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A circuit of evaluation and selection of the alternatives is considered a reliable model in neurobiology.The prominent contributions
of the literature to this topic are reported. In this study, valuation and choice of a decisional process during Two-Alternative Forced-
Choice (TAFC) task are represented as a two-layered network of computational cells, where information accrual and processing
progress in nonlinear diffusion dynamics. The evolution of the response-to-stimulus map is thus modeled by two linked diffusive
modules (2LDM) representing the neuronal populations involved in the valuation-and-decision circuit of decision making.
Diffusion models are naturally appropriate for describing accumulation of evidence over the time. This allows the computation
of the response times (RTs) in valuation and choice, under the hypothesis of ex-Wald distribution. A nonlinear transfer function
integrates the activities of the two layers. The input-output map based on the infomax principle makes the 2LDM consistent
with the reinforcement learning approach. Results from simulated likelihood time series indicate that 2LDM may account for
the activity-dependent modulatory component of effective connectivity between the neuronal populations. Rhythmic fluctuations
of the estimate gain functions in the delta-beta bands also support the compatibility of 2LDM with the neurobiology of DM.

1. Introduction

Even simple decisions imply higher cognitive functions that
integrate noisy sensory stimuli, prior knowledge, and the
costs-and-benefits related to possible actions in function of
their time of occurrence. Accumulation of noisy information
is a reliable pattern performed by neural pools in cortical
circuitry during decision making (DM) process.This process
is time absorbing, especially when the quality of information
is poor and there exist many possible alternatives that may
be evaluated and compared. There exists large consensus
in the studies of DM toward the conformation of a phase
of accumulation of evidence until a decision is made [1–
11]; that is, the decision maker is expected to keep on
gathering information until the evidence in favor of one
of the alternatives suffices. Thus, the stochastic integration
of information up to a certain threshold gives rise to

a speed-accuracy tradeoff (the performance of the responses
increases for slower response times) that is bounded by the
costs associated with obtaining more information. In this
context the responses times (RTs) to the stimuli characterize
the speed-accuracy tradeoff because they allow the iden-
tification of the time when a decision is made (although
not yet completed by the motor action) [12]. RT studies
have addressed the implementation of diffusive models for
describing decisional behaviors and the identification of the
neuronal areas related to the decisional activity. DM is a pro-
cess that involves different areas of the brain. These regions
include the cortical areas that are supposed to integrate
evidence supporting alternative actions and the basal ganglia
(BG) that are hypothesized to act as a central switch in gating
behavioral requests [9–15]. Neurons in the middle temporal
area (MT) are known to encode motion stimulus [13], while
the decision process itself occurs in other areas including
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posterior parietal cortex and prefrontal cortex. Perceptual
choice experiments with primates [2, 14] enabled to relate the
selective activation of neurons in the lateral intraparietal area
(LIP) with the perceptual choice and the response time [15],
and this activity would persist throughout a delay between
the stimulus and the saccadic movement. This implies that
the LIP neurons can respond neither purely to amotor signal,
nor simply to sensory input [16]. Rather, LIP neurons are also
supposed to contribute to the working memory associated
with guiding the eye movement [17]; that is, they would
store information about the target location. Neurons in the
prefrontal cortex display similar properties during visual
motion discrimination tasks [18]. Further studies of human
neuroimaging and monkey single-neuron physiology have
supported the hypothesis that the parietal and frontal cortices
form a system for temporal accruing of data and categorical
decision making. These areas would exert executive control
on sensory neurons by providing top-down signals that
convey information on semantic categorization derived by
the stimulus-response association [19, 20].

In natural environments several sensory stimuli produce
different alternatives and hence demand the evaluation of
different possible responses, that is, a variety of behaviors.
In other terms, also a selection question arises [21] whereby
the (probability) distribution of the correct response has to
take control of the individual’s motor plant [22]. The action
selection then would resolve a conflict among decisional
centers throughout the brain. A central switch that considers
the urgency and opportunity of specific response to the
stimuli results in an optimal solution in computational terms
that is physiologically reliable by taking the basal ganglia (BG)
as the neural base for that switch. Accordingly, BG gather
input from all over the brain and, by sending tonic inhibi-
tion to midbrain and brain stem targets involved in motor
actions, block the cortical control over these actions [23–25].
Therefore, the inhibition of the neurons in the output nuclei,
caused by BG activity, determines the disinhibition of their
targets and the actions would be consequently selected. In
other words, BG by acting as a central switch would evaluate
the evidence and facilitate the best supported responses [22,
26, 27]. Many studies have reported a significant increase in
the firing rate of the neurons of cortical areas representing the
alternative choices during DM in visual tasks. The increase
of the firing rates then would provide accumulation of
evidence (i.e., information) related to the alternatives [1, 2].
The association between the neural firing rates and the DM
process is by now an accepted fact and, by the way, some
points are worthy to be mentioned.The ramping of the firing
rates does not merely anticipate the motor action but would
also relate to the target selection. Rather, the rate of growth
of the neural activity is proportional to the response times,
and so it may predict the decision time. In fact, it triggers
the spiking burst of the downstream neurons (in SC and
caudate), and the occurrence of their crossing of a defined
threshold level marks the decision time. The ramping of the
firing rates is also proportional to the prior probabilities of
the alternatives and to their probabilities of being rewarded.

