
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 583079, 8 pages
http://dx.doi.org/10.1155/2013/583079

Research Article
Low-Frequency Acoustic-Structure Analysis
Using Coupled FEM-BEM Method

Jinlong Feng,1 Xiaoping Zheng,1 Haitao Wang,2 HongTao Wang,2

Yuanjie Zou,3 Yinghua Liu,1 and Zhenhan Yao1

1 School of Aerospace, Tsinghua University, Beijing 100084, China
2 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
3 China Academy of Space Technology, Beijing 100094, China

Correspondence should be addressed to Xiaoping Zheng; zhengxp@tsinghua.edu.cn

Received 19 July 2013; Accepted 5 September 2013

Academic Editor: Song Cen

Copyright © 2013 Jinlong Feng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A numerical algorithmbased on finite elementmethod (FEM) and boundary elementmethod (BEM) is proposed for the analyses of
acoustic-structure coupled problems. By this algorithm, the structural domain and the acoustic domain are modelled by FEM and
BEM, respectively, which are coupled with each other through the consideration of the appropriate compatibility and equilibrium
conditions on the interface of the two domains. To improve the computational efficiency, the adaptive cross approximation (ACA)
approach is incorporated into the proposed algorithm to deal with the nonsymmetric and fully populated matrices resulting from
the coupling of the FEM and BEM.The validity and the high efficiency of the present approach are demonstrated by two examples.

1. Introduction

Acoustic-structure coupling problems can be found in var-
ious engineering fields. For example, in space exploration,
spacecrafts are subject to heavy acoustic load, particularly
during launching, which can impose severe and adverse
effect on the astronauts and the structure of the spacecrafts.
Therefore, it is necessary to develop numerical methods to
predict the structural behaviour in the acoustic-structure
coupling problems since these numerical techniques are
essential to the improvement of practical engineering design.

The finite element method (FEM) and boundary element
method (BEM) are both widely used in various engineering
problems. However, FEM and BEM are generally applied
in different areas. For instance, the former is especially
well suited to the analyses of the problems which involve
inhomogeneity or nonlinearity [1, 2], whilst the latter is one
of the most powerful and suitable numerical techniques for
predicting the noise around a vibrating system [3]. Compared
to FEM [4], BEM reduces the mathematical dimension of the
problem under analysis by one. Furthermore, in BEM, the

Sommerfeld condition is automatically satisfied so that the
external domain does not need to be bounded. As a result,
BEM is regarded as the most suitable tool to deal with the
problems in exterior unbounded domains.

Therefore, for acoustic-structure problems involving sub-
merged bodies, it should be a natural strategy to combine
FEM and BEM in a computational model to make use of the
respective advantages of the two methods. The combination
of FEM and BEM can be implemented by decomposing the
concerned domain into several subdomains, each of which,
according to its specific physics, is modelled by either FEM
or BEM [5–7]. Because of the appropriate compatibility and
equilibrium conditions on the respective interface bound-
aries, the subdomains are coupled to each other.

It should be mentioned that the boundary integral equa-
tion has a major defect for exterior problems; that is, it has
nonunique solution at a set of fictitious eigenfrequencies
associated with the resonant frequencies. In the past, several
methods have been proposed to overcome this difficulty.
The two most popular methods are the CHIEF method
and Burton-Miller approach. The CHIEF method [8] is
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based on the Helmholtz integral equation on the surface
of the radiating body combined with Helmholtz equations
for some interior points. The resulting system equation is
usually solved by the least-square approach. The Burton-
Miller approach [9], inspired by Panich formulation [10],
forms a linear combination of the Helmholtz boundary
integral equation and its normal derivative, providing also a
valid solution at any frequency but leading to hypersingular
integrals which can be handled by Guiggiani algorithm [11,
12]. In this study, the Burton-Miller approach is adopted.

Similar to BEM, the coupled FEM-BEM approach leads
to a fully populated system matrix. This is thought to be
a major drawback of the coupled approach as compared
with FEM which normally results in a sparse symmetrical
system matrix. If iterative methods like the generalized
minimal residual (GMRES) method [13] in combination
with suitable preconditioners are used to solve the FEM-
BEM system with 𝑁 degrees of freedom, the computational
expense is in the order of 𝑂(𝑁2). If a direct solver is
applied, the computational cost is even in the order of𝑂(𝑁3).
Fortunately, over the last few years, several fast solution
methods including fastmultipolemethod (FMM) [14–16] and
adaptive cross approximation approach [17, 18] have been
developed. These methods reduce the memory requirements
and the computational time significantly when dealing with
the matrix-vector product. In this study, the ACA approach
is adopted since it is much easier to operate compared with
FMM which is based on a series expansion of kernel-shape
function products.

