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Exome sequencing using next-generation sequencing technologies is a cost-efficient approach to selectively sequencing coding
regions of the human genome for detection of disease variants. One of the lesser known yet important applications of exome
sequencing data is to identify copy number variation (CNV). There have been many exome CNV tools developed over the last few
years, but the performance and accuracy of these programs have not been thoroughly evaluated. In this study, we systematically
compared four popular exome CNV tools (CoNIFER, cn.MOPS, exomeCopy, and ExomeDepth) and evaluated their effectiveness
against array comparative genome hybridization (array CGH) platforms. We found that exome CNV tools are capable of identifying
CNVs, but they can have problems such as high false positives, low sensitivity, and duplication bias when compared to array CGH
platforms. While exome CNV tools do serve their purpose for data mining, careful evaluation and additional validation is highly
recommended. Based on all these results, we recommend CoNIFER and ¢cn.MOPs for nonpaired exome CNV detection over the
other two tools due to a low false-positive rate, although none of the four exome CNV tools performed at an outstanding level when

compared to array CGH.

1. Introduction

Next-generation sequencing technology, piloted by the Illu-
mina platform, has substantially decreased the cost of
sequencing on large genomic regions. However it is still
financially prohibitive to perform whole genome sequencing
on a large number of subjects, especially for large scale
genetic epidemiology association studies, at a sufficient depth
for accurate genotype calls. The human exome represents
about 1-3% of the human genome with approximately 30-50
million base pairs but accounts for over 85% of all mutations
identified in Mendelian disorders [1]. As a result, exome
sequencing is currently an attractive and practical approach
for investigating coding variations.

Exome sequencing is typically used to identify single
nucleotide polymorphisms (SNPs), somatic mutations
(through paired sample comparison), and small and large

structural variations. A lesser-known application of exome
sequencing data is to identify copy number variations
(CNV). CNVs are a structural variation in which cells have
an abnormal number of copies of one or more sections of
the DNA. Normal cells are diploid containing two copies
of DNA and abnormal CNVs refer to large regions of
the chromosome that have been deleted or duplicated.
CNV characterization is important for both the basic
understanding of many diseases and their diagnoses. CNVs
have been linked to various diseases including autism [2],
obesity [3], breast cancer [4], colorectal cancer [5], and lung
cancer [6].

Traditionally, CNV detection has been performed with
cytogenetic techniques such as fluorescent in situ hybridiza-
tion, array comparative genomic hybridization (array CGH),
and with virtual karyotyping using SNP arrays. Array CGH is
commonly considered to be a reliable method for discovering
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novel CNVs because of the relatively even distribution of
probes [7]. Many high-impact copy number studies [8-10]
were based on results derived from array CGH methods.

Whole genome sequencing data are relatively even in
coverage, thus making it ideal for CNV discovery. Many
CNV methods [11-17] have been developed for whole genome
sequencing data. On the other hand, exome sequencing’s
depth is strongly affected by the enrichment regions, thus
making it less ideal for CNV discovery. However, given the
popularity of exome sequencing and the massive amount of
exome sequencing data accumulated thus far, there is much
interest in inferring CNVs from exome sequencing data.
Thus, multiple CNV tools targeting exome sequencing data
have been developed. We have cataloged sequencing data
based CNV tools in Table S1 at the Supplementary Material
available online at http://dx.doi.org/10.1155/2013/915636.

To determine if exome sequencing could provide reli-
able CNV detection, we performed array CGH and exome
sequencing on 16 breast cancer cell lines. The data obtained
from this study provides us an opportunity to evaluate
the CNV discovery method based on exome sequencing
while using array CGH as the reference. To date, there have
been seven CNV tools targeting exome sequencing data:
ExomeCNYV [18], CoNIFER [19], cn.MOPS [20], exomeCopy
[21], ExomeDepth [22], CNANorm [23], and CONTRA
[24]. CNANorm, CONTRA, and ExomeCNYV are specifically
designed for paired tumor and normal samples. The other
four do not require paired sample as input. These four
tools cover a unique aspect of exome sequencing data. As
exome sequencing become more commercially affordable,
large epidemiology studies which only have blood samples
available are more likely to choose exome sequencing over
SNP array. The unpaired exome CNV tools will become
the only suitable tools for CNV analysis. In this study, we
systematically evaluated the performance of these four tools
against each other using array CGH as the reference. We
present our findings in detail and make a recommendation
for the best unpaired exome CNV discovery tool based on
our findings.

