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Structural modal identification has become increasingly important in health monitoring, fault diagnosis, vibration control, and
dynamic analysis of engineering structures in recent years. Based on an analysis of traditional optimization algorithms, this paper
proposes a novel sensor optimization criterion that combines the effective independence (EFI) method with the modal strain energy
(MSE) method. Considering the complex structure and enormous degrees of freedom (DOFs) of modern concrete arch dam,
a quantum genetic algorithm (QGA) is used to optimize the corresponding sensor network on the upstream surface of a dam.
Finally, this study uses a specific concrete arch dam as an example and determines the optimal sensor placement using the proposed
method. By comparing the results with the traditional optimization methods, the proposed method is shown to maximize the spatial
intersection angle among the modal vectors of sensor network and can effectively resist ambient perturbations, which will make

the identified modal parameters more precise.

1. Introduction

Under the effects of outburst accidents (such as earthquakes
and wind) and operating loads, engineering structures can
accumulate damage, which may lead to destructive accidents.
In fact, internal damage of engineering structures inevitably
leads to changes in structural dynamic parameters, such as
the natural frequency, damping, and mode shapes. Therefore,
structural modal identification has become the core technol-
ogy of modern dynamic testing and on-line monitoring of
complex engineering structures.

Modal identification and damage diagnosis based on
structural vibrations have been widely adopted in many fields
of civil engineering, but the application of this technology to
hydraulic structures is still in the initial stage. In the 1960s,
the construction bureau of California firstly developed the
mechanical vibration machine and conducted an operational

dynamic test on the Montst arch dam. The first four natural
frequencies of the dam were successfully measured. In the
1990s, Houqun et al. [1] conducted prototype dynamic tests
on the Dongjiang arch dam in Hunan Province and on the
Longyangxia arch dam in Qinghai Province using a blasting
method and extracted the corresponding modal parameters
from the test results. Yifeng and Ming [2] established a
weighted rubber model of a double-curvature arch dam. Jijian
et al. [3] built a large-scale hydroelastic model of the Laxiwa
arch dam to conduct the experimental modal analysis in
order to identify the structural modal parameters. Mridha
and Maity [4] investigated the nonlinear response of a con-
crete gravity dam-reservoir system using laboratory experi-
ments on a small-scale model of the Koyna dam. Altunisik
et al. [5] studied the variations of the modal parameters
of a damaged arch dam before and after retrofitting using
laboratory model experiments. Darbre et al. [6] researched



the relationship between the dam natural frequency and
reservoir water level using a plaster model of an arch dam.
Loh and Wu [7] identified the modal parameters of the Fei-
Tsui arch dam from monitoring data during a strong earth-
quake and studied the influence of the reservoir water level
on the structural modal parameters and nonuniform input
on the dynamic response of the arch dam. Mau and Wang [8]
performed a system identification of an arch dam using vibra-
tional test data. Sevim et al. [9] identified the modal param-
eters of the Berke arch dam using the frequency domain
method based on the environmental excitations and then
calibrated a three-dimensional FEM model with the results.

During modal experiments, determining the optimal
number of sensors and corresponding configuration on
structures has received increasing attention because inap-
propriate sensor placement can reduce the accuracy of the
identified modal parameters. Meanwhile, modern concrete
arch dams with complex structures and giant volumes may
contain considerable degrees of freedom (DOFs); thus, the
arrangement of sensors would particularly influence the mea-
surement accuracy of the modal parameters [10, 11]. During
traditional dynamic tests of dams, the sensors are arranged
based on engineering experience, which does not guarantee
optimal sensor placement [12-14]. Therefore, research of the
optimal sensor placement on concrete arch dams has become
an important subject in recent years.

