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Copyright © 2013 Ana Portilla et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let P be the space of polynomials with complex coefficients endowed with a nondiagonal Sobolev norm ‖ ⋅‖
𝑊
1,𝑝

(𝑉𝜇)
, where the

matrix𝑉 and themeasure𝜇 constitute a𝑝-admissible pair for 1 ≤ 𝑝 ≤ ∞. In this paperwe establish the zero location and asymptotic
behavior of extremal polynomials associated to ‖ ⋅‖

𝑊
1,𝑝

(𝑉𝜇)
, stating hypothesis on the matrix 𝑉 rather than on the diagonal matrix

appearing in its unitary factorization.

1. Introduction

In the last decades the asymptotic behavior of Sobolev
orthogonal polynomials has been one of the main topics of
interest to investigators in the field. In [1] the authors obtain
the 𝑛th root asymptotic of Sobolev orthogonal polynomials
when the zeros of these polynomials are contained in a
compact set of the complex plane; however, the boundedness
of the zeros of Sobolev orthogonal polynomials is an open
problem, but as was stated in [2], it could be obtained as
a consequence of the boundedness of the multiplication
operator 𝑀𝑓(𝑧) = 𝑧𝑓(𝑧). Thus, finding conditions to ensure
the boundedness of𝑀would provide important information
about the crucial issue of determining the asymptotic behav-
ior of Sobolev orthogonal polynomials (see, e.g., [3–13]). The
more general result on this topic is [3, Theorem 8.1] which
characterizes in terms of equivalent norms in Sobolev spaces
the boundedness of𝑀 for the classical diagonal norm

𝑞
𝑊𝑁,𝑝(𝜇

0
,𝜇
1
,...,𝜇
𝑁
)
:= (

𝑁

∑
𝑘=0


𝑞
(𝑘)𝐿𝑝(𝜇

𝑘
)
)

1/𝑝

(1)

(see Theorem 3 below, which is [3, Theorem 8.1] in the case
𝑁 = 1). The rest of the above mentioned papers provides
conditions that ensure the equivalence of norms in Sobolev
spaces, and consequently, the boundedness of𝑀.

Results related to nondiagonal Sobolev norms may be
found in [5, 6, 14–19]. Particularly, in [5, 6, 15, 18, 19] the
authors establish the asymptotic behavior of orthogonal poly-
nomials with respect to nondiagonal Sobolev inner products
and the authors in [5] deal with the asymptotic behavior of
extremal polynomials with respect to the following nondiag-
onal Sobolev norms.

Let P be the space of polynomials with complex coef-
ficients and let 𝜇 be a finite Borel positive measure with
compact support 𝑆(𝜇) consisting of infinitely many points
in the complex plane; let us consider the diagonal matrix
Λ := diag(𝜆

𝑗
), 𝑗 = 0, . . . , 𝑁, with 𝜆

𝑗
being positive 𝜇-almost

everywhere measurable functions, and 𝑈 := (𝑢
𝑗𝑘
), 0 ≤

𝑗, 𝑘 ≤ 𝑁, a matrix of measurable functions such that the
matrix 𝑈(𝑥) = (𝑢

𝑗𝑘
(𝑥)), 0 ≤ 𝑗, 𝑘 ≤ 𝑁 is unitary 𝜇-almost

everywhere. If 𝑉 := 𝑈Λ𝑈
∗, where 𝑈∗ denotes the transpose

conjugate of 𝑈 (note that then 𝑉 is a positive definite matrix
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𝜇-almost everywhere), and 1 ≤ 𝑝 < ∞we define the Sobolev
norm on the space of polynomials P

𝑞
𝑊𝑁,𝑝(𝑉𝜇) := (∫ [ (𝑞, 𝑞


, . . . , 𝑞

(𝑁)
)𝑉

2/𝑝

× (𝑞, 𝑞

, . . . , 𝑞

(𝑁)
)
∗

]
𝑝/2

𝑑𝜇)

1/𝑝

:= (∫ [ (𝑞, 𝑞

, . . . , 𝑞

(𝑁)
)𝑈Λ

2/𝑝
𝑈
∗

× (𝑞, 𝑞

, . . . , 𝑞

(𝑁)
)
∗

]
𝑝/2

𝑑𝜇)

1/𝑝

.

(2)

In [20, Chapter XIII] certain general conditions imposed
on the matrix 𝑉 are requested in order to guarantee the exis-
tence of an unitary representation with measurable entries.

If 𝑈 is not the identity matrix 𝜇-almost everywhere, then
(2) defines a nondiagonal Sobolev norm inwhich the product
of derivatives of different order appears. We say that 𝑞

𝑛
(𝑧) =

𝑧
𝑛
+ 𝑎

𝑛−1
𝑧
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑎
1
𝑧 + 𝑎

0
is an 𝑛th monic extremal

polynomial with respect to the norm (2) if

𝑞𝑛
𝑊𝑁,𝑝(𝑉𝜇)

= inf {𝑞
𝑊𝑁,𝑝(𝑉𝜇) : 𝑞 (𝑧) = 𝑧

𝑛
+ 𝑏

𝑛−1
𝑧
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑏
1
𝑧 + 𝑏

0
, 𝑏

𝑗
∈ C} .

(3)

It is clear that there exists at least an 𝑛th monic extremal
polynomial. Furthermore, it is unique if 1 < 𝑝 < ∞. If 𝑝 =

2, then the 𝑛th monic extremal polynomial is precisely the
𝑛thmonic Sobolev orthogonal polynomial with respect to the
inner product corresponding to (2).

In [5,Theorem 1] the authors showed that the zeros of the
polynomials in {𝑞

𝑛
}
𝑛≥0

are uniformly bounded in the complex
plane, whenever there exists a constant 𝐶 such that 𝜆

𝑗
≤

𝐶𝜆
𝑘
, 𝜇-almost everywhere for 0 ≤ 𝑗, 𝑘 ≤ 𝑁. This property

made possible to obtain the 𝑛th root asymptotic behavior of
extremal polynomials (see [5, Theorems 2 and 6]). Although
it is required compact support for𝜇, this is, certainly, a natural
hypothesis: if 𝑆(𝜇) is not bounded, then we cannot expect to
have zeros uniformly bounded, not even in the classical case
(orthogonal polynomials in 𝐿

2); see [21].
Taking 𝑁 = 1, 1 ≤ 𝑝 ≤ 2 and setting up hypothesis

on the matrix 𝑉 (see (4)) rather than on the diagonal matrix
𝜆, the authors of [22] the following equivalent result to [5,
Theorem 1].

Theorem 1 (see [22, Theorem 4.3]). Let 𝛾 be a finite union of
rectifiable compact curves in the complex plane, 𝜇 a finite Borel
measure with compact support 𝑆(𝜇) = 𝛾, 𝑉 a positive definite
matrix 𝜇-almost everywhere and

𝑉
2/𝑝

= (

𝑎
𝑝

𝑏
𝑝

𝑏
𝑝

𝑐
𝑝

) . (4)

Assume that 1 ≤ 𝑝 ≤ 2, (𝑐𝑝/2𝑝 𝑑𝜇/𝑑𝑠)
−1

∈ 𝐿
1/(𝑝−1)

(𝛾), and the
norms in 𝑊

1,𝑝
((𝑎

𝑝/2

𝑝 + 𝑐
𝑝/2

𝑝 )𝜇, 𝑐
𝑝/2

𝑝 𝜇) and 𝑊
1,𝑝

(𝑎
𝑝/2

𝑝 𝜇, 𝑐
𝑝/2

𝑝 𝜇)

are equivalent onP. Let {𝑞
𝑛
}
𝑛≥0

be a sequence of extremal poly-
nomials with respect to (2). Then the multiplication operator is
bounded with the norm 𝑊

1,𝑝
(𝑉𝜇) and the zeros of {𝑞

𝑛
}
𝑛≥0

lie
in the bounded disk {𝑧 : |𝑧| ≤ 2 ‖ 𝑀 ‖}.

