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In rock mass engineering, the criterion of rock mass stability has complex nonlinear characteristics, so the process of instability for
local rock mass system cannot be quantified by the traditional ways of displacement criterion and the criterion of development of
plastic zones, which are strongly empirical. Based on the research about the criterion of rock mass stability, criterion of improved
strain energy catastrophe is put forward by virtue of catastrophe theory in this paper. After regularizing potential function, the
stability of the system can be determined by catastrophe characteristic values. Take a certain slope for example; the results show
that the criterion can quantitatively reflect the behavioral process of instability for rock mass system, which is consistent with the
engineering practice and possesses a certain engineering reference value.

1. Introduction

The stability of surrounding rock is an important criterion
to determine the reasonable design and operation safety of
the underground rock engineering, for example, the tunnels.
Due to the extremely complex rock behavior and occurrence
condition and numerous factors, which may influence the
stability of rockmass andhave features of diversity, variability,
and uncertainty, criterion of rock mass stability has not yet
reached amature stage; that is, a series of basic problems have
not formed a definite system, from the definition of stability
and the criterion of quantization to the theory, the criterion,
and the method of analysis [1].

Instability of surrounding rock which is a fairly complex
process, often accompanied by heterogeneity, discontinuity,
and large displacement of deformation, is a highly non-
linear scientific problem and nonlinearity is the essential
characteristics of mechanical behavior of surrounding rock.
Therefore, to forecast and control its mechanical behavior,
modern nonlinear science is applied. Since the 1970s, devel-
oped nonlinear theory, such as fractal, bifurcation, mutation,
chaos, and dissipation theory, has become a powerful tool

to solve the problem of complicated nonlinear system and
to provide theory and method to the nonlinear problem
of rock mass. Among them, the application of catastrophe
theory established by Thom is used more frequently. Since
founded, catastrophe theory has been widely used. It can not
only be applied to the “hard science” such as physics, but
can also be in the “soft science” like sociology. There exists
“a gray area” between soft disciplines and hard disciplines;
most of rock mechanics and geoscience belong to this area.
Catastrophe theory belongs to qualitative application in rock
mechanics. Shan [2] has forecast the possibility of roadway
rock burst by the application of catastrophe theory. Yan and
Xu [3] have analyzed the instability of deep-buried hard rock
tunnels based on catastrophe theory.Wang andMiao [4] have
studied the instability mechanism of pillar by adopting cusp
catastrophe model. Xu et al. [5, 6] have revealed the process
and failure mechanism of rock mass stability and established
entropy catastrophe criterion of rock mass instability failure
by applying nonlinear scientific theory such as entropy and
catastrophe to surrounding rock stability study. Pan et al. [7]
have made an exhaustive study on the catastrophe theory
applied in the dynamic instability for rock mass system, put
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forward several new ideas and new methods, and published
their research works.

2. Strain Energy Mutation Criterion of
Rock MASS Stability

It has been proven by Thom that when the number of
state variable is no more than two and control variable is
not greater than four, there will be seven different basic
catastrophe types, including fold catastrophe, cusp catastro-
phe, swallowtail catastrophe, butterfly catastrophe, hyper-
bolic umbilical catastrophe, elliptic umbilical catastrophe,
and parabolic umbilical catastrophe.The first two are simpler
and more widely used. In this paper, cusp catastrophe is
improved to be applied.

There are two control variables and one state variable in
the cusp catastrophe model. Its potential function is

𝑉 (𝑥) = 𝑥
4
+ 𝑢𝑥
2
+ V𝑥. (1)

Similarly with fold catastrophe, equilibrium surface 𝑀 and
sets of crossing points in cusp catastrophe model can be
gotten (Figure 1), respectively:

4𝑥
3
+ 2𝑢𝑥 + V = 0, (2)

8𝑢
3
+ 27V2 = 0. (3)

Equilibrium surface equation is a cubic equation andwhether
it has a real root or 3 real roots depends on the discriminant
Δ = 8𝑢

3
+ 27V2. If Δ > 0, there will be only one real root

and it will be in stable equilibrium. If Δ = 0, there will be
two different real root (𝑢, V ̸= 0) or three same real roots
(𝑢 = V = 0). If Δ < 0, there will be three different real roots:
two of them which can make 𝑉 achieve minimum value are
stable equilibrium point and the one which makes 𝑉 achieve
maximum value is unstable.

A cubic polynomial is used to fit equilibrium surfaces of
system. Based on it, transpose the polynomial to the integral
to obtain the potential function of the system.Then regularize
it and determine the stability of the system by catastrophe
characteristic values.