The main purpose of this work was to set the theoretical,
neurobiologically sustainable bases for representing the two

stages of valuation and choice of DM during Two-Alternative
Forced-Choice (TAFC) task in terms of two distinguished
layers of neuronal populations performing diffusive dynam-
ics (2LDM), under the assumption that in the DM among
alternative options the cortical areas (lateral prefrontal and
parietal cortex) integrate the corresponding weighted evi-
dence of the alternatives, whilst the ventromedial prefrontal
cortex and the striatum encode the value of different options
[28]. The secondary objective was to verify the ability of the
2LDM to account for possible influence that the populations
exert over each other. Therefore simulation of time series
reproducing the probability of doing motor action (visual
targeting) during Two-Alternative Forced-Choice (TAFC)
visual task was performed. Power spectrum of the gain
functions and synchronization analysis of the instantaneous
phases of the activities of the neuronal populations in the two
layers of the model suggested activity-dependent modulation
of the effective connectivity between the populations. The
so-called Two-Alternative Forced-Choice (TAFC) task has
often characterized the experimental setting for DM analysis
[5, 6, 11]. Bogacz and coauthors [29] evidenced that the TAFC
task models typically make three fundamental assumptions:
(a) evidence favoring each alternative is integrated over time;
(b) the process is subject to random fluctuations; and (c) the
decision is made when sufficient evidence has accumulated
favoring one alternative over the other.Themajor issue about
the modality of integration of evidence is generally solved
in favor of the integration of the difference in evidence,
rather than the independent integration of evidence for
each alternative. The application of the diffusion models in
the study of cognitive processes had been introduced by
Ratcliff [5] and since then on they had kept their theoretical
soundness in the context of the analysis of decision making
under uncertainty [1, 2, 4, 6–11] because it is relatively
simple and well characterized [30] and it has been proven
to implement the optimal mechanism for TAFC decision
making [22, 31]. In applying the diffusionmodel to the TAFC,
it is assumed that the accrual of noisy evidence corresponding
to the two alternatives is carried on until their difference
reaches a decisional threshold (Figure 1).

It has been shown [5, 31] that, under experiments with
human subjects performing TAFC tasks, the drift diffusion
model yields accuracy and reaction times (RTs). An advan-
tage from drift diffusion models (DDM) is that, given a
level of accuracy, it results in the fastest decision maker, for
a fixed decision threshold. The accuracy tends to increase
proportionally to the rising of threshold which results in
a speed-accuracy tradeoff. This speed-accuracy tradeoff is
usually considered a basic parameter for interpreting the
results of both behavioral and neurological experiments [12,
15, 32]. The surprising capability of DDM to fit behavioral
and neurological data seems to indicate that some decision
making processes in the brain are really computed by a similar
mechanism that accumulates evidence [33].

However, the canonical diffusion models assume that
momentary evidence is accumulated continuously and at
constant rate, that is, linearly, over the time until a decision
threshold is reached [2, 15, 34, 35]. The assumption of
linear integration of evidence in human decision making has
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Figure 1: Drift diffusion model. The randomness of the path taken under the influence of noisy stimuli characterizes the diffusion models. A
stimulus is represented in a diffusion equation by its influence on the drift rate of a random variable. This random variable, say the difference
of evidence corresponding to the alternatives, accumulates the effects of the inputs over time until one of the boundaries is reached. The
decision process ends when evidence reaches the threshold, and the time at which it occurs is called response time (RT). Response time (RT)
depends on (a) the distance between the boundaries and the starting point, (b) the drift, that is, the rate at which the average (trend) of the
random variable changes, and (c) the diffusion, that is, the variability of the path from the trend. These elements characterize the so-called
drift diffusion model (DDM). The accumulation of evidence is then driven both by a deterministic component (drift) that is proportional to
the stimulus intensity and by a stochastic component of noise (diffusion) that makes the evidence deviate from its own trend.The rationale of
DDM is that, since the transmission and codification of the stimuli are inherently noisy, the quality of the feature extraction from such inputs
may call for accumulation of a sufficient large sequence of the stimuli to get information [34]. Knowing the threshold level and the RT enables
one to take a sight into the mechanism underlying the decision process [12, 88]. We can draw an analogy with a physical system and imagine
the decisional process as the state of a “particle” moving within a potential well. Under this point of view, the persistence for relatively long
periods of the state variable in the subthreshold area implies that the particle still entangled in the potential well enters an excited state where
it remains for an exponentially distributed time interval with a certain decay time 𝜏𝑑. If the combination of input and noise is sufficiently
strong, then the particle is able to jump the barrier, that is, the threshold, and the system returns to an equilibrium state. The dynamics of the
particle thus may resolve in a relaxation process [38] characterized by the oscillations between periods of subthreshold “disorder” inside the
potential well and short impulses that trigger the system beyond the threshold in the rest state.This physical analogy allows better perception
of how the DDMmay fit the evolution of the input-output map underlying the neuronal model of the decision making process.

been recently criticized because it misses the occurrence of
refractory periods (“decisional blinks”) during DM, which
areknown in psychological literature [36, 37]. On the con-
trary, the rate of evidence accumulation during DM has
been found to fluctuate rhythmically in the delta band as
a mechanism of sensory and attentional selection [38–40].
The static linear-nonlinear transfer functions (LN cascades)
implemented in the 2LDM for modelling the probability of
firing rate of the neuronal populations in response to the
stimuli accomplish the hypothesis of nonlinear momentary
evidence accumulation.Moreover, in 2LDMa saturating, that
is, sigmoidal, activation function is used; therefore, the link
betweenmean population depolarization and expected firing
rate (i.e., the input-output map) is parameterized by the slope
of the sigmoidal function. Interestingly, the slope is allegedly
related to the first- and second-order convolution kernels of
the Volterra series, which represent a sufficient specification
of population dynamics [41–43]. The driving influence and
the activity-dependent modulatory components of the effec-
tive connectivity between neuronal populations can therefore
be estimated by analyzing the synchronization between the
gain functions of the two layers. Specifically, modulatory

connections are revealed by asynchronous coupling, whilst
driving connections relate to synchronous interactions [44].

