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Abstract

In this report, we discuss estimations of power difference mean by Heron mean.
We obtain the greatest value a = a(g) and the least value 8 = (g) such that the
double inequality

Ko(a,b) < Jg(a,b) < Kg(a,b)

holds for any a,b > 0 and ¢ € R, where Jy(a,b) = (—#—lﬂ%{gz—ﬂ is the power

difference mean and Kg(a,b) = (1 — g)v/ab+ ¢%$2 is the Heron mean. We also get
similar inequalities for bounded linear operators on a Hilbert space.

1 Introduction

This report is based on [10]. For two positive real numbers a and b, the arithmetic
mean, the geometric mean, the harmonic mean and the logarithmic mean are as follows:

Afa,b) = 2 ;- b (arithmetic mean), G(a,b) = Vab (geometric mean),
2ab . a— N
H(a,b) = P (harmonic mean), L(a,b) = Toga —logh (logarithmic mean).

We remark that these means are symmetric, that is, A(a,b) = A(b, a), G(a,b) = G(b, a)
and so on. It is well known that the inequality H(a,b) < G(a,b) < L(a,b) < A(a,b)
always holds.

As one parameter extensions of above means, the following are known.

1
a?+ b7\«
_— if 0,
MQ(a’v b) = ( 2 ) ne 7,:
Vab if g=0,

g a?t! —patl

(power mean),

if _
1 ai— b if ¢ #0,-1,
Jo(a,b) = Bg%:—fog_b if g=0, (power difference mean),
ab(loga — logb) if g = -1,
a—2>b

K,(a,b) = (1 —q)Vab+ q%—q (Heron mean),
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al™9p? + g9pl—¢
2

We note that Jy(a,a) = llzim Jg(a,b) = a, and also these means are also symmetric.
—a

HZ,(a,b) = Heinz mean).
q

Relations among these means are as follows:
Ml(a,, b) = Jl(a, b) = Kl(a, b) = HZ()(a, b) = HZ1(a, b) = A(a, b),
Jo(a,b) = L(a,b),
Mo(a,b) = J—Tx(a, b) = Ko(a,b) = HZ%(a, b) = G(a,b),
M_i(a,b) = J_2(a,b) = H(a,b),

and also My(a,b), Jy(a,b) and K,(a,b) are monotone increasing on q € R.

Our purpose in this report is to give estimations of power difference mean by Heron
mean. In section 2, we state former results on inequalities estimating above means. In
section 3, we obtain the greatest value a = a(g) and the least value 8 = 3(g) such that
the double inequality

Ka(a,b) < Jy(a,b) < Kg(a,b)
holds for any a,b > 0 and ¢ € R. In section 4, we have similar inequalities to those in
section 3 for bounded linear operators on a Hilbert space.

2 Former results

Many researchers investigate inequalities comparing two means. For example,

o If g € (—2,3)U(1,00), then Mys2q(a,b) < Jo(a,b), and if ¢ € (~o00, ~2) U (T, 1),
then Jy(a,b) < M JEEH (a,b) for all a,b > 0 with a # b. The parameter %ﬂ is best
possible. (Xia, Wang, Chu, Hou [14])

o If g €0,1], then HZ,(a,b) < K(1_242(a,b) for all a,b > 0. (Bhatia [1])

Here, we pay attention to the following result.

Proposition 2.A ([1]). The inequality L(a,b) < K,(a,b) holds for all a,b > 0 if and
only if a > %

The optimal inequality L(a,b) < K 1 (a,b) is well known as the classical Pélya in-
equality. As related results to Proposition 2.A, for example, they obtain matrix norm
inequalities in [1, 5, 8], and also operator inequalities for bounded linear operators on a
Hilbert space in [3, 4]. In [1], Bhatia proved Proposition 2.A by using Taylor expansion.
Here, we give a proof by this way for readers’ sake.



Proof of Proposition 2.A. Since L(a,b) < K,(a,b) for all a,b > 0 is equivalent to

z—-1 x+1

<(l-avz+a (2.1)

log z
for all z > 0 by replacing z by £, we have only to show that (2.1) holds for all z > 0 if
and only if a > 3.

