
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 234230, 17 pages
doi:10.1155/2012/234230

Research Article

Evaluation of Runtime Task Mapping Using
the rSesame Framework

Kamana Sigdel,1 Carlo Galuzzi,1 Koen Bertels,1 Mark Thompson,2 and Andy D. Pimentel2

1 Computer Engineering Group, Technical University of Delft, Mekelweg 4, 2628 CD, Delft, The Netherlands
2 Computer Systems Architecture Group, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands

Correspondence should be addressed to Kamana Sigdel, k.sigdel@tudelft.nl

Received 8 May 2011; Revised 20 December 2011; Accepted 30 December 2011

Academic Editor: Viktor K. Prasanna

Copyright © 2012 Kamana Sigdel et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Performing runtime evaluation together with design time exploration enables a system to be more efficient in terms of various
design constraints, such as performance, chip area, and power consumption. rSesame is a generic modeling and simulation
framework, which can explore and evaluate reconfigurable systems at both design time and runtime. In this paper, we use the
rSesame framework to perform a thorough evaluation (at design time and at runtime) of various task mapping heuristics from
the state of the art. An extended Motion-JPEG (MJPEG) application is mapped, using the different heuristics, on a reconfigurable
architecture, where different Field Programmable Gate Array (FPGA) resources and various nonfunctional design parameters,
such as the execution time, the number of reconfigurations, the area usage, reusability efficiency, and other parameters, are taken
into consideration. The experimental results suggest that such an extensive evaluation can provide a useful insight both into the
characteristics of the reconfigurable architecture and on the efficiency of the task mapping.

1. Introduction

In recent years, reconfigurable architectures [1, 2] have
received an increasing attention due to their adaptability
and short time to market. Reconfigurable architectures use
reconfigurable hardware, such as Field Programmable Gate
Array (FPGA) [3, 4] or other programmable hardware
(e.g., Complex Programmable Logic Device (CPLD) [5],
reconfigurable Datapath Array (rDPA) [6]). These hardware
resources are frequently coupled with a core processor,
typically a General Purpose Processor (GPP), which is
responsible for controlling the reconfigurable hardware. Part
of the application’s tasks is executed on the GPP, while the
rest of the tasks are executed on the hardware. In general,
the hardware implementation of an application is more
efficient in terms of performance than a software implemen-
tation. As a result, reconfigurable architectures enhance the
whole application through an implementation of selected
application kernels onto the reconfigurable hardware, while
preserving the flexibility of the software execution with the
GPP at the same time [7, 8]. The design of such architectures
is subject to numerous design constraints and requirements,

such as performance, chip area, power consumption, and
memory. As a consequence, the design of heterogeneous
reconfigurable systems imposes several challenges to system
designers such as hardware-software partitioning, Design
Space Exploration (DSE), task mapping, and task scheduling.

Reconfigurable systems can evolve under diverse condi-
tions due to the changes imposed either by the architecture,
by the applications, or by the environment. A reconfig-
urable architecture can evolve under different conditions,
for instance, processing elements shutdown in order to
save power, or additional processing elements are added
in order to meet the execution deadline. The application
behavior can change, for example, due to the dynamic
nature of the application-application load changes due to the
arrival of sporadic tasks. In such systems, the design process
becomes more sophisticated as all design decisions have to
be optimized in terms of runtime behaviors and values. Due
to changing runtime conditions with respect to, for exam-
ple, user requirements or having multiple simultaneously
executing applications competing for platform resources,
design time evaluation alone is not enough for any kind of
architectural exploration. Especially in the case of partially

2 International Journal of Reconfigurable Computing

dynamic reconfigurable architectures that are subject to
changes at the runtime, design time exploration and task
mapping are inadequate and cannot address the changing
runtime conditions. Performing runtime evaluation enables
a system to be more efficient in terms of various design
constraints, such as performance, chip area, and power
consumption. The evaluation carried at runtime can be more
precise and can evaluate the system more accurately than at
design time. Nevertheless, such evaluations are typically hard
to obtain due to the enormous size and complexity of the
search space generated by runtime parameters and values.

In order to benefit from both design time and runtime
evaluations, we developed a modeling and simulation frame-
work, called rSesame [9], which allows the exploration and
the evaluation of reconfigurable systems at both design time
and runtime. With the rSesame framework, designers can
instantiate a model that can explore and evaluate any kind
of reconfigurable architecture running any set of streaming
applications from the multimedia domain. The instantiated
model can be used to evaluate and compare various char-
acteristics of reconfigurable architectures, hardware-software
partitioning algorithms, and task mapping heuristics. In
[10], we used the rSesame framework to perform runtime
exploration of a reconfigurable architecture. In [11], we
proposed a new task mapping heuristic for runtime task
mapping onto reconfigurable architectures based on hard-
ware configurations reuse. In this paper, we present an
extension of the work presented in [10, 11]. In particular, we
present an extensive evaluation and comparison of various
task mapping heuristics from the state of the art (including
the heuristics we presented in [11]) both at design time and
at runtime using the rSesame framework. More specifically,
the main contributions of this paper are the following:

(i) a detailed case study using the rSesame framework for
mapping different runtime task mapping heuristics
from the state of the art (including the runtime
task mapping heuristics in [11]). For this case
study, we use an extended MJPEG application and a
reconfigurable architecture;

(ii) an extensive evaluation of the different heuristics for
a given reconfigurable architecture. This evaluation is
performed by considering different number of FPGA
resources for the same reconfigurable architecture
model;

(iii) a thorough comparison of the aforementioned
heuristics under different resource conditions using
various nonfunctional design parameters, such as
execution time, number of reconfiguration, area
usage, and reusability efficiency. The comparison is
done both at design time as well as at runtime.

The rest of the paper is organized as follows. Section 2
provides the related research. Section 3 discusses the rSesame
framework, which is used as a simulation platform for eval-
uating task mapping at runtime, while Section 4 presents a
detailed case study using the different heuristics. In Section 5,
a detailed analysis and evaluation of the task mapping at

runtime using the rSesame framework is presented. Finally,
Section 6 concludes the paper.

2. Related Work

Task mapping can be performed in two mutual nonexclusive
ways: at design time and at runtime. The task mapping
performed at the design time can generally be faster, but it
may be less accurate as the runtime behavior of a system
is mostly captured by using offline (static) estimations and
predictions. Examples of techniques for task mapping at
design time are dynamic programming [12], Integer Linear
Programming (ILP) [13], simulated annealing [14, 15], tabu
search [16], genetic algorithm [17, 18], and ant colony
optimization [19].

In another way of performing task mapping, the recon-
figurable system is evaluated for any changes in the runtime
conditions and the task mapping is performed at runtime
based on those conditions. Under such scenario, the changes
in the system are considered and the task mapping is
performed accordingly. In [20], the authors present a simple
approach for runtime task mapping in which a mapping
module evaluates the most frequently executed tasks at
runtime and maps them onto a reconfigurable hardware
component. However, this work [20] focuses on the lower
level and it targets only loop kernels. A similar approach
for high-level runtime task mapping is presented in [21] for
multiprocessor System on Chip (SoC) containing fine-grain
reconfigurable hardware tiles. This approach details a generic
runtime resource assignment heuristic that performs fast and
efficient task assignment. In [22], the authors define the
dynamic coprocessor management problem for processors
with an FPGA and provide a mapping to an online opti-
mization based on the cumulative benefit heuristic, which
is inspired by a commonly used accumulation approach in
online algorithm work.