Although the evidence accumulation and choice for-
mation are usually described as a one-stage process such
that a decision is given as soon as the decisional variable
reaches a threshold, it is empirically yet unknown whether
decision making is performed in a single neuronal circuit
[45]. Merging the two recognized stages of evaluation of
alternatives and behavior/motor-action selection into one
stage not only renders a model unable to explain over-
lapping (feature-fusion) phenomenon arising from high-
rate succeeding stimuli [46], but seems counterintuitive
with respect to the well-established statement that decisions
are not unitary events since derivation from two distinct
sequential processes [28, 47] as well. Neither would a one-
stage diffusion model be able to represent the nonlinear
interactions between the cortical and subcortical neuronal
populations involved throughout the brain, nor would it
properly describe high-conflict over long time scale (>3 s)
choices, nor would it yield well distinguished estimation
of the times for evaluation and action selection. From a
computational point of view, one stage would be a natural
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outcome only if the activation functions of the computational
layers in themultilevel neuronal networkwere linear, because
any multilayer neuronal network, under the condition of
linearly separable (i.e., independent) input patterns, might
be restricted to a single layer of linear units. However, this
assumption is not reasonable in neurobiological context,
because it rules out the nonlinear coupling among brain areas,
that is, the activity-dependent connections.

The most intriguing two-stage models have been pro-
posed in terms of integrate-and-fire attractor networks [33,
48–50], where the first network evaluates through com-
petitive learning the evidence-biased firing rates of the
neurons responding to each of the possible choices and
consequently takes a provisional decision in favor of themost
valued input. The second network provides final decisions
on the base of the confidence in the first level decision,
so that changes of the first level decisions are made possi-
ble. Positive feedback makes the integrate-and-fire attractor
network a nonlinear model and hence it is consistent with
the neurophysiology. Strikingly, attractor network exhibits,
at local (i.e., cortical) level, nonlinear diffusive dynamics
[48], where the biasing input stands for the drift and the
stochastic spiking of the neurons provides the diffusion
component. Hence, both attractor networkmodel and 2LDM
consider decision making inherently a process that involves
two levels of computation of nonlinear diffusion dynamics.
Also the attractor network model contemplates the role of
basal ganglia as driving system of the “global” competition
for the action/behavior selection, but in this case through
a linear diffusion process. This marks the difference with
2LDM, where the possible implication of BG activity is
to be considered in terms of nonlinear diffusion system.
As abovementioned, independent, separable input patterns
are necessary for linear integration, but this would hinder
adaptive mechanisms. Moreover, since the adaptive tuning
of the decision threshold is expected to be modulated by
reward signals [51, 52], the dopamine-dependent corticos-
triatal synapses are described as the neurobiological locus
for threshold modification [53]. This finding enhances the
assumption of nonlinear behavior of BG, whereas spiny
projection neurons display bistable behavior [54] just because
bistability calls for nonlinearity, feedback, and hysteresis,
which are conditions consistent with the implementation of
reinforcement learning in BG.

The paper is organized as follows.
Section 2 is about the neuronal populations codes and the

relationship between interpulse intervals and response times.
The last part of the section is dedicated to the description of
the two-layered diffusion model (2LDM).

Section 3 presents the results of synchronization analysis
between the instantaneous phases of the activities of the two
neuronal populations and the power spectrum of the gain
functions from the application of the 2LDM over simulated
data that were obtained by resampling time series of the
probability of visual targeting (likelihood) recorded during a
Two-Alternative Forced-Choice (TAFC) visual task.

Section 4 summarizes and discusses the main results and
adds some comments about computational and neurobiolog-
ical implications or potential developments of the 2LDM.

The appendix deals with statistical theory on distances
between features.

2. Two-Layered Diffusion Model (2LDM)

2.1. Population Code. As long as the cells in a neural pop-
ulation have similar response properties, that is, acting in
a statistically similar way [55], then the brain collects and
organizes information from patterns of activity involving
populations of neurons [56, 57]. In the work of Sanger [55]
it is also described that the input-output (stimulus-response)
map stems from the modulation of information; that is,
calculation on values that are represented by population
codes (encoding) and feature extraction about the input
stimuli (decoding), in the brain, may be seen as relations
between different population codes that provide internal
representations of the input-output map. In this perspective,
then, computation in the brain relies on commutations from
one internal representation to another. By assuming that
populations of neurons regulate the responses to stimuli,
we can consider the effect of the accumulation of activity
from a combination of two neural populations 𝑃

1
and 𝑃

2
.

