P^{*}(A_{1}^{*}) ,  $\mu$ and  $\nu$
, with intersecting supports and decompositions | $\mu$|\cdot $\varphi$

and | $\nu$|\cdot $\psi$ respectively, must have equal supports. We observe that \overline{ $\varphi$}\in A_{S_{ $\mu$}} and \overline{ $\psi$}\in A_{S_{ $\nu$}}.
Let x\in S_{ $\mu$}\cap S_{ $\nu$} , the image of the Dirac measure concentrated on x, P^{*}($\delta$_{x}) , applied to a

function f yields

P^{*}($\delta$_{x})(f)=\displaystyle \int_{ $\Omega$}P(f)d$\delta$_{x}=\overline{ $\varphi$}(x)\int_{ $\Omega$}fd $\mu$=\overline{ $\psi$}(x)\int_{ $\Omega$}fd $\nu$.
Therefore  $\mu$= $\lambda \nu$ ,

with  $\lambda$= $\varphi$(x)\overline{ $\psi$(x)} , a modulus 1 complex number. This implies that

any two extreme points of P^{*}(A_{1}^{*}) have either equal supports or disjoint supports.
We define a partial order on the collection of all families \mathcal{F}_{J}=\{($\mu$_{i}, S_{$\mu$_{i}})\}_{i\in J} such that,

for each i\in J, $\mu$_{ $\eta$} is an extreme point of P^{*}(A_{1}^{*}) , with S_{$\mu$_{i}} denoting the support of $\mu$_{i} , and

for i\neq j , we have that S_{$\mu$_{i}} and S_{$\mu$_{j}} are disjoint. We say \mathcal{F}_{J_{0}}\leq \mathcal{F}_{J_{1}} if and only if J_{0}\subset J_{1}.
An application of Zorn�s lemma ensures the existence of a maximal family \mathcal{F}_{I} with the

desired property. This completes the proof. \square 

Remark 2.3. It is a consequence of the Krein‐Milman Theorem that every element in

P^{*}(A_{1}^{*}) is the limit of a net of convex combinations of extreme points. For every \mathrm{v} \in

 P^{*}(A_{1}^{*}) , \displaystyle \mathrm{v}=\lim_{ $\alpha$}\sum_{i=1}^{n_{ $\alpha$}}$\lambda$_{i}^{ $\alpha$}$\mu$_{$\alpha$_{i}} ,
with $\mu$_{$\alpha$_{i}} \in  extP^{*}(A_{1}^{*}) , 0 \leq $\lambda$_{i}^{ $\alpha$} \leq  1 and \displaystyle \sum_{i=1}^{n_{ $\alpha$}}$\lambda$_{i}^{ $\alpha$} = 1.

Therefore, the support of any measure representing functionals in P^{*}(A_{1}^{*}) is contained in

the union of the supports of the extreme points of P^{*}(A_{1}^{*}) . We denote by S the union of
the supports of the measures in \mathcal{F}_{I}.

We set Q(f) equal to the restriction of P(f) to S . We shall prove that \displaystyle \sup_{x\in S}|Q(f)(x)|=
\displaystyle \max_{x\in $\Omega$}|P(f)(x)| . The operator Q:A\rightarrow P(A)|_{S} is given by Q(f)(x)=P(f)(x) , for every

x\in S . We observe that Q(A) is a subspace of the space of all continuous and bounded

functions defined on S . Moreover, there exists an operator T : Q(A) \rightarrow A given by
T(Q(f))=P(f) ,

under some additional conditions on A.
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We summarize these considerations in the next result. We denote by P(A)|_{S} the space
of all functions in the range of P restricted to S . The existence of the family \mathcal{F} is

established in Proposition 2.2. We first introduce a definition.