In this paper we improveTheorem 1 in two directions: on
the one hand, we enlarge the class of measures 𝜇 considered
and, on the other hand, we prove our result for 1 ≤ 𝑝 < ∞

(see Theorem 19). In order to describe the measures we will
deal with, we introduce the definition of 𝑝-admissible pairs
as follows: given 1 ≤ 𝑝 < ∞, we say that the pair (𝑉, 𝜇) is 𝑝-
admissible if 𝜇 is a finite Borel measure which can be written
as 𝜇 = 𝜇

1
+ 𝜇

2
, its support 𝑆(𝜇) is a compact subset of the

complex plane which contains infinitely many points, and 𝑉

is a positive definitematrix 𝜇-almost everywhere with |𝑏
𝑝
|
2
≤

(1−𝜀
0
)𝑎

𝑝
𝑐
𝑝
, 𝜇

1
-almost everywhere for some fixed 0 < 𝜀

0
≤ 1;

the support 𝑆(𝜇
2
) is contained in a finite union of rectifiable

compact curves 𝛾 with (𝑐
𝑝/2

𝑝 𝑑𝜇
2
/𝑑𝑠)

−1

∈ 𝐿
1/(𝑝−1)

(𝛾) if 𝛾 ̸= 0,

𝑉
2/𝑝

:= (
𝑎
𝑝
𝑏
𝑝

𝑏
𝑝
𝑐
𝑝

) and𝑑𝜇
2
/𝑑𝑠 is theRadon-Nykodimderivative

of 𝜇
2
with respect to the Euclidean length in 𝛾.

We want to make three remarks about this definition.
First of all, since 𝑉 = (

𝑎
2
𝑏
2

𝑏
2
𝑐
2

) is a positive definite matrix
𝜇-almost everywhere, 𝑉2/𝑝 also has this property and hence
|𝑏
𝑝
|
2
< 𝑎

𝑝
𝑐
𝑝
, 𝜇-almost everywhere.

In order to obtain (𝑐
𝑝/2

𝑝 𝑑𝜇
2
/𝑑𝑠)

−1

∈ 𝐿
1/(𝑝−1)

(𝛾) the best
choice for 𝜇

2
is the restriction of 𝜇 to 𝛾.

Note that the support of 𝜇 is an arbitrary compact set: we
just require that 𝑆(𝜇

2
) (the part of 𝑆(𝜇) in which𝑉

2/𝑝 is about
to be a degenerated quadratic form, when |𝑏

𝑝
|
2 is very close

to 𝑎
𝑝
𝑐
𝑝
) is a union of curves.

Therefore, with the results on 𝑝-admissible pairs we
complement and improve the study started in [22], where the
case 𝜇 = 𝜇

2
with 1 ≤ 𝑝 ≤ 2 was considered.

Another interesting property which could be studied is
the asymptotic estimate for the behavior of extremal polyno-
mials because, in this setting, there does not exist the usual
three-term recurrence relation for orthogonal polynomials
in 𝐿

2 and this makes it really difficult to find an explicit
expression for the extremal polynomial of degree 𝑛. In this
regard, Theorems 22 and 23 deduce the asymptotic behavior
of extremal polynomials as an application of Theorems 18
and 19. More precisely, we obtain the 𝑛th root and the zero
counting measure asymptotic both of those polynomials and
their derivatives to any order. The study of the 𝑛th root
asymptotic is a classical problem in the theory of orthogonal
polynomials; see for instance, [1, 2, 5, 23, 24].

Furthermore, in Theorem 23 we find the following
asymptotic relation:

lim
𝑛→∞

𝑞
(𝑗+1)

𝑛
(𝑧)

𝑛𝑞
(𝑗)

𝑛 (𝑧)
= ∫

𝑑𝜔
𝑆(𝜇) (𝑥)

𝑧 − 𝑥
(5)

for any 𝑗 ≥ 0.
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The main idea of [5, 6, 22] and this paper is to compare
nondiagonal and diagonal norms.

When it comes to compare nondiagonal and diagonal
norms, [25] is remarkable, since the authors show that sym-
metric Sobolev bilinear forms, like symmetric matrices, can
be rewritten with a diagonal representation; unfortunately,
the entries of these diagonal matrices are real measures, and
we cannot use this representation since we need positive
measures for the Sobolev norms.

Finally, we would like to note that the central obstacle in
order to generalize the results given in this paper and [22]
to the case of more derivatives is that there are too many
entries in thematrix𝑉 and just a few relations to control them
(see Lemma 8 and notice that some limits appearing in that
Lemma do not provide any new information). In that case we
have just three entries (𝑎

𝑝
, 𝑏
𝑝
, 𝑐
𝑝
), but in the simple case of two

derivatives (𝑁 = 2) we have

𝑉 := (

𝑎
11

𝑎
12

𝑎
13

𝑎
12

𝑎
22

𝑎
23

𝑎
13

𝑎
23

𝑎
33

), (6)

and we would need to control six functions (𝑎
11
, 𝑎

12
, 𝑎

13
,

𝑎
22
, 𝑎

23
, 𝑎

33
); in the general case with𝑁 derivatives, we would

need to control (𝑁 + 1)(𝑁 + 2)/2 functions.
The outline of the paper is as follows. In Section 2

we provide some background and previous results on the
multiplication operator and the location of zeros of extremal
polynomials. We have devoted Section 3 to some technical
lemmas in order to simplify the proof of Theorem 17 about
the equivalence of norms; in fact, in these lemmas the hardest
part of this proof is collected. In Section 4 we give the proof
of that Theorem and in Section 5 we deduce some results on
asymptotic of extremal polynomials.

2. Background and Previous Results

In what follows, given 1 ≤ 𝑝 < ∞ we define
𝑓

𝑊1,𝑝(𝑎𝑝/2
𝑝

𝜇,𝑐
𝑝/2

𝑝
𝜇)

:= (∫ (𝑎
𝑝/2

𝑝

𝑓

𝑝
+ 𝑐

𝑝/2

𝑝


𝑓


𝑝

) 𝑑𝜇)
1/𝑝

,

𝑓
𝑊1,𝑝(𝐷𝜇) := (∫ (𝑎

𝑝

𝑓

2
+ 𝑐

𝑝


𝑓


2

)
𝑝/2

𝑑𝜇)

1/𝑝

,

𝑓
𝑊1,𝑝(𝑉𝜇)

:= (∫ (𝑎
𝑝

𝑓

2
+ 𝑐

𝑝


𝑓


2

2R (𝑏
𝑝
𝑓𝑓))

𝑝/2

𝑑𝜇)

1/𝑝

,

(7)

for every polynomial 𝑓.
It is obviously much easier to deal with the norms

‖ ⋅ ‖
𝑊
1,𝑝
(𝑎
𝑝/2

𝑝
𝜇,𝑐
𝑝/2

𝑝
𝜇)

and ‖ ⋅ ‖
𝑊
1,𝑝
(𝐷𝜇)

than with the one
‖ ⋅ ‖

𝑊
1,𝑝
(𝑉𝜇)

. Therefore, one of our main goals is to provide
weak hypotheses to guarantee the equivalence of these norms
on the linear space of polynomials P (see Section 4).

