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In multichannel, cognitive radio (CR), the secondary user (SU) is allowed to utilize multiple subaltern frequency bands of
the primary user (PU), when these bands, namely, subchannels are not currently being used. To support this spectrum reuse
functionality, the SU is required to sense each subchannel, and only the subchannels wherein the PU is inactive are available for
the spectrum access of the SU. In this paper, a multislot spectrum sensing and transfer scheme for multichannel CR is proposed,
whose sensing stage is divided into several time slots allocated to the subchannels for spectrum sensing. While guaranteeing the
spectrum sensing performance on each subchannel and limiting the interference to the PU, we formulate an optimization problem
thatmaximizes the SU’s aggregate throughput by jointly allocating the optimal number of sensing time slots and the optimal transfer
power to each subchannel.Theoretical analysis is given to prove the feasibility of the proposed optimization problem and simulation
results are presented to show the notable improvement on the SU’s throughput when the sensing time slots and the transfer power
are both optimized by the proposed scheme.

1. Introduction

Cognitive radio (CR) has been proposed to overcome the
shortage of spectrum resources that is introduced by the
traditional fixed spectrum allocation method [1]. In CR, the
secondary user (SU) can transfer data through an idle channel
that is licensed to the primary user (PU) but currently
unoccupied, providing that the PU’s normal communication
is not disturbed [2, 3]. Hence, the spectrum sensing to
detect the PU’s activity is an essential method to reuse
the unoccupied spectrum and has become one of the key
technologies in CR [4].

Spectrum sensing requests the SU to efficiently and
accurately detect the presence of the PU, in order to avoid
causing harmful interference to the PU [5]. Since, to the SU,
the PU’s signal is often with unknown location, structure,
and strength, energy detection, which is widely used due to
its simple implementation, serves as the optimal spectrum
sensing method when the detector only receives the power
of the received signal [6]. The sensing time has deep impact

on the performance of energy detection, and the sensing
performance, reflected by the false alarm and detection
probabilities, can be improved with the increase of the
sensing time [7]. In CR, the higher the detection probability
is, the less interference the PU suffers, while the lower the false
alarm probability becomes, the more opportunity the SU gets
to access the spectrum [8].

In recent years, multichannel CR has been proposed to
improve the throughput by allowing the SU to utilizemultiple
idle subchannels to transfer data synchronously; however,
before communicating, the SU has to detect the PU’s activity
in each subchannel [9]. A multiband joint detection method
is introduced in [10], which jointly detects the PU’s signals
over multiple frequency bands rather than over one band
in the equal sensing time. In [11], the authors consider an
orthogonal frequency division multiplexing (OFDM) based
multichannel CR system and present efficient algorithms to
maximize the SU’s aggregate throughput by jointly optimiz-
ing both the sensing threshold and the power allocation, tak-
ing into account the influence of the false alarm and detection
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Figure 1: Multichannel CR model.

probabilities. However, the sensing time is not considered
by the authors, which may shorten the SU’s transfer time
and decrease its throughput. In [12, 13], a sensing-throughput
tradeoff problem is analyzed mathematically, and the energy
detection is used to prove that the formulated problem
indeed has one optimal sensing time that yields the highest
throughput. However, in multichannel CR, how to obtain the
optimal set of the sensing time to all the subchannels is very
important.

In this paper, subject to the constraints of the false
alarm and detection probabilities of each subchannel and the
aggregate interference power and rate of the SU, a multislot
spectrum sensing and transfer scheme for multichannel CR
is formulated. The SU’s aggregate throughput is maximized
by jointly allocating the optimal number of sensing time
slots and the optimal transfer power to each subchannel. The
analytical and numerical results obtained in this paper clearly
show that the maximal throughput can be achieved when the
sensing time slots and the transfer power are both optimized.

2. Preparation

2.1. Multichannel Cognitive Radio. In multichannel CR, the
SU may operate over multiple subchannels synchronously;
therefore the SU’s throughput can be improved greatly.
Consider a PU system, based on multicarrier modulation,
operating over a wideband spectrum that is divided into 𝐿
nonoverlapping narrowband subchannels. Since the PU may
not use all the subchannels to transfer in the specific time and
area, the left unused subchannels are available for the SU’s
spectrum access, as shown in Figure 1. Before accessing some
subchannel, the SU must estimate the PU’s state (presence or
absence) in the subchannel by performing spectrum sensing,
and only when the PU’s absence is detected, the SU can use
this subchannel to transfer data [14]. However, if the PU’s
presence is undetected, the SU may also use the subchannel
by causing harmful interference to the PU.

2.2. SU’s Spectrum Sensing. In spectrum sensing, since the
SU and the PU are two different kinds of communication
systems, SU is difficult to obtain any communication infor-
mation from the PU system. Hence, the energy detection
is widely used in the SU’s spectrum sensing, which can be
directly implemented without obtaining any signal informa-
tion. Energy detection firstly calculates the energy of the
received signal and then compares it to a preset threshold [15].