Definition 2.4. Let W be a Borel subset of  $\Omega$ . The space  A has the W ‐norming property
if and only if for every continuous function f : W\rightarrow \mathbb{C} with a continuous extension to

the closure of W , we have that \displaystyle \Vert f\Vert_{\infty}=\sup_{\{ $\mu$: $\mu$\in A_{1}^{*}\}}|\int_{W}fd $\mu$|.
Theorem 2.5. (cf. [10]) Let A be a closed subspace of C( $\Omega$) and let P be a contractive

projection on A. Then there exist:

(1) A family \mathcal{F}=\{$\mu$_{i} : i\in I\} of extreme points of P^{*}(A_{1}^{*}) with the maximal support
property,

(2) A function $\phi$_{i} :  $\Omega$\rightarrow \mathrm{S}^{1} such that, for every i\in I,

$\phi$_{i}\in A_{S_{$\mu$_{i}}},
with S_{$\mu$_{i}} denoting the support of $\mu$_{i} , and an operator Q : A \rightarrow  P(A)|_{S} , with

S=\displaystyle \bigcup_{i\in I}S_{$\mu$_{i}} , such that, for every x\in S_{$\mu$_{n}} and f\in A,

Q(f)(x)= (\displaystyle \int_{ $\Omega$}fd$\mu$_{i})$\phi$_{i}(x) ,

(3) An operator T : P(A)|_{S}\rightarrow A such that ||T(Q(f))\Vert_{\infty}= \Vert Q(f)\Vert_{\infty}=\Vert P(f)\Vert_{\infty} and

P(f)=T(P(f)|_{S}) , if A has the S^{c} ‐norming property.

Proof. The proof provided for the Proposition 2.2 and follow‐up considerations show the

existence of a family of measures \{$\mu$_{i}\}_{i\in I} which are extreme points of P^{*}(A_{1}^{*}) with the

maximal support property, as formulated in (1). For this collection of measures, and

taking $\phi$_{i}=\displaystyle \frac{P(g)}{\int_{ $\Omega$}gd$\mu$_{i}} , for a given g\in A such that \displaystyle \int_{ $\Omega$}gd$\mu$_{i}\neq 0 ,
we have

P(f)(x)= (\displaystyle \int_{ $\Omega$}fd$\mu$_{i})$\phi$_{i}(x) ,

for every f \in A and x \in  S_{$\mu$_{i}} . By the definition of $\phi$_{i} we infer that $\phi$_{i} \in  A_{S_{$\mu$_{i}}} . We Set

Q:A\rightarrow P(A)|_{S} defined by Q(f)=P(f)|_{S} . This proves (2).
The space A is isometrically embedded in A^{**}

, via the canonical embedding J . For a

function f in A we denote its image in A^{**} by \tilde{f}. We observe that P^{**}(\tilde{f}) =\overline{P(f)} , for

every f\in A . This observation can be shown as follows: If  $\tau$\in A^{*} ,
then

P^{**}(\tilde{f})( $\tau$)=\tilde{f}[P^{*}( $\tau$)]=P^{*}( $\tau$)(f)= $\tau$(P(f))=\overline{P(f)}( $\tau$) .

We recall the Goldstine Theorem: The closed unit ball of J(A) is weak‐* dense in the

closed unit ball of A^{**}.

We set P(f)|_{S} =$\chi$_{S}\cdot P(f) , with $\chi$_{S} denoting the characteristic function on S . This

function is continuous on S but not necessarily on the topological boundary of S ,
this

leads to considering the operator \tilde{Q} on A^{**} defined by

\tilde{Q}( $\xi$)=$\chi$_{S}\cdot(P^{**}( $\xi$)) ,
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for every  $\xi$\in A^{**} . For  $\mu$\in A^{*} , we set $\chi$_{S}\cdot(P^{**}( $\xi$))( $\mu$)= $\xi$(P^{*}( $\mu$)|_{S}\underline{)}-, where P^{*}( $\mu$)|_{S}(f)=
\displaystyle \int_{S}fdP^{*}( $\mu$) (f\in\cdot A) . In particular, for f\in A, \tilde{Q}(\tilde{f})=$\chi$_{S}. Pf=Pf|_{S} . Let \tilde{R} be defined

as follows:

\tilde{R}( $\xi$)=P^{**}( $\xi$)-\tilde{Q}( $\xi$) ,  $\xi$\in A^{**}.

Hence, for f\in A,

\tilde{R}(\tilde{f})=P^{**}(\tilde{f})-$\chi$_{\mathcal{S}}\cdot P^{**}(\tilde{f})=$\chi$_{S^{c}}\cdot P^{**}(\tilde{f}) .

We show that

(2) \tilde{R}\tilde{Q}=\tilde{R}.