In this paper, a coupling algorithm combining FEM
and BEM is developed for the analysis of acoustic-structure
response. This paper is organized as follows. Section 1 is a
short introduction to the background and corresponding
research status. In Section 2, the FE formulations of the struc-
ture domain are constructed. In Section 3, the application of
the BEM to Helmholtz problem and its implementation is
presented.Then, the coupled equations are built in Section 4.
In Section 5, the solving algorithms of coupled equations
including the GMRES iterative solver and ACA approach
are introduced. In Section 6, several numerical examples are
presented.

2. FE Formulation of Structural Domain

A coupling system of acoustic-structure is shown in Figure 1.
The structure is assumed to be fully submerged in interior
and exterior acoustic fields or one of them. In Figure 1,
the structure domain is denoted by Ω𝑆. The interior and
the exterior acoustic fields are denoted by Ω

𝐼 and Ω
𝐸,

respectively. The inner interface and the outer interface are
named as 𝑆𝐼 and 𝑆𝐸, respectively. The structure is assumed to
be thin and flexible, which is susceptible to acoustic-structure
interaction.

FEM is predominantly chosen for simulating linear elas-
todynamic systems. When the structure Ω𝑆 is discretized by
FEM, the resulting system of linear equations reads as

Mü + Cu̇ + Ku = f
𝑠
+ T
𝑠
, (1)

Ω
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S
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Figure 1: Illustration of a coupling system of acoustic-structure.

where M, C, and K denote the global mass matrix, the
damping matrix, and the stiffness matrix, respectively. The
vector f

𝑠
is load vector, while the vector T

𝑠
resulted from

the tractions on the coupling interface, and it will be further
discussed in the following section. The global displacement
vector is denoted by u.

In this paper, Rayleigh damping is considered for the
damping matrix, which means that

C = 𝜉M + 𝜂K, (2)

where 𝜉 and 𝜂 are the damping parameters.
If the load vector f

𝑠
and the acoustic pressure vector T

𝑠

are both assumed to be harmonic, the displacement vector u
should be also harmonic. This means that

f
𝑠
= f
𝑠
𝑒
𝑖𝜔𝑡
, T

𝑠
= T
𝑠
𝑒
𝑖𝜔𝑡
, u = u𝑒𝑖𝜔𝑡, (3)

where the imaginary unit is denoted by 𝑖 and 𝜔 = 2𝜋𝑓 is the
circular frequency with the excitation frequency 𝑓. For the
relationship between u and u̇, one obtains

u̇ (𝑡) = 𝑖𝜔u𝑒𝑖𝜔𝑡 = u̇ (𝜔) 𝑒𝑖𝜔𝑡,

ü (𝑡) = −𝜔2u𝑒𝑖𝜔𝑡 = 𝑖𝜔u̇ (𝜔) 𝑒𝑖𝜔𝑡.
(4)

Substituting (4) into (1) yields

[𝑖𝜔M + C − 𝑖K
𝜔
] u̇ (𝜔) = f

𝑠
+ T
𝑠
. (5)

NASTRAN, a finite element package, is employed to set
up M, C, K, and the right-hand side vector f

𝑠
. Since M, C,

and K are frequency independent, these matrices only have
to be calculated once for a given model.

3. The Boundary Element Method for
the Helmholtz Equation

Acoustic problems in frequency domain can be described by
the Helmholtz equation which has a three-dimensional form
given by

∇
2
𝑝 (x) + 𝑘2𝑝 (x) = 0, (6)
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where ∇2 is the Laplace operator, 𝑝(x) is the sound pressure
at point x in the fluid, 𝑘 = 𝜔/𝑐 is the acoustic wavenumber,
and 𝑐 is the speed of sound in the fluid.