If the PU is absent, only the noise is received by the
SU’s detector, while if the PU is present, the mixture of the
noise and the PU’s signal is received. Hence, according to the
different activities of the PU, the SU’s received signal 𝑦𝑙 in
subchannel 𝑙 for 𝑙 = 1, 2, . . . , 𝐿 is given as follows:

𝑦𝑙 (𝑚) = {
𝑛𝑙 (𝑚) , 𝐻0,

ℎ𝑙𝑥𝑙 (𝑚) + 𝑛𝑙 (𝑚) , 𝐻1,

𝑚 = 1, 2, . . . ,𝑀𝑙,

(1)

where the states 𝐻0 and 𝐻1 denote the PU’s absence and
presence, respectively, 𝑥𝑙(𝑚) is the PU’s signal with the power
of 𝑝𝑥
𝑙
, 𝑛𝑙(𝑚) is the Gaussian white noise with the power of

𝜎
2

𝑙
, ℎ𝑙 is the subchannel gain between the PU and the SU,

and𝑀𝑙 is the number of sampling nodes. By supposing that
the sensing time and the sampling frequency are 𝜏𝑙 and 𝑓𝑠,
respectively,𝑀𝑙 is given by

𝑀𝑙 = 𝜏𝑙𝑓𝑠. (2)

By averaging the energy of𝑀𝑙 sampling nodes, the energyΩ𝑦𝑙
of the received signal 𝑦𝑙 is obtained as follows:

Ω𝑦𝑙
=

1

𝑀𝑙

𝑀𝑙

∑

𝑚=1

𝑦𝑙(𝑚)


2
. (3)

Obviously, 𝑦𝑙(1), 𝑦𝑙(2), . . . , 𝑦𝑙(𝑀) are independently and
identically distributed, and according to the Central Limit
Theorem, with larger𝑀𝑙,Ω𝑦𝑙 obeys the Gaussian distribution
approximately. Under the states𝐻𝑖 for 𝑖 = 0, 1, themean𝐸𝑦𝑙,𝐻𝑖
and the variance 𝜎2

𝑦𝑙 ,𝐻𝑖
ofΩ𝑦𝑙 are given as follows:

𝐸𝑦𝑙 ,𝐻0
= 𝜎
2

𝑙
, 𝜎

2

𝑦𝑙 ,𝐻0
=

1

𝑀𝑙

𝜎
4

𝑙
,

𝐸𝑦𝑙,𝐻1
= (1 + 𝛾𝑙) 𝜎

2

𝑙
, 𝜎

2

𝑦𝑙 ,𝐻1
=

1

𝑀𝑙

(1 + 𝛾𝑙)
2
𝜎
4

𝑙
,

(4)

where the sensing SNR 𝛾𝑙 = ℎ
2

𝑙
𝑝
𝑥

𝑙
/𝜎
2

𝑙
. Energy detection

compares Ω𝑦𝑙 to the detection threshold 𝜆. And the PU’s
presence is decided with Ω𝑦𝑙 ≥ 𝜆, while the subchannel is
determined to be idle and available withΩ𝑦𝑙 < 𝜆. If the PU is
really absent but the PU’s presence is falsely detected, the false
alarm is produced, while if the PU is really present but the
PU’s absence is falsely detected, the miss detection happens.
According to (2) and (4), the false alarm probability 𝑃𝑓

𝑙
and

the detection probability 𝑃𝑑
𝑙
are given as follows:

𝑃
𝑓

𝑙
= 𝑄(

𝜆 − 𝐸𝑦𝑙 ,𝐻0

𝜎𝑦𝑙 ,𝐻0

) = 𝑄((
𝜆

𝜎
2

𝑙

− 1)√𝜏𝑙𝑓𝑠) ,

𝑃
𝑑

𝑙
= 𝑄(

𝜆 − 𝐸𝑦𝑙 ,𝐻1

𝜎𝑦𝑙 ,𝐻1

) = 𝑄((
𝜆

𝜎
2

𝑙
(1 + 𝛾𝑙)

− 1)√𝜏𝑙𝑓𝑠) ,

(5)

where𝑄(𝑥) = (1/√2𝜋) ∫∞
𝑥
𝑒
−(𝑡
2
/2)d𝑡. According to (5), with a

given 𝑃𝑑
𝑙
, 𝑃𝑓
𝑙
can be denoted by 𝑃𝑑

𝑙
as follows:

𝑃
𝑓

𝑙
= 𝑄(𝑄

−1
(𝑃
𝑑

𝑙
) (1 + 𝛾𝑙) + 𝛾𝑙√𝜏𝑙𝑓𝑠) . (6)
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Figure 2: Frame structure of single-channel CR.
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Figure 3: Frame structure of single-slot multichannel CR.

3. System Model

3.1. Related Work. In CR, the SU’s frame structure is often
divided into sensing and transfer stages. In the sensing stage,
the SU detects each subchannel and judges which one can be
used, while, in the transfer stage, the SU uses the detected idle
subchannels to transfer data.

In the sensing stage of [12], the SU searches an idle
subchannel from the𝐿PU’s subchannels one by one, and once
an idle subchannel 𝑙 is found, the SU will stop sensing and
transfer data in subchannel 𝑙 through the transfer stage, as
shown in Figure 2. This scheme is named as single-channel
CR.

In the sensing stage of [16], the bandwidth is divided
into 𝐿 subbands, and each subband is allocated to sense one
subchannel. Hence, the SU can use all the sensing time and
part of the frequency band to sense a subchannel, as shown in
Figure 3. In the transfer stage, the SUmay use all the detected
idle subchannels to transfer data. This scheme is named as
single-slot multichannel CR.