In the same way, the study in [23] presents runtime
resource allocation and scheduling heuristic for the multi-
threaded environment, which is based on the status of
the reconfigurable system. Correspondingly, [24] presents a
dynamic method for runtime task mapping, task scheduling
and task allocation for reconfigurable architectures. The
proposed method consists of dynamically adapting an archi-
tecture to the processing requirement. Likewise, the authors
in [25, 26] present an online resource management for
heterogeneous multiprocessor SoC systems, and the authors
in [27] present a runtime mapping of applications onto
a heterogeneous reconfigurable tiled SoC architecture. The
approach presented in [27] proposes an iterative hierarchical
approach for runtime mapping of applications to a hetero-
geneous SoC. The approach presented in [28] consists of a
mapper, which determines a mapping of application(s) to
an architecture, using a library at runtime. The approach
proposed by authors in [29] performs mapping of streaming
applications, with real-time requirements, onto a reconfig-
urable MPSoC architecture. In the same way, Faruque et al.
[30] present a scheme for runtime-agent-based distributed
application mapping for on-chip communication for adap-
tive NoC-based heterogeneous multiprocessor systems.

International Journal of Reconfigurable Computing 3

There are few attempts which combine design time
exploration together with runtime management and try to
evaluate the system at both stages [21, 31]. However, these
methodologies are mostly restricted to the MPSoC domain
and do not address the reconfigurable system domain. Unlike
existing approaches that are either focused on design time or
on runtime task mapping, we are focused on exploring and
evaluating reconfigurable architectures at design time as well
as at runtime during early design stages.

3. rSesame Framework

The rSesame [9] framework is a generic modeling and
simulation infrastructure, which can explore and evalu-
ate reconfigurable systems at early design stages both at
design time and at runtime. It is built upon the Sesame
framework [32]. The rSesame framework can be efficiently
employed to perform DSE of the reconfigurable systems with
respect to hardware-software partitioning, task mapping,
and scheduling [10]. With the rSesame framework, an
application task can be modeled either as a hardware (HW),
or as a software (SW), or as a pageable task. A HW (SW)
task is always mapped onto the reconfigurable hardware
component (microprocessor), while a pageable task can be
mapped on either of these resources. Task assignment to
the SW, HW, and pageable categories is performed at design
time based on the design time exploration of the system. At
runtime, these tasks are mapped onto their corresponding
resources based on time, resources, and conditions of the
system.

The rSesame framework uses the Kahn Process Network
(KPN) [33] at the granularity of coarse-grain tasks for
application modeling. Each KPN process contains functional
application code instrumented with annotations that gen-
erate read, write, and execute events describing the actions
of the process. The generated traces are forwarded onto
the architecture layer using an intermediate mapping layer,
which consists of Virtual Processors (VPs) to schedule these
traces. Along with the VPs, the mapping layer contains a
Runtime Mapping Manager (RMM) that deals with the
runtime mapping of the applications on the architecture.
Depending on current system conditions, the RMM decides
where and when to forward these events. To support
its decision making, the RMM employs an arbitrary set
of user-defined policies for runtime mapping, which can
simply be plugged in and out of the RMM. The RMM
also collaborates with other architectural components to
gather architectural information. The architecture layer
in the framework models the architectural resources and
constraints. These architectural components are constructed
from generic building blocks provided as a library, which
contains components for processors, memories, on-chip
network components, and so forth. As a result, any kind of
reconfigurable architecture can be constructed from these
generic components. Beside the regular parameters, such as
computation and communication delays, other architectural
parameters like reconfiguration delay and area for the
reconfigurable architecture can also be provided as extra
information to these components.

The rSesame framework provides various useful design
parameters to the designer. These include the total execution
time (in terms of simulated cycles), area usage, number of
reconfigurations, percentage of reconfiguration, percentage
of HW/SW execution, and reusability efficiency. These
design parameters are described in more detail in the
following.

3.1. Execution Time. The execution time is recorded in terms
of simulated clock cycles. The SW execution time is the total
number of cycles when all the tasks are mapped only on the
GPP. The HW execution time is recorded when the tasks are
mapped onto the FPGA. The speedup is calculated as a ratio
of these two values.

3.2. Percentage of HW and SW Execution Time. The per-
centage of HW (SW) execution is computed as the total
percentage of the execution time contributed by the FPGA
(GPP) for HW (SW) execution of an application. Similarly,
the percentage of reconfiguration time represents the per-
centage of the total execution time spent in reconfigurations.
This provides an indication on the total time spent in the
computation and in the reconfiguration. These values are
calculated as follows.
The percentage of SW execution time is given by

SW Exec(%) =
∑N

i=1 #SWEx(Ti) · TSW(i)

TotalExecTime
· 100, (1)

where #SWEx(Ti) is the total number of SW executions
counted by the model for task Ti,TSW(i) is the software
execution latency for task Ti, and TotalExecTime is the total
simulated execution time.
The percentage of HW execution time is given by

HW Exec.(%) ≤
∑N

i=1 #HWEx(Ti) · THW(i)

TotalExecTime
· 100, (2)

where #HWEx(Ti) is the total number of HW executions
counted for task Ti by the model, THW(i) is the hardware
execution latency for task Ti, and TotalExecTime is the total
execution cycles incurred while running an application onto
the given reconfigurable architecture.

Note that, the HW execution percentage can only be
given here as an upper bound, since the execution of tasks on
the FPGA can be performed in parallel. The metric calculated
here is an accumulated value. The simulator, however, can
give the actual value. A similar equation holds for the time
spent reconfiguring, which is given as a percentage of the
total execution time as follows:

Recon(%) ≤
∑N

i=1 #Recon(Ti) · TRecon(i)

TotalExecTime
· 100, (3)

where #Recon(Ti) is the number of times Ti is configured,
TRecon(i) is the reconfiguration delay of Ti, and TotalExecTime
represents the total execution cycles incurred while running
an application onto the given reconfigurable architecture.

4 International Journal of Reconfigurable Computing

3.3. Number of Reconfigurations. The number of reconfigu-
rations is recorded as the total number of reconfigurations
incurred during the execution of an application onto the
given architecture. This provides an indication on how effi-
ciently the reconfiguration delay is avoided, while mapping
tasks onto the FPGA. For example, the mapping of task
A, task B, and then task A again on the FPGA requires 3
reconfigurations, while by changing this mapping sequence
to task A, task A and then task B, only 2 reconfigurations are
required.

3.4. Time-Weighted Area Usage. The weighted area usage
factor is a metric that computes how much area is used
throughout the entire execution of an application on a
particular architecture. This provides an indication on how
efficiently the FPGA area is utilized. This metric is calculated
as follows:

Area Usage(%) =
∑N

i=1 Area(Ti)·THW(i)· #HWEx(Ti)
TotalExecTime · Area(FPGA)

· 100,

(4)

where Area(Ti) is the area occupied by task Ti on the FPGA,
THW(i) is the hardware execution latency of Ti, #HWEx(Ti) is
the total number of HW executions counted by the model
for task Ti, Area(FPGA) is the total area available on the
FPGA, and TotalExecTime is the total execution time of the
application.

3.5. Reusability Efficiency. A task execution onto the FPGA
has two phases: the configuration phase, where its configu-
ration data that represents a task is loaded onto the FPGA,
and the running phase, where the task is actually processing
data. In an ideal case, a task can be configured onto the FPGA
only once and it is executed in all other cases. Nonetheless,
this is not always possible as the FPGA has limited area. The
Reusability Efficiency (RE) is the ratio of the reconfiguration
time that is saved due to the hardware configuration reuse to
the total execution time of any task. The RE of a task can be
defined as follows:

REtask = (#HWEx− #Recon) · TRecon

#HWEx · THW + #SWEx · TSW + #Recon · TRecon
,

(5)

where #HWEx, #SWEx, and #Recon are the number of
HW executions, SW executions, and reconfigurations of
a task, respectively. Similarly, THW, TSW, and TRecon are
the corresponding hardware, software, and reconfigurable
latencies.