Put z = €% in (2.1). Then (2.1) holds for all z > 0 if and only if

t__ -t -t 1
¢ 57 <(1—a)+ae _;e , that is, Esinhtg(l—a)+acosht (2.2)

for all £ € R. By Taylor expansion, (2.2) can be written by

t2 t4 t2k—2 t2 t4 t2k—2
A A T A T ...
ET I oy —"‘(2'+4+ MR )

so that (2.2) holds for all ¢ € R if and only if o > % Hence the proof is complete. [

Noting that (2k1_1)! < a(2k1_2)! if and only if @ > 5 for k = 2,3,... in the proof
of Proposition 2.A, we obtain that the reverse inequality K,(a,b) < L(a, b) holds for all
a,b > 0if and only if « < 0.

We have many related numerical inequalities to those in this section, see [7, 13] and
so on. In [13], Xia, Hou, Wang and Chu obtained optimal inequalities between J,(a, b)
and K,(a,b).
Theorem 2.B ([13]). For all a,b > 0 with a # b, we have the following inequalities.
(i) Ifa € (0,2), then J3_a2:_1(a, b) < Ka(a,b) < J_=_(a,b).

(i) If a € (3,1), then J a_(a,b) < Ka(a,b) < Jaazi(a,b).

The given parameters 321 and =% in either case are best possible.
2 2—-a

In Theorem 2.B, they obtain the greatest value p = p(a) and the least value ¢ = g(a)
such that the double inequality

Jp(a,b) < Ky(a,b) < Jy(a,b)

holds for any o € (0,1). We remark that Theorem 2.B implies Proposition 2.A by
putting a = % Theorem 2.B can be written by the following Theorem 2.B’ as the result
estimating power difference mean by Heron mean.

11
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Theorem 2.B’. For all a,b > 0 with a # b, we have the following inequalities.
(i) If g€ (0,3), then Kﬁ%(a, b) < Jy(a,b) < Kg%ﬂ(a, b).
(i) If g € (3,1), then K31 (a,b) < Jy(a,b) < K%(a, b).
(iii) If g € (3, 0], then Jo(a,b) < Kz1(a,b).

The given parameters 3“;—1 and q—i‘lf in either case are best possible.

3 Main result

Theorem 2.B’ in the previous section seems to be a partial result since the range of
q is restricted, so we obtain estimations of power difference mean by Heron mean for
all ¢ € R as an extension of Theorem 2.B’. In other words, we get the greatest value
a = a(q) and the least value 8 = B(q) such that the double inequality

Ka(a,b) < Jy(a,b) < Kg(a,b)

holds for any q € R.

Theorem 3.1. For all a,b > 0 with a # b, we have the following.
(i) Letq € (0,4)U(1,00). Then
K—i"r(a’ b) < Jy(a,b) < Kg;_x(a, b).
q
(i) Let q € (3,1). Then
Kg«;;—_l(a,b) < Jq(a, b) < K%(a’b)'
(i) Let g € (3,0]. Then
G(a,b) = Ko(a,b) < Jy(a,b) < Kggﬂ(a, b).
(iv) Let q € (o0, 3t). Then
Kaq%l(a, b) < Jg(a,b) < Ko(a,b) = G(a,b).

The given parameters of Kq(a,b) in each case are best possible.
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Equalities hold between Jy(a,b) and K,(a,b) in the following cases.
Jo(a,b) = Kzgt1(a,b) = K 2 (a, b) forgq=3,1.
Jy(a,b) = K@(a, b) = Ko(a,b) for g = 3.

We shall show Theorem 3.1 by using Taylor expansion, which is the different way
from [13]. To prove Theorem 3.1, we have only to show the following propositions. By
putting z = § in Propositions 3.2 and 3.3, we immediately obtain Theorem 3.1.
Proposition 3.2. The following statements hold:

(i) Letqe (3,3)U(1,00). Then

Jo(z,1) < Ky(z,1) for allz > 0 with z # 1 if and only if o > 24

(ii) Let g € (—o0,3t) U (3,1). Then

Jo(z,1) > Ko(z,1) for allz > 0 withz # 1 if and only if a < 3%1—.

Proposition 3.3. The following statements hold:
(i-1) Let g € (0,3)U (1,00). Then

Jo(z,1) > Ko(z,1) for allz > 0 with x # 1 if and only if o < q—i%.

(i-2) Let g € (3,0]. Then

Jy(z,1) > Ko(z,1) for allz > 0 with x # 1 if and only if o <0.