In the sensing stage of [10], each subchannel is allocated
to the equal continuous time slot to sense spectrum, and in
one time slot, only one subchannel is detected by the SU,
as shown in Figure 4. In the transfer stage, all the detected
idle subchannels are available for the spectrum access of
the SU. This scheme is named as equal-slot multichannel
CR. However, the gain of each subchannel is often different,
and the sensing performance can be further improved if we
allocate more sensing time to the subchannel with better
sensing gain.

3.2. Proposed Scheme. In this paper, the sensing stage is
further divided into many small time slots, as shown in
Figure 5. In each time slot, the SU can sense any subchannel
with energy detection, and the number inside each time slot
means the subchannel index to be sensed. Note that in the
example, the SU senses spectrum firstly in channel 2, then in
channels 1 and 3, and so forth, and finally in channels 𝐿 − 1
and 𝐿. Actually, the sensing order of the subchannels does
not affect the final sensing performance of each subchannel.
At the end of the sensing stage, the SU can obtain the
used statuses of the 𝐿 subchannels by combining the sensing
information in each time slot.Thenumber of the sensing time

1

3

L

L
2
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Figure 4: Frame structure of equal-slot multichannel CR.

2 2 1 3 3 L

L
−
1

· · ·

Sensing Transfer

1

3

L

2

· · ·

Figure 5: Proposed frame structure ofmultichannel cognitive radio.

slots allocated to each subchannel can be different, which is
chosen according to the subchannel gain.

By supposing that the frame period is 𝑇, the length of
each time slot is 𝜉, and the number of the time slots to sense
subchannel 𝑙 is 𝑘𝑙, the sensing time of subchannel 𝑙 is given by

𝜏𝑙 = 𝑘𝑙𝜉, (7)

and the SU’s transfer time is given by

𝑡𝑤 = 𝑇 − 𝜉

𝐿

∑

𝑙=1

𝑘𝑙. (8)

By assuming that the subchannels are symmetrical, the SU’s
data transfer in subchannel 𝑙 includes the following two cases.

(a) If the PU’s absence is detected accurately by the SU in
the probability of 1−𝑃𝑓

𝑙
, the SU can transfer in the subchannel

effectively, with the rate of

𝑟
0

𝑙
= log
2
(1 +

𝑝𝑙𝑔
2

𝑙

𝜎
2

𝑙

) , (9)

where 𝑔𝑙 is the subchannel gain between the SU’s transmitter
and receiver.

(b) If the PU’s presence is undetected in themiss detection
probability of 1 − 𝑃𝑑

𝑙
, the SU may use the same subchannel

with the PU and cause severe interference to the PU, with the
rate of

𝑟
1

𝑙
= log
2
(1 +

𝑝𝑙𝑔
2

𝑙

𝜎
2

𝑙
(1 + 𝛾𝑙)

) . (10)

Obviously, 𝑟0
𝑙
> 𝑟
1

𝑙
. In case (b), if the PU is really present

but the SU detects the PU’s absence falsely in the probability
of 1 − 𝑃

𝑑

𝑙
, the SU will transfer data with the power of 𝑝𝑙

that causes severe interference to the PU. Hence, the SU’s
aggregate interference power is given by

𝑝𝐼 =

𝐿

∑

𝑙=1

(1 − 𝑃
𝑑

𝑙
) 𝑝𝑙ℎ
2

𝑙
. (11)
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𝑝𝐼 should be constrained by letting 𝑝𝐼 ≤ 𝐼max, where 𝐼max is
themaximal interference power suffered by the PU.Moreover
in case (b), the SU transfers data with the rate of 𝑟1

𝑙
at

the presence of the PU; these data may also disturb the
PU’s normal communication, and therefore we can get the
maximal aggregate interference rate of the SU as follows:

𝑟𝐼 =

𝐿

∑

𝑙=1

(1 − 𝑃
𝑑

𝑙
) 𝑟
1

𝑙
=

𝐿

∑

𝑙=1

(1 − 𝑃
𝑑

𝑙
) log
2
(1 +

𝑝𝑙𝑔
2

𝑙

𝜎
2

𝑙
(1 + 𝛾𝑙)

) .

(12)

It is also necessary to constrain the SU’s interference rate as
𝑟𝐼 ≤ 𝑟

max
𝐼

. Since 1 − 𝑃𝑑
𝑙
≤ 1, we have

𝑟𝐼 ≤

𝐿

∑

𝑙=1

log
2
(1 +

(1 − 𝑃
𝑑

𝑙
) 𝑝𝑙𝑔
2

𝑙

𝜎
2

𝑙
(1 + 𝛾𝑙)

) . (13)

As log
2
(𝑥) is a convex function, we get the Cauchy inequality

as follows:

log (𝑥1) + log (𝑥2) + ⋅ ⋅ ⋅ + log (𝑥𝑛)
𝑛

≤ log(
𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑛

𝑛
) .