The RE of a task indicates the percentage of the total
time saved by a task when multiple reconfigurations are
avoided or, in other words, a task configuration is reused.
The numerator in (5) represents the time that is saved when a
mapping of a task is reused, and the denominator represents
the total execution time. The total RE for an application can
be calculated as the summation of the numerator in (5) for

all N tasks divided by the total execution time for the whole
application as follows:

REApp ≤
∑N

i=1(#HWEx(i)− #Recon(i)) · TRecon(i)

TotalExecTime
. (6)

Note that the RE calculated in this way for the whole
application can only be given here as an upper bound,
since the execution of tasks on the reconfigurable hardware
can be performed in parallel. A higher RE can obtain a
higher speedup. To study this relation, we use the RE as an
evaluation parameter to study the behavior of each task.

4. Case Study

We use the rSesame framework as a simulation platform
for performing extensive evaluation of the various task
mapping heuristics from the state of the art. In order to
perform this case study, we constructed a Molen model using
the rSesame framework for mapping an extended MJPEG
application (see Section 4.2) onto the Molen reconfigurable
architecture [34] (see Section 4.1). The Molen model is
used to evaluate the different task mapping heuristics under
consideration. We incorporated these heuristics as strategies
for the Molen model to perform runtime task mapping of the
extended MJPEG application onto the Molen architecture.
We conducted an evaluation of these task mapping heuristics
based on various system attributes recorded from the model.

The rSesame framework allows easy modification and
adjustment of individual components in the model, while
keeping other parts intact. As a result, the framework allows
designers to experiment with different kinds of runtime
task mapping heuristics. The considered heuristics have
variable complexity in terms of their implementation and
the nature of their execution. In the original context, they
were used at different system stages, ranging from the lower
architecture level to Operating System (OS), and the higher
application levels. These heuristics are used as a strategy to
perform runtime mapping decisions in the model. They are
taken from literature, and have been adapted to fit in the
framework. In the following, we discuss these heuristics in
more detail.

4.1. As Much As Possible Heuristic (AMAP). AMAP tries to
maximize the use of FPGA resources (such as area) as much
as possible, and it performs task mapping based on resource
availability. In this case, tasks are executed on the FPGA if the
latter has enough resource to accommodate them; otherwise,
they are executed on the GPP. This straightforward heuristic
can be used as a simple resource management strategy in
various domains.

Algorithm 1 presents the pseudocode that describes the
functionality of the AMAP heuristic for performing runtime
mapping of a task Ti. The heuristic chooses to execute task
Ti onto the FPGA if there are sufficient resources (e.g., area
in Algorithm 1) for Ti (line 3 to 6 in Algorithm 1). In all
other conditions, tasks are executed on the GPP (line 7 to
9 in Algorithm 1).

International Journal of Reconfigurable Computing 5

(1) HW← set of tasks mapped onto the FPGA
(2) SW← set of tasks mapped onto the GPP
(3) if Ti.area ≤ area then
(4) {Ti is mapped onto FPGA}
(5) HW = HW ∪ Ti

(6) area = area− Ti.area
(7) else
(8) {Map Ti onto the GPP}
(9) SW = SW ∪ Ti

(10) end if

Algorithm 1: Pseudocode for the As Much As Possible heuristic
(AMAP) for mapping task Ti.

(1) HW← set of tasks mapped onto the FPGA
(2) SW← set of tasks mapped onto the GPP
(3) if Ti.area ≤ area then
(4) if CB(Ti) > (TSW(i) − THW(i)) then
(5) {Ti is mapped onto the FPGA}
(6) HW = HW ∪ Ti

(7) area = area − Ti.area
(8) end if
(9) else
(10) {Not enough area, swap the mapped tasks.}
(11) while area ≤ Tj .area and j ∈HW do
(12) if CB(Ti) - (TSW(i) − THW(i)) > CB(T j) then
(13) area = area + Tj .area
(14) end if
(15) end while
(16) if Ti.area ≤ area then
(17) {Ti is mapped onto the FPGA}
(18) HW = HW ∪ Ti

(19) area = area −Ti.area
(20) else
(21) {Map Ti onto the GPP}
(22) SW = SW ∪ Ti

(23) end if
(24) end if

Algorithm 2: Pseudocode for the cumulative benefit heuristic
(CBH) for the mapping on task Ti.

4.2. Cumulative Benefit Heuristic (CBH). CBH maintains a
cumulative benefit (CB) value for each task that represents
the amount of time that would have been saved up to
that point if the task had always been executed onto the
FPGA. Mapping decisions are made based on these values
and on the available resources. For example, if the available
FPGA resources are not sufficient to load the current task,
other tasks can be swapped if the CB of the current task
is higher than that of the to-be-swapped-out set. Huang
and Vahid [22] used this heuristic for dynamic coprocessor
management of reconfigurable architectures at architecture
level.

Algorithm 2 presents the pseudocode that describes the
functionalities of CBH for performing runtime mapping
of a task Ti. If resources, such as area slices, are available

(1) T ← set of all tasks.
(2) while T ! = ∅ and area ≤ Total area do
(3) Select Ti with maximum frequency count
(4) if area + Ti.area ≤ Total area then
(5) map Ti onto the FPGA
(6) area = area + Ti.area
(7) else
(8) map Ti onto the GPP
(9) end if
(10) Remove Ti from T
(11) end while
(12) Map rest of the tasks from T onto the GPP

Algorithm 3: Pseudocode for the Interval Based Heuristics (IBH)
for the mapping on task Ti.

in the FPGA, then Ti is executed onto the FPGA only if
the CB of Ti is larger than its loading time defined by
the difference between TSW(i) and THW(i), where TSW(i) and
THW(i) are the software and the hardware latencies of task Ti,
respectively (line 3 to 8 in Algorithm 2). In other cases, when
the FPGA lacks current capacity for executing the task, the
heuristic searches for a subset of FPGA-resident tasks, such
that removing the subset yields sufficient resources in the
FPGA to execute the current task. The condition, however,
is such that all the tasks in the subset must have smaller CB
value than the current task (line 9 to 18 in Algorithm 2). If
such a subset is not attained, then the current task is executed
by the GPP (line 19 to 22 in Algorithm 2).

4.3. Interval-Based Heuristic (IBH). In IBH, the execution is
divided into a sequence of time slices (intervals) for mapping
and scheduling. At the beginning of each interval, a task is
examined for its execution. In each interval, the execution
frequency of each task is counted, and the mapping decisions
are made based on the frequency count of the previous
intervals, such that tasks with the highest frequency count
are mapped onto the FPGA. In [23], this heuristic is used for
resource management in a multithreaded environment at OS
level.

Algorithm 3 presents the pseudocode that describes the
functionalities of the IBH heuristic for performing runtime
mapping in each interval for a set T of tasks. Working from
the highest to the lowest frequency count, each task Ti ∈ T
that satisfies the current resource conditions is selected for
FPGA execution. The area constraint is updated accordingly
before considering the next task. This process continues until
the FPGA is full or until there is no task left in T (line 2
to 6 in Algorithm 3). If the FPGA current capacity is not
enough for executing any task from T , then these tasks are
executed with the GPP (line 8 to 12 in Algorithm 3). As it
can be seen in Algorithm 3, tasks are executed onto the FPGA
based on frequency count, but other mapping criteria, such
as speedup, can also be used.

4.4. Reusability-Based Heuristic (RBH). RBH is based on the
hardware configuration reuse concept, which tries to avoid

6 International Journal of Reconfigurable Computing

Waiting Mapped Running

(1) (2)

(4)(3)

Figure 1: A finite-state machine (FSM) showing the different states
of a task.

the reconfiguration overhead by reusing the configurations,
which are already available on the FPGA. The basic idea of
the heuristic is to avoid reconfiguration as much as possible,
in order to reduce the total execution time. Especially in case
of application domains, such as streaming and networking,
where certain tasks are executed in a periodic manner, for
example, on the basis of pixel blocks or entire frames,
hardware configuration reuse can easily be exploited. To take
advantage of such characteristics of streaming applications,
we proposed this heuristic in [11].