Remark 2.3 implies that P^{**}( $\chi$ s\cdot\tilde{f})=P^{**}(\overline{f}) ,
since the support of any measure in A^{*} is

contained in S . The weak‐* density of J(A)_{1} in A_{1}^{**} implies that P^{**}($\chi$_{S}\cdot $\xi$) =P^{**}( $\xi$)_{-}
for every  $\xi$\in A^{**} . Furthermore, P^{**}($\chi$_{S}\cdot P^{**}( $\xi$)) =P^{**}( $\xi$) . We should recall that $\chi$_{S}\cdot f
is given by $\chi$_{S}\cdot\tilde{f}( $\mu$)=\tilde{f}( $\mu$|_{S}) with  $\mu$\in A^{*}.

Towards the proof of the equation displayed in (2) we have

\tilde{R}\tilde{Q}=(P^{**}-\tilde{Q})\tilde{Q}=P^{**}\tilde{Q}-\tilde{Q}=P^{**}-\tilde{Q}=\tilde{R}.

Therefore \tilde{R}\tilde{Q}=\tilde{R} and, for every f\in A , we have

(3) \displaystyle \Vert\tilde{R}(\tilde{f})\Vert=\Vert\tilde{R}\tilde{Q}(\tilde{f})\Vert\leq \Vert\tilde{Q}(\tilde{f})\Vert =\sup_{ $\mu$\in A_{1}^{*}}|$\chi$_{S}\cdot(P^{**}(\tilde{f}))( $\mu$)|
=\displaystyle \sup_{ $\mu$\in A_{1}^{*}}|\int_{S}P(f)d $\mu$| \leq \Vert Q(f)\Vert_{\infty}.

We now define the operator T : Q(A) \rightarrow A given by T(Q(f)) =P(f) . First, we show

that T is well defined. If f_{0} and f_{1} , functions in A
, are such that Q(f_{0}) =Q(f_{1}) then

\tilde{Q}(\tilde{f}_{0}) = \tilde{Q}(\tilde{f}_{1}) and \tilde{R}[\tilde{Q}(\tilde{f}_{0}) -\tilde{Q}(\tilde{f}_{1})] = 0 . This implies that \tilde{R}(\tilde{f}_{0}) = \tilde{R}(\tilde{f}_{1}) . Hence

P^{**}(\tilde{f}_{0})=P^{**}(\tilde{f}_{1}) or P(f_{0})=P(f_{1}) .

Now, we prove that, for every f\in A,

\Vert P(f)\Vert_{\infty}=\Vert Q(f)\Vert_{\infty}.

For each function f we extend Q(f) to the entire  $\Omega$ by assigning zero to those points in

 $\Omega$\backslash S . We denote this new function by Q(f) for simplicity of notation. Since Q(f) and

(P-Q)(f) have disjoint supports then \displaystyle \Vert P(f)\Vert_{\infty}=\max\{\Vert Q(f)\Vert_{\infty}, \Vert(P-Q)(f)\Vert_{\infty}\} . We

have shown that \Vert\tilde{R}(\tilde{f})\Vert \leq \Vert Q(f)\Vert_{\infty}= \Vert$\chi$_{S}\cdot P(f)\Vert_{\infty} and we also have

\displaystyle \Vert P(f)\Vert_{\infty}=\Vert P^{**}(\tilde{f})\Vert =\max\{\Vert$\chi$_{S}\cdot P(f)\Vert_{\infty}, \Vert$\chi$_{S^{c}}\cdot P(f)\Vert_{\infty}\}.
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The space A has the S^{C}‐norming property, then applying this property to the function

(P-Q)f we have

\displaystyle \Vert$\chi$_{S^{\mathrm{c}}}\cdot P(f)\Vert_{\infty}=\Vert(P-Q)(f)\Vert_{\infty}=\sup_{\{ $\mu$: $\mu$\in A_{1}^{*}\}}|\int_{ $\Omega$}(P-Q)(f)d $\mu$|
=\displaystyle \sup_{ $\mu$\in A^{*};| $\mu$|=1}|\int_{S^{c}}P(f)d $\mu$|
=\displaystyle \sup_{ $\mu$\in A^{*};| $\mu$|=1}|\int_{S^{c}}fd(P^{*} $\mu$)|
=\Vert$\chi$_{S^{\mathrm{c}}}\cdot(P^{**}(\tilde{f}))\Vert=\Vert P^{**}(\tilde{f})-\tilde{Q}(\tilde{f})\Vert
=\Vert\tilde{R}(\tilde{f})\Vert.