(14)

By supposing 𝛾min = min{𝛾1, 𝛾2, . . . , 𝛾𝐿}, from (13) and (14),
we may derive the inequality as follows:

1

𝐿

𝐿

∑

𝑙=1

log
2
(1 +

(1 − 𝑃
𝑑

𝑙
) 𝑝𝑙𝜁
2

𝑙

1 + 𝛾𝑙

)

≤ log
2
(1 +

1

𝐿

𝐿

∑

𝑙=1

(1 − 𝑃
𝑑

𝑙
) 𝑝𝑙𝜁
2

𝑙

1 + 𝛾𝑙

)

≤ log
2
(1 +

∑
𝐿

𝑙=1
(1 − 𝑃

𝑑

𝑙
) 𝑝𝑙𝜁
2

𝑙

𝐿 (1 + 𝛾min)
) ,

(15)

where 𝜁𝑙 = 𝑔𝑙/𝜎𝑙. Hence, we can guarantee 𝑟𝐼 ≤ 𝑟
max
𝐼

by letting

𝐿 log
2
(1 +

∑
𝐿

𝑙=1
(1 − 𝑃

d
𝑙
) 𝑝𝑙𝜁
2

𝑙

𝐿 (1 + 𝛾min)
) ≤ 𝑟

max
𝐼

(16)

from which we further obtain that
𝐿

∑

𝑙=1

(1 − 𝑃
𝑑

𝑙
) 𝑝𝑙𝜁
2

𝑙
≤ 𝜃max, (17)

where 𝜃max = 𝐿(2
𝑟
max
𝐼
/𝐿
− 1)(1 + 𝛾min).

In each frame, the SU may transfer data in cases (a) and
(b) with the rates of 𝑟0

𝑙
and 𝑟1
𝑙
at the absence and presence

of the PU, respectively, during the transfer time 𝑡𝑤. The SU’s
aggregate throughput over 𝐿 subchannels is given as follows:

𝐶 = 𝑡𝑤

𝐿

∑

𝑙=1

(𝑟
0

𝑙
(1 − 𝑃

𝑓

𝑙
) 𝑃𝐻0

+ 𝑟
1

𝑙
(1 − 𝑃

𝑑

𝑙
) 𝑃𝐻1

) , (18)

where 𝑃𝐻0 and 𝑃𝐻1
are the appearance probabilities of the

states𝐻0 and𝐻1, respectively.
In this paper, our goal of jointly allocating sensing time

slots and transfer power is to maximize the SU’s aggregate
throughput subject to the constraints on the false alarm
probability, the detection probability and the transfer power
of each subchannel, and the aggregate interference power and
the aggregate interference rate of the SU, as follows:

max
k,p

𝐶 (k,p)

s.t.

𝑃
𝑓

𝑙
≤ 𝛼 ≤ 0.5,

𝑃
𝑑

𝑙
≥ 𝛽 ≥ 0.5,

𝑝𝑙 ≥ 0,

𝑙 = 1, 2, . . . , 𝐿;

𝐿

∑

𝑙=1

𝑘𝑙 ≤ ⌈
𝑇

𝜉
⌉ ;

𝐿

∑

𝑙=1

𝑝𝑙 ≤ 𝑝max,

𝐿

∑

𝑙=1

(1 − 𝑃
𝑑

𝑙
) 𝑝𝑙ℎ
2

𝑙
≤ 𝐼max;

𝐿

∑

𝑙=1

(1 − 𝑃
𝑑

𝑙
) 𝑝𝑙𝜁
2

𝑙
≤ 𝜃max,

(19)

where the vectors k = {𝑘1, 𝑘2, . . . , 𝑘𝐿} and p = {𝑝1,

𝑝2, . . . , 𝑝𝐿}, 𝛼 is the upper bound of the false alarm prob-
ability, 𝛽 is the lower bound of the detection probability,
𝑝max is the SU’s maximal transfer power, and ⌈𝜙⌉ denotes the
maximal integer no bigger than 𝜙. In (19), we set 𝛼 ≤ 0.5 and
𝛽 ≥ 0.5, because the SU’s sensing performance must be good
enough in order to decrease the interference to the PU and
improve the spectrum access of the SU, as indicated in CR.

3.3. Solution toOptimization Problem. Equation (19) is amul-
tiparameter optimization problem about k and p, which can
be solved by the alternating direction optimization (ADO)
[16]. In each iteration, one of the two parameters is fixed
while the other one is optimized, and the two parameters are
alternately optimized through some iterations until both of
them tend to be constant.

Firstly, we fix p (corresponding 𝑟0
𝑙
and 𝑟1
𝑙
are both fixed)

and optimize k. Since 𝑃𝑓
𝑙
monotonically increases with the

improvement of𝑃𝑑
𝑙
, by substituting𝑃𝑑

𝑙
≥ 𝛽 into (6), the lower

bound of 𝑃𝑓
𝑙
is given by

𝑃
𝑓

𝑙
≥ 𝑄(𝜂

0

𝑙
+ 𝜂
1

𝑙
√𝑘𝑙) , (20)

where 𝜂0
𝑙
= 𝑄
−1
(𝛽)(1 + 𝛾𝑙) and 𝜂

1

𝑙
= 𝛾𝑙√𝜉𝑓𝑠.