For certain tasks that are mapped onto the FPGA,
RBH preserves them in the FPGA after their execution.
These tasks are not removed from the hardware, so that
their hardware configurations can be reused when the task
is re-executed. Reusing hardware configurations multiple
times can significantly avoid reconfiguration overhead; thus,
performance can be considerably improved. Unfortunately,
preserving hardware configurations is not possible for all
tasks. For this reason, the heuristic tries to preserve hardware
configurations for selected tasks. For example, tasks that have
higher reconfiguration delay and occur more frequently in
the system have priority on being preserved in the FPGA.

We define three states for a task as shown in Figure 1: a
waiting state, a mapped state, and a running state. A task
is in the waiting state if it waits to be mapped. A task is
in the mapped state if it is already configured onto the
FPGA, but it is not being executed; however, it may be
re-executed later. A task is in the running state when the
task is actually processing data. Figure 1 depicts a finite-state
machine (FSM) showing the different states of a task, where
the numbers 1 to 4 refer to the following state transitions:

(1) area becomes available or task dependency ends;

(2) task execution starts;

(3) other tasks need to be executed;

(4) task execution finishes, but the task may re-execute.

It should be noted that the mapped state has a reconfig-
uration delay associated with it. If a task transits from a
waiting state to a running state, this delay is considered.
However, if the task is already in the mapped state, its
hardware configuration is saved in the FPGA and this delay is
ignored. Thus, when the task needs to be re-executed, it can
immediately start processing without reconfiguration. The
performance can be significantly improved by avoiding the
former transition.

Algorithm 4 presents the pseudocode that describes the
functionality of the RBH heuristic for performing runtime
mapping of a task Ti. If Ti is already configured, then it
starts directly processing data (line 1 to 4 in Algorithm 4).
However, if Ti is not currently available in the FPGA, then the
task is evaluated for its speedup. If resources are available, Ti

is executed onto the FPGA only if there is a performance gain
(line 5 to 10 in Algorithm 4). The performance gain in this
case is measured in terms of speedup. The speedup for each
task is measured at runtime by using the following equation:

Speedup =
⎧
⎪⎪⎨

⎪⎪⎩

TSW

THW
t = 0,

TSW · (#HWEx + #SWEx)
#SWEx · TSW + #HWEx · THW + #Recon · TRecon

t > 0,

(7)

where #HWEx, #SWEx, and #Recon are the number of
HW executions, SW executions, and reconfigurations of
a task, respectively. Similarly, THW, TSW, and TRecon are
the corresponding hardware, software, and reconfigurable
latencies, and t is the execution time-line. When the
application execution starts, t = 0. The heuristic maintains
a profiling count of HW executions, SW executions, and
reconfigurations for all tasks. Each time a task is executed,
these counters for that task are updated. For instance, if a
task is executed with the GPP, its SW count is incremented,
and if the task is executed on the FPGA, its HW count is
incremented. Similarly, the reconfiguration count of a task
is incremented when a task is (re)configured. These count
values for each task are accumulated from all the previous
executions. As a result, they reflect the execution history
of a task. The speedup calculated with these count values
indicates the precise speedup of a task up to that point of
execution.

If the available resources are not enough in the FPGA,
a set of tasks from the FPGA is swapped to accommodate
Ti in the FPGA. The task swapping, in this case, is done
based on two factors: (a) speedup and (b) reconfiguration-
to-execution ratio (RER). In the first step, a candidate set of
tasks from the FPGA is selected, in such a way that these tasks
are less beneficial than the current task in terms of speedup
(line 12 to 16 in Algorithm 4). The speedup in this case is also
calculated by using (7). In the second step, the candidate set
is examined for its RER ratio, such that tasks with the lowest
RER values are swapped first (line 17 to 21 in Algorithm 4).
The RER value for each task is computed as follows:

RER = TRecon

THW
· Exec Freq, (8)

where Exec Freq is the average execution frequency of the
task in its past history. The execution frequency of a task can
be simply computed from the execution profile of each task
with respect to the total execution count of that application
as follows:

ExecFreq = #HWEx
∑N

i=1 HWiEx
, (9)

International Journal of Reconfigurable Computing 7

(1) {Task already mapped onto the FPGA, do not con f igure.}
(2) ifTi == MAPPED then
(3) Ti.state← RUNNING;
(4) else
(5) if area ≥ Ti.area then
(6) if Speedup(Ti) > 1 then
(7) {Task not mapped onto the FPGA, con f igure it.}
(8) configure(Ti);
(9) Ti.state← RUNNING;
(10) end if
(11) else
(12) for All tasks Tj onto the FPGA do
(13) if SpeedUp(Tj) < SpeedUp(Ti) then
(14) candidateSet = candidateSet ∪Tj

(15) end if
(16) end for
(17) while area ≤ Ti.area do
(18) Select Tk ∈ candidate Set with lowest RER
(19) removeSet = removeSet ∪Tk

(20) area = area + Tk .area;
(21) end while
(22) if Ti.area ≤ area then
(23) for All task Tm ∈ removeSet do
(24) Tm.state = WAITING;
(25) end for
(26) {Task not mapped onto the FPGA, con f igure it.}
(27) configure(Ti);
(28) Ti.state← RUNNING;
(29) end if
(30) end if
(31) end if

Algorithm 4: Pseudocode for the Reusability Based Heuristics (RBH) for the mapping on task Ti.

where the numerator represents the number of times a task is
executed on the FPGA. The denominator represents the total
hardware execution count of the entire application, and N
represents the total number of tasks in the application.

A task with a high RER value indicates that it has
high reconfiguration-per-execution delay, and it has executed
frequently, in its history in the system, making it a probable
candidate for future execution. The heuristic makes a careful
selection while removing tasks from the FPGA. By preserving
tasks with high RER values as long as possible in the FPGA,
we try to avoid the reconfiguration of the frequently executed
tasks. We would like to stress the fact that the speedup value
computed using (7) is not a constant factor. This value is
continuously updated based on the execution profile of the
task at runtime. Hence, mapping tasks onto the FPGA based
on such value represents the precise system behavior at that
instance of time. Note that the RBH is a generic heuristic,
and it is not restricted to one type of resource or to one
type of architecture. To perform runtime mapping decisions
considering multiple resources (such as memory or DSP
slices) for different architectural components, the parameters
defining the heuristic can be easily customized, hence making
it a flexible approach.

Reconfigurable processor

Core
processor

CCUρμ-code
unit

Memory

Arbiter

Memory
MUX

Figure 2: The machine organization of the Molen reconfigurable
architecture. The architecture consists of a General Purpose Pro-
cessor (GPP) and a Reconfigurable Processor (RP), which are
coordinated by an arbiter.

4.4.1. The Molen Architecture. Figure 2 depicts the machine
organization of the Molen polymorphic processor that is
established on the basis of the tightly coupled coprocessor
architectural paradigm [34, 35]. It consists of two different
kinds of processors: the core processor that is a GPP
and a Reconfigurable Processor (RP), such as an FPGA.

8 International Journal of Reconfigurable Computing

Video in

DCT2

DCT3

DCT4

Q1

Q2

Q3

Q4

VLE Video out

Init

DCT1

B CA D

F

E

MJPEG

APP1

APP2

APP3

A′ B′ C′ D′ E ′

F ′

A′′ B′′ C ′′ D′′ E ′′

F ′′

Figure 3: The Motion-JPEG (MJPEG) application model consid-
ered for the case study. The MJPEG application is extended by
injecting sporadic applications in each frame.

The reconfigurable processor is further subdivided into
the reconfigurable microcode (ρμ-code) unit and a Custom
Computing Unit (CCU). The CCU is executed on the FPGA,
and it supports additional functionalities, which are not
implemented in the core processor. In order to speed up the
program execution, parts of the code running on a GPP can
be implemented on one or more CCUs.

