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Unlike inflexible structure of soft and hard threshold function, a unified linear matrix form with flexible structure for threshold
function is proposed. Based on the unified linear flexible structure threshold function, both supervised and unsupervised subband
adaptive denoising frameworks are established. Todetermine flexible coefficients, a directmean-square error (MSE)minimization is
conducted in supervised denoising while Stein’s unbiased risk estimate as a MSE estimate is minimized in unsupervised denoising.
The SURE rule requires no hypotheses or a priori knowledge about clean signals. Furthermore, we discuss conditions to obtain
optimal coefficients for both supervised and unsupervised subband adaptive denoising frameworks. Applying an Odd-Term
Reserving Polynomial (OTRP) function as concrete threshold function, simulations for polynomial order, denoising performance,
and noise effect are conducted. Proper polynomial order and noise effect are analyzed. Both proposed methods are compared
with soft and hard based denoising technologies—VisuShrink, SureShrink, MiniMaxShrink, and BayesShrink—in denoising
performance simulation. Results show that the proposed approaches perform better in both MSE and signal-to-noise ratio (SNR)
sense.

1. Introduction

Signals are usually corrupted by noise in capturing and
transmission stages due to environment disturbance and
device error. Signal denoising has become an important
research topic for a long time and a wide variety of denoising
methods have been proposed. Due to their effectiveness and
good performance, wavelet threshold methods have become
a powerful tool for denoising problems since Donoho and
several others’ fundamental works.Themain purpose of these
methods is to estimate a wide class of functions in some
smoothness spaces from their corrupted versions [1]. The
different energy distribution property between smoothness
spaces’ functions and noise makes these methods effective:
the energy of a function in smoothness is often concentrated
on few coefficients while noise is spread on all coefficients.

Of the various wavelet threshold schemes, soft and hard
based threshold methods are the most popular technolo-
gies and have been theoretically verified by Donoho and

Johnstone [2]. They gave a near optimal threshold value
𝑇 = √2𝜎2 log𝑁 in minimax sense, where the threshold is
a function of noise variance 𝜎 and the number of samples𝑁. This universal thresholding method is known as Vis-
uShrink [3]. In MSE sense, better threshold methods have
been proposed including SureShrink [4] and BayesShrink
[5]. SureShrink gets the threshold via minimizing Stein’s
unbiased risk estimate [6]. Assuming a generalized Gaussian
distribution for wavelet coefficients, BayesShrink obtains the
threshold through a Bayesian framework. Different a priori
assumptions about the statistical distribution of wavelet
coefficients, such as Gaussian scale mixture [7], Mixture
of Laplacians [8], and alpha-stable [9], are also proposed,
while the dependency on statistical distribution restricts their
flexibility.

Soft and hard based threshold schemes suffer their own
flaws due to inherent defects of soft and hard threshold
functions. For soft threshold schemes, systematical biased
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Figure 1: A three-level wavelet decomposition (each color represents a level). There are three detail subbands each with a length of 𝐾𝑗 (1 ≤𝑗 ≤ 3) and one approximation subband with a length of𝐾3.

estimation could happen, while hard threshold schemes are
less biased but less sensitive to small perturbations in the data.
In addition, the more important drawback is that soft and
hard threshold functions do not have continuous derivatives.
Various improvements had been proposed by exploring new
threshold functions [1, 10–17], but the nonnegative garrote-
like functions [10–14] are still not differentiable. Zhang [1,
15], Nasri and Nezamabadi-pour [16], and Wu et al. [17],
respectively, proposed a series of threshold functions with
adjustable parameters. The differentiable property makes
these threshold functions suitable for gradient based mini-
mization problems.

Most of mentioned methods above depend on a single
parameter threshold, which makes those methods very sen-
sitive to threshold value and lack of freedom. More flexible
and convenient strategies had been proposed by Luisier
et al. [18] and Smith et al. [19]. Both employ an idea of
linear combination: the threshold function is formed by a
linear combination of a set of parameters. The parameters
are determined via minimizing a MSE problem. Compared
to gradient based minimization, this minimization is linear
and is easy to solve. In this paper, we adopt the linear
combination idea and propose a unified matrix form with
flexible structure for threshold function. Based on the unified
flexible structure threshold function, both supervised and
unsupervised subband adaptive denoising frameworks are
established. In supervised denoising, a directMSEminimiza-
tion is conducted while in unsupervised denoising, we apply
Stein’s unbiased risk estimate as MSE estimation. The SURE
rule requires no hypotheses or a priori knowledge about
clean signals. Furthermore, we discuss conditions for optimal
solution for both supervised and unsupervised denoising
frameworks.

Our contributions can be summarized as follows: (1)
a unified linear matrix form with flexible structure for
threshold function and a concrete OTRP function are pro-
posed; (2) both supervised and unsupervised denoising
frameworks are established; (3) conditions for guaranteeing
optimal solution for minimizing problems are discussed and
provided.