From (18), since 𝐶 improves with the increase of both 𝑃𝑓
𝑙

and 𝑃
𝑑

𝑙
, it can achieve the maximum only when 𝑃

𝑑

𝑙
= 𝛽,

and correspondingly, the equation of (20) is obtained. By
substituting (20) into 𝑃𝑓

𝑙
≤ 𝛼, we get 𝑄(𝜂0

𝑙
+ 𝜂
1

𝑙
√𝑘𝑙) ≤ 𝛼,

from which we obtain 𝑘𝑙 ≥ 𝑞𝑙, where 𝑞𝑙 is given by

𝑞𝑙 =

{{

{{

{

0, 𝛼 ≥ 𝑄 (𝜂
0

𝑙
) ,

⌊(
𝑄
−1
(𝛼) − 𝜂

0

𝑙

𝜂
1

𝑙

)

2

⌋ , 𝛼 < 𝑄 (𝜂
0

𝑙
) ,

(21)

where ⌊𝜙⌋ denotes the minimal integer no less than 𝜙.
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We suppose that the aggregate number of sensing time
slots 𝐾 = ∑

𝐿

𝑙=1
𝑘𝑙, where 𝐾 ≥ ∑

𝐿

𝑙=1
𝑞𝑙 and 𝐾 ∈ 𝑍. With the

fixed p, the constraints of (19) about p can be ignored, while,
with 𝑘𝑙 ≥ 𝑞𝑙, the constraints of false alarm and detection
probabilities can be satisfied. Hence, (19) transforms the
suboptimization problem about k as follows:

max
k

𝐶 (k) = (𝑇 − 𝜉𝐾)

× (𝑟
0

𝑙
𝑃𝐻0

(1 − 𝑄(𝜂
0

𝑙
+ 𝜂
1

𝑙
√𝑘𝑙))

+ 𝑟
1

𝑙
𝑃𝐻1

(1 − 𝛽) )

s.t. 𝑘𝑙 ≥ 𝑞𝑙, 𝑙 = 1, 2, . . . , 𝐿

𝐿

∑

𝑙=1

𝑞𝑙 ≤ 𝐾 ≤ ⌈
𝑇

𝜉
⌉ , 𝐾 ∈ 𝑍.

(22)

In the following proposition, we will prove that 𝐶(k) is a
convex function about the vector k, which denotes that there
is an optimal set of k that maximizes 𝐶(k).

Proposition 1. The objective function 𝐶(k) is convex in k.

Proof. Taking the second-order derivative of 𝐶(k) in 𝑘𝑙 for
𝑙 = 1, 2, . . . , 𝐿 as follows:

𝜕
2
𝐶 (k)
𝜕2𝑘𝑙

= −

𝑟
0

𝑙
𝑃𝐻0

𝜂
1

𝑙

4√2𝜋𝑘𝑙

exp(−
(𝜂
0

𝑙
+ 𝜂
1

𝑙
√𝑘𝑙)
2

2
)

× (𝜉 +
𝜂
1

𝑙
(𝑇 − 𝜉𝐾)

√𝑘𝑙

(𝜂
0

𝑙
+ 𝜂
1

𝑙
√𝑘𝑙 +

1

𝜂
1

𝑙
√𝑘𝑙

)) ,

𝑙 = 1, 2, . . . , 𝐿,

(23)

as𝑃𝑓
𝑙
≤ 𝛼 ≤ 0.5, by substituting (20), we have𝑄(𝜂0

𝑙
+𝜂
1

𝑙
√𝑘𝑙) ≤

0.5, from which 𝜂0
𝑙
+𝜂
1

𝑙
√𝑘𝑙 ≥ 0 is obtained. Hence, according

to (23), we have 𝜕2𝐶(k)/𝜕2𝑘𝑙 ≤ 0 for 𝑙 = 1, 2, . . . , 𝐿, which
denotes that 𝐶(k) is convex in k.

If 𝐾 is given, since k is an integer vector, the optimal 𝑘𝑙
for 𝑙 = 1, 2, . . . , 𝐿 can be obtained by the greedy algorithm, as
shown in Figure 4. In this figure, 𝐺𝑙(𝑘𝑙) is denoted by

𝐺𝑙 (𝑘𝑙) = 𝑟
0

𝑙
𝑃𝐻0

(1 − 𝑄(𝜂
0

𝑙
+ 𝜂
1

𝑙
√𝑘𝑙)) + 𝑟

1

𝑙
𝑃𝐻1

(1 − 𝛽) .

(24)

As 𝐾 is an integer within a specific range, it is not com-
plicated to search through 𝐾. With any given integer 𝐾 ∈

[∑
𝐿

𝑙=1
𝑞𝑙, ⌈𝑇/𝜉⌉], we calculate 𝐶(k) with the optimal vector k

obtained by the greedy algorithm, and then we choose the
optimal𝐾 that maximizes 𝐶(k), as follows:

𝐾
∗
= arg max
∑
𝐿

𝑙=1
𝑞𝑙≤𝐾≤⌈𝑇/𝜉⌉

𝐶 (k) . (25)

l∗ = argmax
1≤l≤L
(gl(kl + 1) − Gl(kl))

Yes

No

kl∗ = kl∗ + 1

Given K,
initialize kl = ql (l = 1, 2, . . . , L)

L

∑
l=1

kl < K?

Output kl(l = 1, 2, . . . , L)

Figure 6: Flowchart to solve 𝑘𝑙 based on greedy algorithm.