The GPP and the RP are connected to an arbiter. The
arbiter controls the coordination of the GPP and the RP
by directing instructions to either of these processors. The
code to be mapped onto the RP is annotated with special
pragma directives. When the arbiter receives the pragma
instruction for the RP, it initiates an “enable reconfigurable
operation” signal to the reconfigurable unit, gives the data
memory control to the RP, and drives the GPP into a waiting
state. When the arbiter receives an “end of reconfigurable
operation” signal, it releases the data memory control back to
the GPP and the GPP can resume its execution. An operation
executed by the RP is divided into two distinct phases: set
and execute. In the set phase, the CCU is configured
to perform the supported operations, and in the execute
phase the actual execution of the operation is performed. The
decoupling of set and execute phase allows the set phase
to be scheduled well ahead of the execute phase and thereby
hiding the reconfiguration latency.

4.4.2. The Application Model. We extend a Motion-JPEG
(MJPEG) encoder application to use it as an application
model for this case study. The corresponding KPN is shown
in Figure 3. The frames are divided into blocks, and each
task performs a different function on each block as it
is passed from task to task. MJPEG operates on these
blocks (partially) in parallel. A random number (0 to 3) of
applications (APP1 to APP3) is injected in each frame of the
MJPEG application in order to create a dynamic application

Table 1: Available area (in slices) for different FPGAs from the
Xilinx Virtex4 FX family [36].

Hardware Area (slices)

XC4VFX12 5472

XC4VFX20 8544

XC4VFX40 18624

XC4VFX60 25280

XC4VFX100 42176

XC4VFX140 63168

behavior. These applications are considered as sporadic ones,
which randomly appear in the system and compete with
MJPEG for the resources. In this case study, we want to
evaluate task mapping under different resource conditions;
therefore we use only one application as a benchmark for
comparing different heuristics. Nevertheless, the rSesame
framework allows to evaluate any number of applications,
architectures, and task mapping heuristics.

4.4.3. Experimental Setup. As discussed before, for this case
study, we consider a model instantiated from the rSesame
framework for the Molen reconfigurable architecture. The
model instantiated for this case study consists of 30 CCUs
allowing each task to be mapped onto one CCU. Note that
the number of CCUs is a parameter that can be defined
based on the number of pageable and HW tasks. For this case
study, we consider all tasks as pageable to fully exploit the
runtime mapping by deciding where and when to map them
at runtime depending on the system condition. The model
allows dynamic partial reconfiguration and, therefore, if the
FPGA cannot accommodate all tasks at once, the latter can
be executed after runtime reconfiguration.

We study and evaluate different task mapping heuris-
tics from various domains by considering, for the same
architecture model, different FPGA sizes. We consider
six FPGAs from the Xilinx Virtex-4 FX family [36],
namely, XC4VFX12, XC4VFX20, XC4VFX40, XC4VFX60,
XC4VFX100, and XC4VFX140. These FPGAs have different
available area (slices) as shown in Table 1. As a result,
they are used to evaluate the runtime task mapping under
different resource conditions. Note that, in this case study,
we have used area as one dimensional space. Nevertheless,
rSesame can evaluate any other types and numbers of
architectural parameter. We assume that the Processor Local
Bus (PLB) of these FPGAs is 4 bytes wide, and the Internal
Configuration Access Port (ICAP) functions at 100 MHz;
thus, its configuration speed is considered at 400 MB/sec
[37].

We use estimated values of the computational latency,
the area occupancy (on the FPGA), and the reconfiguration
delay for each CCU. The computational latency values for the
GPP model are initialized using the estimates obtained from
literature [38, 39] (non-Molen specific).

We estimated area occupancy for each process mapped
onto the CCU using the Quipu model [40]. Quipu estab-
lishes a relation between hardware and software, and it

International Journal of Reconfigurable Computing 9

5

6

Sp
ee

d
up

RBH CBH IBH AMAP STonly HWonly SWonly
RBH CBH IBH AMAP STonly HWonly SWonly

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

7

XC4VFX40 XC4VFX60 XC4VFX100 XC4VFX140XC4VFX12 XC4VFX20

FPGAs

Si
m

u
la

te
d

ex
ec

u
ti

on
 c

yc
le

s
(b

ill
io

n
s)

Figure 4: Comparison of the different heuristics tested in the proposed case study under different FPGAs conditions in terms of simulated
execution time with corresponding application speedup. The application performance is proportional to the FPGA size. HWonly mapping
has the best performance followed by RBH, AMAP, CBH, and IBH. STonly has the worst performance.

predicts FPGA resources from a C-level description of an
application using Partial Least Squares Regression (PLSR)
and Software Complexity Metrics (SCMs). Kahn processes
contain functional C-code together with annotations that
generate events such as read, execute, and write. As a result,
Quipu can estimate area occupancy of each Kahn process.
Such estimations are accepted while exploring systems at very
early design stages with rSesame. In later design stages, other
more refined models can be used to perform more accurate
architectural explorations.

Based on the reconfiguration delay of each FPGA and
the estimated area of each Kahn process, we computed
the reconfiguration delay of each CCU using the following
equation:

TRecon = CCU slices
FPGA slices

· FPGA bitstream
ICAP bandwidth

, (10)

where CCU slices is the total number of area slices a CCU
requires, FPGA slices is the total number of slices available
on a particular FPGA, FPGA bitstream is the bitstream size
in MBs of the FPGA, and ICAP bandwidth is the ICAP
configuration speed. As a final remark, we assume that there
is no delay associated with the runtime mapping, such as task
migration and context switching.

5. Heuristics Evaluation

In this section, we provide a detailed analysis of the experi-
mental results and their implications for the aforementioned
case study. We conducted a wide variety of experiments
on the above-mentioned task mapping heuristics with
the Molen architecture by considering various FPGAs of
different sizes. We evaluated and compared these heuristics
based on the following parameters:

(i) the execution time,

(ii) the number of reconfigurations,

(iii) the percentage of hardware/software executions,

(iv) the reusability efficiency.

The detailed description of these parameters has been
provided in Section 3. In the rest of this section, we discuss
the evaluation results by using these parameters in more
detail.

5.1. Execution Time. Figure 4 depicts the results of running
different task mapping heuristics for mapping an extended
MJPEG application onto the Molen architecture with various
FPGAs of different sizes. The primary y-axis (left) in the
graph represents the application execution time measured
for each heuristic. The software-only (SWonly) execution is
measured when all the tasks are mapped onto the GPP. Sim-
ilarly, the hardware-only (HWonly) execution is measured
when all the tasks are mapped onto the FPGA. In HWonly,
tasks are forced to be executed on the FPGA. However, if the
task does not fit on the entire FPGA, the task is executed
on the GPP. The static execution (STonly) is measured
when only design time exploration is performed. In STonly
execution, a fixed set of hardware tasks is considered for
the FPGA mapping and this set does not change during the
application runtime. For this experiment, tasks considered as
fixed hardware are DCT1–DCT4 and Q1–Q4. The secondary
y-axis (right) in Figure 4 represents the application speedup
for each heuristic compared to the SWonly execution. The x-
axis lists different types of FPGAs, which are ranked (from
left to right) based on their sizes, such that XC4VFX12
has the smallest number of area slices and XC4VFX140
has the largest number of area slices (see Table 1). Several
observations in terms of FPGA resources and speedup for
different heuristics can be made from Figure 4.

A first observation that can be noticed from Figure 4
is that the application performance is proportional to the
FPGA size to a certain degree: the bigger the available area
in the FPGA, the higher the application performance. In the
case of XC4VFX12, there is no significant performance gain

10 International Journal of Reconfigurable Computing

Table 2: The performance increase in different heuristics with
the corresponding area increase in the FPGA. There is no linear
relation between the area and the corresponding performance
improvement.