In order to bound the zeros of polynomials, one of the
most successful strategies has certainly been to bound the
multiplication operator by the independent variable𝑀𝑓(𝑧) =

𝑧𝑓(𝑧), where

‖𝑀‖ := sup {
𝑧𝑞(𝑧)

𝑊1,𝑝(𝑉𝜇) :
𝑞

𝑊1,𝑝(𝑉𝜇) = 1} . (8)

Regarding this issue, the following result is known.

Theorem 2 (see [5, Theorem 3]). Let 𝜇 be a finite Borel
measure in C with compact support let and 1 ≤ 𝑝 < ∞. Let
{𝑞

𝑛
}
𝑛≥0

be a sequence of extremal polynomials with respect to
(2). Then the zeros of {𝑞

𝑛
}
𝑛≥0

lie in the disk {𝑧 : |𝑧| ≤ 2 ‖ 𝑀 ‖}.

It is also known the following simple characterization of
the boundedness of𝑀.

Theorem 3 (see [3,Theorem 8.1]). Let 𝜇 be a finite Borel mea-
sure in C with compact support; 𝛼, 𝛽 nonnegative measurable
functions; and 1 ≤ 𝑝 < ∞. Then the multiplication operator is
bounded in𝑊

1,𝑝
(𝛼𝜇, 𝛽𝜇) if and only if the following condition

holds:

the norms in 𝑊
1,𝑝

((𝛼 + 𝛽) 𝜇, 𝛽𝜇)

and 𝑊
1,𝑝

(𝛼𝜇, 𝛽𝜇) are equivalent on P.
(9)

It is clear that if there exists a constant 𝐶 such that 𝛽 ≤

𝐶𝛼 𝜇-almost everywhere, then (9) holds. In [8, 13] some
other very simple conditions implying (9) are shown.

In what follows, we will fix a 𝑝-admissible pair (𝑉, 𝜇)with
1 ≤ 𝑝 < ∞; then 𝑆(𝜇

2
) is contained in a finite union of

rectifiable compact curves 𝛾 in the complex plane; each of
these connected components of 𝛾 is not required to be either
simple or closed.

3. Technical Lemmas

For the sake of clarity and readability, we have opted for
proving all the technical lemmas in this section. This makes
the proof of Theorem 17 much more understandable.

The following result is well known.

Lemma 4. Let us consider 1 ≤ 𝛼 < ∞. Then

(𝑥 + 𝑦)
𝛼
≤ 2

𝛼−1
(𝑥

𝛼
+ 𝑦

𝛼
) for every 𝑥, 𝑦 ≥ 0. (10)

Lemma 5 (see [22, Lemma 3.1]). Let us consider 0 < 𝛼 ≤ 1.
Then

(1) |𝑦|𝛼 − |𝑥|
𝛼
≤ |𝑦 − 𝑥|

𝛼 for every 𝑥, 𝑦 ∈ R;

(2) 2𝛼−1(𝑦𝛼 + 𝑥
𝛼
) ≤ (𝑦 + 𝑥)

𝛼
≤ 𝑦

𝛼
+ 𝑥

𝛼 for every 𝑥, 𝑦 ≥ 0.

Lemma 6 (see [22, Lemma 3.2]). Let {𝑠
𝑛
}
𝑛
and {𝑡

𝑛
}
𝑛
be two

sequences of positive numbers. Then

lim
𝑛→∞

2𝑠
𝑛
𝑡
𝑛

𝑠2
𝑛
+ 𝑡2

𝑛

= 1 iif lim
𝑛→∞

𝑠
𝑛

𝑡
𝑛

= 1. (11)
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In what follows 𝑎
𝑝
, 𝑏
𝑝
, and 𝑐

𝑝
refer to the coefficients of

the fixed matrix 𝑉
2/𝑝.

Definition 7. We say that {𝑓
𝑛
}
𝑛
⊂ P is an extremal sequence

for 𝑝 if, for every 𝑛, ‖ 𝑓
𝑛
‖
𝐿
∞
(𝜇
2
)
= 1 and

lim
𝑛→∞

∫

2𝑏

𝑝
𝑓
𝑛
𝑓


𝑛



𝑝/2

𝑑𝜇
2

∫ (𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 1. (12)

Lemma 8. If 1 ≤ 𝑝 < ∞ and {𝑓
𝑛
}
𝑛
is an extremal sequence

for 𝑝, then

lim
𝑛→∞

∫

𝑏
𝑝
𝑓
𝑛
𝑓


𝑛



𝑝/2

𝑑𝜇
2

∫ (√𝑎
𝑝
𝑐
𝑝

𝑓𝑛𝑓


𝑛

)
𝑝/2

𝑑𝜇
2

= 1,

lim
𝑛→∞

∫ (√𝑎
𝑝
𝑐
𝑝


𝑓
𝑛
𝑓


𝑛


)
𝑝/2

𝑑𝜇
2

(∫ (𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2
)
1/2

(∫ (𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2
)
1/2

= 1,

lim
𝑛→∞

2(∫ (𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2
)
1/2

(∫ (𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2
)

1/2

∫((𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

+ (𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

)𝑑𝜇
2

= 1,

lim
𝑛→∞

2
𝑝/2−1

∫((𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

+ (𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

)𝑑𝜇
2

∫ (𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 1,

lim
𝑛→∞

∫ (𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

∫ (𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 1.

(13)

Proof. The case 1 ≤ 𝑝 ≤ 2 is a consequence of [22, Lemmas
3.5 and 3.6]. We deal now with the case 𝑝 > 2. First note that
we can rewrite limit (12) in Definition 7 as the limit of the
following product:

lim
𝑛→∞

∫

𝑏
𝑝
𝑓
𝑛
𝑓


𝑛



𝑝/2

𝑑𝜇
2

∫ (√𝑎
𝑝
𝑐
𝑝

𝑓𝑛𝑓


𝑛

)
𝑝/2

𝑑𝜇
2

⋅
∫ (√𝑎

𝑝
𝑐
𝑝


𝑓
𝑛
𝑓


𝑛


)
𝑝/2

𝑑𝜇
2

(∫ (𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2
)
1/2

(∫ (𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2
)
1/2

⋅

2(∫ (𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2
)
1/2

(∫ (𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2
)

1/2

∫((𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

+ (𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

)𝑑𝜇
2

⋅

2
𝑝/2−1

∫((𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

+ (𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

)𝑑𝜇
2

∫ (𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 1.

(14)

Since the limit of the product is 1, if we prove that the first,
third, and fourth factors tend to 1 as 𝑛 tends to infinity, then
the limit of the second factor must also be 1.