2. Materials and Methods

We performed array CGH on 16 breast cancer cell lines (Table
S2) using the Agilent SurePrint G3 Human CGH Microarray
Kit. This array CGH kit contains 963,029 distinct probes
with 2.1 KB overall median probe spacing. The array CGH
chips were scanned using the GenePix 4000B scanner, and
probe intensities were normalized using Agilent’s Feature
Extraction software. CNVs were called using the Aberration
Detection Method 2 (ADM2), a very broadly used CNV
detection method for array CGH platform through Gene-
Spring Software. Exome sequencing data analysis was also
performed on the same 16 breast cancer cell lines using
[lumina’s TrueSeq exome enrichment kit on Illumina’s HiSeq
2000 platform. The sequencing reads are pair end 75 base
pair long. The pooled, barcoded raw data produced by the
Ilumina HiSeq 2000 high-throughput sequencer was first
split using barcode splitting software to obtain raw data for
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each individual. The raw data were aligned using BWA [25],
which was designed based on the Borrows-Wheeler Trans-
formation. The Human reference genome HG19 was used for
alignment. The aligned BAM [26] files were locally realigned
using the Genome Analysis Toolkit (GATK) [27] developed
by the Broad Institute. The local realignment step aims to
correct misalignment caused by the presence of insertions or
deletions (indels). To further increase the local realignment
accuracy, after local realignment, we performed base quality
score recalibration on the realigned BAM files using GATK’s
recalibration tool. The recalibration tool attempts to correct
for variations in quality with machine cycle and sequence
context. The resulting BAM files contain not only more
accurate base quality scores but also more widely dispersed
ones. The recalibrated BAM files were filtered by removing
all reads with mapping quality Phred score [28] less than
20 and all bases with base quality Phred score less than 20
(meaning that the probability of the base call being wrong is
less than 0.01). CNVs on the processed BAM files were called
using CoNIFER, cn.MOPS, exomeCopy, and ExomeDepth.
Each of the four tools provides a wide range of parameters.
We either consulted with the authors of the tools for the best
parameters or used the author recommended parameters for
the analysis. The exact command line used for each tool is
listed in Table S3. Results of CNV detection from these four
tools were compared to the array CGH results to determine
the strength and weakness of each program.

3. Results and Discussion

3.1. Results. We generated high quality exome sequencing
data using the Illumina TrueSeq enrichment kit on the HiSeq
2000 platform. All samples’ raw data passed the initial quality
control using FASTQC. On average, each sample had 117
million (range: 73 to 183 million) reads sequenced. The
average capture efficiency was 48% (range: 39% to 62%).
No notable quality issues were observed for the exome
sequencing data (Table S2).

Across all 16 samples, array CGH identified 5,225 CNVs.
Among the four exome CNV tools, exomeCopy identified
the most CNVs (3,398), and CoNIFER identified the least
(267). ExomeDepth (1,581) and cn.MOPS (1,214) identified a
moderate number of CNVs (Figure 1(a)). The median CNV
length identified by array CGH was 261,400 base pairs (range:
959 to 146,900,000 base pairs). ExomeDepth and exomeCopy
identified the CNVs with longer average length than did array
CGH, while CNVs identified by CoNIFER and cn.MOPS had
shorter average length compared to array CGH (Figure 1(b)).