Heuristics

Performance increase (%)

XC4VFX12⇒
XC4VFX20

XC4VFX100⇒
XC4VFX140

(54% slice increase) (33% slice increase)

HWonly 67.9 3.14

STonly 0.69 0.007

AMAP 30 7.7

IBH 15 0.87

CBH 67 8.5

RBH 70 2.8

by using any heuristic compared to the software execution.
As there is a limited area, only few tasks can be mapped onto
the FPGA; thus, performance is limited. Nevertheless, there is
a notable performance improvement with the other FPGAs.

Secondly, while comparing the results of different heuris-
tics for different FPGAs in Figure 4, we observe that there
is no linear relation between the FPGA area and the corre-
sponding performance. For instance, although XC4VFX20
has 54% more slices than XC4VFX12, the corresponding
increase in the application performance is 67.9%, in the
case of HWonly, as shown in Table 2. Similarly, there is 33%
increase in area slices while comparing XC4VFX140 with
XC4VFX100 in Table 1. Nevertheless, there is considerably
lower increase in the performance in this case, as compared
to the former case. The performance increase associated
with the corresponding area increase in XC4VFX12 and
XC4VFX20 as compared to XC4VFX100, and XC4VFX140
respectively, in case of different heuristics is reported in
Table 2. The table depicts that there is no linear increase in
the performance with area increase. This becomes obvious
as the performance increase in an application is bounded by
the degree of parallelism in that application. The use of more
resources does not always guarantee a better application
performance.

Another observation that can be made from Figure 4 is
in terms of application performance of each heuristic. As
it can be seen from the figure, STonly has the worst appli-
cation performance, and HWonly has the best application
performance. HWonly executes all tasks on the FPGA. As a
result, it has approximately up to 9 times better performance
than SWonly. STonly executes a fixed set of tasks on the
FPGA, and mapping optimizations cannot be performed at
runtime and, as a result, it has only upto 3 times better
performance than SWonly. On the other hand, with runtime
heuristics such as AMAP, IBH, CBH, and RBH, the task
mapping is performed at runtime. When the application
behavior changes due to the arrival of a sporadic application,
task mapping is optimized, and better performance can be
obtained in latter cases. This can be clearly seen in the figure,

1

1.5

2

2.5

3

3.5

Sp
ee

d
u

p

0

0.5

FPGAs

X
C

4V
FX

12

X
C

4V
FX

20

X
C

4V
FX

40

X
C

4V
FX

60

X
C

4V
FX

10
0

X
C

4V
FX

14
0

RBH-STonly

RBH-IBH

RBH-CBH

RBH-AMAP

RBH-HWonly

Figure 5: The performance increase of the RBH compared to
HWonly, STonly, IBH, CBH, and AMAP. RBH performs better
than AMAP under all resource conditions except XC4VFX12. RBH
performs better than STonly, IBH, and CBH under all resource
conditions.

where the performance of the other heuristics, such as RBH,
CBH, IBH, and AMAP, are bounded by HWonly and STonly.

While comparing the application performance of RBH
against the other heuristics, we observe that RBH pro-
vides the best performance. RBH outperforms IBH under
all resource conditions. RBH performs similar to CBH
in the case of XC4VFX12, XC4VFX20, and XC4VFX40,
while it performs better than CBH for the rest of the
FPGAs. Task mapping is highly influenced by the task
selection criteria and the FPGA size. CBH chooses a task
with the highest SW/HW latency difference and executes
that task in FPGA. RBH also maps tasks based on the
speedup factor, but the major difference is in the way this
value is calculated. RBH calculates the speedup value at
runtime taking into account the past execution history,
while with CBH, the SW/HW value is calculated statically.
This difference significantly influences the performance of
these heuristics. The performance increase of the RBH as
compared to HWonly, STonly, IBH, CBH, and AMAP is
reported in Figure 5. As it can be inferred from the figure,
the performance improvement of the RBH compared to
AMAP shows an irregular behavior. The RBH performs
10% worse than AMAP for XC4VFX12. However, the
improvement significantly increases for XC4VFX20. For
XC4VFX40, the improvement suddenly decreases to 10%.
The improvement is regained for XC4VFX60 and stays
identical for XC4VFX100 and XC4VFX140. AMAP performs
task mapping based on the area availability in an ad hoc
manner, in the sense that it tries to map as many tasks as
possible at once. However, the RBH performs a selective
task mapping based on the task speedup and the hardware
configuration reuse. When area is limited, as in the case
of XC4VFX12, not many hardware configurations can be
preserved in the FPGA. Thus, configuration reuse cannot

International Journal of Reconfigurable Computing 11

XC4VFX40

XC4VFX60

XC4VFX100

XC4VFX140

RBH
CBH

IBH

AMAP

STonly
HWonly

XC4VFX12

XC4VFX20

Number of reconfigurations

FP
G

A
s

0 4000 8000 12000 16000

Figure 6: Heuristics comparison under different FPGAs conditions
in terms of number of reconfigurations. There is a direct relation
between the number of reconfigurations and the FPGA area.

be exploited with the RBH. As a result, AMAP performs
better than RBH. With the increase in area, many hardware
configurations can be preserved in the FPGA. Consequently,
the RBH performs better than AMAP.

5.2. Number of Reconfigurations. Figure 6 depicts an
overview of the number of reconfigurations for different
heuristics, by considering different FPGAs. Several
observations can be made from Figure 6 in terms of
FPGA resources and the number of reconfigurations for
the different heuristics. Only few tasks can be executed
on the FPGA with limited area slices, contributing to
the small reconfiguration counts. When the area slices
increase, more tasks can be executed onto the FPGA,
and, hence, reconfiguration counts increase. Nevertheless,
the reconfiguration count is greatly influenced by the
mapping strategies used. As it can be inferred from Figure 6,
HWonly has relatively higher reconfigurations as compared
to other heuristics. With HWonly, all tasks are executed
to the FPGA, and hence, they are configured frequently.
In large FPGAs, there is a possibility for CCUs to save
and reuse their configurations and, hence, to avoid their
reconfiguration. Therefore, reconfigurations saturate with
large FPGAs. Similarly, STonly has a relatively low number
of reconfigurations with small FPGAs, such as XC4VFX12
and XC4VFX20. The reconfiguration count increases in case
of XC4VFX40 and XC4VFX60, and, then, it stays constant
in all other cases. STonly executes a fixed set of HW tasks
in all cases; since the number of HW task is constant, the
reconfiguration also saturates.

We can observe from Figure 6 that AMAP has sig-
nificantly higher reconfiguration counts unlike the other
heuristics. AMAP performs task mapping based on the
area availability in an adhoc manner, in the sense that
any task can be mapped onto the FPGA. This leads to a
significant increase in reconfiguration counts. It is worth
noticing that the application performance in case of AMAP
does not decrease drastically with the higher reconfiguration
numbers. We may expect a significant performance decrease
due to massive reconfigurations. The reconfiguration latency
considered for a task is relatively small compared to the HW
execution latency. Despite the larger number of reconfigura-
tions, the performance can be considerably improved with
the HW execution in such cases. Similarly, in the case of
CBH, the reconfiguration counts are lower in smaller FPGAs
due to lower hardware executions. This number increases
with large FPGAs. There are no significant changes in the
reconfiguration counts with the increase in area slices once
sufficient area is available.

The number of reconfigurations for IBH is somewhat
lower compared to the other heuristics, such as AMAP, CBH,
and RBH under all FPGA conditions. This is not due to an
efficient algorithm, which tries to optimize the reconfigura-
tion delay, rather it is the effect of limited HW execution.
In case of IBH, the mapping decision is changed only in the
beginning of each interval, and the mapping behavior is fixed
within an interval. Thus, a fixed set of tasks is mapped onto
the FPGA during such an interval. This limits the hardware
execution percentage, and hence, the reconfigurations. On
the other hand, RBH reuses the hardware configurations
to reduce the total number of reconfigurations. As a result,
we observe a lower number of reconfigurations in case of
RBH compared to CBH and AMAP in Figure 6. Note that
IBH and STonly have lower reconfigurations than RBH as a
consequence of their lower hardware execution. Nonetheless,
RBH has a better reconfiguration-to-HW-execution ratio as
compared to IBH and STonly, making the former better in
terms of performance.