Many researchers have studied optimization criteria of
sensor placement for structural modal identification in the
past few years. In 1990, Kammer [15] proposed the effective
independence (EFI) method to obtain the greatest spatial
resolution of the targeted modes. The Fisher information
matrix (FIM) is established to guarantee linear independence
of interesting modal vectors and reserve the DOFs that
contribute most to the independence of the targeted modes.
Liu and Tasker [16] proposed the Multiple-Reference Ibrahim
Time Domain method for sensor placement and developed
a relationship between the sensor locations and variance
of identification. By combining the Eigensystem Realization
algorithm, Lim [17] arranged sensors to minimize the con-
dition number of the Hankel matrix to maintain the inde-
pendence of the targeted modes. Rafajlowicz [18] revealed a
relationship between the information matrix and density of
the input spectrum and measurement positions and studied
the problem of sensor placement for parameter identification
in the frequency domain. Xing and Bainum [19] researched
the problem of optimal sensor placement based on the degree
of controllability and observability of the discrete system.
Reynier and Abou-Kandil [20] placed sensors by maximizing
the minimum eigenvalue of the Gramian matrix. Shih et al.
[21] defined the degree of controllability and observability as
a second-order ordinary differential equation and deduced
a relationship between the equation and frequency-response
function. The sensors are arranged based on the contribution
of each DOF to the index. Salama et al. [22] claimed that the
sensors should be placed on the locations with great energy
because it is good for modal identification and optimized
the sensor locations by maximizing the modal strain energy
(MSE). Baruh and Choe [23] used spline interpolation of
the response of the measured points to obtain information
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about the unmeasured points. The sensors were optimized by
minimizing the fitting error of interpolation. Breitfeld [24]
arranged sensors by minimizing the off-diagonal elements
of the Modal Assurance Criterion (MAC) matrix. Cruz
et al. [25] established the fitness function by maximizing
the natural frequency identification effectiveness and the
mode shape independence and adopted the custom genetic
algorithm to optimize the sensor configuration. Debnath et
al. [26] evaluated the modal participation at individual degree
of freedom (DOF) for the target modes and proposed the
modal contribution in output energy (MCOE) as the opti-
mization criterion. Papadimitriou [27] adopted the theory of
information entropy to measure the uncertainty in the system
parameters and proposed the nominal structural model to
optimize the sensor configuration on the truss structure.
In recent years, various optimization methods have been
used in the process of sensor placement, such as the serial
method [28, 29], particle swarm optimization [30], simulated
annealing algorithm [31], and genetic algorithm [32].

This paper studied two traditional methods for maxi-
mizing the modal information, the effective independence
method based on the maximal determinant of the FIM
and the Kinetic Energy method based on the maximum
modal strain energy. One drawback of the EFI method is
that the locations with low modal stress energy may be
selected, which would result in the loss of modal information.
One drawback of the Kinetic Energy method is that the
optimization process is highly dependent on the partitioning
of the finite element mesh. Based on the above analysis,
a novel optimization method combining the EFI method
with the MSE method is proposed that could effectively
resolve the drawbacks of the two methods. Considering the
enormous number of DOFs of the hydraulic structure, a
quantum genetic algorithm (QGA) is adopted to increase
the computational efficiency and accuracy in this paper.
Finally, a specific concrete arch dam is used as an example,
and the sensors on the upstream surface are optimized with
the proposed method. A comparison of the traditional and
proposed methods shows that the proposed method has a
higher convergence speed and better optimization accuracy,
which has theoretical and practical application values.

2. The Basic Principle of
the Optimal Sensor Placement

2.1. The Effective Independence Method. In 1991, Kammer
presented the effective independence method and introduced
the Fisher information matrix, which is based on the displace-
ment modal matrix. To make the concerned modal vectors
linearly independent, the measured points are ranked based
on an effective independence value of the modal matrix and
the measurement point with the minimum contribution is
deleted in succession. For modal experiments that only iden-
tify the structural mode shapes, the generalized coordinates
q of the mode shapes can represent the identified parameters.
The output value of the sensor can be expressed as follows:

U, = dyq, ¢))
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where U, represents the output value of the sensor; @, is the
modal matrix; and ¢ is the vector of the modal coordinates.
The least square estimation of g can be written as follows:
N -1
g=[ol0] oU. )

S
By introducing measurement noise, (3) is defined as
U =0qg+T, (3)

where T is the Gaussian white noise of a uniform distribution
with the variance of y*.

By minimizing the covariance matrix of the modal coor-
dinates, the effective unbiased estimate of g can be obtained
as follows:

CEla—a e[ Loto ] - Lot
P=E[(q-9)(q-9) | = SO0 =50 @

where Q = d)sTd)S is the Fisher information matrix (FIM).

Therefore, an optimal estimation of the modal coordi-
nates g can be obtained when the determinant of the FIM is
maximized. Then, the covariance matrix P is minimized and
the targeted modal vectors are linearly independent, which is
good for structural modal identification.