The gathering and processing of information during the
experiments then would elicit spike-trains from those cells
of 𝑃
𝑘
(𝑘 = 1, 2) within the interval [0, 𝑇]. If we count

the number of spikes emitted up to a time 𝑡 (𝑡 ≤ 𝑇), we
obtain the variables 𝑁

𝑘
(𝑡) that represent the sequence of

evidence accumulation. Over the time, the occurrence of
noise makes 𝑁

𝑘
(𝑡) stochastic variables, and so the process

of accumulation of spikes from the neural population traces
a random pattern that is expected to end as it encounters a
bound (𝜃

𝑘
) at a finite time 𝜏 [12].The two processes {𝑁

𝑘
(𝑡), 𝑡 ≤

𝑇} by which the neural system learns the input stimuli
𝐼, thus, determine the behavior of the decisional variable.
This learning activity then would give rise to a first level
of codification through 𝑃

1
that provides the elaboration and

probabilistic valuation of the input 𝐼. In fact, we can imagine a
binary code where the “1 s” corresponds to𝑁

1𝜃1
, that is, to the

times the bound 𝜃
1
is trespassed. Afterwards, the codification

from 𝑃
1
is “translated” into the population 𝑃

2
by the variable

𝑁
2𝜃2
. This provides another binary code (0, 1) based on the

overtaking of the threshold 𝜃
2
, which ultimately drives the eye

movements during the computational task. Calculation on
values that are represented by population codes and feature
extraction about the input stimuli in the brain may be seen
as relations between different population codes that provide
internal representations of the input-output map. Hence, we
can “translate” the likelihood of 𝑦 | 𝑥 into a pulsed binary
code 𝑦

𝛿
, say the 𝛿-code, where 𝛿 is a nonlinear transform of

𝜃
2
such that 𝛿 = 𝑔

2
(𝜃
2
) and 𝑦

𝛿
at time 𝑡 assume the value “1”

(pulse) if the likelihood (𝑦 | 𝑥) > 𝛿, or the value “0” (no-
pulse) otherwise.

2.2. Interpulse Intervals and Response Times. After the signal
(𝑦 | 𝑥) has been reformulated on the base of the 𝛿-
code (Figure 2), we obtain a string of symbols (0, 1) and the
lengths of the sequences of the zeros provide the holding
times, that is, the empirical interpulse intervals, IPI(𝛿); that
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Figure 2: Example of binary encoding of information.The threshold
value 𝜃

2
allows reading of the variable 𝑦 as a binary code where the

1 s pulses occur when (𝑦 | 𝑥) = 𝑔(𝑁
2
) > 𝑔

2
(𝜃
2
). The lengths of the

sequences of zeros provide the interpulse-intervals (IPI).

is, the variable 𝑦 recoded according to 𝛿 results in periods
of subthreshold location that are broken out by sequences
of impulses. Analogously, from the recoded 𝑁

2𝜃2
we obtain

the corresponding empirical holding times IPI(𝜃
2
) given

the transform 𝑔
1
(𝑁
1𝜃1
) = 𝑁

2𝜃2
. Thus we can imagine a

functional chain among the bounds 𝜃
1
, 𝜃
2
, and 𝛿 scaled by

some opportune nonlinear transfer functions 𝑔
1
, 𝑔
2
(without

loss of generality, we set 𝑔
1
= 𝑔
2
= 𝑔). Let us assume that

{𝑁
𝑘
(𝑡)} (𝑘 = 1, 2) behaves a renewal process. The expected

value and the variance of a renewal process may be obtained
from the observed IPI data. In fact, for large 𝑡, the variable
𝑁
𝑘
(𝑡) is normally distributed with mean 𝑡/𝜇 and variance

𝑡 ⋅ 𝜎
2
/𝜇
3, where 𝜇 and 𝜎 are the mean and the standard

deviation of the corresponding IPI sequence, respectively [58,
59]. Therefore, the time series𝑁

𝑘
(𝑡) can be reconstructed by

averaging out over the neural population a Gaussian random
variable with mean 𝑡/𝜇 and variance 𝑡 ⋅ 𝜎2/𝜇3.

The importance of IPI arises from the hypothesis that the
information transferred within the nervous system is usually
encoded also by the timing of spikes [60–62]. (Since we are
dealing ultimately with the threshold-dependent variable 𝑦

𝛿
,

the random variable 𝑇
𝜃
= inf{𝑡 ≥ 0 | 𝑁

𝑘
(𝑡) ≥ 𝜃

𝑘
} is implicitly

involved, where 𝑁
𝑘
is the scalar diffusion process 𝑁

𝑘
=

{𝑁
𝑘
(𝑡), 𝑡 ≥ 0} that describes the evolution of the potential,

that is, of the evidence, between two consecutive neuronal
firings. 𝑇

𝜃
then is the theoretical counterpart of the IPI.)

Thus, by studying the properties of the set of the times 𝑡 that
correspond to the crossings of the threshold we both realize
the relationship between the impulse rate of the variables 𝑦

𝛿

and IPI and solve the so-called first passage time problem
[63] and hence the response time problem as well. We can
then consider the IPI as the expression of the response time
of the process through the threshold. Given this association,
it becomes natural to compare the theoretical distribution
of the response times to the observed distribution of the
IPI. An impulse of the variable 𝑦

𝛿
is elicited any time the

process 𝑔(𝑁
2
) crosses the threshold 𝑔(𝜃

2
) and then 𝑔(𝑁

2
)

starts again according to a renewal process. (This assumption
is necessary to identify the time series of successive pulses
times as a sample extracted from a population with the same
distribution of the random variable 𝑇

𝜃
[64].) The question

then is how to model the distribution of the response times.
We hypothesized the ex-Wald distribution of the response
times [65] so that the cumulative distribution function of the
response time variable is given by