(ii-1) Let g € (3,1). Then

Jo(z,1) < Kq(z,1) for all z > 0 with z # 1 if and only if o> q—i‘li.

(ii-2) Let q € (o0, 3). Then

Jo(z,1) < Ko(z,1) for all z > 0 with x # 1 if and only if a > 0.

Here, we give a proof of Proposition 3.2. Proposition 3.3 can be shown by the similar
argument. As lemmas to prove these propositions, we show two properties of functions
gk(g) for k=2,3,... and g € R defined by

_ (q + 1)2(k—1) _ q2(k—1)

= -— ~ — (3.1)
D i (222?—11)) g9

9x(q)
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n!

1
and gx(0) = T for convenience’ sake. Here, (:) = T =r) is a binomial co-

efficient for nonnegatlve integers m and r such that 0 < r < n. We remark that

92(9) =

1, .
in particular.

2q
_— > 0),
Lemma 3.4. The limit go.(q) = klim 9x(q) ezists and goo(q) = {q +1 (@>0)
—>00

0 (¢g<0).

Proof. Firstly, we state the following relation (3.2) which is important to prove results
in this paper. By putting j = k£ — 1,

Zqi (22];: X ) = 22 (2(k i- 1)) .

- " (3:2)
22 2]+1 2q2k 1 (q _+_ 1)2/&: 1 ( _ 1)2k—1 _ 2q2k—1
= 2] + 1 ’

If ¢ # 0, the following holds by (3.2).

(g + 1)26-D — g20e-D)
gx(q) = % {(g 4 1)%-1 4 (g — 1)%~1 — 22-1}
2(k—1)
2¢{1- (;%)"“7"}

- k-2 g \2k—2 (if g # —1) (3-3)

g+1+(g-1)(5)" " - 24(55)

20{(=)"* ™ -1}

@) () (g - 1)(s) -2

Now we divide the range of ¢ into four cases.
(Case 1) If g >0, then -1 < £ < 1 and 0 < % < 1. Therefore (3.3) implies

g+1 g+1
9oo(@) = 2

(Case 2) If 32 < ¢ <0, then 9—'—1 < —land -1 < 45 <0, so that we have g(g) = 0.
(Case 3) If ¢ < 3L, then —1 < £ < 1 and 9— > 1. Therefore (3.4) implies g(q) = 0.
(Case 4) If ¢ =0, then gx(0) = 2k1—)Oask—)oo

Hence the proof is complete. O



Lemma 3.5. Let gr(q) for ¢ € R as in (3.1). Then the following assertions hold:

(i) If k >3, then

la) = ul0) = =P L) Yo @+rD™@-1¥e

2k-1 —7
321:2 (2(1 ) 2k—1) u,v,wzg 5
utvtw=k—

(i) If k> 2 and ¢ > 0, then

(g=-1)(2¢-1) 2v 2
9k(9) — 9o(q) = T Y (g- DT
(@+1)> 7, (22(i~11)) k=9 vw20
vtw=k—

Proof. Here we show (i) only. We consider the case ¢ # 0 since the case ¢ = 0 holds by

1 1 2(k —2)
20) -9 =3 -5 —7= 32k —1)

Since we get

2q+1 g+1 2(k-1) _ q2(k—1)
92(0) = 91(0) = 3 ( % ) 2k—1Y\ 2(k—i)
Dlima (2(i—1))q
_ (2¢+1) Ef:z (22(’1?:11))q2(k—i) -3 {(q +1) 2(k—1) __ qz(k_l)}
B P ,
3E‘i=2 ( 2(i— 11)) q2(k 9

we have only to show

k
M@= @0+ )Y (7 1) = 3{(g + 170 - @)

=20¢-1)(2g+1)(2—-1) Y (g+1)*(q- 1>
u+1:’i’$:218—3

(3.5)

15
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By (3.2), the equation (3.5) holds since
F 2%k -1
_ - 2(k—i) _ 2k=1) _ 2(k—1)
)= ot Y (35 ) s 02D )
_ 2q+ 1 {( 1)1 4 (g — 1)1 2q2’°“1} ~3{(g+ 1)2(k—1) _ q2(k—1)}

= g {(2q +1)(g+1)(g+ 1)+ (2¢+ 1)(g — 1)(g — 1)*7% — 2¢(2q + 1)g* 2
—6q(g +1)** + 6¢- ¢**~}
= % {(2g-1)(g~1)(g+1)* 2+ (2¢ + 1)(g — 1)(g — 1)*72 — 4¢(¢ — 1)q