5.3. Percentage of Hardware Execution, Software Execu-
tion, and Reconfiguration. Figure 7 shows the comparison
between different task mapping heuristics in terms of
hardware execution, software execution and reconfiguration
measured using (1), (2), and (3), respectively. The x-axis in
the graph is stacked as 100%, and it shows the contribution of
hardware execution, software execution, and reconfiguration
to the total execution time. We observe that in few FPGAs the
percentage of execution is greater than 100%. The hardware
execution percentage measured in (1) is provided as an
upper bound to address the parallel execution possibility of
the FPGA. As a result, its value can go beyond the 100%
limitation.

A first observation that can be made from Figure 7 is in
terms of execution percentage and FPGA area. The limited
area slices in the FPGA confines the HW execution percent-
age in smaller FPGAs. The hardware execution percentage
increases considerably with more area slices, but this increase
is not linear. As it can be seen from the figure, hardware

12 International Journal of Reconfigurable Computing

XC4VFX20

XC4VFX40

XC4VFX60

XC4VFX100

XC4VFX140

FP
G

A
s

0 20 40 60 80 100 120 140

XC4VFX12

Execution (HW/SW/reconfiguration) (%)

(a) HWonly

0 20 40 60 80 100 120

XC4VFX20

XC4VFX40

XC4VFX60

XC4VFX100

XC4VFX140

FP
G

A
s

XC4VFX12

Execution (HW/SW/reconfiguration) (%)

(b) STonly

0 20 40 60 80 100 120 140

XC4VFX40

XC4VFX60

XC4VFX100

XC4VFX140

FP
G

A
s

XC4VFX12

XC4VFX20

Execution (HW/SW/reconfiguration) (%)

(c) AMAP

XC4VFX20

XC4VFX40

XC4VFX60

XC4VFX100

XC4VFX140

FP
G

A
s

0 50 100 150

XC4VFX12

Execution (HW/SW/reconfiguration) (%)

(d) IBH

0 50 100

XC4VFX20

XC4VFX40

XC4VFX60

XC4VFX100

XC4VFX140

FP
G

A
s

XC4VFX12

Execution (HW/SW/reconfiguration) (%)

(e) CBH

0 20 40 60 80 100 120

XC4VFX20

XC4VFX40

XC4VFX60

XC4VFX100

XC4VFX140

FP
G

A
s

XC4VFX12

Execution (HW/SW/reconfiguration) (%)

 SW execution (%)

HW execution (%)

Reconfiguration (%)

(f) RBH

Figure 7: The comparison of different heuristics based on percentage of hardware execution, software execution, and reconfiguration. The
hardware execution percentage is low in smaller FPGAs, and it increases considerably with more area slices.

execution percentage somewhat saturates with large FPGAs,
such as XC4FX100 and XC4FX140. This observation is valid
for all the runtime mapping heuristics including STonly and
HWonly.

With HWonly mapping, all tasks are forced to be
executed to the FPGA. However, if the task does not fit
on the entire FPGA, then the task is executed with the
GPP. Therefore, in Figure 7, we observe certain percentage
of software execution with small FPGAs, but, with larger
FPGA, there is only HW execution and the corresponding
reconfiguration. With smaller FPGAs, almost no tasks are
executed in hardware and, as a result, STonly has very
minimal hardware execution (if any) and, therefore, the
less reconfigurations. With the larger FPGAs, STonly has
a relatively good but constant hardware execution and

reconfiguration percentage, since it executes a fixed set of
tasks on the FPGA.

While comparing the runtime heuristics, such as AMAP,
CBH, IBH, and RBH, we can observe that AMAP has
the best hardware execution percentage in larger FPGAs,
followed by RBH and CBH. CBH and RBH somehow show
similar behavior in terms of hardware execution percentage.
However, in case of reconfiguration percentage, they do not
follow the same trend. The reconfiguration is somewhat
linear to the hardware execution in case of CBH. However,
RBH does not show any linear increase in reconfiguration
with hardware execution. RBH performs task mapping
based on configuration reuse and, as a result, tries to
avoid reconfiguration with more hardware executions. This
behavior of RBH heuristic is apparent in the figure, especially

International Journal of Reconfigurable Computing 13

3

4

5

6

7

8

9

2

3

4

5

6

Sp
ee

du
p

HWonly

STonly

AMAP

IBH

CBH

RBH

HWonly

STonly

AMAP

IBH

CBH

RBH

0

1

0

1
2

T
im

e-
w

ei
gh

te
d

ar
ea

 u
sa

ge

FPGAs

XC4VFX12 XC4VFX20 XC4VFX40 XC4VFX60 XC4VFX100 XC4VFX140

Figure 8: The comparison of different heuristics in terms of time-weighted area usage against speedup under different FPGAs conditions.
The HWonly has the most time-weighted area usage, followed by the other runtime heuristics AMAP, CBH, IBH, and RBH.

in the case of moderate to large FPGAs, such as XC4FX60,
XC4FX100, and XC4FX140. IBH follows a behavior similar
to STonly in terms of software and hardware execution, as it
also executes a fixed set of tasks on the FPGA.

By mapping more tasks onto the FPGA, the application
can be accelerated, but it also has reconfiguration overhead.
The efficiency of the mapping heuristics lies in finding the
best mapping while minimizing the number of reconfig-
urations. Nevertheless, in Figure 7, we see almost a linear
contribution of the reconfiguration overhead to the total
execution time in all heuristics, except in RBH. This phe-
nomenon is highly influenced by the policy implemented for
task mapping. Another observation that can be made from
the figure is the contribution of the hardware execution, SW
execution, and reconfiguration to the total execution time.
The figure shows that the GPP executes most of the applica-
tion and the FPGA computes only less than 40% of the total
application. This is due to the architectural restrictions of the
Molen architecture. The GPP and the RP run in a mutual
exclusive way, due to the processor/coprocessor nature of the
architecture. This influences the mapping decision, which,
in turn, contributes to the low hardware execution rates.
This significantly increases the total execution time. Another
reason for the lower percentage of hardware execution is due
to the lower hardware latency for each task. The execution
percentage is calculated as the ratio of execution latency
of all tasks to the total execution time of an application.
The hardware latency is comparatively lower than the SW
latency for each task. Therefore, the corresponding hardware
execution contribution is always lower compared to the
percentage of SW execution.

5.4. Time-Weighted Area Usage. Figure 8 depicts an average
time-weighted area usage measured using Equation (4) for

different heuristics under different FPGA devices. The pri-
mary y-axis (left) in the graph represents the time-weighted
area usage measured for each heuristic. The secondary y-axis
(right) in the figure represents the application speedup for
each heuristic compared to the SWonly execution. Several
observations can be made from Figure 8 in terms of FPGA
resources and time-weighted area usage of different heuris-
tics. The first observation that can be made from the figure
is in terms of time-weighted area usage and the hardware
resource. As it can be seen from the figure, the time-weighted
area usage is directly impacted by the number of area slices
in the FPGA. With the limited area slices in small FPGAs,
few tasks are executed in the FPGA, contributing to a smaller
number of hardware executions. This, in turn, contributes
to the lower area usage. With sufficient area slices, there is
a considerable number of hardware executions and, hence,
the area usage is high. Nonetheless, there is no linear relation
between the time-weighted area usage and the available
FPGA area. In XC4VFX140, the area usage is relatively low
compared to XC4FX100, despite the fact that area slices are
greater in the former. The area usage measured is the time-
weighted factor, and it depends on the hardware execution,
the total FPGA area and the total execution time, as shown
in Equation (4). The increase in the area slices, with no
significant increase in hardware executions, contributes to
the lower area usage in the former case.