𝐻(𝑡 | V, 𝑠, 𝜃, 𝛾) = 𝐹 (𝑡 | V, 𝑠, 𝜃)

− 𝐹 (𝑡 | 𝑘, 𝑠, 𝛼) ⋅ 𝑒
−𝛾⋅𝑡+((𝜃⋅(V−𝑘))/𝑠2)

,

(1)

where 𝑠 is the diffusion parameter (i.e., noise of the process),
𝑘 = √V2 − 2 ⋅ 𝛾 ⋅ 𝑠2, V and 𝜃 are the drift and the threshold
of the diffusion process, and 𝛾 (>0) is the rate parameter of
the exponential distribution. 𝐹 is the cumulative distribution
function of the Wald distributed component of the response
time variable andΦ is the standard Gaussian distribution:

𝐹 (𝑡 | V, 𝑠, 𝜃) = Φ(
V ⋅ 𝑡 − 𝜃
𝑠 ⋅ √𝑡

)

+ 𝑒
(2⋅𝜃⋅V)/𝑠2

⋅ Φ (−

V ⋅ 𝑡 + 𝜃
𝑠 ⋅ √𝑡

) .

(2)

The estimation of the parameters (𝑠, 𝜃, V, 𝛾) of the response
time distribution involves a backward procedure. Firstly, the
variable 𝑦

𝛿
must be determined for an initial value of the

threshold 𝛿 = 𝛿
0
so as to obtain the distribution of the

corresponding IPI(𝛿
0
). Secondly, the best combination of the

parameters (𝑠
2
, 𝜃
2
, V
2
, 𝛾
2
) for the RT distribution of𝑁

2
will be

assigned as the onewhichminimizes some error function, say
the root mean square error (RMSE) of the difference between
their corresponding distribution of RT and the observed
IPI(𝛿
0
). (Indeed the RMSE is a quadratic function of the

errors and is optimal when the residuals are distributed as
normal random variables. In that occurrence the RMSE is a
convex surface. On the contrary, in presence of heavy-tailed
distributions of the residuals, the RMSE becomes suboptimal,
and it had better use other criteria, e.g., based on entropy
measures. However, in front of the computational complexity
involved in the inverse method for deriving the parameters
of the diffusion models, the RMSE may turn out to be
economical.) Lastly, the parameters (𝑠

1
, 𝜃
1
, V
1
, 𝛾
1
) for the RT

distribution of the variable 𝑁
1
can be estimated analogously

by comparison to the interpulse-interval distribution IPI(𝜃
2
).

Of course the final result of the sequential procedure is 𝛿
0
-

dependent; that is, the particular initial value of 𝛿
0
may

affect the estimated vector of optimal parameters. Therefore,
the question is how to initialize 𝛿

0
. The assignation to the

average of the likelihood, that is, 𝛿
0
= 𝐸(𝑦 | 𝑥), suggests

an interesting interpretation under the information theory
perspective. In fact, we may expect that the function 𝑦

𝛿
=

𝑔(𝑁
2𝜃2
) should be learned so as to maximize the mutual

information between 𝑦 and 𝑁 subject to noise effect. This
is the so-called infomax principle, by which the process of
stimuli-learning gives rise to optimization algorithms [66]. If
the noise that affects the system is Gaussian and independent
of the input 𝑁

2
, then the mutual information between 𝑦

and 𝑁
2
resolves in the difference between the entropy of

the output 𝑦 and the entropy of the noise [60]. It implies
that, to improve the information transmission, the entropy of
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the signal 𝑦 must be maximized. Therefore, the value of the
function 𝑦

𝛿
= 𝑔(𝑁

2𝜃2
), which corresponds to the maximal

entropy of the binary signal 𝑦
𝛿
, is expected to be very close to

the one that corresponds to the average 𝐸(𝑦 | 𝑥). To recover
the mapping from stimulus to impulse rate we can apply a
nonlinear transformation 𝑔 of a convolution of the stimuli
𝑁
1
, 𝑁
2
. By assuming the logistic function for the nonlinear

transforming function we can write 𝑔 = 1/(1 + 𝑒−𝑋(𝑡)), where
𝑋(𝑡) = (𝐶 ∗ 𝑁)(𝑡) is the convolution of the stimuli 𝑁 (i.e.,
𝑁
1
or 𝑁
2
) with an opportune function 𝐶 that is obtained in

two stages. In the first stage the transfer function estimate
𝑇
𝑁𝑧

is computed for the input signal𝑁 and the binary output
signal 𝑧, where 𝑧 is the variable representing the probability
of impulse rates, that is, 𝑦

𝛿
if 𝑁 = 𝑁

2
or 𝑁
2𝜃2

if 𝑁 = 𝑁
1
.

The relationship between 𝑁 and 𝑧 is shaped by the static
(i.e., time invariant) transfer function 𝑇

𝑁𝑧
, that is, the ratio

of the cross power spectral density of𝑁 and 𝑧 over the power
spectral density of𝑁. In the second stage, the inverse discrete
Fourier transform of 𝑇

𝑁𝑧
is computed. Since the inputs𝑁 are

generated from Gaussian process, then 𝑋(𝑡) = (𝐶 ∗ 𝑁)(𝑡)

is Gaussian too. According to the theorem of Bussgang, the
cross-correlation between 𝑧 and 𝑋 scales the autocovariance
function of 𝑋 by a value alpha = 𝐸[𝑋 ⋅ 𝑔(𝑋)]/var(𝑋);
therefore we can correct 𝐶 with 𝐶


= 𝐶/alpha. Next, the

convolution of vectors 𝑁 and 𝐶 forms the argument of the
logistic transfer function 𝑔. This procedure yields a static
linear-nonlinear model for the probability of firing rate of
the neuronal populations in response to the stimuli and the
variable 𝑧 is then expressed by 𝑧(𝑡) = 𝑔((𝐶


∗ 𝑁)(𝑡)) + 𝑟(𝑡),

where 𝑟(𝑡) is the noise term [67].