So, our problem is reduced to show

lim
𝑛→∞

∫

𝑏
𝑝
𝑓
𝑛
𝑓


𝑛



𝑝/2

𝑑𝜇
2

∫ (√𝑎
𝑝
𝑐
𝑝

𝑓𝑛𝑓


𝑛

)
𝑝/2

𝑑𝜇
2

= 1, (15)

lim
𝑛→∞

2(∫ (𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2
)
1/2

(∫ (𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2
)

1/2

∫((𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

+ (𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

)𝑑𝜇
2

= 1,

(16)

lim
𝑛→∞

2
𝑝/2−1

∫((𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

+ (𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

)𝑑𝜇
2

∫ (𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 1, (17)

lim
𝑛→∞

∫ (𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

∫ (𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 1. (18)

Again, we can rewrite the limit in the definition of
extremal sequence as the limit of the following product:

lim
𝑛→∞

∫

𝑏
𝑝
𝑓
𝑛
𝑓


𝑛



𝑝/2

𝑑𝜇
2

∫ (√𝑎
𝑝
𝑐
𝑝

𝑓𝑛𝑓


𝑛

)
𝑝/2

𝑑𝜇
2

⋅
∫ (2√𝑎

𝑝
𝑐
𝑝


𝑓
𝑛
𝑓


𝑛


)
𝑝/2

𝑑𝜇
2

∫ (𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 1.

(19)

The two factors above are nonnegative and less than or
equal to 1 using, respectively, that |𝑏

𝑝
|
2

< 𝑎
𝑝
𝑐
𝑝
𝜇
2
-almost

everywhere and 2𝑥𝑦 ≤ 𝑥
2
+ 𝑦

2. Thus,

lim
𝑛→∞

∫

𝑏
𝑝
𝑓
𝑛
𝑓


𝑛



𝑝/2

𝑑𝜇
2

∫ (√𝑎
𝑝
𝑐
𝑝

𝑓𝑛𝑓


𝑛

)
𝑝/2

𝑑𝜇
2

= 1 = lim
𝑛→∞

∫ (2√𝑎
𝑝
𝑐
𝑝


𝑓
𝑛
𝑓


𝑛


)
𝑝/2

𝑑𝜇
2

∫ (𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

,

(20)

and (15) holds.
Given 𝜀 > 0, for each 𝑛 let us define the following sets:

𝐹
𝑛,𝜀

:= {𝑧 ∈ 𝑆 (𝜇
2
) :

1

1 + 𝜀
≤

√𝑎
𝑝

𝑓𝑛


√𝑐
𝑝

𝑓


𝑛


≤ 1 + 𝜀} ,

𝐹
𝑐

𝑛,𝜀
:= 𝑆 (𝜇

2
) \ 𝐹

𝑛,𝜀
.

(21)

Let us consider the strictly decreasing function 𝐴(𝑡) :=

2𝑡/(𝑡
2
+ 1) on [1,∞). If 𝑡 ≥ 1 + 𝜀, then 𝐴(𝑡) ≤ 𝐴(1 +

𝜀) =: 𝐶
𝜀
< 𝐴(1) = 1. Consequently, if 𝑥/𝑦 ≥ 1 + 𝜀, then
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2𝑥𝑦/(𝑥
2
+ 𝑦

2
) = 𝐴(𝑥/𝑦) ≤ 𝐶

𝜀
, and if 𝑥/𝑦 ≤ 1/(1 + 𝜀), then

𝑦/𝑥 ≥ 1 + 𝜀 and 2𝑥𝑦/(𝑥
2
+ 𝑦

2
) = 𝐴(𝑦/𝑥) ≤ 𝐶

𝜀
. Therefore,

∫
𝐹
𝑐

𝑛,𝜀

(2√𝑎
𝑝
𝑐
𝑝


𝑓
𝑛
𝑓


𝑛


)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

≤ 𝐶
𝑝/2

𝜀
< 1. (22)

Using this fact and (20), we have

1 = lim
𝑛→∞

((((∫
𝐹𝑛,𝜀

(2√𝑎𝑝c𝑝

𝑓
𝑛
𝑓


𝑛


)
𝑝/2

𝑑𝜇
2
)

×(∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛


2

+ 𝑐
𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇
2
)

−1

)

+((∫
𝐹
𝑐

𝑛,𝜀

(2√𝑎𝑝c𝑝

𝑓
𝑛
𝑓


𝑛


)
𝑝/2

𝑑𝜇
2
)

×(∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛


2

+ 𝑐
𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇
2
)

−1

))

×(1 + ((∫
𝐹𝑛,𝜀

(𝑎
𝑝

𝑓𝑛


2

+ 𝑐
𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇
2
)

× (∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛


2

+ 𝑐
𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇)

−1

))

−1

)

≤ (𝐶
𝑝/2

𝜀
+ lim inf
𝑛→∞

((∫
𝐹𝑛,𝜀

(𝑎
𝑝

𝑓𝑛


2

+ 𝑐
𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇
2
)

×(∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛


2

+ 𝑐
𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇
2
)

−1

))

×(1 + lim inf
𝑛→∞

((∫
𝐹𝑛,𝜀

(𝑎
𝑝

𝑓𝑛


2

+ 𝑐
𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇
2
)

×(∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛


2

+ 𝑐
𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇
2
)

−1

))

−1

.

(23)

If we assume that lim inf
𝑛→∞

((∫
𝐹
𝑛,𝜀

(𝑎
𝑝
|𝑓
𝑛
|
2
+ 𝑐

𝑝
|𝑓



𝑛
|
2
)
𝑝/2

𝑑𝜇
2
)(∫

𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝
|𝑓
𝑛
|
2
+ 𝑐

𝑝
|𝑓



𝑛
|
2
)
𝑝/2

𝑑𝜇
2
)
−1

) = 𝑙 < ∞, then from

the previous inequality we have 1 ≤ ((𝐶
𝑝/2

𝜀
+ 𝑙)/(1 +𝑙)) < 1,

and this is a contradiction. Hence, lim
𝑛→∞

((∫
𝐹
𝑛,𝜀

(𝑎
𝑝
|𝑓
𝑛
|
2
+

𝑐
𝑝
|𝑓



𝑛
|
2
)
𝑝/2

𝑑𝜇
2
)(∫

𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝
|𝑓
𝑛
|
2
+ 𝑐

𝑝
|𝑓



𝑛
|
2
)
𝑝/2

𝑑𝜇
2
)
−1

) = ∞ and
consequently,

lim
𝑛→∞

∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 0. (24)

Since for each 𝑛, we have

∫
𝐹
𝑐

𝑛,𝜀

(2√𝑎
𝑝
𝑐
𝑝


𝑓
𝑛
𝑓


𝑛


)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

≤

∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

,

(25)

then (24) implies that

lim
𝑛→∞

∫
𝐹
𝑐

𝑛,𝜀

(2√𝑎
𝑝
𝑐
𝑝


𝑓
𝑛
𝑓


𝑛


)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 0. (26)

On the other hand, using (20) it is easy to deduce that

lim
𝑛→∞

((((∫
𝐹𝑛,𝜀

(2√𝑎𝑝𝑐𝑝


𝑓𝑛𝑓



𝑛


)
𝑝/2

𝑑𝜇2)

× (∫
𝐹𝑛,𝜀

(𝑎𝑝
𝑓𝑛



2
+ 𝑐𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇2)

−1

)

+((∫
𝐹
𝑐
𝑛,𝜀

(2√𝑎𝑝𝑐𝑝


𝑓𝑛𝑓



𝑛


)
𝑝/2

𝑑𝜇2)

×(∫
𝐹𝑛,𝜀

(𝑎𝑝
𝑓𝑛



2
+ 𝑐𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇2)

−1

)

×(1 + ((∫
𝐹
𝑐
𝑛,𝜀

(𝑎𝑝
𝑓𝑛



2
+ 𝑐𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇2)

× (∫
𝐹𝑛,𝜀

(𝑎𝑝
𝑓𝑛



2
+ 𝑐𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇2)

−1

))

−1

)

= 1.