2L (20— 1) {(a-+ 120D — D) — (29 + 1) {2 - (g - 1]

(*) v 2w
=2¢-1D2¢+1)2¢-1) Y (g+1)™(g- 1™,
u,0,w>0
ut+v+w=k—-3

and the last equality (%) holds since
(20— 1) {(g+1**V — @D} — (2 + 1) {¢*D - (¢ - )2}
= (20-D{lg+1? - H{@+1)**? + (g + 1)** I + - 4 (¢ + 1)?P¢D 4 P52}
~Q2¢+1D){¢ = (g - )"HPED + @#E0(g = 1)+ + (g - 1263 (g — 1)2¢-2}

2k—2}

k=2
=(2¢+1)(2¢-1) Z {(q +1)% - (g- 1)2i} g2k2-1)
k-2
= o DCa- DY (la 1 - (a-17)

i=1

X {(q + 1)2(i—1) + (q + 1)2(i—2)( _ 1)2 R (q _ 1)2(i—1)} q2(k-2—i)

k-2
= 4q(2¢+1)(2¢ - 1) Z {Z(q +1)%(q— )Z(i—l—j)} k2=

=1 =0

=492+ 1)(2¢—-1) Y (g+1)*™(@q-1)*¢™.
u+11‘1,-1})-,1:;u=2£——3

Therefore the desired result holds. a
Now we are ready to prove Proposition 3.2.

Proof of Proposition 3.2. (i) Let ¢ € (3+,3) U (1,00). Firstly we show that o > 2‘IT+1

ensures

a9t — 1 z+1
1 1- =
Jy(z, 1) = q+ — a1 < 1-a)Vz+a 5 K,(z,1) (3.6)

for all x > 0 with = # 1.




If ¢ # 0, by putting z = €%, (3.6) holds if and only if

(g+1)t _ o—(g+1)¢ t —t
q e e e +
PR R —— <(l-a)+a 5

forallt € R\ {0}. (3.7)

Since both sides of (3.7) are even functions, we have only to consider the case t > 0.
Then, since Q—th >0, (3.7) for ¢ > 0 is equivalent to

gt _ o—¢ t -t (g+1)t _ —(q+1)t
f(t)E—e € {(l—a)—i—ae -Ze }— £ el
q q+ (3.8)

= gsinh(qt) {(1 — o)+ acosht} — . i I sinh((g+1)t) >0 forallt > 0.

Therefore we prove (3.8). By Taylor expansion, we have

f(t) = (qt+q;—fs+¥+ ){(1—a)+a(1+§+5+ )}

2 (q ‘ 1)3t3 (q 1)5t5
_1{(q+1)t+ 3 + B + -
3 q 5 & 2 4
2<t+§t g'—t+ )(1+§t +It+ )
+ + 1)

© 2(k 1) ( —1) o (q + 1)2(k—1) -
- 2; {(Zk —oi T Z (2i - 2)'(2k+ =2 k-1 (°
=2 Z Prq() 21

k=2

where

gD k=g (q + 1)2(k—1)
Pral) = (2k Tt Z (2i — '(2k F1-2)  (2k-1)

fork=2,3,....

Then ¢ q(a) > 0 if and only if

g+ 1)26-D _ g2(k-1)
a > ( ) 2%—1 . = gk(q)'

21—2 (2(z 1)) 2k~9)

If ¢ =0, by the similar argument, we can get

8%

_ 1
9r0(@) = oo ~ @E D)

for k=2,3,...,

so that ¢xo(a) > 0 if and only if o > 5= = gi(0).

17



By (i) in Lemma 3.5, ¢ € (3}, ) U (1,00) ensures that go(g) > gi(q) for all & > 3.
Therefore, if o > 22 = g5(q), then ¢o4(a) > 0 and ¢y q() > 0 for all k > 3, that is,
(3.8) holds.