Then, the corresponding fitness value f; of the EFI
method can be represented as follows:

fi = det(Q) = det (0] ®,). )

2.2. 'The Modal Strain Energy Method. Modal strain energy
(MSE) is an index that is sensitive to the variations of the
structural parameters and the ratio between the element MSE
and total structural kinetic energy and is one of the system
eigenvalues. Therefore, the MSE index is usually applied in
structural damage identification.

The element MSE is defined as follows:

MSEij = {‘/’i}T [kj] {‘/51'}’ (6)

where {¢;} is the ith normalized mode shape and [k j] is the
element stiffness matrix of the jth element.

Similarly, the ith structural modal strain energy can be
expressed as follows:

MSE, = {¢}" [K]{$}, ™)

where [K] is the global stiffness matrix of the structure.
This paper defines the fitness value of the optimal sensor
placement based on the MSE as follows:
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where k, represents the stiffness coeflicient between the rth
DOF and sth DOF; ¢,, is the deformation of the rth element
in the ith mode; ¢; is the deformation of the sth element in
the jth mode; and p and g are the numbers of modes and
measurement points, respectively.

2.3. The Combined Optimization Algorithm. Although the
EFI method can make the selected modal vectors approx-
imately linearly independent, the measured MSE of the
selected points may be low, which would result in the loss
of modal information. Because of this effect, this paper
combines the EFI method with the MSE method and defines
the fitness value f; as follows:
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where « is the adjustment parameter that scales the fitness
value into the appropriate range.

3. The Basic Theory of the Quantum
Genetic Algorithm

The quantum genetic algorithm (QGA) is a recently devel-
oped probability evolutionary algorithm that combines quan-
tum computing with a genetic algorithm [33, 34]. Based on
quantum theory, the quantum probability vector is used to
encode chromosomes, and the population is updated and
optimized by adopting quantum-rotating doors to search for
a globally optimal solution.

The smallest unit of information in the QGA is called a
quantum bit and the state of a quantum bit can be expressed
as follows:

lo) =al0)+B11), (10)

where «, 3 represent the probability amplitudes of the quan-
tum bit and meet the following normalized condition:

la? + 8] = 1. (11)

Thus, the state of a quantum bit can also be written as
follows:

|(p>=cos§|0)+ei"’sin§|1). (12)

In the quantum genetic algorithm, quantum information
is encoded by pairs of complex numbers. The quantum
chromosome composed of m sets of quantum bits can be
written as follows:

[ & | & m
/51 ﬂZ ﬁm

where |o|* + B> =1 (i = 1,2,...,m).

This method can represent the random linear superposi-
tion of quantum states. For example, a chromosome with 3
quantum bits can be expressed as follows:

[04

] , (13)
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An update of a quantum gate can be represented as

0[] <[y ey ) [a) ®
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where U(6;) = [Z?j((el)) Cf)‘sr;(@is)] is the quantum-rotating gate,
among which the variables are denoted as follows:

0; = k‘f(“i»ﬁi)’

. (16)
k= 7'r'exp<—iter >,

where k is the adaptive variable; t is the evolutionary popula-
tion; and iter, . is a constant that depends on the complexity
of the optimization problem.

The search strategy of f(w;, 3;) is shown in Table 1. In
Table 1, a; and B, are the probability amplitudes of the global
optimal solutions, d, = &; x 8, and &, = tan™' (B, /v;). &y, B,
are the probability amplitude of the current solutions, d, =
a, x B, and &, = tan™'(B,/a,). If both d, and d, are greater
than 0, the current solutions and global optimal solutions will
be in the first or third quadrant. When [&,| > |&,|, the current
solution should be rotated counterclockwise, f(e;, 5;) = +1;
otherwise, f(w;, B;) = —1. The three other rotational criteria
can be determined using the same method.

Furthermore, to prevent the optimization from converg-
ing at local extrema, the algorithm introduces a mutation
operation based on a certain probability. For instance, a
quantum bit «|0) + f|1) can be transferred into «|1) + f3|0)
through the operation. In the actual operation, the mutation
probability is generally between 0.1 and 0.01, which can both
maintain the diversity of the population and prevent the
algorithm from converging at local extremes.

The basic steps of the algorithm are shown in Figure 1.