With the given 𝐾, since the increment range of ∑𝐿
𝑙=1
𝑘𝑙

is from ∑
𝐿

𝑙=1
𝑞𝑙 to 𝐾, the time complexity of the greedy

algorithm in Figure 6 is 𝑂((𝐾 − ∑
𝐿

𝑙=1
𝑞𝑙)log2𝐿 + 𝐿). From

(25), by enumerating𝐾 ∈ [∑
𝐿

𝑙=1
𝑞𝑙, ⌈𝑇/𝜉⌉], the aggregate time

complexity to search an optimal set of k is given by

𝐹GE = 𝑂(

⌈𝑇/𝜉⌉

∑

𝐾=∑
𝐿

𝑙=1
𝑞𝑙

((𝐾 −

𝐿

∑

𝑙=1

𝑞𝑙) log
2
𝐿 + 𝐿)) . (26)

Secondly, we fix k (corresponding 𝑡𝑤, 𝑃
𝑓

𝑙
, and 𝑃𝑑

𝑙
are all

fixed) and optimize p. With the fixed k, the constraints of
false alarm and detection probabilities can be ignored.Noting
𝑃
𝑑

𝑙
= 𝛽, (19) transforms the suboptimization problem about

p as follows:

max
𝑝

𝐶 (p) =
𝐿

∑

𝑙=1

(𝜓
0

𝑙
log
2
(1 +

𝑝𝑙𝑔
2

𝑙

𝜎
2

𝑙

)

+𝜓
1

𝑙
log
2
(1 +

𝑝𝑙𝑔
2

𝑙

𝜎
2

𝑙
(1 + 𝛾𝑙)

))

s.t.
𝐿

∑

𝑙=1

𝑝𝑙 ≤ 𝑝max

𝐿

∑

𝑙=1

𝑝𝑙ℎ
2

𝑙
≤

𝐼max
1 − 𝛽

;

𝐿

∑

𝑙=1

𝑝𝑙𝜁
2

𝑙
≤
𝜃max
1 − 𝛽

𝑝𝑙 ≥ 0, 𝑙 = 1, 2, . . . , 𝐿,

(27)
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where 𝜓0
𝑙
= 𝑡𝑤𝑟

0

𝑙
𝑃𝐻0

and 𝜓1
𝑙
= 𝑡𝑤𝑟

1

𝑙
𝑃𝐻1

. Using the Lagrange
multiplier algorithm to solve (27), we obtain the Lagrange
function as follows:

𝐿 (p, 𝜆1, 𝜆2, 𝜆3)

= −

𝐿

∑

𝑙=1

(𝜓
0

𝑙
log
2
(1 +

𝑝𝑙𝑔
2

𝑙

𝜎
2

𝑙

) + 𝜓
1

𝑙
log
2
(1 +

𝑝𝑙𝑔
2

𝑙

𝜎
2

𝑙
(1 + 𝛾𝑙)

))

+ 𝜆1(

𝐿

∑

𝑙=1

𝑝𝑙 − 𝑝max) + 𝜆2(

𝐿

∑

𝑙=1

𝑝𝑙ℎ
2

𝑙
−
𝐼max
1 − 𝛽

)

+ 𝜆3(

𝐿

∑

𝑙=1

𝑝𝑙𝜁
2

𝑙
−
𝜃max
1 − 𝛽

) ,

(28)

where 𝜆1, 𝜆2, and 𝜆3 are the Lagrange multipliers. According
to the Karush-Kuhn-Tucker (KKT) conditions, the optimal p
is got by letting 𝜕𝐿/𝜕p = 0, and if 𝜆1,𝜆2, and 𝜆3 are not zero,
they are got by letting the corresponding constraints acquire
equations. Hence, we obtain

𝑝𝑙 ≥ 0 for 𝑙 = 1, 2, . . . , 𝐿, 𝜆1 ≥ 0, 𝜆2 ≥ 0, 𝜆3 ≥ 0,

𝜆1(

𝐿

∑

𝑙=1

𝑝𝑙 − 𝑝max) = 0,

𝜆2(

𝐿

∑

𝑙=1

𝑝𝑙ℎ
2

𝑙
−
𝐼max
1 − 𝛽

) = 0,

𝜆3(

𝐿

∑

𝑙=1

𝑝𝑙𝜁
2

𝑙
−
𝜃max
1 − 𝛽

) = 0,

𝜕𝐿

𝜕𝑝𝑙

= 0 for 𝑙 = 1, 2, . . . , 𝐿.

(29)

Noting 𝑝𝑙 ≥ 0, direct calculation 𝜕𝐿/𝜕𝑝𝑙 = 0 yields

𝑝𝑙 (𝜆1, 𝜆2, 𝜆3)

=
[
[

[

√(
𝜓
0

𝑙
+ 𝜓
1

𝑙

2𝜔𝑙(𝜆1, 𝜆2, 𝜆3)
)

2

+

𝛾𝑙𝜎
2

𝑙
(𝜓
0

𝑙
− 𝜓
1

𝑙
)

2𝑔
2

𝑙
𝜔𝑙 (𝜆1, 𝜆2, 𝜆3)

+
𝛾
2

𝑙
𝜎
4

𝑙

𝑔
4

𝑙

+
𝜓
0

𝑙
+ 𝜓
1

𝑙

2𝜔𝑙 (𝜆1, 𝜆2, 𝜆3)
−
(2 + 𝛾𝑙) 𝜎

2

𝑙

2𝑔
2

𝑙

]
]

]

+

,

𝑙 = 1, 2, . . . , 𝐿,

(30)

where [⋅]+ = max(⋅, 0) and 𝜔𝑙(𝜆1, 𝜆2, 𝜆3) = 𝜆1 + 𝜆2ℎ
2

𝑙
+ 𝜆3𝜁

2

𝑙
.