Thus

\Vert P(f)\Vert_{\infty}=\Vert Q(f)\Vert_{\infty}.
Then T is an isometric simultaneous extension and completes the proof. \square 

We now derive some results for bi‐contractive projections on a closed subspace of C( $\Omega$) .

We start with a definition.

Definition 2.6. Given a contractive projection P on A
, let \mathcal{F}_{I} be a maximal family as

defined in Theorem 2.5‐1. Then A has the support extension property iff for every Borel

subset W of S , the union of the supports of the measures in \mathcal{F}_{I} , every point x \not\in \overline{W},
 $\lambda$ \in \mathrm{S}^{1} and every f \in  A|_{S} there exists a function g \in A such that g|_{W} = f|_{W} and

g(x)=\Vert g\Vert_{\infty}=1.

Proposition 2.7. Let A be a closed subspace of C( $\Omega$) with the support extension property.
Let P be a bi‐contractive projection on A and  $\mu$ an extreme point of  P^{*}(A_{1}^{*}) . Then the

support of  $\mu$ has at most two points.

Proof. Let  W be an open subset of S_{ $\mu$} . We claim that | $\mu$|(W) \geq \displaystyle \frac{1}{2} . Suppose that

0 < | $\mu$|(W) < 1/2 . Then, for every open subset W_{0} of W such that W_{0} \subset \overline{W_{0}} \subset  W

we have that 0 < | $\mu$|(W_{0}) < \displaystyle \frac{1}{2} . Theorem 2.5 implies that for every f \in  A, P(f)(x) =

(\displaystyle \int_{ $\Omega$}fd $\mu$)  $\phi$(x) , for every x \in  S_{ $\mu$} . We recall that  $\phi$ \in  A_{S_{ $\mu$}} and  $\mu$ = \overline{ $\phi$} | $\mu$| . We select

z\in S_{ $\mu$}\backslash W_{0} such that P(f)(z)=(\displaystyle \int_{ $\Omega$}fd $\mu$)  $\phi$(z) .

The support extension property implies the existence of f\in A such that

f(x)=- $\phi$(x)\cdot\overline{ $\phi$(z)} , for x\in S_{ $\mu$}\backslash W_{0} , and \Vert f\Vert_{\infty}=f(z)=1.

Since P(f)(z)= (\displaystyle \int_{S_{ $\mu$}} fd $\mu$) $\phi$(z) , we have

P(f)(z)= $\phi$(z) \displaystyle \int_{W_{0}}fd $\mu$+\int_{S_{ $\mu$}\backslash W_{0}}- $\phi$ d $\mu$.
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We observe that | $\phi$(z)\displaystyle \cdot\int_{W_{0}}fd $\mu$|\leq | $\mu$|(W_{0})<\displaystyle \frac{1}{2} , which implies that {\rm Re}(\displaystyle \int_{W_{0}}f  $\phi$(z)d $\mu$) <

\displaystyle \frac{1}{2} . On the other hand,

\displaystyle \int_{S_{ $\mu$}\backslash W_{0}}- $\phi$ d $\mu$=\int_{S_{ $\mu$}\backslash W_{0}}- $\phi$\cdot\overline{ $\phi$}d| $\mu$|=-| $\mu$|(S_{ $\mu$}\backslash W_{0})<-\frac{1}{2}.
Then {\rm Re}(P(f)(z))<0 and

|(I-P)(f)(z)|\geq 1-{\rm Re}(P(f)(z))>1,

which contradicts the assumption that I-P is contractive. This proves that, for every
W , an open subset of S_{ $\mu$}, | $\mu$|(W)\geq \displaystyle \frac{1}{2} . Hence S_{ $\mu$}=\{x\} or S_{ $\mu$}=\{x, y\} . In the first case

S_{ $\mu$} is a singleton and the measure is the Dirac measure concentrated on x . In the second

case, | $\mu$|(\displaystyle \{x\})=| $\mu$|(\{y\})=\frac{1}{2} . This completes the proof. \square 

The next result shows that under the same hypotheses of the Proposition 2.7, we have

(P-Q)(f)(x)=0 ,
for every f\in A and x\not\in S.