4. The Evaluation Criterion of
Optimal Sensor Placement

A good sensor network should allow the measured modal
parameters to be sensitive to variations in the structural
parameters and provide comprehensive information for
structural damage diagnosis. In this paper, three criteria are
selected to evaluate the ability of a sensor network to capture
the structural dynamic response.

4.1. MAC. Based on orthogonality theory of modal vectors,
the orthogonality of modal vectors directly influences the
results of modal identification. Therefore, the MAC is selected
as the comparison criterion of the optimal sensor placement
as follows:

MAC

2

i TN (Bl d )
(OT D)) (cDJTq> i)
where MAC;; is the cosine value of the intersection angle

between the ith modal vector ®; and the jth modal vector

®j.
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TaBLE 1: The query table of f(«;, f3;).

d, d, flo, B)

d4,>0 d,>0 6] > 18] €] < 18|
True True +1 -1
True False +1 +1
False True -1 -1
False False -1 +1

Parameter setting

¥

Initialize population

¥

Environmental
variable > historical
extreme value?

Introduce mutation factor|
and update the historical [<-Yes
extreme value

No
1
Calculate fitness value
of each individual

!

Preserve the best individual
and the corresponding
fitness value

N

Output the
optimal solution

Meet the termination
conditions?

<Yes

No

! Update the population

with the quantum-rotating
gate

J

Need perturbation?

Yes

Introduce mutation
operator

FIGURE 1: Flow chart of the quantum genetic algorithm.

The orthogonality of the modal vectors is better when
the maximum value of the off-diagonal elements of the MAC
matrix is smaller. Therefore, the maximum value of the off-
diagonal elements of MAC matrix can be used as an index to
evaluate the quality of the sensor placement scheme.
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4.2. 'The Criterion of Antinoise Performance. The identifica-
tion of modal parameters is greatly influenced by ambient
noise perturbations; under extreme conditions, the noise
signal and structural vibration signal are not distinguishable.
In this paper, the FIM determinant after the elimination of
the DOFs of the candidate sensors is selected as the index
for evaluating the modal identification ability of the sensor
network under the effects of ambient noise perturbation.

4.3. The Criterion of the Condition Number. The condition
number is a criterion for evaluating the morbidity of a matrix.
Larger numbers mean that the modal matrix is more morbid
and the identified parameters will be severely distorted. A
modal matrix with a small condition number can perfectly
resist ambient distortions. Therefore, the condition number
of the modal matrix is used as a criterion for evaluating each
optimizing method as is shown as follows:

cond (®) = [@] - [~ (18)

5. Case Study

5.1. Project Background. A double-curvature concrete arch
dam is located midstream along the Lancang River in Yunnan
Province. The elevation of the dam crest is 1,245 m, with a
maximum dam height of 292 m and a dam crest length of
922.74 m. The top and bottom width of the crown cantilever
are 13 m and 69.49 m, respectively. The normal storage water
level of the reservoir is 1,240 m, with a total storage of 15.12
billion m® and an effective storage of 9.895 billion m?, which
makes it a pluriennial-regulation reservoir. The downstream
elevation of the arch dam is shown in Figure 2.

A three-dimensional finite element model is developed
to conduct vibration modal analysis of the dam-foundation
system, as shown in Figure 3. The total number of elements
and nodes of the model are 201,689 and 207,714, respectively.
The model coordinates follow the right-hand screw rule. The
direction of each axis is as follows: the x-axis is perpendicular
to the flow direction and the left-bank direction is positive;
the y-axis is parallel to the flow direction and the downstream
direction is positive; the z-axis is parallel to the height
direction and the downward direction is positive.

5.2. Modal Analysis. For large-scale civil structures, usu-
ally the displacements of low frequency modes could give
sufficient information to describe the dynamic behavior of
a structural system with sufficient accuracy to allow its
health state modifications to be determined effectively [35].
It has been illustrated by [36] that the first ten mode shapes
are able to reflect most of the dynamic characteristics of
huge engineering structures. In recent years, many scholars
have adopted no more than first ten mode shapes to study
the structural dynamic behavior of the large-scale concrete
dams, bridges and truss structures, and so forth [26, 37-39].
Therefore, in this paper, the first ten mode shapes of the dam
are selected as the targeted modes. ABAQUS finite element
software is used to conduct a dynamic modal analysis of the
dam. Added-mass elements [40] are used to simulate the
function of the upstream reservoir water. The first ten mode

FIGURE 2: Downstream elevation of the arch dam.