2.3. Structure of the Model. Let us consider the input-output
map between input 𝐼 and the final state of decisional variable
𝑥. Data inflow at time 𝑡; 𝐼

𝑡
proceeds from external input

𝐼ext and recurrent output obtained at time 𝑡 − 1 (𝑦 | 𝑥)
𝑡−1

.
This relation, which implies relatively complex computational
paradigms, is mediated by populations of neurons 𝑃

1
and 𝑃

2

in different areas in the brain. Cells (𝑃
11
, . . . , 𝑃

1𝑞1
) of neuron

population 𝑃
1
, activated by input 𝐼, respond according to a

tuning curve 𝑠
𝑗
(𝐼) (𝑗 = 1, . . . , 𝑞) and generate the time series

of spikes 𝑛
𝑗
(𝑡). Variable 𝑁

1
(𝑡) counts the spikes until the

threshold 𝜃
1
is reached.This event affects the observable vari-

able 𝑦 and thus the final decisional state 𝑥 through a second
neuron population𝑃

2
.Thefiring of𝑃

2
neurons is integrated in

variable𝑁
2
(𝑡) that exceeds threshold 𝜃

2
and ultimately drives

the path of the variable 𝑦. The state of 𝑦 at any time 𝑡 holds
the whole information-set available up to 𝑡, including the
implicit reward corresponding to the 𝑦 state at that time. By
aiming at the maximization of the reward, the system would
give rise to gap evaluation and error reduction that ultimately
involves a feedback circuitry. In this way, the information
backpropagates from the decision stage to the valuation stage
in order to elicit the adaptation of the threshold 𝜃 in the
valuation stage. This mechanism of reinforcement triggers
the competition between the alternatives and the valuation
is ultimately addressed to the most probable rewarded one
(Figure 3).

Iext nj(t)

𝜃1 𝜃2

...
...

P11
P12

P1𝑞1

P21
P22

P2𝑞2

N1(t) N2(t) y | x

Figure 3: The two-layered diffusion model (2LDM) for decision
making. Both stages (valuation and choice) are affected by noise. In
the valuation stage the critical threshold indicates the firing rate of
the neuronal populations involved, to which would correspond the
expected reward. The outputs of this stage then are the differences
between the responses of observed neuronal activity at the stimuli
provided by the alternatives and the target. These measurements
enter the next stage, where the decision is taken so as to optimize
some utility criterion (reward). Hence, the attainment of the
threshold in the decision stage indicates the preferred alternative.
Feedback information flows from the decision stage in order to elicit
the adaptation of the boundary in the valuation layer. In this way, a
mechanism of reinforcement determines the competition between
the alternatives and the valuation is biased to the most probable
rewarded one.

3. Simulation

3.1. Methods. In order to test the ability of themodel to detect
effective interactions between the neuronal populations,
simulation of the 2LDM was carried on by resampling time
series of conditional probabilities froma previous experiment
of eye tracking. Nine subjects had been asked to look at
two abstract images displayed on a screen for 5 seconds
(s) at randomly assigned locations (left or right side). Each
subject performed ten trials. The two images were balanced
by extension and by photometrical characteristics (color,
luminance, and contrast). Eye movements had been recorded
during the period of 5 s (sampling frequency 1/50ms) and at
the end of that time subjects declared which of the images
was their preferred one.The likelihood, that is, the probability
of visual targeting towards one of two images conditional to
the final chosen stimulus, was then calculated over the total
90 choices. One hundred surrogates of this likelihood time
series were obtained by using the iAAFT technique (iterated
amplitude adjusted Fourier transform) [68], so preserving the
marginal distribution and power spectrum of the original
signal. Next, Gaussian noise proportional to the standard
deviation of the original likelihood was added at thirty
randomly selected points in each surrogate series. Run test
was applied to the resulting modified iAAFT surrogates, and
were retained only the ones for which the null hypothesis
of mutually independence of the elements in the sequence
was rejected. This procedure guaranteed the generation of
forty realistic-structured data vectors to which the 2LDM
was implemented. Paired 𝑡-test for comparing the rates of
populations’ activity variables 𝑁

1
and 𝑁

2
was done. Power

spectrum of the gain functions 𝑔((𝐶 ∗ 𝑁)(𝑡)) calculated for
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the two layerswas reported.Hilbert-transforms of the average
rates of populations’ activity variables 𝑁

1
and 𝑁

2
were

produced so as to derive their instantaneous phases (𝜑
1
, 𝜑
2
)

[69]. The correntropy coefficient (𝜂), which is a measure of
correlation in the reproducing kernel Hilbert space (RKHS)
ranging over [−1, +1], proper for nonlinear relationship [70],
operated as coefficient of phase locking (i.e., synchronization)
between the phases 𝜑

1
and 𝜑

2
. Correntropy measures were

calculated dynamically, that is, in running windows (of depth
= 6 data points), over the phase signals.