Take strain energy catastrophe model for example;
according to actual excavation step, increment series of strain
energy of the system are obtained by numerical calculation,
{𝐸} = {𝐸(1), 𝐸(2), . . . , 𝐸(𝑚)}. Fit the increment series into
the form of polynomial through the least square method.
However, the differences lie in the following two aspects.

(1) The variables and the independent variables of the
fitting polynomial change. The increment of strain
energy is an independent variable and the excavation
parameter is a variable.

(2) Adopt a cubic polynomial to fit.

The fitting polynomial is

𝑚 = 𝑏
3
𝐸
3
+ 𝑏
2
𝐸
2
+ 𝑏
1
𝐸 + 𝑏
0
; (4)

𝑏
𝑖
is the fitting factor of the polynomial. 𝑚 is the excavation

step.
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Figure 1: Equilibrium surface and sets of crossing points in cusp
catastrophe.

Consider the fitting formula as the manifolds of potential
function of system (equilibrium surface).

Transposition and integration are as follows:

𝑏
3

4
𝐸
4
+
𝑏
2

3
𝐸
3
+
𝑏
1

2
𝐸
2
+ (𝑏
0
− 𝑚)𝐸 + Λ = 0; (5)

Λ is a constant term.
Choose the following as a potential function of the

system:

𝑉 (𝐸) =
𝑏
3

4
𝐸
4
+
𝑏
2

3
𝐸
3
+
𝑏
1

2
𝐸
2
+ (𝑏
0
− 𝑚)𝐸. (6)

When researching the stability of the system at excavation
step𝑚,𝑉󸀠(𝐸) ≈ 0, the system is near the state of equilibrium;
the difference between𝑉󸀠(𝐸) and 0 is just caused by the fitting
polynomial which is not always totally accurate at the fitting
point. Thus, it meets the requirements of the neighborhood
status near the critical point when studying in catastrophe
theory. Meanwhile, parameter 𝑚 is a known value, so the
standard type of cusp catastrophe model can be gotten by
means of regularization of the above formula and stability of
the system can be determined by catastrophe characteristic
values.The system state variable—increment of strain energy
can produce a sudden jump when systemmutates, which has
clear and reasonable physical meaning.

It must be pointed out that the quartic polynomial fitting
about the excavation parameter 𝑚 and the increment of
strain energy cannot be established directly. Otherwise, in
the view of mathematics, the potential function of the system
is the excavation parameter. On this occasion, increment of
strain energy 𝑥 will produce a sudden jump when system
instability occurs and will lead to a sudden jump of the
potential function of the system; that is to say, the excavation
parameter produces a sudden jump which does not conform
to the fact that the influence of excavation parameters on
system stability should be reflected in control variables.

3. Examples

3.1. The Stability Analysis of Slope Based on the Existing
Displacement Catastrophe Criterion. A slope is composed of
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Table 1: Control variables 𝑢, V and catastrophe characteristic value Δ of cusp catastrophe model under different reduction factors.

𝑘 1.2 1.25 1.3 1.31 1.32 1.33
𝑢 0.07375 −0.00897 −0.00747 −0.00949 −0.015538 −0.01948

V 0.138 0.003068 0.004682 0.002863 0.0013598 0.00069

Δ 0.517397 0.000248 0.000588 0.000214 1.992𝐸 − 05 −4.6𝐸 − 05

State No mutation No mutation No mutation No mutation No mutation Mutation

1

2
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00
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(1) Drift bedding clay soil
(2) Granulite residual clay soil
(3) Weathered granulite

Figure 2: Geometric model and boundary conditions of a slope.
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Figure 3: Relation curve graph of maximum displacement and
reduction factor.

three rock-soil layers. Its geometric size and boundary condi-
tions are shown in Figure 2. Specific parameter characteristics
can be found in [8].

According to strength reduction method, the direct rela-
tionship between the maximum displacement of the slope
and the strength reduction factor is gotten by continuously
reducing material parameters and conducting conventional
elastic-plastic finite element calculation, as is shown in
Figure 3. (The author of [8] has completed the finite element
calculation and provided the maximum displacement of
the slope under different reduction factors. Discussion and
analysis are made on the basis of [8]. Thanks should be given
to the author of [8]!)

A total displacement sequence can be gotten:

{𝑈} = {0.1798, 0.1928, 0.2066, 0.2212, 0.2369, 0.2812,

0.3678, 0.418, 0.5142, 0.6732, 0.9171, 1.264} .