Using the subgradient method, we can further obtain 𝜆1, 𝜆2,
and 𝜆3 through the iterations as follows:

𝜆
(𝑛+1)

1
= [𝜆
(𝑛)

1
+ 𝜇
(𝑛)
(

𝐿

∑

𝑙=1

𝑝𝑙 (𝜆
(𝑛)

1
, 𝜆
(𝑛)

2
, 𝜆
(𝑛)

3
) − 𝑝max)]

+

,

𝜆
(𝑛+1)

2
= [𝜆
(𝑛)

2
+ 𝜇
(𝑛)
(

𝐿

∑

𝑙=1

𝑝𝑙 (𝜆
(𝑛)

1
, 𝜆
(𝑛)

2
, 𝜆
(𝑛)

3
) ℎ
2

𝑙
−
𝐼max
1 − 𝛽

)]

+

,

𝜆
(𝑛+1)

3
= [𝜆
(𝑛)

3
+ 𝜇
(𝑛)
(

𝐿

∑

𝑙=1

𝑝𝑙 (𝜆
(𝑛)

1
, 𝜆
(𝑛)

2
, 𝜆
(𝑛)

3
) 𝜁
2

𝑙
−
𝜃max
1 − 𝛽

)]

+

,

(31)

where 𝑛 is the iteration index and 𝜇(𝑛) is a sequence of scalar
step size. Once 𝜆1, 𝜆2, and 𝜆3 are all obtained, we can get the
optimal transfer power 𝑝𝑙 for 𝑙 = 1, 2, . . . , 𝐿 through (30).

The time complexity of the Lagrangemultiplier algorithm
depends on the estimation accuracy 𝛿 ∈ (0, 1). By supposing
that the stopping conditions of the iteration in (31) are |𝜆(𝑛+1)

1
−

𝜆
(𝑛)

1
| ≤ 𝛿, |𝜆(𝑛+1)

2
− 𝜆
(𝑛)

2
| ≤ 𝛿, and |𝜆

(𝑛+1)

3
− 𝜆
(𝑛)

3
| ≤ 𝛿,

the iteration complexity is 𝑂(1/𝛿3), and the time complexity
of each iteration is 𝑂(𝐿 log

2
𝐿). Hence, the aggregate time

complexity of the Lagrange multiplier algorithm is given by

𝐹LM = 𝑂(
𝐿 log
2
𝐿

𝛿3
) . (32)

The ADO method is used to obtain the optimal joint
allocation of multislot spectrum sensing and transfer power
by optimizing the two suboptimization problems (22) and
(27) alternately and iteratively. The joint allocation algorithm
based on ADO is described in Figure 7. Noting that the goal
of optimizing (22) and (27) is to achieve the locally maximal
value of the objective function, the value of the objective
function is nondecreasing in each iteration as follows:

𝐶 (k(𝑛−1), p(𝑛−1)) ≤ 𝐶 (k(𝑛−1), p(𝑛)) ≤ 𝐶 (k(𝑛), p(𝑛)) , (33)

where 𝑛 is the iteration index. Equation (31) indicates that if
𝐶(k, p) is convergent, both of k and p must be convergent.
That is, if the stopping conditions of the iteration in ADO
are ‖k(𝑛) − k(𝑛−1)‖ ≤ 𝛿 and ‖p(𝑛) − p(𝑛−1)‖ ≤ 𝛿, the optimal
𝐶(k(𝑛), p(𝑛)) can be obtained.

As the stopping conditions of the joint allocation algo-
rithm are ‖p(𝑛) − p(𝑛−1)‖ ≤ 𝛿 and ‖k(𝑛) − k(𝑛−1)‖ ≤ 𝛿,
the iteration complexity of the algorithm is 𝑂(1/𝛿2). In each
iteration, the greedy algorithm with the complexity of 𝐹GE
and the Lagrange multiplier algorithm with the complexity
of 𝐹LM are both implemented once. Hence, the aggregate
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and ‖ ‖ ≤ 𝛿?k(n) − k(n−1)

Fixing , calculate = {pl}
L
l=1 byp(n+1)k(n+1)

Fixing , calculate = {kl}
L
l=1 byp(n) k(n+1)

Initialize: the iteration index n = 0,

the slot vector

Choose the power vector with anyp(n)

the greedy algorithm in Figure 4

Let n = n + 1

‖ ‖ ≤ 𝛿p(n) − p(n−1)

Yes

No

the estimation accuracy 𝛿,

(30)

= {0}Ll=1k(n)

Output p∗ = p(n) and k∗ = k(n)

L

∑
l=1

p(n)
l

h2l ≤
Imax
1 − 𝛽

and
L

∑
l=1

p(n)
l

𝜁2l ≤
𝜃max
1 − 𝛽

values that satisfy
L

∑
l=1

p(n)
l

≤ pmax,

Figure 7: Joint allocation algorithm based on ADO.

time complexity of the joint allocation algorithm is given as
follows:

𝐹JA

= 𝑂(
1

𝛿2
(𝐹GE + 𝐹LM))

= 𝑂(
1

𝛿2

⌈𝑇/𝜉⌉

∑

𝐾=∑
𝐿

𝑙=1
𝑞𝑙

((𝐾 −

𝐿

∑

𝑙=1

𝑞𝑙) log
2
𝐿 + 𝐿) +

𝐿 log
2
𝐿

𝛿5
) .