To use the phase locking indices in a meaningful way, we
need to know their distribution under the null hypothesis
of independent pairs of oscillatory activity. Only values
that depart significantly from what would be expected for
independent oscillators can be considered as revealing the
presence of synchronization. The distribution of the index,
computed for pairs drawn randomly from the surrogate
ensembles, can be considered as an approximation of the
distribution under the null hypothesis [71]. Therefore, the
iAAFT surrogates of both average rates of populations’
activity variables 𝑁

1
and 𝑁

2
were Hilbert-transformed and

the resultant instantaneous phases (𝜑sur1, 𝜑sur2) attained, and
the time series of correntropy values (𝜂sur) over running
windows (of the same size as before) between 𝜑sur1 and 𝜑sur2
was obtained.

To test the null hypothesis that the mean of the distances
between features (𝜂 and 𝜂sur) is zero, the Weibull-like distri-
bution of the variable 𝐷 = 𝜂 − 𝜂sur was considered (see the
appendix).

3.2. Results. The resampled time series of the likelihood
of visual targeting at the final selected image ranged over
[0.3827 : 0.7427], with mean = 0.5853 and SD = 0.095. The
original likelihood data series had mean = 0.6630 and SD
= 0.0951. A paired-samples 𝑡-test was conducted to compare
the rates of populations’ activity variables 𝑁

1
and 𝑁

2
. There

was a significant difference between the rates of 𝑁
1
(mean

= 0.2775, SD = 0.001) and the rates of 𝑁
2
(mean = 0.1891,

SD = 0.0009); 𝑡(99) = 649.85; 𝑃 = 0.00001. Power spectrum
of the gain function in 𝑃

2
showed higher components than

in 𝑃
1
up to the (lower bound of) beta-band (Figure 4).

Level of synchronization between the instantaneous phases
(𝜑
1
, 𝜑
2
) calculated by the Hilbert-transform of the rates of

populations’ activity variables 𝑁
1
and 𝑁

2
was determined

in terms of correntropy coefficients 𝜂 (Figure 5). Departures
from zero values indicate phase locking. To test the null
hypothesis of asynchronous state, the vector of correntropies
𝜂sur between the surrogate instantaneous phases (𝜑sur1, 𝜑sur2)
was considered as representative of the null hypothesis. The
distance between 𝜂 and 𝜂sur was expected to be distributed as
a Weibull random variable (see the appendix and Figure 6)
with shape and scale parameters 𝑎 = 0.3752 and 𝑏 = 1.5661.
According to the Weibull-like distribution, we found that
the test statistic, mean (distance)/S.E.(distance) = 15.323, was
significantly different from zero (𝑃 = 0.00012). Values in
the distance feature vector greater than the critical value =
0.756 (for the significance level of 5%) revealed the times of
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Figure 4: Gain functions. In the plot are displayed the gain
functions relative to the neuronal populations of the two layers. Both
showed prominent rhythmic activity in the delta band. Increased
oscillations up to beta band characterized population 𝑃
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Figure 5: Time course of the correntropy coefficient between
the phase signals in 𝑃

1
and 𝑃

2
, (𝜂), and between the surrogate

phases (𝜂sur). Correntropy is a measure of nonlinear correlation
that is obtained by the projection of the original vectors onto the
reproducing kernel Hilbert space. The plot displays the time course
of correntropy coefficients (𝜂 and 𝜂sur) between phase signals 𝜑1 and
𝜑
2
and between the corresponding surrogate phase signals (𝜑sur1 and

𝜑sur2). Zero values correspond to independence between the signals.

synchronization occurrence (Figure 7). Synchronized activi-
ties of the neuronal population were concentrated in the time
interval between 𝑡 = 54 and 𝑡 = 59 and peaked also at 𝑡 = 86.

4. Conclusions

The model presented in this study assumes that the trajec-
tories of an observable variable (𝑦) induced by the TAFC
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Figure 6: Cumulative distribution function of distance between
𝜂 and 𝜂sur. The cumulative distribution function of the variable
representing the difference between the correntropy coefficients
𝜂 and 𝜂sur is distributed as a Weibull-like random variable (with
parameters 𝑎 = 0.3752 and 𝑏 = 1.5661).

decision making task are conditional to the final state (𝑥),
and so they trace the information processing. Under this
hypothesis, the possible association between the formation of
a decision, as determined by the 𝑦 path, and the final state
of the decisional process can be investigated by considering
that populations of neurons determine neuronal responses to
stimuli (Figure 3). More specifically, here it is hypothesized
that the series of the likelihood (𝑦 | 𝑥) are generated by
sequential activation of two neuronal populations 𝑃

1
and 𝑃

2

and that the decisional process is the effect of accumulation
of activity by a pool of neuron populations. This would
engender diffusive dynamics of the accumulated evidence.
Thus, the proposed model, 2LDM, is, to a certain extent,
an implementation of the two-stage circuitry of valuation
and decision which is computationally reliable in terms of
both neurobiology and Bayesian theory [72, 73]. From this
perspective, likelihood ultimately relies on commutations
from one internal representation to another, according to
their diffusive processes of activation.