FIGURE 3: Three-dimensional finite element model of the dam-
foundation system.

shapes and corresponding natural frequencies are shown in
Figure 4 and Table 2, respectively.

5.3. Optimal Sensor Placement. There are 1,718 nodes on
the upstream surface of the finite element model of the
arch dam. In this paper, two DOFs (x direction and y
direction) of each node are considered. After eliminating 57
nodes that are unsuitable for sensor installation, there are
1,681 candidate nodes and 3,362 corresponding DOFs on the
upstream surface. The quantum genetic algorithm is adopted
to arrange 30 sets of sensors on the upstream surface based
on the three criteria described previously.

The parameters of the quantum genetic algorithm are
defined as follows: the initial population size and quantum
bit are set as 3,000 and 15, respectively; the initial search
is superposed based on an equal probability; and the cor-
responding probability amplitude is defined as +v/2/2. To
verify the computation efficiency and quality of the quantum
genetic algorithm, a traditional genetic algorithm (GA) is
also used. The parameters of GA are listed as follows: the
initial population size is 3000; the crossover rate and the
mutation rate are defined as 0.75 and 0.02, respectively. The
maximum operating generations of the two algorithms are
defined as 2000. Evolution lines of the two methods for
different optimization criteria are shown in Figure 5.

It is clear that the QGA can always converge to a
higher fitness value in fewer generations than the GA. The
premature phenomenon of the GA can be effectively avoided
by adopting QGA.
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(a) Mode1

(c) Mode 5

(b) Mode 3

(d) Mode 7

(e) Mode 9

(f) Mode 10

FIGURE 4: Typical vibration modes of the arch dam.
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FIGURE 5: The evolution line of fitness value using the QGA and GA.
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TABLE 2: The natural frequency of the arch dam.

Mode 1 2 3 4 5 6 7 8 9 10
Frequency 1.327 1.833 2.481 2.828 3.148 3.859 4.023 4.618 5.153 5.359
TaBLE 3: The statistic of the fitness value after multiple runs based on f; criterion.

Algorithm Number of runs 20 50 100 200 300 400 500 1000 1500 2000
QGA Average value 0.88 1.43 1.69 2.08 2.23 2.41 2.54 291 3.05 312
Best value 1.57 2.15 2.24 2.43 2.52 2.93 3.06 3.25 3.34 3.34
GA Average value 0.45 0.73 0.98 1.36 1.62 1.87 2.04 2.78 291 3.01
Best value 0.75 1.15 1.51 1.95 2.13 2.63 2.70 2.85 3.18 3.29
TABLE 4: The statistic of the fitness value after multiple runs based on f, criterion.
Algorithm Number of runs 20 50 100 200 300 400 500 1000 1500 2000
QGA Average value 2.25 3.65 4.14 4.72 4.82 518 5.39 5.82 5.96 6.03
Best value 4.37 5.68 5.96 6.03 6.2 6.25 6.25 6.25 6.25 6.25
GA Average value 1.88 2.21 2.84 3.59 3.71 4.23 4.57 5.39 5.66 5.80
Best value 2.48 3.06 4.30 5.60 5.79 5.79 5.92 6.20 6.20 6.20
TaBLE 5: The statistic of the fitness value after multiple runs based on f; criterion.
Algorithm Number of runs 20 50 100 200 300 400 500 1000 1500 2000
QGA Average value 1.79 3.11 3.77 4.29 5.36 5.90 6.29 7.25 7.57 7.73
Best value 3.45 4.08 523 6.73 7.50 7.50 7.85 8.20 8.2 8.2
GA Average value 0.47 1.36 2.14 2.78 3.72 4.34 4.78 6.21 6.78 7.07
Best value 0.85 2.25 3.80 4.73 5.60 6.18 6.55 7.63 7.93 7.93
9 TABLE 6: The statistics of the off-diagonal elements of the MAC
£) g ] matrix based on three criteria.
% 61 Minimum
£ 5 Optimal criterion Average value Maximum value
4] value
237 fi 0.005 0.019 0.032
B o f 0.006 0.027 0.043
0 - fs 0.003 0.007 0.04

 QGA
s GA

FIGURE 6: The comparison of total elapsed time between QGA and
GA.