(34)

However, since, in the conventional exhaustive searching
method, we need to search through the vectors k and p
including 2𝐿 parameters, the time complexity of the exhaus-
tive searching method is 𝑂(1/𝛿2𝐿) that greatly exceeds the
time complexity of the proposed scheme if 𝐿 ≥ 3.
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Figure 8: Throughput versus lower bound of detection probability.

4. Simulations

In the simulation, the frame period 𝑇 = 1 s, the length of
each time slot 𝜉 = 5ms, the noise power 𝜎2

𝑙
= 0.01mW, the

number of subchannels 𝐿 = 16, the subchannel gains 𝑔𝑙 for
𝑙 = 1, 2, . . . , 𝐿 obey the Rayleigh distribution with the mean
of −10 dB, the sampling frequency 𝑓𝑠 = 1KHz, the maximal
interference power and rate are 𝐼max = 10mW and 𝑟max

𝐼
=

1 bps/Hz, respectively, the sensing SNR 𝛾𝑙 for 𝑙 = 1, 2, . . . , 𝐿

is [−10, −8, −6, −4, −2, −3, −5, −7, −9, −6, −3, −1, −2, −4, −6,
−8] dB, and the appearance probabilities of the states𝐻0 and
𝐻1𝑃𝐻0

= 𝑃𝐻1
= 0.5.

Figure 8 shows the SU’s aggregate throughput 𝐶 versus
the lower bound of detection probability 𝛽, with different
number of sensing time slots 𝐾. From this figure, it is
seen that there exists an optimal 𝐾 (the aggregate sensing
time is 𝐾𝜉) that maximizes 𝐶, and the convex-shaped
𝐶 is also consistent with Proposition 1, which verifies the
correctness of our allocation scheme. In the traditional equal-
slot multichannel CR of [10], the sensing time allocated to
each subchannel is 𝐾𝜉/𝐿. With the same aggregate sensing
time, the throughput of the proposed scheme is always larger
than those of the equal-slot multichannel CR and the single-
slot multichannel CR because, in our scheme, we allocate
different sensing time to each subchannel according to their
different gains. We also see that 𝐶 decreases greatly with the
increase of 𝛽, because the false alarm probability increases
with the increase of 𝛽, which reduces the SU’s spectrum
access. Figure 9 shows 𝐶 versus the maximal transfer power
𝑝max, with different 𝐾. It is seen that the proposed scheme
outperforms the other two schemes, with various 𝑝max.

Figure 10 indicates the uniform-time throughput 𝐶/𝑇
versus the frame period 𝑇, with different 𝐾. It is seen that
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Figure 9: Throughput versus maximal transfer power.

with the increase of 𝑇, the number of the available sensing
time slots increases, and longer sensing time can improve
the SU’s sensing performance. With the improved sensing
performance, the decrease of the false alarm probability
may increase the SU’s spectrum access, and thus the SU’s
throughput is improved. Figure 11 compares the achieved
throughput of the proposed scheme and the single-channel
CR. It is seen that the proposed scheme that uses multiple
subchannels to transfer can get much more throughput than
the single-channel CR does.

Figure 12 shows the transfer power and false alarm
probability of each subchannel by the proposed scheme.
It is seen that in our allocation scheme, with the given
detection probability, the larger power is allocated to the
subchannels with lower false alarm probabilities, because
the SU has more opportunities to access these subchannels,
and larger power can help the SU make full use of the
better subchannels in order to achieve perfect throughput.
However, no power is allocated to the subchannels withmuch
higher false alarm probabilities (i.e., subchannels 1 and 9),
because the SU often cannot access these subchannels, and
the transfer power allocation in these worse subchannels will
not achieve benefits.

5. Conclusions

In this paper, we propose a multislot spectrum sensing and
transfer scheme of multichannel CR. The frame is divided
into sensing and transfer stages, and the sensing stage is
further divided into many small time slots that are allocated
to each subchannel for energy detection. An optimization
problem of jointly allocating sensing time slots and transfer
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channel CR.

power to each subchannel is formulated to maximize the
SU’s aggregate throughput, subject to the constraints of the
false alarm and detection probabilities of each subchannel
and the aggregate interference power and rate of the SU.
A joint allocation algorithm based on alternating directing
optimization is proposed to solve the optimization problem.
With numerical results, it is shown that there exists an opti-
mal set of sensing time slots that maximizes the throughput
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Figure 12: Power and false alarm probability of each subchannel.

and jointly optimizing sensing time slots and transfer power
significantly improves the SU’s aggregate throughput.
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