The paper is organized as follows. In Section 2, both
supervised and unsupervised denoising frameworks are
introduced. In Section 3, frameworks employing proposed
OTRP function are compared with soft and hard based
denoising methods and comparison results are presented.
Conclusions are made in the final.

2. Proposed Approaches

2.1. Problem Settings and Denoising Scheme. In time domain,
it is assumed that the clean signal x is additively corrupted by
noise e to produce the noisy signal y in the form of

y = x + e, (1)

where y = {𝑦𝑖}𝑁𝑖= 1, x = {𝑥𝑖}𝑁𝑖= 1, and e= {𝑒𝑖}𝑁𝑖= 1 are discrete
time series. Additive Gaussian white noise (AGWN) is only
considered, with a zero mean and a 𝜎2 variance; that is, 𝑒𝑖 ∼
N(0, 𝜎2).

We only consider orthonormal wavelet transform
(OWT), which keeps energy conservation. In OWT domain,
the AGWN is still Gaussian. Relationship of wavelet
coefficients in vector form is

Y = X + E, (2)

where Y = Wy, X = Wx, and E = We.W is discrete wavelet
transform (DWT) matrix. Each vector V (V = Y,X,E) is
stacked by both detail and approximation wavelet coefficients
as similarly shown in Figure 1. Each detail is a subband. Let
V𝑗 (1 ≤ 𝑗 ≤ 𝐽) denote the 𝑗th detail subband with a vector
length of𝐾𝑗. 𝐽 represents the total number of detail subbands
and also the number of decomposition level. There holds the
relationship𝐾𝑗 = 𝑁/2𝑗.

We measure the quality of denoising by mean-square
error (MSE) defined as

MSE (x, x̂) = 𝜀 {‖x − x̂‖22} , (3)

where 𝜀(⋅) is the expectation operator. An estimate of MSE is
given as

M̂SE (x, x̂) = 1𝑁 [(x − x̂)𝑇 (x − x̂)] = 1𝑁
𝑁∑
𝑖=1

(𝑥𝑖 − 𝑥̂𝑖)2 . (4)

By considering OWT, energy conservation property guaran-
tees that the total MSE is a weighted sum of MSE in each
individual subband, which is in the form of

MSE (x, x̂) = MSE (X, X̂) = 𝐽∑
𝑗=1

𝜔𝑗 ×MSE (X𝑗, X̂𝑗) , (5)

where 𝜔𝑗 is a weight of corresponding subband. It only needs
to minimize each individual subband MSE to get minimum
of total MSE. In the rest of paper, we ignore subband index
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Figure 2: Proposed wavelet domain denoising schemes.

𝑗 and give a unified notation MSE(X, X̂) to represent MSE in
any subband.

Wavelet domain denoising generally consists of a three-
stage procedure. First, perform DWT on noisy signal. Then a
threshold function is applied to wavelet domain coefficients.
Finally, denoised signal is obtained through an inverse DWT
(IDWT). We adopt this three-stage procedure to perform
our proposed denoisingmethods. Each subband is adaptively
denoised by supervised or unsupervised denoising method
as shown in Figure 2. That makes our approaches work in
a subband adaptive manner. There are two input signals in
Figure 2 where d represents the desired signal for supervised
denoising and y denotes noisy signal. Corresponding upper-
case letters of d and y denote their subbands. Both methods
output an estimate for clean signal x.

2.2. Proposed Threshold Function. The general problem can
be formulated as a construction of threshold function that
minimizes the MSE. By employing linear combination idea,
an estimate of a clean signal can be represented by a linear
combination of atoms; atoms mean the columns of a matrix.
Involving wavelet transform, an estimate of clean wavelet
coefficients can be represented by a linear combination of
atoms which are decided by noisy wavelet coefficients. A
general threshold function can be demonstrated as

𝜃 = Ψa, (6)

where 𝜃 is an estimate for clean wavelet coefficients.
Ψ= [𝜑1 𝜑2 ⋅ ⋅ ⋅ 𝜑𝑀] is a matrix composed of𝑀 atoms and
each atom 𝜑𝑚 = [𝜑𝑚(𝑌1) 𝜑𝑚(𝑌2) ⋅ ⋅ ⋅ 𝜑𝑚(𝑌𝐾)]𝑇 is decided
by a function of noisy wavelet coefficients. Dimension of
an atom is decided by subband wavelet coefficients number𝐾𝑗 = 𝑁/2𝑗: that is, 𝐾 = 𝐾𝑗 when denoising subband𝑗. Besides, atom dimension 𝐾 does not have direct rela-
tionship with atom number 𝑀. A more deep connection is
discussed in Section 2.5. Furthermore, atom number𝑀 has
nothing to do with detail subband number or decomposition
level 𝐽. a= [𝑎1 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑀]𝑇 is a weight vector with each
element having a weight coefficient for corresponding atom,
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Figure 3: Visual comparison among soft and hard threshold
function and a realization of a three-order 𝜃(𝑌) with coefficients[𝑎3 𝑎2 𝑎1] = [0.00064 0.016 0.2].

so 𝜃 is a weighted sum of atoms and can be denoted as
𝜃= [𝜃(𝑌1) 𝜃(𝑌2) ⋅ ⋅ ⋅ 𝜃(𝑌𝐾)]𝑇.