Proposition 2.8. Let A be a closed subspace of C( $\Omega$) with the support extension property.
Let P be a bi‐contractive projection on A. Then for every f\in A , the support of P(f) is

contained in S.

Proof. Suppose (P-Q)(f)(x) \neq  0 , for some f \in A and some point x \not\in \overline{S} . We may
assume that \Vert f\Vert_{\infty} = 1 . Since A has the support extension property there exists g such

that g|_{S}=f|_{S} and g(x)=1=\Vert g\Vert_{\infty}.
If the real part of (P-Q)(f)(x) is negative then we shall prove that the real part of

(I-P)(g)(x) is greater than 1. We observe that

(4) (I-P)(g)(x)=1-P(g)(x)^{r}=1-[Q+(P-Q)](g)(x)=1-(P-Q)(f)(x) .

We claim that (P-Q)(g)=(P-Q)(f) on S^{\mathrm{c}} . To justify this claim we revisit the operator
\tilde{R} defined for the proof of Theorem 2.5. Since \tilde{R}=P^{**}-\tilde{Q} , then

\tilde{R}(\tilde{g})=P^{**}(\tilde{g})-\tilde{Q}(\tilde{g})=$\chi$_{S^{\mathrm{c}}}\cdot P^{**}(\tilde{g}) .

On the other hand, we also have

\tilde{R}(\tilde{g})=\tilde{R}\tilde{Q}(\tilde{g})=\tilde{R}\tilde{Q}(\tilde{f})=\tilde{R}(\tilde{f})=$\chi$_{S^{c}}\cdot P^{**}(\tilde{f}) .

Since Q(g) and Q(f) at any point in S^{c} are equal to zero then we have (P-Q)(g) =

(P-Q)(f) on S^{c} . Hence, Q(g)(x)=0 and (P-Q)(f)(x)=(P-Q)(g)(x) . This explains
the equalities displayed in (4).

Therefore, {\rm Re}((I-P)(g)(x)) = {\rm Re}((1-(P-Q)(f)(x))) > 1 . This contradicts the

assumption that I-P is contractive. If {\rm Re}((P-Q)(f)(x))>0 then we consider g such

that g|_{S}=-f|_{S} and g(x)=1=\Vert g\Vert_{\infty} to get a contradiction. A similar reasoning applies
if the imaginary part of (P-Q)(f)(x) is nonzero. This completes the proof. \square 
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Remark 2.9. If P is a bi‐contractive projection on a subspace of C( $\Omega$) , satisfying the

hypotheses of Proposition 2.7 then P is given as the average of the identity with an iso‐

metric reflection. It \dot{u} not clear which subspaces of C( $\Omega$) satisfy the support extension

property.

3. SOME REMARKS ON THE GBPs=BCPs

A generalized bi‐circular projection P on a Banach space is an idempotent bounded

operator P for which there exists a modulus 1 complex number  $\lambda$
,

different from 1, such

that  P+ $\lambda$(I-P) is an isometry. If we set T= P+ $\lambda$(I-P) , then T is a surjective
isometry since

(P+ $\lambda$(I-P))(P+\overline{ $\lambda$}(I-P))=I.
It is a known result that generalized bi‐circular projections are bi‐contractive, see [14].
For completeness of exposition we include a proof of this fact. For every n\in \mathrm{N} , we have

T^{n}=P+$\lambda$^{n}(I-P) .

If the sequence \{$\lambda$^{n}\} is dense and by considering a subsequence that converges to -1

we conclude that 2P-I is an isometry. Therefore  2\Vert P\Vert -1 \leq  1 or P is contractive.

Moreover, we also have that  2\Vert I-P\Vert-1\leq \Vert 2(P-I)+I\Vert=1 , which implies that P is

bi‐contractive. If there exists n (the smallest positive integer) such that $\lambda$^{n}=1 , then

nP+\displaystyle \sum_{i=1}^{n}$\lambda$^{i} (I-P)=\sum_{i=1}^{n}\dot{T}.
The sum \displaystyle \sum_{i=1}^{n}$\lambda$^{i}=0 and  n\Vert P\Vert = \displaystyle \Vert\sum_{i=1}^{n}T^{i}\Vert \displaystyle \leq\sum_{i=1}^{n}\Vert T^{i}\Vert =n

,
hence P is contractive.

A similar proof applied to the complement projection I-P implies that P is bi‐contractive.