(27)

Consequently, (24), (26), and (27) give

lim
𝑛→∞

∫
𝐹
𝑛,𝜀

(2√𝑎
𝑝
𝑐
𝑝


𝑓
𝑛
𝑓


𝑛


)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 1. (28)

Furthermore, since

0 ≤
1

(1 + 𝜀)
𝑝/2

∫
𝐹
𝑛,𝜀

(𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

≤
1

∫
𝐹
𝑛,𝜀

(√𝑎
𝑝
𝑐
𝑝

𝑓𝑛𝑓


𝑛

)
𝑝/2

𝑑𝜇
2

,

(29)
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we obtain

0 ≤

∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2

(1 + 𝜀)
𝑝/2

∫
𝐹
𝑛,𝜀

(𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

≤

∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(√𝑎
𝑝
𝑐
𝑝

𝑓𝑛𝑓


𝑛

)
𝑝/2

𝑑𝜇
2

.

(30)

Therefore, (24), (28), and (30) give

lim
𝑛→∞

∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 0. (31)

Similar arguments allow us to show

lim
𝑛→∞

∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

= 0. (32)

From (31) and (32) we obtain

lim
𝑛→∞

∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 0 = lim
𝑛→∞

∫
𝐹
𝑐

𝑛,𝜀

(𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

,

(33)

lim
𝑛→∞

∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

= 0 = lim
𝑛→∞

∫
𝐹
𝑐

𝑛,𝜀

(𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

.

(34)

As a consequence of (33) we have

lim sup
𝑛→∞

∫ (𝑎
𝑝

𝑓𝑛


2

)
𝑝/2

𝑑𝜇
2

∫ (𝑐
𝑝

𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2

= lim sup
𝑛→∞

((((∫
𝐹𝑛,𝜀

(𝑎
𝑝

𝑓𝑛


2

)
𝑝/2

𝑑𝜇
2
)

× (∫
𝐹𝑛,𝜀

(𝑐
𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇
2
)

−1

)

+((∫
𝐹
𝑐

𝑛,𝜀

(𝑎
𝑝

𝑓𝑛


2

)
𝑝/2

𝑑𝜇
2
)

× (∫
𝐹𝑛,𝜀

(𝑐
𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇
2
)

−1

))

×(1 + ((∫
𝐹
𝑐

𝑛,𝜀

(𝑐
𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇
2
)

× (∫
𝐹𝑛,𝜀

(𝑐
𝑝


𝑓


𝑛



2

)

𝑝/2

𝑑𝜇
2
)

−1

))

−1

)

= lim sup
𝑛→∞

∫
𝐹𝑛,𝜀

(𝑎
𝑝

𝑓𝑛


2

)
𝑝/2

𝑑𝜇
2

∫
𝐹𝑛,𝜀

(𝑐
𝑝

𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2

≤ (1 + 𝜀)
𝑝
.

(35)

In a similar way we obtain

1

(1 + 𝜀)
𝑝
≤ lim inf

𝑛→∞

∫ (𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

∫ (𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

. (36)

Since these inequalities hold for every 𝜀 > 0, we conclude that
(18) holds. Applying now Lemma 6 we obtain (16).

Using Lemma 4, (18), and (34) we obtain that for every
𝜀, 𝜂 > 0 there exists𝑁 such that for every 𝑛 ≥ 𝑁 the following
holds:

1 ≤

2
𝑝/2−1

∫((𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

+ (𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

)𝑑𝜇
2

∫ (𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

≤

2
𝑝/2−1

∫((𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

+ (𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

)𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

≤

2
𝑝/2−1

∫((𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

+ (𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

)𝑑𝜇
2

(1 + (1/(1 + 𝜀)
2
))

𝑝/2

∫
𝐹
𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

≤
2
𝑝/2

(1 + 𝜂) ∫ (𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

(1 + (1/(1 + 𝜀)
2
))

𝑝/2

∫
𝐹
𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2
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≤
2
𝑝/2

(1 + 𝜂)
2

(1 + (1/(1 + 𝜀)
2
))

𝑝/2
⋅

∫
𝐹
𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

∫
𝐹
𝑛,𝜀

(𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

=
2
𝑝/2

(1 + 𝜂)
2

(1 + (1/(1 + 𝜀)
2
))

𝑝/2
.

(37)

Then (17) follows from the previous inequalities, since
𝜀, 𝜂 > 0 are arbitrary.

This completes the proof.

Definition 9. For each 0 < 𝜀 < 1, we define the sets 𝐴
𝜀
and

𝐴
𝑐

𝜀
as

𝐴
𝜀
:= {𝑧 ∈ 𝑆 (𝜇

2
) :


𝑏
𝑝


> (1 − 𝜀)√𝑎

𝑝
𝑐
𝑝
} ,

𝐴
𝑐

𝜀
:= 𝑆 (𝜇

2
) \ 𝐴

𝜀
.

(38)

Lemma 10. If 1 ≤ 𝑝 < ∞ and {𝑓
𝑛
}
𝑛
is an extremal sequence

for 𝑝 and 𝜀 is small enough, then

lim
𝑛→∞

∫
𝐴
𝜀


𝑏
𝑝
𝑓
𝑛
𝑓


𝑛



𝑝/2

𝑑𝜇
2

∫

𝑏
𝑝
𝑓
𝑛
𝑓

𝑛



𝑝/2

𝑑𝜇
2

= 1. (39)

Remark 11. The statement of the lemma might seem strange,
because we could have a priori 𝜇

2
(𝐴

𝜀
) = 0; however, the

existence of the fundamental sequence implies 𝜇
2
(𝐴

𝜀
) > 0.

Proof. If 1 ≤ 𝑝 ≤ 2, then the result follows from [22, Lemma
3.8]. For the case 𝑝 > 2 it suffices to follow the proof of [22,
Lemma 3.8] applying Lemma 8 to conclude the result.

Lemma 12. If 1 ≤ 𝑝 < ∞, {𝑓
𝑛
}
𝑛
is an extremal sequence for 𝑝

and 𝜀 is small enough, then

lim
𝑛→∞

∫
𝐴
𝜀

((𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

+ (𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

)𝑑𝜇
2

∫((𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

+ (𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

)𝑑𝜇
2

= 1,

lim
𝑛→∞

∫
𝐴
𝑐

𝜀

((𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

+ (𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

)𝑑𝜇
2

∫
𝐴
𝜀

((𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

+ (𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

)𝑑𝜇
2

= 0.

(40)

Proof. If 1 ≤ 𝑝 ≤ 2, then the result follows from [22, Lemma
3.10]. For the case 𝑝 > 2 it suffices to follow the proof of
[22, Lemma 3.10] applying Lemmas 8 and 10 to conclude the
result.

Lemma 13. If 1 ≤ 𝑝 < ∞, {𝑓
𝑛
}
𝑛
is an extremal sequence for 𝑝

and 𝜀 is small enough, then

lim
𝑛→∞

∫
𝐴
𝜀

(𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

∫ (𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

= 1,

lim
𝑛→∞

∫
𝐴
𝜀

(𝑐
𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2

∫ (𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 1.

(41)

Proof. If 1 ≤ 𝑝 ≤ 2, then the result follows from [22, Lemma
3.11]. For the case 𝑝 > 2 it suffices to follow the proof of [22,
Lemma 3.11] applying Lemmas 8, 10, and 12 to conclude the
result.