In this paper, the adopted concrete threshold function is
OTRP function with order𝑀, denoted as

𝜃 (𝑌) = 𝑀∑
𝑚=1

𝑎𝑚𝑌2𝑚−1. (7)

This polynomial function could fit almost any curves
along with varying polynomial order. The most impor-
tant advantages are its differentiability and its linear flex-
ible structure over soft and hard threshold functions.
Clearly, (7) conforms with (6) where atom is 𝜑𝑚 =
[𝑌2𝑚−11 𝑌2𝑚−12 ⋅ ⋅ ⋅ 𝑌2𝑚−1𝐾 ]𝑇 , (1 ≤ 𝑚 ≤ 𝑀). A comparison
among soft and hard threshold function and a realization of
a three-order 𝜃(𝑌) are shown in Figure 3.

2.3. Supervised Denoising. In supervised denoising, a desired
signald is available; thus, a directMSEminimization problem
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can be carried out. As (5) indicates, total MSE is a weighted
sum of MSE in each individual subband. It only needs to
minimize a subbandMSE to determine its flexible parameter
a in (6).With prior knowledge about desired signal d, a direct
MSE can be written as

MSE (D, 𝜃) = 𝜀 {‖D − 𝜃‖22} = 𝜀 {(D − 𝜃)𝑇 (D − 𝜃)}
= 𝜀 {D𝑇D −D𝑇𝜃 − 𝜃𝑇D + 𝜃𝑇𝜃}
= 𝜀 {D𝑇D} − 2𝜀 {𝜃𝑇D} + 𝜀 {𝜃𝑇𝜃}
= 𝜀 {D𝑇D} − 2a𝑇𝜀 {Ψ𝑇D}
+ a𝑇𝜀 {Ψ𝑇Ψ} a.

(8)

The optimal parameter aopt can be obtained through𝜕MSE(D, 𝜃)/𝜕a = 0 on condition that Ψ𝑇Ψ is positive sem-
idefinite and invertible. These conditions are discussed in
Section 2.5. We first derive the optimal solution form as

𝜕MSE (D, 𝜃)𝜕a = 2𝜀 {Ψ𝑇Ψ} a − 2𝜀 {Ψ𝑇D} = 0 󳨐⇒ (9)

aopt = 𝜀 {Ψ𝑇Ψ}−1 𝜀 {Ψ𝑇D} . (10)

As seen from (10), the optimal parameter aopt is affected by
matrixΨ and desired signalD. The estimates of 𝜀{Ψ𝑇Ψ} and𝜀{Ψ𝑇D} are obtained via an estimate of expectation operator
in (4):

𝜀̂ {Ψ𝑇Ψ} =
[[[[[[[
[

𝜀̂ {𝜑𝑇1𝜑1} 𝜀̂ {𝜑𝑇1𝜑2} ⋅ ⋅ ⋅ 𝜀̂ {𝜑𝑇1𝜑𝑀}
𝜀̂ {𝜑𝑇2𝜑1} 𝜀̂ {𝜑𝑇2𝜑2} ⋅ ⋅ ⋅ 𝜀̂ {𝜑𝑇2𝜑𝑀}... ... d

...
𝜀̂ {𝜑𝑇𝑀𝜑1} 𝜀̂ {𝜑𝑇𝑀𝜑2} ⋅ ⋅ ⋅ 𝜀̂ {𝜑𝑇𝑀𝜑𝑀}

]]]]]]]
]

= 1𝐾
[[[[[[[
[

𝜑𝑇1𝜑1 𝜑
𝑇
1𝜑2 ⋅ ⋅ ⋅ 𝜑𝑇1𝜑𝑀

𝜑𝑇2𝜑1 𝜑
𝑇
2𝜑2 ⋅ ⋅ ⋅ 𝜑𝑇2𝜑𝑀... ... d

...
𝜑𝑇𝑀𝜑1 𝜑

𝑇
𝑀𝜑2 ⋅ ⋅ ⋅ 𝜑𝑇𝑀𝜑𝑀

]]]]]]]
]

= 1𝐾Ψ𝑇Ψ,

𝜀̂ {Ψ𝑇D} =
[[[[[[[
[

𝜀̂ {𝜑𝑇1D}
𝜀̂ {𝜑𝑇2D}...
𝜀̂ {𝜑𝑇𝑀D}

]]]]]]]
]
= 1𝐾

[[[[[[[
[

𝜑𝑇1D

𝜑𝑇2D...
𝜑𝑇𝑀D

]]]]]]]
]
= 1𝐾Ψ𝑇D.