The boundary condition can be expressed as

𝑝 (x) = 𝑝 (x) , x ∈ 𝑆𝐷,

𝜕𝑝 (x)
𝜕𝑛

= 𝑞 (x) , x ∈ 𝑆𝑁.
(7)

Additionally, the three-dimensional Sommerfeld radia-
tion condition [19] is

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑝

𝜕𝑟
− 𝑖𝑘𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑐

𝑟2
, 𝑟 󳨀→ ∞. (8)

For the exterior problem, (8) has to be satisfied to ensure that
the wave is purely outgoing.

A three-dimensional fundamental solution for the
Helmholtz equation is given by

𝐺
∗
(x, y) = 𝑒

𝑖𝑘𝑟

4𝜋𝑟
, (9)

where x is a field point, y is a source point, and 𝑟 = |x − y|
is the distance from x to y. The key idea is to use Green’s
second identity in combinationwith the property of theDirac
distribution:

∫
Ω
𝐸
∪Ω
𝐼

(𝑝∇
2
𝐺
∗
− 𝐺
∗
∇
2
𝑝) d𝑉

= ∫
𝑆
𝐸
∪𝑆
𝐼

(𝑝
𝜕𝐺
∗

𝜕𝑛
− 𝐺
∗ 𝜕𝑝

𝜕𝑛
) d𝑆.

(10)

By this way, the pressure 𝑝 at an arbitrary point x
within the acoustic domain Ω𝐸 ∪ Ω𝐼 is given by the integral
representation

𝑝 (x) = −∫
𝑆
𝐸
∪𝑆
𝐼

𝐺
∗
(x, y)

𝜕𝑝

𝜕𝑛
(y) d𝑆

+ ∫
𝑆
𝐸
∪𝑆
𝐼

𝜕𝐺
∗
(x, y)
𝜕𝑛
𝑦

𝑝 (y) d𝑆,

x ∈ Ω𝐸 ∪ Ω𝐼.

(11)

For scattering problems (11) can be written as

𝑝 (x) = −∫
𝑆
𝐸
∪𝑆
𝐼

𝐺
∗
(x,y)

𝜕𝑝

𝜕𝑛
(y) d𝑆

+ ∫
𝑆
𝐸
∪𝑆
𝐼

𝜕𝐺
∗
(x, y)
𝜕𝑛
𝑦

𝑝 (y) d𝑆 + 𝑝𝐼 (x) ,

x ∈ Ω𝐸 ∪ Ω𝐼.

(12)

Let the point x approach the boundary; then the following
conventional boundary integral equation (CBIE) [20] is
obtained:

𝐶 (x) 𝑝 (x) = ∫
𝑆

(𝐺
∗ 𝜕𝑝

𝜕𝑛
− 𝑝

𝜕𝐺
∗

𝜕𝑛
) d𝑆, (13)

where 𝐶(x) = 1/2 if 𝑆 is smooth around x. This CBIE can be
employed to solve the unknown 𝑝 and 𝜕𝑝/𝜕𝑛 on 𝑆𝐸 ∪ 𝑆𝐼.

It is well known that the CBIE has a major defect for
exterior problems; that is, it has nonunique solution at a set
of fictitious eigenfrequencies associated with the resonant
frequencies [21]. A remedy to this problem is to use the
normal derivative BIE in conjunction with the CBIE. Taking
the derivative of the integral representation given in (13) with
respect to the normal at a typical point x on 𝑆𝐸∪𝑆𝐼 and letting
x approach 𝑆𝐸 ∪ 𝑆𝐼, one obtains the following hypersingular
boundary integral equation (HBIE):

𝐶
󸀠
(x) 𝑞 (x) = −∫

𝑆
𝐸
∪𝑆
𝐼

𝜕𝐺
∗
(x, y)
𝜕𝑛
𝑥

𝜕𝑝

𝜕𝑛
(y) d𝑆

+ ∫
𝑆
𝐸
∪𝑆
𝐼

𝜕
2
𝐺
∗
(x, y)

𝜕𝑛
𝑥
𝜕𝑛
𝑦

𝑝 (y) d𝑆, x ∈ 𝑆𝐸 ∪ 𝑆𝐼,

(14)

where 𝐶󸀠(x) = 1/2 if 𝑆𝐸 ∪ 𝑆𝐼 is smooth around x. It should
be noted that (14) suffers from the same kind of defect as
(13). However, if a linear combination of CBIE and HBIE is
used, the uniqueness of the results can be ensured for exterior
acoustic wave problems. Therefore,