(7)

Displacement sequence under different reduction factors
is the subset of the total displacement sequence. Analyze
displacement sequence under the reduction factor at all levels
with least square method to fit it into quartic polynomial (at
least from level 5) and then regularize the polynomial to get
standard form of catastrophe model.

The fitting relationship between the maximum displace-
ment and reduction factor of slope under reduction factor at
levels 5 to 10 and the fitting formula of quartic polynomial
with the square value of the correlation coefficient are given
in Figure 4. As is shown in the above, applying quartic
polynomial fitting can meet the demand of high accuracy.
After turning the quartic polynomial fitting into a standard
form of cusp catastrophicmodel to get control variable values
under the reduction factor at different levels, corresponding
catastrophe characteristic value can be gotten, as is shown in
Table 1.

It can be found in the table that the situation of the system
will mutate when the reduction factor is 1.33.Therefore, it can
be concluded that the safety coefficient of the slope stability is
1.32 and, according to the cusp catastrophemodel, the system
characteristic values of mutation are Δ = 1.992𝐸 − 5 which is
very small and close to the edge of the instability.

Spencer method in the traditional limit equilibrium slice
method is also used to verify the calculation results in [8].
According to Spencer method, the slope safety factor is 1.29,
which is close to 1.32 of the catastrophic model established in
this paper, and the error is only 2.3%. It means the result of
cusp catastrophe model is of some reliability.

In the model above, based on potential function of the
maximum displacement of the slope, the cusp catastrophic
model is established. From the fitting formula and the
regularized equation, it is known that the state variable 𝑥
of the model is the strength reduction factor of the slope
material. Based on catastrophe theory, there will be a jump
when the slope is instable; correspondingly there will be a
jump of the strength reduction factor in thismodel. However,
the strength reduction factor is a constant man-made value.
Therefore, the conventional displacement catastrophe crite-
rion cannot explain practical meaning. In order to solve this
problem, the catastrophic model is proposed and analyzed in
this paper.

3.2. Analysis of Slope Stability Based on the Displacement
CatastropheCriterionEstablished inThis Paper. When adopt-
ing the displacement criterion to determine the stability of
slope rock mass, it would certainly bring out displacement
catastrophe at the time of slope failure, which is also con-
sistent with the practical engineering experience. Therefore,
take the maximum displacement of the slope as state variable
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Figure 4: Fitting curves of displacement reduction factor under reduction factor at levels 5 to 10.

Table 2: Control variables 𝑢, V and mutation characteristic values Δ of cusp catastrophe model under different reduction factor.

𝑘 1.3 1.31 1.32 1.33 1.34 1.35
𝑢 0.012125 0.006882 −0.00916 −0.04573 −0.12496 −0.30447

V −0.00114 −0.00132 −0.0025 −0.00762 −0.02111 −0.05649

Δ 0.012125 0.006882 −0.00916 −0.04573 −0.12496 −0.30447

State No mutation No mutation Mutation Mutation Mutation Mutation

𝑥 and establish a cusp catastrophe model on the basis of
it. The reduction factor of the system should be the control
factor. Thus, this paper adopts a cubic polynomial to fit the
relationship between reduction factor and displacement and
takes it as the equilibrium surface of the system. Obtain the
system potential function by integrating the cubic polyno-
mial, and then regularize it into the standard form of cusp
model. As analyzed above, reduction factor and displacement
of quartic polynomial fitting cannot be directly established.
Otherwise, in the view ofmathematics, the potential function
of the system is the reduction factor. Under the condition of
system instability, the state variable 𝑥 will produce a sudden
jump, which will lead the potential function of the system to a
sudden jump; namely the reduction factor has a sudden jump
and its value is not in conformity with man-made value.

The fitting graphs are shown in Figures 5 and 7.
The potential function of the system expressed by quartic

polynomial is obtained by integral of the fitting curves. Then
regularize it into the standard form of cusp catastrophe

model. The stability of system can be determined by catas-
trophe characteristic values.

When the reduction factor reaches 1.32, the maximum
slope displacement mutates (Table 2). The reason of catastro-
phe is due to the variation of the reduction factor (increasing
gradually), resulting in the control variable of cusp catas-
trophe satisfying the condition of catastrophe. Even the
whole system would mutate; that is, a sudden jump of the
state variable (i.e., the maximum displacement of the slope)
occurs. The slope jumps from an equilibrium position before
instability to another equilibrium position after instability.