We also determined the deletion-duplication ratio for
array CGH and the four exome CNV tools by sample. Each
sample has distinct molecular characteristics that result in
distinct deletion and duplication ratios. Consistently observ-
ing more duplication than deletions or vice versa across all
samples may be an indication of an algorithm-specific bias.
For array CGH, across all 16 samples, we observed 9 samples
with more duplication and 7 samples with more deletions,
a rather ideal scenario (Figure 2(a)). For exomeCopy and
cn.MOPS, we observed 10 samples with more duplication
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FIGURE I: Overview of the CNVs detected by array CGH and four algorithms. (a) Barplot of the duplication and deletion CNV's detected by

five methods. (b) Boxplot of the CNV length detected by five methods.

TaBLE 1: Kullback-Leibler test on similarity with array CGH.

aCGH cn.MOPS exomeCopy ExomeDepth CoNIFER
Deletion CNVs proportion similarity
aCGH 0 0.14 0.16 0.17 2.24
cn.MOPS 0.15 0 0.22 0.24 1.84
exomeCopy 0.16 0.23 0 0.2 1.88
ExomeDepth 0.22 0.27 0.23 0 2.56
CoNIFER 0.8 0.97 0.87 0.72 0
Duplication CNVs proportion similarity
aCGH 0 0.4 0.4 0.47 0.66
cn.MOPS 0.36 0 0.42 0.66 0.61
exomeCopy 0.42 0.59 0 0.18 0.26
ExomeDepth 0.55 1.06 0.25 0 0.55
CoNIFER 0.77 0.58 0.26 0.42 0

and 6 samples with more deletions (Figures 2(b) and 2(c)).
For ExomeDepth, we observed 11 samples with more dupli-
cation and 5 samples with more deletions (Figure 2(d)). For
CoNIFER, we observed 14 samples with more duplication and
2 samples with more deletions (Figure 2(e)). We conducted
paired Wilcoxon signed rank tests to see if there is any dupli-
cation or deletion bias. We found that array CGH showed
unbiased duplication and deletions with P value = 0.11,
exomeCopy also showed unbiased duplication and deletions

with P value = 0.1. CoNIFER had strong bias toward duplica-
tion with P values equal to 0.025. ExomeDepth and Cn.MOPS
showed marginal bias toward duplication with P value =
0.064. To identify the exome CNV tool with the most similar
deletion duplication ratio, we conducted pairwise Kullback-
Leibler divergence distance on both duplication and deletions
proportions (Table1). The values in Table1l are measures
of the difference between the tested method and the array
CGH method, with smaller values indicating less difference.
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FIGURE 2: Barplot of duplication and deletion CNVs detected from each sample by five methods. The P value beside each method name
was calculated by paired Wilcoxon signed rank tests following FDR correction. It indicated the detection bias between duplication and
deletion CNVs of that method. Array CGH and exomeCopy showed unbiased duplication and deletion while CoNIFER had strong bias
toward duplication. Cn.MOPS and ExomeDepth showed marginal bias toward duplication.

For both duplication and deletions, cn.MOPS showed the
shortest distance to array CGH, with 0.15 for deletions and
0.36 for duplication.

To measure the consistency with array CGH, we deter-
mined the overlap of CNVs identified between each of the
exome CNV tools with array CGH. Overlapping CNVs
were defined as regions that share at least 50% of their
base pairs. We also used a less strict option where two
CNVs are considered consistent if only 1% of the base pairs
overlapped. However, regardless of which option we use,
the results were very similar, since if two CNVs from two

methods overlapped, most of them overlapped by at least 50%
(Table S4). Compared to the array CGH platform, cn.MOPS
had the best true positive rate for duplication with 76.9%,
and CoNIFER had the best true positive rate for deletions
with 83.8% (Figure 3). ExomeDepth and exomeCopy had
comparable true positive rates for duplication with CONIFER
but lower true positive rates for deletions. Also interestingly,
all four exome CNV tools identified some CNVs with oppo-
site direction (deletion instead of duplication or vice versa)
compared to array CGH. ExomeDepth and exomeCopy had
relatively low proportion of CNVs with opposite direction
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FIGURE 3: Specificity of four algorithms for CNV detection. CoNIFER identified many fewer CNVs but with a high true positive rate at
deletion detection. ExomeDepth and ExomeCopy showed comparable specificity with CoNIFER on duplication detection but many more
false positives on deletion detection. Cn.MOPS showed best specificity at duplication detection and second best specificity at deletion
identified many more CNVs than CoNIFER. Overall, cn.MOPS achieved the highest specificity among all four algorithms.