∫
𝑆
𝐸
∪𝑆
𝐼

𝜕𝐺
∗

𝜕𝑛
𝑦

𝑝 (y) d𝑆 + 𝐶 (x) 𝑝 (x)

+ 𝛼∫
𝑆
𝐸
∪𝑆
𝐼

𝜕
2
𝐺
∗

𝜕𝑛 (x) 𝜕𝑛 (y)
𝑝 (y) d𝑆

= ∫
𝑆
𝐸
∪𝑆
𝐼

𝐺
∗ 𝜕𝑝

𝜕𝑛
d𝑆

+ 𝛼 [∫
𝑆
𝐸
∪𝑆
𝐼

𝜕𝐺
∗

𝜕𝑛
𝑥

𝜕𝑝

𝜕𝑛
d𝑆 − 𝐶󸀠 (x)

𝜕𝑝

𝜕𝑛
𝑥

(x)] ,

(15)

where 𝛼 is the coupling constant. This formulation is called
Burton-Miller formulation [9] for acoustic wave problems
and has been shown to yield unique solutions at all frequen-
cies, if 𝛼 is a complex number which, for example, can be
chosen as 𝛼 = 𝑖/𝜅 with 𝑖 = √−1 [21]. In (15), 𝜕𝑝/𝜕𝑛 = −𝑖𝜔𝜌v,
and 𝜌 and v denote the density of the fluid and the normal
velocity on the interface, respectively.

When the boundary of the acoustic domain is discretized
into boundary elements, the resulting linear system equations
can be expressed as

[H] [p] = [G] [v] , (16)

where the matrices [H] and [G] are obtained by integrating
the fundamental solutions over each boundary element.

Equation (16) is the boundary element equation used to
solve the acoustical problem. When there is incident sound,
a free term is needed, and (16) becomes

[H] [p] = [G] [v] + [p𝐼] . (17)
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4. Coupled FE-BE Formulations

By taking into account the appropriate compatibility and
equilibrium conditions at the respective interface bound-
aries, the fully coupled FE-BE formulations can be derived.
Hereby, the matching grids for the FE and the BE parts
are required. The compatibility condition at the respective
interface boundaries links the acoustic pressure 𝑝 and the
tractions 𝑇

𝑛
on the structure, which can be written in the

following matrix form:

𝑇
𝑛
= T ⋅ n = −𝑝. (18)

For an element, one has

T𝑒
𝑠
= ∫
𝑆𝜎

N𝑇T dΓ = ∫
𝑆𝜎

N𝑇𝑇
𝑛
n dΓ

= −∫
𝑆𝜎

N𝑇n[N𝑏]
𝑇

d Γp = −As
𝑒
p,

(19)

where As
𝑒
= ∫
𝑆𝜎

N𝑇n[N𝑏]𝑇dΓ.
Substituting (19) into (5) and using uniform symbol for

the matrices and vectors yield

{𝑖𝜔 [M] + [C] − 𝑖 [K]
𝜔
} [u̇ (𝜔)] = [f

𝑠
] − [A𝑠] [p] . (20)

From (20), one obtains

[u̇ (𝜔)] = {𝑖𝜔 [M] + [C] − 𝑖 [K]
𝜔
}

−1

{[f
𝑠
] − [A𝑠] [p]} . (21)

Please note that [u̇(𝜔)] in (21) incorporates the velocity
vector of all of the nodes in the structure, and [v] in (17) just
denotes the velocity vector of the nodes on the surface of the
structures. The relationship between them reads as

[v] = [R] [u̇ (𝜔)] , (22)

where [R] is a transformationmatrix from the velocity vector
for all nodes in the structure to the velocity vector for the
surface nodes [22].

Substituting (21) into (22) yields

[v] = [R] {𝑖𝜔 [M] + [C] − 𝑖 [K]
𝜔
}

−1

{[f
𝑠
] − [A𝑠] [p]} . (23)

Further more, substituting (23) into (17) yields

{[H] + [G] [R] {𝑖𝜔 [M] + [C] − 𝑖 [K]
𝜔
}

−1

[A𝑠]} [p]

= [G] [R] {𝑖𝜔 [M] + [C] − 𝑖 [K]
𝜔
}

−1

[f
𝑠
] + [p

𝐼
] .