(11)

𝜀̂{Ψ𝑇Ψ}−1 = 𝐾(Ψ𝑇Ψ)−1 is obtained from 𝜀̂{Ψ𝑇Ψ} = Ψ𝑇Ψ/𝐾;
thus, coefficient 1/𝐾 is eliminated by 𝐾. So, the estimate of
aopt is obtained as

aestopt = (Ψ𝑇Ψ)−1 (Ψ𝑇D) . (12)

2.4. Unsupervised Denoising. In practice, when a desired
signal is not available, a direct MSE minimization is impos-
sible. Constructing an estimate of MSE seems a reasonable
choice. A practical approach is Stein’s unbiased risk estimate
[6]. This part mainly introduces a SURE based unsupervised
denoising.

2.4.1. Stein’s Unbiased Risk Estimate (SURE). This section
mainly introduces Stein’s theorem stated in [6, 20] and its
tailored version.

Theorem 1. Y = (𝑌1 𝑌2 ⋅ ⋅ ⋅ 𝑌𝐾) is a normal random vector
with mean X = (𝑋1 𝑋2 ⋅ ⋅ ⋅ 𝑋𝐾) and identity as covariance
matrix. Let Y + h(Y) be an estimate of X, where function

h (Y) = (ℎ1 (Y) ℎ2 (Y) ⋅ ⋅ ⋅ ℎ𝐾 (Y)) : R𝐾 󳨀→ R𝐾,
ℎ𝑘 (Y) : R𝐾 󳨀→ R

1,
∀𝑗 = 1, 2, . . . , 𝑘

(13)

is (weakly) differentiable. If

∇ ⋅ h (Y) = 𝐾∑
𝑘=1

(𝜕ℎ𝑘𝜕𝑌𝑘) ,
𝜀 {∇ ⋅ h (Y)} < ∞,

(14)

then

𝑅 = 𝜀 {‖Y + h (Y) − X‖2}
= 𝐾 + 𝜀 {‖h (Y)‖2 + 2∇ ⋅ h (Y)} . (15)

Stein’s unbiased risk estimate of MSE(Y + h(Y),X) is
𝑅̂ = 𝐾 + ‖h (Y)‖2 + 2∇ ⋅ h (Y) . (16)

The proposed structure of threshold function does not
strictly satisfy conditions of h(Y) inTheorem 1. Because each
element of 𝜃 in (6) isR→ Rmapping while each element in
h(Y) is R𝐾 → R1 mapping. Therefore, a tailored version of
SURE for 𝜃 is stated in the following theorem.

Theorem 2. Y = (𝑌1 𝑌2 ⋅ ⋅ ⋅ 𝑌𝐾) is a normal random vector
with mean X = (𝑋1 𝑋2 ⋅ ⋅ ⋅ 𝑋𝐾) and 𝜎2I is covariance
matrix. Let 𝜃= (𝜃(𝑌1) 𝜃(𝑌2) ⋅ ⋅ ⋅ 𝜃(𝑌𝐾)) be an estimate of X,
where 𝜃(𝑦) : R→ R is (weakly) differentiable. If

∇ ⋅ 𝜃 = 𝐾∑
𝑘=1

𝜃󸀠 (𝑌𝑘) ,
𝜀 {∇ ⋅ 𝜃} < ∞,

(17)

then

MSE (X, 𝜃) = 𝜀 {X𝑇X} − 2𝜀 {𝜃𝑇Y} + 2𝜎2𝜀 {∇ ⋅ 𝜃}
+ 𝜀 {𝜃𝑇𝜃} . (18)

The unbiased estimate of MSE(X,𝜃) is
𝑅̂ = 1𝐾X𝑇X + 1𝐾 (−2𝜃𝑇Y + 2𝜎21𝑇𝜃󸀠 + 𝜃𝑇𝜃) . (19)
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Proof. Combining (2) and (8), the MSE is represented as

MSE (X, 𝜃) = 𝜀 {X𝑇X} − 2𝜀 {𝜃𝑇X} + 𝜀 {𝜃𝑇𝜃}
= 𝜀 {X𝑇X} − 2𝜀 {𝜃𝑇 (Y − E)} + 𝜀 {𝜃𝑇𝜃}
= 𝜀 {X𝑇X} − 2𝜀 {𝜃𝑇Y} + 2𝜀 {𝜃𝑇E}
+ 𝜀 {𝜃𝑇𝜃} .