Lemma 14. If 1 ≤ 𝑝 < ∞ and {𝑓
𝑛
}
𝑛
is an extremal sequence

for 𝑝, then for every 𝜀 > 0 small enough with 𝜇
2
(𝐴

𝑐

𝜀
) > 0 and

for every 𝑡 ∈ (0, 1) there exists 𝑁 such that inf
𝑧∈𝐴
𝑐

𝜀

|𝑓
𝑛
(𝑧)| < 𝑡

for every 𝑛 ≥ 𝑁.

Proof. If 1 ≤ 𝑝 ≤ 2, then the result follows from [22, Lemma
3.12]. For the case 𝑝 > 2 it is sufficient to follow the proof of
[22, Lemma 3.12] applying Lemma 13 to conclude the result.

Definition 15. If 𝑓 is a continuous function on 𝛾, we define
the oscillation of 𝑓 on 𝛾, and we denote it by osc(𝑓), as

osc (𝑓) := sup
𝑧,𝑤∈𝛾

𝑓 (𝑧) − 𝑓 (𝑤)
 . (42)

Lemma 16 (see [22, Lemma 3.14]). For 1 ≤ 𝑝 < ∞,
let us assume that 𝛾 is connected and (𝑐

𝑝/2

𝑝 𝑑𝜇
2
/𝑑𝑠)

−1
∈

𝐿
1/(𝑝−1)

(𝛾), where 𝑑𝜇
2
/𝑑𝑠 is the Radon-Nykodim derivative of

𝜇
2
with respect to the Euclidean length in 𝛾. (According to one’s

notation, if 𝑝 = 1 then 1/(𝑝 − 1) = ∞.) Then

∫
𝛾


𝑓


𝑝

𝑐
𝑝/2

𝑝
𝑑𝜇

2
≥ 𝑘 ⋅ osc𝑝 (𝑓) ,

with 1

𝑘
=



1

(𝑐
𝑝/2

𝑝 (𝑑𝜇
2
/𝑑𝑠))

𝐿1/(𝑝−1)(𝛾)

,

(43)

for every polynomial 𝑓.

4. Equivalent Norms

Now we prove the announced result about the equivalence of
norms for 1 ≤ 𝑝 < ∞.

Theorem 17. Let one consider 1 ≤ 𝑝 < ∞ and (𝑉, 𝜇) a 𝑝-
admissible pair.Then the norms𝑊1,𝑝

(𝑎
𝑝/2

𝑝 𝜇, 𝑐
𝑝/2

𝑝 𝜇),𝑊1,𝑝
(𝐷𝜇),

and 𝑊
1,𝑝

(𝑉𝜇) defined as in (3) are equivalent on the space of
polynomials P.

Proof. The equivalence of the two first norms is straightfor-
ward, by Lemmas 4 and 5. We prove now the equivalence of
the two last norms.
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Let us prove that there exists a positive constant 𝐶 :=

𝐶(𝑉, 𝜇, 𝑝) such that

𝐶
𝑓

𝑊1,𝑝(𝐷𝜇) ≤
𝑓

𝑊1,𝑝(𝑉𝜇)

≤ √2
𝑓

𝑊1,𝑝(𝐷𝜇), for every 𝑓 ∈ P.
(44)

Let us prove first the second inequality ‖𝑓‖
𝑊
1,𝑝
(𝑉𝜇)

≤

√2 ‖𝑓‖
𝑊
1,𝑝
(𝐷𝜇)

.
Note that |2R(𝑏

𝑝
𝑓𝑓)| ≤ |2𝑏

𝑝
𝑓𝑓


| ≤ 2√𝑎

𝑝
𝑐
𝑝
|𝑓𝑓


| ≤

𝑎
𝑝
|𝑓|

2
+ 𝑐

𝑝
|𝑓


|
2; therefore, for every polynomial 𝑓 it holds

that

𝑓

𝑝

𝑊
1,𝑝(𝑉𝜇)

= ∫ (𝑎
𝑝

𝑓

2
+ 𝑐

𝑝


𝑓


2

+2R (𝑏
𝑝
𝑓𝑓 ) )

𝑝/2

𝑑𝜇

≤ 2
𝑝/2

∫(𝑎
𝑝

𝑓

2
+ 𝑐

𝑝


𝑓


2

)
𝑝/2

𝑑𝜇

= 2
𝑝/2𝑓


𝑝

𝑊
1,𝑝
(𝐷𝜇)

.

(45)

In order to prove the first inequality, 𝐶 ‖𝑓‖
𝑊
1,𝑝
(𝐷𝜇)

≤

‖𝑓‖
𝑊
1,𝑝
(𝑉𝜇)

, note that

𝑓

𝑝

𝑊
1,𝑝
(𝑉𝜇
1
)

= ∫(𝑎
𝑝

𝑓

2
+ 𝑐

𝑝


𝑓


2

+ 2R (𝑏
𝑝
𝑓𝑓))

𝑝/2

𝑑𝜇
1

≥ ∫ (𝑎
𝑝

𝑓

2
+ 𝑐

𝑝


𝑓


2

− 2

𝑏
𝑝
𝑓𝑓


))

𝑝/2

𝑑𝜇
1

≥ ∫(𝑎
𝑝

𝑓

2
+ 𝑐

𝑝


𝑓


2

− 2√1 − 𝜀
0√𝑎

𝑝
𝑐
𝑝


𝑓𝑓


)
𝑝/2

𝑑𝜇
1

≥ (1 − √1 − 𝜀
0
)
𝑝/2

∫(𝑎
𝑝

𝑓

2
+ 𝑐

𝑝


𝑓


2

)
𝑝/2

𝑑𝜇
1

= (1 − √1 − 𝜀
0
)
𝑝/2𝑓


𝑝

𝑊
1,𝑝(𝐷𝜇1)

.

(46)

If 𝛾 = 0 (i.e., 𝜇 = 𝜇
1
), then we have finished the

proof. Assume that 𝛾 ̸= 0 then we prove 𝐶 ‖ 𝑓‖
𝑊
1,𝑝
(𝐷𝜇
2
)
≤‖

𝑓‖
𝑊
1,𝑝
(𝑉𝜇
2
)
, seeking for a contradiction. It is clear that it

suffices to prove it when 𝛾 is connected, that is, when 𝛾 is a
rectifiable compact curve. Let us assume that there exists a
sequence {𝑓

𝑛
}
𝑛
⊂ P such that

lim
𝑛→∞

∫ (𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

+ 2R (𝑏
𝑝
𝑓
𝑛
𝑓

𝑛
))

𝑝/2

𝑑𝜇
2

∫ (𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 0. (47)

If 1 ≤ 𝑝 ≤ 2, then [22, Lemma 3.1] (with 𝛼 = 𝑝/2) gives

∫(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

+ 2R (𝑏
𝑝
𝑓
𝑛
𝑓

𝑛
))

𝑝/2

𝑑𝜇
2

≥ ∫(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

−

2𝑏

𝑝
𝑓
𝑛
𝑓


𝑛


)
𝑝/2

𝑑𝜇
2

≥ ∫(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2
− ∫


2𝑏

𝑝
𝑓
𝑛
𝑓


𝑛



𝑝/2

𝑑𝜇
2
.