(24)

Equation (24) is the coupled FEM-BEM equation, from
which the sound pressure of the nodes on the interfaces can
be obtained.

5. Solving Algorithm of the Coupled
FEM-BEM Equation

Because of the nonsymmetric and fully populated matrices
in the coupled FEM-BEM equations, the ACA approach
is used in this study to reduce the memory requirements
and the computation cost. During iteration process, the
generalized minimal residual (GMRES) method iterative
solver is adopted. In the following, the ACA and the GMRES
algorithms are introduced briefly. More details can be found
in relevant literatures [17, 18, 23].

5.1. Adaptive Cross Approximation. The ACA algorithm pro-
duced by M. Bebendorf and S. Rjasanow is an effective
technique for solving nonsymmetric and fully populated
matrices. The main process is as follows.

(1) Index Octree. The low-rank approximation of the
matrix of FEM-BEM is based on asymptotically
smooth functions, which happens in a well-separated
domain. Thus, a tree structure for all boundary
points should be constructed at first. For a three-
dimensional domain, an octree is necessary to be built
to describe the geometry relationship of sections on
surface. The information that a tree should record
includes its father, its children, its geometry infor-
mation, and the points contained. The least nodes
are called leaves whose numbers of boundary points
contained are less than a given threshold value used
to judge whether a new division is necessary.

(2) Partitioning of Matrix. Based on the tree, the matrix
in the FEM-BEM equation can be divided into some
blocks. At first, the relationship between nodes should
be established. For some node NP in an octree, its
neighbour nodes are defined as the nodes which have
the same geometry size and one common point at
least. The interaction nodes are those nodes owing
the same geometry size, whose fathers are neighbour
nodes, but not for them. The relationship is shown as
given Figure 2 in a two-dimensional domain.

Then for each node of the tree, the elements contained
are taken as source points and the elements of its
neighbour as field points, and the submatrices coming
from the source points and field points are defined
as 𝐴
𝑛
. The submatrices whose entries come from

elements of the node and its interaction nodes are
defined as𝐴

𝑓
. All of the submatrices𝐴

𝑛
and𝐴

𝑓
form

the whole efficient matrix of FEM-BEM equation.

(3) Low-Rank Approximation. The low-rank approxima-
tion in ACA is defined as

Ã𝑚×𝑛 = U𝑚×𝑟V𝑟×𝑛 =
𝑟

∑

𝑖=1

u𝑚×1
𝑖

v1×𝑛
𝑖
. (25)
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Figure 2: Relationship between nodes.

The target of ACA is to achieve

󵄩󵄩󵄩󵄩R
𝑚×𝑛󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
A𝑚×𝑛 − Ã𝑚×𝑛󵄩󵄩󵄩󵄩󵄩 ≤ 𝜀

󵄩󵄩󵄩󵄩A
𝑚×𝑛󵄩󵄩󵄩󵄩 , (26)

where 𝜀 is the tolerance of ACA.

The ACA algorithm has been applied to the low-rank
blocks achieving approximately 𝑂(𝑁) for both storage and
matrix-vector multiplication [24]. It must be noted that
the fully pivoted approach is well known to be much
slower than the partially pivoted approach. The main reason
behind this is that the fully pivoted approach requires the
knowledge of the full matrix, whereas the partially pivoted
approach would only require generation of individual matrix
entries.

5.2. Generalized Minimal Residual Method. The generalized
minimal residual (GMRES) method is one of the most
popular iterative solvers for nonsymmetric linear systems.
It was proposed by Saad and Schultz [25] and further
developed by other researchers [26–28]. It has the prop-
erty of minimizing at every step the norm of the residual
vector over a Krylov subspace. The algorithm is derived
from the Arnoldi process for constructing an orthogonal
basis of Krylov subspace. Because of existence of error,
the gained vectors lose orthogonality gradually. Therefore,
preconditioner is needed. In the computer codes for this
study, the solution of the diagonal blocks is taken as the initial
solution, and the maximum number of iteration is set to
500.

Table 1: Characteristics of the fluid and the sphere.

Materials Properties Values

Fluid Acoustic velocity 1524m/s
Density 1000 kg/m3

Sphere

Young’s modulus 2.07 × 1011 Pa
Poisson’s ratio 0.3

Density 7669 kg/m3

Thickness 0.15m
Radius 5m

Table 2: Characteristics of the fluid and the structure.