Generalized bi‐circular projections on a Hilbert space are the hermitian projections,
see Proposition 3.1 in \tilde{[6}]. Hermitian projections on a Hilbert space are the orthogonal
projections, see [11]. Therefore the bi‐contractive projections on a Hilbert space are the

generalized bi‐circular projections. Hilbert spaces have GBPs=BCPs.

We now recall Kawamura‐Koshimizu‐Miura spaces of continuously differentiable func‐

tions defined on the unit interval [0 ,
1 ] endowed with any of the norms defined as follows:

\Vert\cdot||_{\langle D)},
where D is a connected and compact subset of [0, 1]^{2} such that the union of the two

canonical projections $\pi$_{1}(D)\cup$\pi$_{2}(D)=[0 ,
1 ] , then

\displaystyle \Vert f\Vert_{\langle D\rangle}=\sup_{(t,s)\in D}|f(t)|+|f'(s)|.
These spaces can be isometrically embedded in C (D \times \mathrm{S}^{1}) . Each such space can be

identified to a subspace of C( $\Omega$) with  $\Omega$=D\times \mathrm{S}^{1}.
We observe that for those sets D such that $\pi$_{1}(D)=$\pi$_{2}(D)=[0 ,

1 ] ,
the corresponding

KKM space is a commutative Banach algebra, then the Gelfand transform is a contraction.

These spaces are not closed under conjugacy. Towards this claim we observe that for
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F such that F(s, t, z) = f(s)+zf'(t) with f \in  C^{1}[0 ,
1 ] , the complex conjugate of F,

\overline{F}(s, t, z) = \overline{f(s)}+\overline{z}\overline{f'(t)} . If we assume that \overline{F} is a function in the subspace of C( $\Omega$)
isometric to C^{1}[0 ,

1 ] ,
then there exists g \in  C^{1}[0 ,

1 ] such that for every (s, t, z) \in  $\Omega$ we

have

\overline{F}(s, t, z)=\overline{f(s)}+\overline{z}\overline{f'(t)}=g(s)+zg'(t) .

In particular, for z=\pm 1 we conclude that g(s) =\overline{f(s)} for every s , hence g'(s) =\overline{f'(s)}.
Now setting z=i we have -i\overline{f'(t)}=ig'(t)=i\overline{f'(t)} . This leads to contradiction.

Surjective linear isometries on KKM spaces were characterized in [13]. From this char‐

acterization we can describe the generalized bi‐circular projections. As mentioned before

generalized bi‐circular projections are bi‐contractive but it is not clear if those are the

bi‐contractive projections on these settings.

4. \mathrm{B}\mathrm{I}−CONTRACTIVE PROJECTIONS ON VECTOR VALUED SPACES OF CONTINUOUS

FUNCTIONS

In this section we give a brief outline on how to extend the methods and results pre‐

sented before to spaces of vector valued continuous functions. As before,  $\Omega$ is a compact
Hausdorff space and  E is a uniformly convex Banach space with norm \Vert \Vert_{E} . Under

these conditions we can extend the techniques of the scalar case to this new setting. We

give a characterization for the bi‐contractive projections and conditions under which the

class of the generalized bi‐circular projections coincide with the class of the bi‐contractive

projections, the details are available in a forthcoming paper, see [4].
We observe that for the space of all continuous functions f :  $\Omega$ \rightarrow  E endowed with

the infinite norm, i.e. \displaystyle \Vert f\Vert_{\infty}=\sup_{x\in $\Omega$}\Vert f(x)\Vert_{E} with E a selfadjoint commutative Banach

algebra, the space C( $\Omega$, E) is also a selfadjoint commutative Banach algebra. Under

this condition the Gelfand theory applies and C(X, E) is isometrically isomorphic to

the space of continuous functions on the carrier space of C( $\Omega$, E) . It is known that the

carrier space of C( $\Omega$, E) or the space of nontrivial multiplicative functionals on C( $\Omega$, E)
is homeomorphic to  $\Omega$\times $\Delta$(E) , where  $\Delta$(E) is the carrier space of E . This space endowed

with the weak‐* topology is a compact Hausdorff space. Contractive and bi‐contractive

projections can transfer to projections of the same type on a space of continuous functions

on a compact Hausdorff space. Then we conclude that GBPs=BCPs.
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