There is a theoretical linkage between 2LDM and the
well-recognized integrate-and-fire attractor network model
[33, 48–50] since both models rely on nonlinear diffusive
dynamics. Major difference rests in the expected dynamics
of the basal ganglia involved during the decision making
process, which we considered driven by nonlinear patterns
rather than linear patterns. Furthermore, the characterization
of the input-output map in terms of the infomax principle
makes, ultimately, the 2LDM an entropy-thresholding algo-
rithm where the model’s parameters (threshold, diffusion
noise, and drift) should be tuned to maximize the mutual

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

Critical value

Time (×50ms)

𝜂-𝜂sur

Figure 7: Distance of the correntropy coefficients measured for
the phase signals and their surrogates. Synchronized interaction
between the two neuronal populations was determined in corre-
spondence with the values of the correntropy distance vector above
the critical value (0.756), which was calculated according to the
distribution of a Weibull random variable with parameters 𝑎 =

0.3752 and 𝑏 = 1.5661 at the significance level of 5%. We observed a
prominent asynchronous interaction.

information between the representations they engender and
the inputs that feed the layers. This is consistent with the
Q-learning adaptation, since learning the “best” action on
the two thresholds to maximize the cumulative entropy is
equivalent to learning the optimal behavior whichmaximizes
the reward [74, 75]. Nonlinearity in the 2LDM is given by
static linear-nonlinear functions that express the gain of the
input-output map, so overcoming the theoretical weakness
inherent in the canonical diffusion models which assume
that momentary evidence is accumulated continuously and
at constant rate, that is, linearly, until a decision threshold
is reached. This way to model nonlinear dynamics is not
a novelty in neuroscience because it fits for Volterra series
representation which, through the first- and second-order
kernels, estimates the driving and modulatory influence that
one population exerts on the other. The slope of sigmoidal
transfer function yields information about the effective con-
nectivity between the neuronal populations, because it is a
proxy of the Volterra kernels [76].

Simulation was used to test the ability of 2LDM to
represent interactions between the neuronal populations on
reliable time series and did not aim at investigating the
underlying cognitive process. Synchronous interaction was
present within a restricted median time interval, where,
supposedly, the dynamics of the two neuronal populations
were mutually reinforcing [44]. Instead, asynchronous inter-
action was prominent. This kind of finding is expected for
modulatory (i.e., top-down) connections rather than for
driving influence. Neurobiological consistency of the results
was found also in terms of the power spectrum of the gain
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functions, which showed rhythmic oscillations in the low-
frequency bands (from delta- to beta-bands). The spectral
content of neuronal activity in the circuits of valuation
and choice may yield information about the mechanisms
underlying the DM [77]. In fact, neuronal oscillations are
associated with reverberating activity at local and large scale
[78] and reverberation would elicit prolonged accumulation
of evidence during decision making [79]. Delta-band oscil-
lations in cortical areas have been associated with attention
[80], while the occurrence of synchronization in the delta-
band is reported to be widespread and modulated by the
different decision alternatives and context specific [81].Theta-
band oscillations are expected to operate in many cognitive
functions including memory and DM [82, 83]. The striatum
oscillations in theta frequency range are prevalent but activity
in lower band is also observed [84]. In a study of DM [85],
oscillations in alpha and beta frequency bands had been
found synchronized with the phase of delta and theta oscil-
lations (phase-amplitude coupling) in medial frontal cortex.
This synchronization might reflect a mechanism of feedback
valence coding in the medial frontal cortex. Beta-band
activity has been linked to reverberation, which is a possible
mechanism for memory consolidation and accumulation of
evidence [86], as well as to computational operating in DM
rather than neuronal representation of the sensory evidence
[87]. Our finding of increased beta activity (although in the
lower bound of the beta frequency range) in the second
neuronal population, which would perform the selection
of the optimal alternative, seems consistent with this latter
perspective.

Improvement in the optimization of the 2LDM parame-
ters is expected by considering other error functions instead
of RMSE if the distribution of the residuals is not Gaussian
and is heavy-tailed such that it exhibits large skewness and
kurtosis. A challenging task would be the implementation of
further layers for studying the subcircuits possibly involved
in the valuation or choice stage of DM (e.g., the direct and
indirect pathways in BG). Finally, the application of 2LDM to
specific cognitive experimental task would yield information
about how the speed-and-accuracy performance may vary
on the base of some psychometric or behavioral smoothing
parameter.

Appendix

Statistics of Distances between Features

To measure the similarity between two feature vectors, many
distance measures have been proposed [89, 90]. A common
metric class of measures is the 𝐿

𝑝
-norm. The distance from

one reference vector s to another feature vector t can be
formalized as

𝐷 = (∑

𝑖





𝑠
𝑖
− 𝑡
𝑖






𝑝

)

1/𝑝

= ∑

𝑖

𝑋
𝑝

𝑖
. (A.1)

In order to derive the distribution of the variable 𝐷 we can
refer to the following.

Lemma A.1. For nonidentical and correlated random vari-
ables 𝑋

𝑖
, their sum is distributed according to the generalized

extreme value distribution (Gumbel, Frechét, and Weibull).

Lemma A.2. If in Lemma A.1 the variables 𝑋
𝑖
are upper

bounded, the sum of variables is Weibull-distributed.

TheoremA.3. For nonidentical, correlated, and upper bound-
ed variables𝑋

𝑖
, the random variable𝑌, expressed by their sum,

adheres to the Weibull distribution.

Corollary A.4. For finite length feature vectors with noniden-
tical, correlated, and upper bounded values, the 𝐿

𝑝
-distances

for limited 𝑝, from one reference feature vector to other feature
vectors, adhere to the Weibull distribution.
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