(48)

This right-hand side of the inequality is positive, because
|2𝑏

𝑝
𝑓𝑓


| ≤ 𝑎

𝑝
|𝑓|

2
+𝑐

𝑝
|𝑓


|
2
𝜇
2
-almost everywhere.This implies

lim
𝑛→∞

((∫(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2

−∫

2𝑏

𝑝
𝑓
𝑛
𝑓


𝑛



𝑝/2

𝑑𝜇
2
)

× (∫(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2
)

−1

) = 0,

(49)

and hence

lim
𝑛→∞

∫

2𝑏

𝑝
𝑓
𝑛
𝑓


𝑛



𝑝/2

𝑑𝜇
2

∫ (𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 1. (50)

If 𝑝 > 2, then

(∫(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

+ 2R (𝑏
𝑝
𝑓
𝑛
𝑓

𝑛
))

𝑝/2

𝑑𝜇
2
)

2/𝑝

≥ (∫(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2
)

2/𝑝

− (∫

2𝑏

𝑝
𝑓
𝑛
𝑓


𝑛



𝑝/2

𝑑𝜇
2
)
2/𝑝

≥ 0,

(51)

since |2𝑏
𝑝
𝑓𝑓


| ≤ 𝑎

𝑝
|𝑓|

2
+ 𝑐

𝑝
|𝑓


|
2
𝜇
2
-almost everywhere.

Therefore,

lim
𝑛→∞

(((∫(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2
)

2/𝑝

−(∫

2𝑏

𝑝
𝑓
𝑛
𝑓


𝑛



𝑝/2

𝑑𝜇
2
)
2/𝑝

)

×((∫(𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝


𝑓


𝑛



2

)
𝑝/2

𝑑𝜇
2
)

2/𝑝

)

−1

) = 0,

(52)

or, equivalently,

lim
𝑛→∞

(∫

2𝑏

𝑝
𝑓
𝑛
𝑓


𝑛



𝑝/2

𝑑𝜇
2
)
2/𝑝

(∫ (𝑎
𝑝

𝑓𝑛

2
+ 𝑐

𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2
)
2/𝑝

= 1, (53)

and (50) also holds for 𝑝 > 2.
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If 𝑓
𝑛
is constant for some 𝑛, then ∫ |2𝑏

𝑝
𝑓
𝑛
𝑓


𝑛
|
𝑝/2

𝑑𝜇
2
= 0;

therefore, taking a subsequence if it is necessary, without
loss of generality we can assume that 𝑓

𝑛
is nonconstant and

‖𝑓
𝑛
‖
𝐿
∞
(𝜇
2
)
= 1 for every 𝑛.Then {𝑓

𝑛
}
𝑛
is an extremal sequence

for 𝑝. Applying Lemma 8,

lim
𝑛→∞

∫ (𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

∫ (𝑐
𝑝

𝑓


𝑛


2
)
𝑝/2

𝑑𝜇
2

= 1. (54)

By Lemma 14, there exists {𝑧
𝑛
}
𝑛

⊂ 𝑆(𝜇
2
) such that

|𝑓
𝑛
(𝑧

𝑛
)| ≤ 1/2 for every 𝑛 ≥ 𝑁

1
. Now, taking into account

that ‖𝑓
𝑛
‖
𝐿
∞
(𝜇
2
)
= 1 and that 𝛾 is connected, we can apply

Lemma 16, and then

∫

𝑓


𝑛



𝑝

𝑐
𝑝/2

𝑝
𝑑𝜇

2
≥ 𝑘 ⋅ osc𝑝 (𝑓

𝑛
)

≥ 𝑘 (
𝑓𝑛

𝐿∞(𝜇
2
)
−
𝑓𝑛 (𝑧𝑛)

)
𝑝

≥ 𝑘 (1 −
1

2
)
𝑝

=
𝑘

2𝑝
> 0

(55)

for every 𝑛 ≥ 𝑁
1
, with 1/𝑘 = ‖1/(𝑐

𝑝/2

𝑝 𝑑𝜇
2
/𝑑𝑠)‖

𝐿
1/(𝑝−1)

(𝛾)
.

Let us fix 𝜀 small enough. On the one hand, by Lemma 13
it holds that

∫ (𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2
≤ 2∫

𝐴
𝜀

(𝑎
𝑝

𝑓𝑛

2
)
𝑝/2

𝑑𝜇
2

≤ 2
𝑓𝑛


𝑝

𝐿
∞(𝜇2)

∫
𝐴
𝜀

𝑎
𝑝/2

𝑝
𝑑𝜇

2

= 2∫
𝐴
𝜀

𝑎
𝑝/2

𝑝
𝑑𝜇

2

(56)

for every 𝑛 ≥ 𝑁
2
= 𝑁

2
(𝜀).

On the other hand, we have

lim
𝜀→0
+

𝜇
2
(𝐴

𝜀
) = lim

𝜀→0
+

𝜇
2
({

𝑏
𝑝


> (1 − 𝜀)√𝑎

𝑝
𝑐
𝑝
})

= 𝜇
2
({

𝑏
𝑝


≥ √𝑎

𝑝
𝑐
𝑝
}) = 0.

(57)

This implies

lim
𝜀→0
+

∫
𝐴
𝜀

𝑎
𝑝/2

𝑝
𝑑𝜇

2
= 0. (58)

Given any 𝛿 > 0 there exists 𝜀
1
with ∫

𝐴
𝜀1

𝑎
𝑝/2

𝑝 𝑑𝜇
2
< 𝛿. Hence,

∫(𝑎
𝑝
|𝑓
𝑛
|
2
)
𝑝/2

𝑑𝜇
2

< 2𝛿 for every 𝑛 ≥ 𝑁
2
(𝜀
1
). Therefore,

lim
𝑛→∞

∫(𝑎
𝑝
|𝑓
𝑛
|
2
)
𝑝/2

𝑑𝜇
2
= 0, which is a contradiction with

(54) and (55).

The following result is a direct consequence of Theorems
3 and 17.

Theorem 18. Let one consider 1 ≤ 𝑝 < ∞ and (𝑉, 𝜇) a 𝑝-
admissible pair.Then the multiplication operator is bounded in
𝑊

1,𝑝
(𝑉𝜇) if and only if the following condition holds:

the norms in 𝑊
1,𝑝

((𝑎
𝑝/2

𝑝
+ 𝑐

𝑝/2

𝑝
) 𝜇, 𝑐

𝑝/2

𝑝
𝜇)

and 𝑊
1,𝑝

(𝑎
𝑝/2

𝑝
𝜇, 𝑐

𝑝/2

𝑝
𝜇) are equivalent on P.

(59)

This latter theorem and Theorem 2 give the following
result.

Theorem 19. Let one consider 1 ≤ 𝑝 < ∞ and (𝑉, 𝜇) a
𝑝-admissible pair such that (59) takes place. Let {𝑞

𝑛
}
𝑛≥0

be a
sequence of extremal polynomials with respect to (2). Then the
multiplication operator is bounded and the zeros of {𝑞

𝑛
}
𝑛≥0

lie
in the bounded disk {𝑧 : |𝑧| ≤ 2 ‖ 𝑀 ‖}.

In general, it is not difficult to check wether or not (59)
holds. It is clear that if there exists a constant𝐶 such that 𝑐

𝑝
≤

𝐶𝑎
𝑝
𝜇-almost everywhere, then (59) holds. In [8, 13] some

other very simple conditions implying (59) are shown.
The following is a direct consequence of Theorem 19.