On the other hand, if o < @;—_1 = g2(q), then ¢, 4(a) < 0 holds, that is, f(¢) < 0 for
sufficiently small ¢ > 0. Therefore (3.8) assures a > 3";—1

We can prove (ii) similarly, so the proof is complete. O

4 Operator inequalities

Here, an operator means a bounded linear operator on a Hilbert space 7. An operator
T is said to be positive (denoted by T > 0) if (T'z,z) > 0 for all z € H, and also an
operator T is said to be strictly positive (denoted by T > 0) if T is positive and invertible.
We denote the set of all positive operators by BY(#). A real-valued function f defined
on J C R is said to be operator monotone if

A < B implies f(A) < f(B)

for selfadjoint operators A and B whose spectra o(A),o(B) C J, where A < B means
B-A>0.

For two positive invertible operators A and B, the arithmetic mean A V B, the
geometric mean A ff B and the harmonic mean A ! B are defined as follows:

A1+ B 1\!
e E

AVB=A—-|2——B, AEB = A}(ATBAF)3 A} and A!B=<

Kubo and Ando [11] constructed the general theory of operator means. A binary oper-
ation (A, B) € B*(H) x BY*(#) — Ao B € B*(#) in the cone of positive operators on
‘H is called an operator mean if the following conditions are satisfied:

(i) A<Cand B< Dimply Ac B<CocD (monotonicity),
(i) A, § A and B, | B imply A,0 B, | Ac B (upper semicontinuity),
(iii) T*(Ao B)T < (T*AT) o (T*BT) for every operator T (transformer inequality),
(iv)
A binary operation o is said to be an operator connection if (i), (ii) and (iii) are sat-
isfied. We remark that an operator connection o satisfies the transformer equality
T*(Ao B)T = (T*AT) o (T*BT) if T is invertible.

Moreover, they obtained in [11] that there exists a one-to-one correspondence between
an operator mean ¢ and an operator monotone function f > 0 on [0,00) with f(1) = 1.

v) IoI =1 (normalized condition).

18



We remark that f is called the representing function of ¢, and also an operator mean o
can be defined by

1

AcB=Aif(AT BAY)A? (4.1)
if A>0and B>0.

In this report, we use the notation like 9t(A, B) for an operator mean Ao B. For
A,B > 0, the representing functions of the arithmetic mean 2(A, B), the geometric
mean B(A, B), the harmonic mean $)(A4, B) and the logarithmic mean £(A, B) are

2z z—1

z+1
— L(1 = .
z+1 and  L(1,2) log x

A(l,z) = 5 G(l,z) =+vz, H(l,z)=

Now it is permitted to consider binary operations given by (4.1) for general real-valued
functions. The power difference mean J,(A, B) and the Heron mean £,(A, B) are given
by Jq(1,z) and K4(1,z), respectively. For —2 < ¢ < 1, it is known in [2, 6, 9, 12] that
Jq(A, B) is increasing on g and J4(A, B) is an operator mean. Obviously £,(A4, B) is an
operator mean for 0 < ¢ < 1.

As an estimation of Heron mean for positive operators, Fujii, Furuichi and Nakamoto
[3] showed the following result.
Proposition 4.A ([3]). Let A and B be positive invertible operators and r € R. Then
the following inequalities hold:
(i) Ifr>2, thenrAtB+(1-r)AVB<A!B.
(ii) Ifr<1, thenrA§fB+(1-r)AVB > A!B.
The conditions on r is optimal, that is,

inf{r|rA§ B+ (1-r)AVB<A!B}=2 and
sup{r|[rA§ B+ (1-r)AVB>A!B}=1.

By Propositions 3.2 and 3.3, we can obtain an extension of Proposition 4.A immedi-
ately.

Theorem 4.1. Let A and B be positive invertible operators.
(i) Let g€ (0,2)U(1,00). Then

821 (4, B) < 3(A, B) < Ragn (4, B).
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(ii) Let g € (3,1). Then

qu:#(A, B) < J,(4,B) < R%(A, B).

(iii) Let g € (5+,0]. Then

(iv) Let q € (—oo,3t). Then

The given parameters of Ra(A, B) in each case are best possible.

Theorem 4.1 implies the following Corollary 4.2 by putting ¢ = 0,—2. In Corollary
4.2, the second inequality in (i) is an operator version of Proposition 2.A, and also (ii)
is just Proposition 4.A.

Corollary 4.2. Let A and B be positive invertible operators. Then the following hold.
() B(A,B) = Ko(4, B) < £(4, B) < 84(4, B).
(i) £1(4,B) < H(a,b) < Ro(A, B) = 6(4, B).

The given parameters of Rqo(A, B) in each case are best possible.
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