(20)

The only unknown part in the above equation is 𝜀{𝜃𝑇E}while
equality 𝜀{𝐸𝑘𝜃(𝑌𝑘)} = 𝜎2𝜀{𝜃󸀠(𝑌𝑘)}, 1 ≤ 𝑘 ≤ 𝐾 proved in
[18] ensures that 𝜀{𝜃𝑇E} can be transformed to a known part.
Concrete deduction formula is in the following equation:

𝜀 {𝜃𝑇E} = 𝜀{ 𝐾∑
𝑘=1

𝐸𝑘𝜃 (𝑌𝑘)} = 𝐾∑
𝑘=1

𝜀 {𝐸𝑘𝜃 (𝑌𝑘)}

= 𝜎2 𝐾∑
𝑘=1

𝜀 {𝜃󸀠 (𝑌𝑘)} = 𝜎2𝜀{ 𝐾∑
𝑘=1

𝜃󸀠 (𝑌𝑘)}
= 𝜎2𝜀 {∇ ⋅ 𝜃} .

(21)

So, MSE can be rewritten as

MSE (X, 𝜃) = 𝜀 {X𝑇X} − 2𝜀 {𝜃𝑇Y} + 2𝜎2𝜀 {∇ ⋅ 𝜃}
+ 𝜀 {𝜃𝑇𝜃} . (22)

Estimate the expectation of 𝜀(X𝑇X), 𝜀(𝜃𝑇Y), 𝜀(∇ ⋅ 𝜃), and𝜀(𝜃𝑇𝜃) via
𝜀̂ (X𝑇X) = 1𝐾X𝑇X,
𝜀̂ (𝜃𝑇Y) = 1𝐾𝜃𝑇Y,
𝜀̂ (∇ ⋅ 𝜃) = 1𝐾1𝑇𝜃󸀠,
𝜀̂ (𝜃𝑇𝜃) = 1𝐾𝜃𝑇𝜃.

(23)

It is obvious that (19) is an unbiased estimate of MSE(X, 𝜃).
Proof is completed.

2.4.2. Coefficients Determination. From (6), we first obtain
element derivative of 𝜃 in the form of

𝜃󸀠 (𝑌𝑘) = a𝑇 [𝜑󸀠1 (𝑌𝑘) 𝜑󸀠2 (𝑌𝑘) ⋅ ⋅ ⋅ 𝜑󸀠𝑀 (𝑌𝑘)]𝑇 . (24)

So, the formula of ∇ ⋅ 𝜃 can be deduced as

∇ ⋅ 𝜃 = 𝐾∑
𝑘=1

𝜃󸀠 (𝑌𝑘)

= a𝑇 [ 𝐾∑
𝑘=1

𝜑󸀠1 (𝑌𝑘) 𝐾∑
𝑘=1

𝜑󸀠2 (𝑌𝑘) ⋅ ⋅ ⋅ 𝐾∑
𝑘=1

𝜑󸀠𝑀 (𝑌𝑘)]
𝑇

= a𝑇 [1𝑇𝜑󸀠1 1𝑇𝜑󸀠2 ⋅ ⋅ ⋅ 1𝑇𝜑󸀠𝑀]𝑇 = a𝑇 (1𝑇Ψ󸀠)𝑇 .

(25)

Thus,

𝜀 {∇ ⋅ 𝜃} = a𝑇𝜀 {(1𝑇Ψ󸀠)𝑇} . (26)

Combining (6) and (18) and (26), MSE(X, 𝜃) can be rewritten
as

MSE (X, 𝜃) = 𝜀 {X𝑇X} − 2a𝑇𝜀 {Ψ𝑇Y}
+ 2𝜎2a𝑇𝜀 {(1𝑇Ψ󸀠)𝑇} + a𝑇𝜀 {Ψ𝑇Ψ} a. (27)

aopt is obtained through 𝜕MSE(X, 𝜃)/𝜕a = 0 on condition
that Ψ𝑇Ψ is positive semidefinite and invertible. These
conditions the same as in supervised denoising are discussed
in Section 2.5. Here, we first derive the optimal solution form
as 𝜕MSE (X, 𝜃)𝜕a

= 2𝜀 {Ψ𝑇Ψ} a − 2𝜀 {Ψ𝑇Y} + 2𝜎2𝜀 {(1𝑇Ψ󸀠)𝑇} = 0 󳨐⇒
(28)

aopt = 𝜀 {Ψ𝑇Ψ}−1 (𝜀 {Ψ𝑇Y} − 𝜎2𝜀 {(1𝑇Ψ󸀠)𝑇}) . (29)

An estimate of aopt is obtained via Theorem 2. From (6), we
first obtain pointwise derivative of 𝜃 that can be denoted as

𝜃
󸀠 = Ψ󸀠a. (30)

Then (19) can be rewritten as

𝑅̂ = 1𝐾X𝑇X

+ 1𝐾 (−2a𝑇Ψ𝑇Y + 2𝜎21𝑇Ψ󸀠a + a𝑇Ψ𝑇Ψa)
= 1𝐾X𝑇X

+ 1𝐾 (−2a𝑇Ψ𝑇Y + 2𝜎2a𝑇 (1𝑇Ψ󸀠)𝑇 + a𝑇Ψ𝑇Ψa) .