Materials Properties Values

Fluid Acoustic velocity 344m/s
Density 1.297 kg/m3

Structure

Young’s modulus 1.176 × 1011 Pa
Poisson’s ratio 0.31

Density 4500 kg/m3

Thickness 20mm
Length 2.36m
Width 2.1m
Height 3.6m

6. Numerical Examples

In this section, the proposed coupling approach is applied
to two examples for the simulation of acoustic-structure
coupling problems.

6.1. Benchmark Example. The spherical test structure is an
elastic sphere shell with a radius of 5m and thickness of
0.15m, full of some kind of liquid. A point sound source
is located in the center of the sphere emitting harmonic
spherical wave. The outer surface of the sphere is free, and
the inner surface of the sphere is coupled with the acoustic
field. The detailed geometrical and material parameters for
the sphere and the fluid are shown in Table 1. In this example,
the damping is ignored.

This problem is simulated by using FEM and BEM,
respectively.TheBEMresults are obtained using the proposed
algorithm. The FEM results are obtained using NASTRAN
software. The sound pressure amplitudes obtained by the
two methods are plotted in Figure 3. From the two curves,
we can see that the results using BEM agree well with the
results obtained from FEM.However, from Figure 4 in which
computational efficiencies of different solving methods are
compared, it can be seen that the ACA approach requires the
least computing time.

6.2. Analysis of the Frequency Response of a Rectangular Box.
Furthermore, the frequency response analysis of a square box
is also presented. The rectangular box is a closure chamber
made of thin plates. Its inner and outer surfaces of the
box are coupled with the interior and the exterior acoustic
fields, respectively. In this example, the exterior acoustic field
is assumed to be infinite. A point acoustic source located
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Figure 3: Sound pressure curves obtained by BEM and FEM.
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outside the box initiates the coupled response of the structure
and its surrounding acoustic fields. The mesh of the box is
shown in Figure 5.

Parameters of the box and the fluid are listed in Table 2.
To model this problem, the origin of the Cartesian

coordinate system is set to coincide with the center of the
bottom surface of the box, while the coordinate axes are
parallel with the edges of the box. The box’s bottom surface
is restrained. The point acoustic source generating harmonic
spherical wave (𝑝

0
= 1Pa) is located at the point (4.0m,

0.0m, 4.0m). Damping is ignored.

X Y

Z

Figure 5: Mesh of the square box.
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Figure 6: Sound pressure under different frequencies.

Two cases are considered. In the first case, the interior
acoustic field is neglected, whilst in the second case the
interior and the exterior acoustic fields are both considered.
In the two cases, the sound pressures at a selected point
(1.18m, 0.0m, 2.057m) are calculated. They are compared in
Figure 6.

From Figure 6, it can be seen that the trends of the two
pressure-frequency curves are similar, but the pressures are
a bit different at some specific frequencies; for instance, the
frequency is around 20. Figure 7 demonstrates the acoustic
pressure on the outer surface of the box. According to
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Figure 7: (a) Sound pressure distribution for the coupled system without considering the inner field. (b) Sound pressure distribution for the
coupled system considering the inner field.

the graphs, it is found that, when the frequency varies from
20 to 100, the pressure distributions on the outer surface of
the box are almost the same for the two cases. Therefore, it
can be concluded that, for this example, the neglection of the
inner acoustic field in the modelling does not lead to ruinous
result.

7. Conclusions

In this study, an algorithm based on the coupling of FEM
and BEM is developed for the analysis of acoustic-structure
response. The FEM is employed to model the structure part,
while the BEM is used to discretize the acoustic domain.
The two domains are coupled with each other through the
consideration of the appropriate compatibility and equilib-
rium conditions on the interface of the two domains. To

improve the computational efficiency, the ACA approach
is incorporated into the proposed algorithm to deal with
the nonsymmetric and fully populated matrices resulting
from the coupling of the FEM and BEM. By the proposed
algorithm, the fictitious frequency problem can also be
avoided. The validity and the high accuracy of the present
algorithm are demonstrated by a benchmark example. The
modeling for the frequency response of a rectangular box
is also presented. The numerical examples show that the
coupling method has great potential to deal with large-scale
complex acoustic-structure problems.
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