Corollary 20. Let one consider 1 ≤ 𝑝 < ∞ and (𝑉, 𝜇) a 𝑝-
admissible pair. Assume that 𝑐

𝑝
≤ 𝐶𝑎

𝑝
, 𝜇-almost everywhere

for some constant 𝐶. Let {𝑞
𝑛
}
𝑛≥0

be a sequence of extremal
polynomials with respect to (2). Then the zeros of {𝑞

𝑛
}
𝑛≥0

are
uniformly bounded in the complex plane.

Finally, we have the following particular consequence for
Sobolev orthogonal polynomials.

Corollary 21. Let (𝑉, 𝜇) be a 2-admissible pair. Assume that
there exists a constant 𝐶 such that 𝑐

2
≤ 𝐶 𝑎

2
,𝜇-almost

everywhere. Let {𝑞
𝑛
}
𝑛≥0

be the sequence of Sobolev orthogonal
polynomials with respect to 𝑉𝜇. Then the zeros of the polyno-
mials in {𝑞

𝑛
}
𝑛≥0

are uniformly bounded in the complex plane.

5. Asymptotic of Extremal Polynomials

We start this section by setting some notation. Let 𝑄
𝑛
,

‖ ⋅ ‖
𝐿
2
(𝜇)
, cap(𝑆(𝜇)), and 𝜔

𝑆(𝜇)
denote, respectively, the 𝑛th

monic orthogonal polynomial with respect to𝐿2(𝜇), the usual
norm in the space 𝐿

2
(𝜇), the logarithmic capacity of 𝑆(𝜇),

and the equilibrium measure of 𝑆(𝜇). Furthermore, in order
to analyze the asymptotic behavior for extremal polynomials
we will use a special class of measures, “regular measures,”
denoted byReg and defined in [24]. In that work, the authors
proved (see Theorem 3.1.1) that, for measures supported on
a compact set of the complex plane, 𝜇 ∈ Reg if and only
if

lim
𝑛→∞

𝑄𝑛


1/𝑛

𝐿
2
(𝜇)

= cap (𝑆 (𝜇)) . (60)

Finally, if 𝑧
1
, 𝑧

2
, . . . , 𝑧

𝑛
denote the zeros, repeated accord-

ing to their multiplicity, of a polynomial 𝑞 whose degree is
exactly 𝑛, and 𝛿

𝑧
𝑗

is the Dirac measure with mass one at the
point 𝑧

𝑗
, the expression

] (𝑞) :=
1

𝑛

𝑛

∑
𝑗=1

𝛿
𝑧
𝑗

(61)

defines the normalized zero counting measure of 𝑞.
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We can already state the first result in this section.

Theorem 22. Let one consider 1 ≤ 𝑝 < ∞, (𝑉, 𝜇) a 𝑝-
admissible pair and {𝑞

𝑛
}
𝑛≥0

the sequence of extremal polyno-
mials with respect to ‖ ⋅ ‖

𝑊
1,𝑝
(𝑉𝜇)

. Assume that the following
conditions hold:

(i) 𝑎𝑝/2𝑝 𝜇 ∈ Reg;
(ii) 𝑆(𝜇) is regular with respect to the Dirichlet problem;
(iii) condition (59) takes place.

Then,

lim
𝑛→∞


𝑞
(𝑗)

𝑛



1/𝑛

𝑆(𝜇)
= cap (𝑆 (𝜇)) , 𝑗 ≥ 0. (62)

Furthermore, if the complement of 𝑆(𝜇) is connected, then

lim
𝑛→∞

] (𝑞
(𝑗)

𝑛
) = 𝜔

𝑆(𝜇)
, 𝑗 ≥ 0. (63)

in the weak star topology of measures.

Proof. Note that, in our context, the hypothesis removed
with respect to [5, Theorem 2] is equivalent to the following
two facts: on the one hand, the multiplication operator is
bounded (see Theorem 3), and on the other hand, the norms
of 𝑊

1,𝑝
(𝑎

𝑝/2

𝑝 𝜇, 𝑐
𝑝/2

𝑝 𝜇) and 𝑊
1,𝑝

(𝑉𝜇) defined as in (3) are
equivalent (see Theorem 18). With this in mind, we just
need to follow the proof of [5, Theorem 2] to conclude the
result.

In the following theorem, we use 𝑔
Ω
(𝑧;∞) to denote the

Green’s function for Ω with logarithmic singularity at ∞,
where Ω is the unbounded component of the complement
of 𝑆(𝜇). Notice that, if 𝑆(𝜇) is regular with respect to the
Dirichlet problem, then 𝑔

Ω
(𝑧;∞) is continuous up to the

boundary and it can be extended continuously to all C, with
value zero on C \ Ω.

Theorem 23. Let one consider 1 ≤ 𝑝 < ∞, (𝑉, 𝜇)

a 𝑝-admissible pair and {𝑞
𝑛
}
𝑛≥0

the sequence of extremal
polynomials with respect to ‖ ⋅‖

𝑊
1,𝑝
(𝑉𝜇)

. Assume that the
following conditions hold:

(i) 𝑎𝑝/2𝑝 𝜇 ∈ Reg;
(ii) 𝑆(𝜇) is regular with respect to the Dirichlet problem;
(iii) condition (59) takes place.

Then, for each 𝑗 ≥ 0,

lim sup
𝑛→∞


𝑞
(𝑗)

𝑛
(𝑧)



1/𝑛

≤ cap (𝑆 (𝜇)) 𝑒𝑔Ω(𝑧;∞)
, (64)

uniformly on compact subsets of C. Furthermore, for each 𝑗 ≥

0,

lim
𝑛→∞


𝑞
(𝑗)

𝑛
(𝑧)



1/𝑛

= cap (𝑆 (𝜇)) 𝑒𝑔Ω(𝑧;∞)
, (65)

uniformly on each compact subset of {𝑧 : |𝑧| > 2‖𝑀‖} ∩ Ω.
Finally, if the complement of 𝑆(𝜇) is connected, one has equality

in (64) for all 𝑧 ∈ C, except for a set of capacity zero, 𝑆(𝜔
𝑆(𝜇)

) ⊂

{𝑧 : |𝑧| ≤ 2‖𝑀‖} and

lim
𝑛→∞

𝑞
(𝑗+1)

𝑛
(𝑧)

𝑛𝑞
(𝑗)

𝑛 (𝑧)
= ∫

𝑑𝜔
𝑆(𝜇) (𝑥)

𝑧 − 𝑥
(66)

uniformly on each compact subset of {𝑧 : |𝑧| > 2‖𝑀‖}.

Proof. Note that, in our context, the multiplication
operator is bounded (see Theorem 3) and the norms of
𝑊

1,𝑝
(𝑎

𝑝/2

𝑝 𝜇, 𝑐
𝑝/2

𝑝 𝜇) and 𝑊
1,𝑝

(𝑉𝜇) defined as in (3) are
equivalent (see Theorem 18). This is the crucial fact in the
proof of this theorem; once we know this, we just need to
follow the proof given in [5, Theorem 6] point by point to
conclude the result.
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[2] G. López Lagomasino, H. Pijeira Cabrera, and I. Pérez
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[18] A. Foulquié, F. Marcellán, and K. Pan, “Asymptotic behavior
of Sobolev-type orthogonal polynomials on the unit circle,”
Journal of Approximation Theory, vol. 100, no. 2, pp. 345–363,
1999.

[19] F. Marcellán and J. J. Moreno-Balcázar, “Strong and Plancherel-
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