(31)

The result can be found by setting the derivative over a to zero.
Still positive semidefinite and invertible must be satisfied for
Ψ𝑇Ψ. Estimate for optimal solution is achieved by

𝜕𝑅̂𝜕a = 1𝐾 (−2Ψ𝑇Y + 2𝜎2 (1𝑇Ψ󸀠)𝑇 + 2Ψ𝑇Ψa) = 0 󳨐⇒ (32)

aestopt = (Ψ𝑇Ψ)−1 (Ψ𝑇Y − 𝜎2 (1𝑇Ψ󸀠)𝑇) . (33)

2.4.3. Noise Variance Estimate. As it can be seen from (29)
and (33), noise variance 𝜎 is needed in unsupervised denois-
ing. In practice, there are various methods that can provide
estimate for AGWN variance, such as the most popular
median absolute deviation (MAD) [3], SVD-based [21], and
block-based [22, 23] methods. MAD implements simply and
achieves accurate estimate. For simplicity, we adopt MAD to
estimate noise variance. The estimate is denoted as

𝜎̂ = MAD0.6745 ,
MAD = Median {󵄨󵄨󵄨󵄨󵄨𝑌1 − 𝑌󵄨󵄨󵄨󵄨󵄨 , . . . , 󵄨󵄨󵄨󵄨󵄨𝑌𝐾 − 𝑌󵄨󵄨󵄨󵄨󵄨} ,

(34)

where 𝑌 is the mean value in corresponding subband.
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Figure 4: Clean “blocks,” “quadchirp,” “multitone,” and “multiband,” each signal with length of 8192 and audio signal with a length of 65536.

2.5. Optimal Solution Guarantee Discussion. Optimal solu-
tion assurance conditions for both supervised and unsuper-
vised denoising are discussed in this section. To guarantee
optimal solution of a by setting 𝜕MSE(X, 𝜃)/𝜕a to zero, the
matrix Ψ𝑇Ψ must be positive semidefinite. According to
the definition of positive semidefinite matrix, A is positive
semidefinite when x𝑇Ax ≥ 0 for any vector x. So, it is easy
to verify positive semidefinite of Ψ𝑇Ψ; that is, for any vector
x, there always exists

x𝑇Ψ𝑇Ψx = ⟨Ψx,Ψx⟩ = ‖Ψx‖22 ≥ 0. (35)

Thus, it can be concluded that Ψ𝑇Ψ is always positive
semidefinite. Positive semidefinite property guarantees that
MSE(X, 𝜃) is convex while invertible of Ψ𝑇Ψ makes the
optimal solution of a in the form of (10), (12) and (29), (33). It
must be full rank to ensure invertibleΨ𝑇Ψ, so we can deduce
thatΨmust be full row or column rank because of rank(Ψ) =
rank(Ψ𝑇Ψ). In practice, we do not use too many atoms to
form matrix Ψ and the number of noisy coefficients 𝐾 in a
subband is much greater than atom number 𝑀 (i.e., 𝐾 ≫𝑀). In otherwords, with rownumber far greater than column
number, Ψ is a very “thin” matrix. Thus, matrix Ψ tends
to be full column rank and matrix Ψ𝑇Ψ tends to be full
rank.

3. Experiments and Results

3.1. Experiment Settings. Standard experiment settings for
latter simulations are given. The adopted signals in simula-
tions are “blocks,” “quadchirp,” “multitone,” and “multiband”

withAGWN. In order to explain the superiority, the proposed
methods are also tested by real audio signal. All those clean
signals are shown in Figure 4 with each signal having length
of 8192 for the first four signals and a length of 65536 for
audio signal. The adopted orthogonal wavelet is “sym8” and
decomposition level is 𝐽 = 5. So the 𝑗th detail subband has a
vector length of 𝑁/2𝑗 (1 ≤ 𝑗 ≤ 5), where 𝑁 can be 8192 or
65536.

In supervised denoising, coefficient a is determined by
matrixΨ and desired subbandD in each individual subband.
Desired subbands come fromdesired signal byOWT.Desired
signal can be clean or noisy. In practice, it may only have
access to noisy signal with known noise level; thus, we
adopt it as desired signal to determine coefficient a and
then use a to derive the denoised version of noisy signal
with unknown noise level. A remarkable notice is that the
desired signal and noisy signal are, respectively, the same
clean signal corrupted by known and unknown noise level.
In unsupervised denoising, coefficient a is determined by
matrix Ψ, noisy signal subband Y, and noise variance. There
are no requirements for clean signal or desired signal. For
simplicity, an estimate for noise variance is provided by
MAD.