The statistic of multiple runs of the QGA and GA based
on three criteria is shown in Tables 3-5. As shown in the
tables, the average fitness value and the best fitness value of
the QGA out of different runs are all greater than those of the
GA. The QGA possesses higher computation quality with the
same operating generations comparing with the GA.

The total elapsed time of the two algorithms is shown in
Figure 6. As is shown in figure, the total operating time of
QGA based on three criteria is always shorter than the GA.
Therefore, it can be concluded that the QGA possesses higher

optimization accuracy and better computation efficiency
comparing with the GA.

Bar graphs of the MAC matrix for the three criteria
obtained by the quantum genetic algorithm are shown in
Figure 7 and the relevant statistics of the off-diagonal ele-
ments in MAC matrixes are shown in Table 6. We can see
that the average value and the maximum value of the off-
diagonal elements obtained by the f; criterion are much
less than those with the other two criteria. The off-diagonal
element MAC;; represents the crossing angle of the two
corresponding modal vectors. According to [25], the smaller
the off-diagonal elements of the MAC matrix are, the more
independent the different modal vectors remain. Therefore,
it can be concluded that the sensor configuration obtained
by the f; criterion can improve the spatial intersection angle
among the modal vectors and thus better represent the modal
characteristics of the dam structure.
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TABLE 7: FIM determinant and the condition number of the vibration mode based on three criteria.

The sensor placement scheme The determinant of FIM The condition number of the vibration mode
f 1.64E - 15 19
£ 7.54E - 16 27
f 321E - 13 1

COOOOODO0
o~ Wwkr U ® O

(b) The MAC matric based on the f, criterion

(c) The MAC matrix based on the f; criterion

FIGURE 7: The bar graph of the optimal MAC values based on different criteria.

The determinant of the FIM after removing the candidate
sensors and condition number of the modal matrix are shown
in Table 7 and the following conclusions could be drawn:

(2) According to [41], the matrix condition number
represents the sensibility of matrix calculation on
computation error. The larger the condition number,
the more ill-conditioned the modal matrix, whereas a
matrix with condition number close to 1 would make
the identified modal characteristics more accurate
[42]. As is shown in Table 7, the condition number

(1) The FIM determinant after eliminating the DOFs of
the candidate sensors can be seen as the measure
of the uniformity between the measured mode and

the results of the FEM methods. It is the indicator
which evaluates the influence of the ambient noise on
the measured mode [26]. As is shown in Table 7, the
obtained FIM determinant based on the f; criterion
is far greater than those of the other two criteria.
Therefore, it can be concluded that the sensor network
obtained by the proposed method possesses a better
antinoise property.

obtained by the f; criterion is 11, which is much
less than those of the other two criteria (19 and 27).
Therefore, it can be concluded that the proposed f;
criterion can effectively resist the ambient environ-
mental perturbation and raise the accuracy of the
identified modal parameters.

In conclusion, the combined optimization criterion based
on a quantum genetic algorithm is shown to be better than
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—e— x direction

—a— y direction

FIGURE 8: Final sensor network on the arch dam.

traditional methods. The final optimal sensor network is
shown in Figure 8.

6. Conclusion

This paper proposes a novel optimization criterion for sensor
placement by combining the effective independent method
with the modal strain energy method to improve the modal
identification ability. Moreover, to increase the computing
efficiency and accuracy, a quantum genetic algorithm is
adopted. By comparing the traditional methods, the follow-
ing conclusions could be drawn:

(1) By combining the quantum computing principle with
a genetic algorithm, the QGA adopts the vector of a
quantum state to represent the genetic encoding and
updates the chromosomes with a quantum-rotating
gate to improve the efficiency of the optimization. In
comparison with a traditional genetic algorithm, it
is clear that the algorithm possesses the property of
global convergence and always converges to a higher
fitness value in fewer generations than the GA.

(2) The off-diagonal elements of the MAC matrix
obtained using the combined optimization criterion
are much smaller than those obtained using tradi-
tional methods. It is verified that the sensor network
obtained using the proposed method can maximize
the spatial intersection angle among different modal
vectors, which could increase the modal identification
accuracy.

(3) The determinant of the FIM obtained with the pro-
posed method is obviously greater than that obtained
using traditional methods, while the condition num-
ber of the modal matrix is much lower than those
obtained using the traditional methods. The obtained
sensor network can effectively resist ambient pertur-
bations, which also increase the modal identification
accuracy.
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