on duplication (2.5% and 3.0%) but a moderate proportion
of CNVs with opposite direction on deletion (8.9% and
10.9%), while cn.MOPS and ConNIFER had a relatively
low proportion of CNVs with opposite direction (3.5% and
2.5% for duplication, 6.3% and 5.9% for deletion). CONIFER
and cn.MOPS detected CNVs with a much lower false-
positive rate. In such a scenario, CONIFER and cn.MOPS are
much more desirable, because it is impossible to tell true-
positives from false-positives without any prior knowledge.
ExomeDepth and exomeCopy also demonstrated comparable
performance for detecting duplication with CONIFER.

3.2. Discussion. Exome sequencing is widely used to con-
duct genomic research. Identifying CNVs through exome
sequencing data has been a popular topic over the last few
years. Compared to array-based methods, identifying CNVs
through exome sequencing data has some shortcomings.
First, the exons within the genome are not evenly placed.
They are located at fixed positions, unlike probes which can
be designed to be placed evenly across the whole genome.
Thus if only depth information from unevenly located exons
can be used for CNV assessment then CNV detection over a
long intergenic region would be unreliable. Also, a probe can



be designed to avoid hybridization at problematic genomic
regions such as regions with high GC content. A high GC
content region can affect the sequencing depth for exome
sequencing, which makes identifying CNVs using exome
sequencing data even more complicated. Additional normal-
ization to correct noise caused by effects such as GC content
is desirable.

With these known difficulties, many exome CNV tools
have been developed over the last few years. In this study, we
evaluated the effectiveness of four popular unpaired exome
CNYV tools: cn.MOPS, CoNIFER, ExomeDepth, and exome-
Copy using 16 breast cancer cell lines. We identified CNV's
using these four tools and verified the results against array
CGH results from the same samples. CONIFER and cn.MOPS
identified much fewer CNVs but with a high true-positive
rate. ExomeDepth and exomeCopy produced comparable
performance for duplication detection with CoNIFER. In
terms of duplication-deletion proportion, we found that with
the exception of exomeCopy, the exome CNV tools showed a
significant bias toward duplication. This could be the result of
an artifact of the exome CNV algorithm that underestimates
the normal copy number based on depth. Using the Kullback-
Leibler divergence distance, we found that cn.MOPS is the
closest to array CGH in terms of duplication or deletion
proportion across samples. Based on all these results, we
recommend CoNIFER and cn.MOPS for nonpaired exome
CNV detection over the other two tools due to a low false-
positive rate, although none of the four exome CNV tools
performed at an outstanding level when compared to array
CGH. In summary, there is value in identifying CNVs
using exome sequencing data but extra caution needs to be
taken into consideration due to the high false positive rate.
Identifying CNVs is almost never the primary goal of the
exome sequencing study, and it should stay that way due to
the noise introduced by exome sequencing data. Identifying
CNVs using exome sequencing data is potentially a good
secondary data mining technique. Based on our comparison
of the methods, results generated from exome CNV tools
should be evaluated thoroughly, and additional validation
is highly recommended to eliminate false-positives and to
ensure quality data.

4. Conclusions

Using array CGH result as control, we systematically com-
pared four popular exome CNV tools (CoNIFER, cn.MOPS,
exomeCopy, and ExomeDepth) on exome sequencing data
generated from 16 breast cancer cell lines. Among evaluated
four tools, we recommend CoNIFER and cn.MOPS for
nonpaired exome CNV detection due to a low false-positive
rate. Our results suggest that exome CNV tools are subjected
to high false positive rat, low sensitivity, and duplication
bias when compared to array CGH platform. Thus careful
evaluation and additional validation is highly recommended.
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