Applying the proposed OTRP function as concrete
threshold function, supervised and unsupervised denoising
methods are compared with several other available tech-
niques, that is, VisuShrink, SureShrink, MiniMaxShrink,
and BayesShrink. Wavelab 850 is applied to perform the
other four techniques; their noise variance estimates are also
provided by MAD. Denoising quality is measured by both
MSE and SNR, which are defined as
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Figure 5: PO1 to PO3 comparisons in supervised denoising condition.

MSE = 1𝑁
𝑁∑
𝑖=1

(𝑥̂𝑖 − 𝑥𝑖)2 ,

SNR = 10 log ∑𝑁𝑖=1 𝑥2𝑖∑𝑁𝑖=1 (𝑥̂𝑖 − 𝑥𝑖)2 .
(36)

3.2. Polynomial Order Simulation. Before carrying out the
final denoising, proper polynomial order needs be explored.
Due to the fact that polynomial order is equal to atom
number of matrix Ψ, it needs to select proper polynomial
order to guarantee full column rank of Ψ and thus full
rank of Ψ𝑇Ψ. Although it has already been discussed in
Section 2.5 that subband wavelet coefficients number is far
greater than polynomial order and Ψ𝑇Ψ tends to be full
rank, simulations are still needed. Whether Ψ𝑇Ψ is full rank
or not is determined by polynomial order and subband
wavelet coefficients. Thus, a probability statistical table is
made through simulations. The achieved probabilities make
up Table 1 where PO represents polynomial order and SB
denotes subband. The probabilities reveal how often Ψ𝑇Ψ is
full rank in different PO for different signals corrupted with
different noise level.

Six orders of PO are tested in Table 1. Due to 5-level
wavelet decomposition, there are five detail SBs to be

processed. Each SB corresponds to a Ψ𝑇Ψ and different
PO corresponds to different dimension of Ψ𝑇Ψ. So, there
are 30 combinations shown in Table 1 header where each
PO contains five SBs. In 𝑥-axis direction, Table 1 reflects
how PO influences matrix full rank probabilities. In 𝑦-
axis direction of Table 1, four signals are tested with each
corrupted by different noise variance 𝜎. This reflects how
noise level influences matrix full rank probabilities. For
example, the italic number shown in Table 1 means matrix
full rank probability is 100%. This matrix is determined by
PO2 and “blocks” signal’s SB3 in 𝜎 = 1.6 noise level. All
probabilities are obtained by counting matrix full rank times
in a 100-trail.

From Table 1, PO1–PO3 always ensure 100% matrix full
rank for four signals in all tested noise level. Saying 100%
matrix full rank for a signal we mean 100% matrix full
rank for every subband of this signal. PO4 only cannot
ensure “blocks” due to almost 0% probability for SB5 (bold
underlined numbers, bold numbers indicate the probabilities
under 100%). For PO5 and PO6, there are more and more
bold numbers than PO4. In horizontal direction, the trend is
higher PO lower probability for satisfying matrix full rank.
In vertical direction, higher noise level tends to lead lower
probability for full rank, but PO is a dominant factor. From
statistical analysis, we restrict our option from PO1 to PO3.

Visual comparisons of PO1 to PO3 in supervised denois-
ing are shown in Figure 5. As it can be seen, in bothMSE and
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Figure 6: Comparison of both MSE and SNR changing with noise variance 𝜎 for “blocks,” “quadchirp,” “multitone,” and “multiband”
denoising.

SNR sense PO1 is inferior to PO2 and PO3 in all four signals.
PO2 is inferior to PO3 in blocks and almost equals PO3 in the
three remaining signals. In unsupervised denoising, similar
conclusions can be made and are not repetitive state. In the
end, we choose PO2 for final denoising simulation.

3.3. Denoising PerformanceComparison. Asmentioned above,
comparisons are made among supervised and unsuper-
vised denoising methods and VisuShrink, SureShrink, Min-
iMaxShrink, and BayesShrink. In both MSE and SNR sense,
denoising performance comparisons in global and local views
with different noise variance 𝜎 are presented in Figure 6. 𝜎
changes in range of 0.5–2.0 with step 0.1 and each data point
plotted in Figure 6 is a 50-average result. A remarkable notice
is that we adopt a clean signal corrupted by noise in 𝜎 = 0.5
level as desired signal for supervised denoising. Moreover,
MSEs in Figure 6 are plotted in log scale and SNRs in Figure 6
are plotted in linear scale.