The cusp catastrophe model established in this paper
reflects that the slope instability results from the displacement
jump, which leads the status of the slope to change and the
potential energy of the system also to change. (The specific
physical meaning of potential energy is not clear, but the
potential function is not the focus of catastrophe research.)
Compared with the traditional method using displacement
as potential function, cusp catastrophe model has a more
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Figure 5: Fitting curves of displacement reduction factor under reduction factor at levels 7 to 12.

Table 3: Table of control variables 𝑢, V and catastrophe characteristic value Δ of cusp catastrophe model under different reduction factors.

𝑘 1.15 1.2 1.25
𝑢 −0.30447 −2.60349 −0.03727

V −0.05649 −1.77655 0.003859

Δ −0.13965 −55.959 −1.2𝐸 − 05

State Mutation Mutation Mutation

definite physical meaning and is consistent with practical
engineering, which is established by considering reduction
factor as state variable.

4. Discussion

4.1.TheOccurrence Time of SuddenChange. When the reduc-
tion factor reaches 1.3 (reduction factor at level 7), material
strength reduction factors continued being increased, and
the catastrophe results of fitting curves on the basis of more
than 7 groups of data (𝑘, 𝑢) can be gotten as presented
in Table 1. Reduction factors and cubic fitting curves of
displacement under reduction factors at levels 4 to 6 are
also given in Figure 6. Likewise, transpose it to integral to
get a potential function of the system fitted with quartic
polynomial fit and regularize it to get the standard type of
cusp catastrophemodel.Thus, the stability can be determined
by the catastrophe characteristic values and results are shown
in Tables 3 and 4.

As is shown in Table 3, it seems that when the reduction
factor reaches 1.15 (reduction factor at level 4), slope has

become unstable already. However, after a careful look at
fitting curves, it can be found that, at level 4, there are only
four groups of data and data points are too few to use in
cubic polynomial fitting. Although it can reach very high
accuracy at these data points, the extension performance of
fitting polynomial is very poor and it cannot reflect the actual
relations between the data. When high order polynomial
is adopted, more fitting points are needed to achieve a
higher accuracy. It is meaningless with a few fitting points in
adopting high order polynomial fitting.

4.2. Adoption of Cubic Polynomial Fitting of Conventional
Catastrophe Model. The actual physical meaning of state
variables and the sudden jump occurring at the time of
catastrophe which results in another state of the system are
considered in the catastrophe model in this paper. However,
according to the analysis of calculation above, it seems that
there is no way to explain the problemwhy calculation results
are still highly accurate when adopting quartic polynomial
fitting, using displacement as potential function by con-
ventional catastrophe model and establishing the reduction
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Table 4: Table of control variables 𝑢, V and catastrophe characteristic value Δ of cusp catastrophe model under different reduction factors.

𝑘 1.3 1.31 1.32 1.33 1.34 1.35
𝑢 0.019105 0.009073 −0.00442 −0.01599 −0.02413 −0.02942

V −0.04207 −0.04198 −0.03814 −0.03388 −0.03154 −0.03091

Δ 0.047849 0.047586 0.039277 0.030953 0.026742 0.025597

State No mutation No mutation No mutation No mutation No mutation No mutation
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Figure 7: Fitting curves of the reduction factor of displacement under reduction factors at levels 7 to 12.
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factors as state variables in the catastrophe model. It is not
a particular example for many studies have mentioned it
before.

To make a further analysis, not only a conventional
method is adopted but also a cubic polynomial fitting is used
in this paper. Transpose it into integral to get reduction fac-
tors as state variables and cusp catastrophe model including
displacement influence. Then determine the stability of the
slope based on it.

There is an interesting phenomenon here; that is, at this
point catastrophe will not happen again and slope will not
lose balance (under the condition of maximum reduction
factor at 1.35 which is given in this paper). It cannot give
a definite conclusion only by a few examples, “reduction
factors cannot be used as state variables to get the critical
condition of catastrophe,” but, at least, the conclusion that
“when using the reduction factor as state variables a sudden
jump of the reduction factor will lead to instability of slope
that is not reasonable in its physical meaning” can be pointed
out explicitly.

5. Conclusion

From the perspective of catastrophe mathematical model,
a cubic polynomial data fitting is put forward to get a
function as the equilibrium surface of the system in this
paper. Under an excavation or loading step, the polynomial
satisfies the equilibrium conditions approximately (the error
is merely the fitting function error at that point). Therefore,
this state is on (or near) the equilibrium surface of the
potential function. The equilibrium surface obtains a system
potential function expressed by a quartic polynomial through
integral. After regularization, stability can be determined by
the catastrophe characteristic values.Thismethod overcomes
the disadvantages of currently commonly used catastrophe
criterion types which is not clear in physical meaning.
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