From global and local views of Figure 6, supervised
denoising method achieves better MSE and SNR quality
than unsupervised denoisingmethod and BayesShrink for all
four noisy signals. All these three methods have better MSE
and SNR performance than VisuShrink, SureShrink, and
MiniMaxShrink. In noisy “blocks” processing, BayesShrink
is slightly better than unsupervised denoising method when𝜎 is greater than 0.9 while poorer when 𝜎 is less than 0.9 in
both MSE and SNR sense. However, unsupervised denois-
ing method has better MSE and SNR performance than
BayesShrink in noisy quadchirp, multitone, and multiband
processing.Thus, a conclusion can bemade that the proposed
supervised and unsupervised denoising methods show their
advantages.

Our approaches are also validated for real-world signals.
We test supervised and unsupervised denoising approaches
by an AGWN corrupted real audio signal. In both MSE and
SNR sense, comparisons with changing 𝜎 in range of 0.1–0.5
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Figure 7: Denoising performance comparisons in both MSE and SNR sense with changing noise variance 𝜎 for real audio signal denoising.

are shown in Figure 7 and each data point plotted is still
a 50-average result. We adopt clean audio signal corrupted
by noise in 𝜎 = 0.5 level as desired signal for supervised
denoising. In addition, MSEs are plotted in log scale and
SNRs are plotted in linear scale. From global and local
views of Figure 7, the proposed supervised and unsupervised
denoisingmethods have smaller MSEs and higher SNRs than
VisuShrink, SureShrink, MiniMaxShrink, and BayesShrink.
A conclusion can still be made that the proposed supervised
and unsupervised denoising methods show their advantages
in real-world condition.

Remark.All denoisingmethods except for supervised denois-
ing involved in Figures 6 and 7 require noise variance 𝜎, and
estimates of it are achieved by MAD for all those methods.
So, proposed unsupervised method and the other four
techniques work under the same condition, which reflects
superiority of the proposed method. In practice, MAD with
simple implementation and estimate accuracy do satisfy our
requirements.

3.4. Noise Effect Analysis. In this section, different noise levels
of desired signal for supervised denoising are analyzed. It only
aims at real audio signal. In simulation, desired signal noise
levels are set in range 𝜎 = 0.1 to 𝜎 = 2.5 with equal step0.4. Both MSE and SNR results are shown in Figure 8 and
each data point plotted in Figure 8 is averaged by 50 times.
It must be noticed that 𝜎 on 𝑥-axis represents noise level of
noisy signal to be processed. All desired signal noise levels
are compared with BayesShrink denoising mothed. From

Figure 8 it can be seen that all 𝜎 = 0.1 to 𝜎 = 2.5 desired
signal noise levels have better denoising performance than
BayesShrink in MSE and SNR sense when 𝜎 ≥ 0.18 on 𝑥-
axis. While when 𝜎 < 0.18 on 𝑥-axis BayesShrink does better
than 𝜎 = 2.1 and 𝜎 = 2.5 and worse than 𝜎 = 0.1 to 𝜎 = 1.7
in MSE and SNR sense. In addition, denoising performance
becomes worse when desired signal noise level gets higher. In
conclusion, if some noisy desired signal (even higher noise
level than the signal to be processed) is available at hand, it is
still possible to achieve good denoising performance.

4. Conclusions

In order to utilize the effectiveness of wavelet domain denois-
ing, two subband adaptive denoising schemes were proposed
in this paper. For any subband, a unified linear matrix form
with flexible structure of threshold function was proposed
and OTRP function was proposed for a concrete realiza-
tion. Based on the unified linear flexible structure thresh-
old function, both supervised and unsupervised subband
adaptive denoising frameworks were established. A direct
MSE minimization was conducted in supervised denoising
while Stein’s unbiased risk estimate as MSE estimate was
minimized in unsupervised denoising for flexible coefficients
determination. Conditions to obtain optimal coefficients
were further discussed.

Applying the concrete OTRP function, simulations for
polynomial order, denoising performance, and noise effect
were conducted. A full rank probability statistical table was
generated in polynomial order simulation. The table reflects
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Figure 8:Different desired signal noise level andBayesShrink denoising performance comparisons in bothMSE and SNR sensewith changing
noise variance 𝜎 for real audio signal denoising.

that PO1–PO3 always ensure full rank of Ψ𝑇Ψ. By choosing
PO2, denoising performance was compared among pro-
posed supervised and unsupervised denoising methods and
VisuShrink, SureShrink, MiniMaxShrink, and BayesShrink.
Comparison results demonstrate that the proposed methods
have advantages over those soft and hard threshold func-
tion based denoising schemes in both simulation and real-
world condition. Final simulation of noise effect analysis for
supervised denoising demonstrates that supervised denoising
method is robust for different desired signal noise level.
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