As it can be inferred from Figure 8, HWonly has the
highest time-weighted area usage under all FPGA conditions.
HWonly executes all tasks onto the FPGA and, as a result,
the cost of using FPGA in this case is higher than all
the other heuristics. STonly, however, has the lowest area
usage due to its lower number of hardware executions
and, therefore, its corresponding performance is also very
poor. Similarly, AMAP has higher area usage compared to

14 International Journal of Reconfigurable Computing

other heuristics, such as CBH, IBH, and RBH, under all
FPGA conditions, except XC4VFX60. AMAP performs task
mapping based on area availability. As a matter of fact,
it has a relatively higher number of hardware executions
compared to the other heuristics and, therefore, it consumes
additional area. RBH, on the other hand, has less time-
weighted area usage. While comparing AMAP and RBH, we
can observe that RBH performs somewhat better than AMAP
in terms of performance. This implies that RBH reuses the
hardware configuration already present in the FPGA to avoid
reconfiguration overhead and, as a result, it can give better
performance with the same amount of hardware resources
as required by AMAP. Likewise, CBH has a comparable
percentage of time-weighted area usage, but it lags behind in
terms of speedup as compared to RBH. However, IBH has
a considerably low percentage of area usage, as it also has
lower hardware executions due to the constantly executed
HW task set, and hence it also has lower performance. We
can summarize that HWonly has the best performance but
consumes more hardware resources. STonly has the lowest
area usage but straggles behind in terms of performance.
A tradeoff in terms of performance and resources can be
obtained with task mapping at runtime, which performs
selective task mapping onto the FPGA at runtime.

Another compelling observation that can be made from
Figure 8 is about the lower value of the time-weighted
area usage. The Molen architecture is based on proces-
sor/coprocessor paradigm. As a result, the GPP and the
RP run in a mutual exclusive. This contributes to the
lower number of hardware executions, which consequently
increases the total execution time. Thus, these two factors
significantly contribute to the low value of area usage. The
area usage can be increased either by mapping more tasks
onto the FPGA or by operating the RP and the GPP in
parallel.

5.5. Reusability Efficiency. Figure 9 depicts the reusability
efficiency (RETask) recorded for all CCUs using Equation
(5) for different heuristics under different FPGA conditions.
Several observations can be made from the figure in terms of
FPGA area and the RETask of each CCU. Firstly, we observe
that the CCU reuse is significantly affected by the number of
area slices in the FPGA. Small FPGAs, such as XC4VFX12 and
XC4VFX20, have many CCUs with RETask value zero. A CCU
has an RETask value of zero under the following conditions:

(i) when a CCU is always mapped onto the GPP

(ii) when a CCU is configured every time it is executed
on the FPGA.

With few resources in the FPGA, only a limited number
of tasks can be executed to the FPGA. Additionally, in
such cases, hardware configurations cannot be preserved for
future reuse. As a result, CCUs have an RETask value of zero.
Moreover, in this case, CCUs that are reused have a very
small size in terms of area. With the increase in number
of slices in the FPGA, more CCUs are reused. Medium-
sized FPGAs, such as XC4VFX40 and XC4VFX60, reuse more
CCUs compared to smaller FPGAs, but, in such cases, the

reuse percentage is still low. With the larger FPGAs such as
XC4VFX100 and XC4VFX140, more CCUs are reused with
large RETask value.

As it can be inferred from Figure 9, HWonly has the best
RETask for many CCUs in large FPGAs, such as XC4VFX100
and XC4VFX140. HWonly executes all the tasks on the
FPGA and, as a result, it has high hardware execution count.
However, with small FPGAs, all the tasks are configured, due
to area restrictions, and there is no configuration reuse. On
the other hand, with larger FPGAs, more configurations are
saved and reused and, as a consequence, many CCUs have a
considerably high RETask value. Similarly, STonly always maps
a set of fixed tasks onto the FPGA. Out of these tasks, only a
few number of small tasks can be reused. We notice that these
CCUs have a relatively higher RE value compared to the ones
reused with the AMAP heuristic in the figure. AMAP has
higher HW execution percentage as compared to IBH and
CBH. As a matter of fact, many tasks are reused in case of
AMAP, but the reuse percentage of these CCUs is low. AMAP
has no fixed pattern for task execution and, as a result, any
task can be executed in FPGA. Therefore, the reusability is
rather distributed among many CCUs. CBH, on the other
hand, follows a specific policy for task execution in FPGA
and hence executes a fixed set of selected task. As a result, a
set of selected tasks is reused. Similar behavior is observed
in the case of CBH. As it also executes a set of specific task
within an interval, same tasks are reused (if any).

Likewise, from Figure 9, we observe that the RETask of
RBH is better than that of other runtime heuristics for many
CCUs. The impact of this hardware configuration reuse, in
case of RBH, can be directly seen in terms of performance
gain in Figure 4, where RBH has better speedup than the
other heuristics. From Figure 10, we also observe that, for
few tasks, RETask decreases when FPGA resources increase.
With larger FPGAs, more tasks can fit onto the FPGA. As a
result, these tasks are also mapped onto the FPGA, thus, over
writing the saved configurations of other tasks. RETask for few
tasks decreases in the FPGAs with moderate size. With the
abundant resources, the hardware configuration can be saved
for more tasks, and RETask increases again.

Note that STonly, AMAP, CBH, and IBH do not map
the task based on the hardware configuration reuse. The
reuse obtained in the case of STonly, AMAP, CBH, and
IBH is a default value determined based on the arrival of
the application task. If a CCU is already configured on the
FPGA when its corresponding task arrives, the task can be
executed without reconfiguration. However, the RBH reuses
more hardware configurations than the other heuristics on
top of the default value obtained.

Figure 10 depicts the total REapp recorded using Equation
(6) for different heuristics under different resource condi-
tions. In the figure, we again observe that the reusability
increases when using larger FPGAs. HWonly executes all
the tasks in FPGA and, therefore, there can be a possibility
that many of these tasks are reused when sufficient area is
available, resulting into higher REapp. STonly has almost a
constant REapp in larger FPGA, since it executes a constant
set of tasks in FPGA. While comparing runtime heuristics,
such as AMAP, CBH, IBH, and RBH, we can observe that

International Journal of Reconfigurable Computing 15

0

50

100
XC4VFX12

HWonly

STonly

AMAP

IBH

CBH

RBH

0

50

100
XC4VFX20

0

50

100
XC4VFX40

0

50

100
XC4VFX60

0

50

100
XC4VFX100

0

50

100

C
C

U
0

C

C
U

1

C
C

U
2

C

C
U

3

C
C

U
4

C

C
U

5

C
C

U
6

C

C
U

7

C
C

U
8

C

C
U

9

C
C

U
10

C

C
U

11

C
C

U
12

C

C
U

13

C
C

U
14

C

C
U

15

C
C

U
16

C

C
U

17

C
C

U
18

C

C
U

19

C
C

U
20

C

C
U

21

C
C

U
22

C

C
U

23

C
C

U
24

C

C
U

25

C
C

U
26

C

C
U

27

C
C

U
28

C

C
U

29

XC4VFX140

Figure 9: Reusability efficiency (RETask) of CCUs for different heuristics under different FPGA conditions. The CCU reuse is significantly
affected by the number of area slices in the FPGA.

since the RBH has more CCUs reused than other heuristics,
as shown in Figure 7(f), RBH has a better REapp value than
other heuristics in all resource conditions but XC4VFX12.
Since XC4VFX12 has less area, all the heuristics have approx-
imately the same value for REapp. REapp is the accumulation
of the time saved due to hardware configuration reuse of each
CCU. If all CCUs obtain the same value of the RE for a task
mapping heuristic, then the application REapp depends on
the corresponding total execution time of that heuristics.

6. Observations and Conclusions

In this paper, we evaluated the task mapping of application(s)
onto reconfigurable architectures under different resource
conditions. We thoroughly evaluated various task mapping
heuristics from the state of the art with the rSesame
framework for a reconfigurable architecture with different
FPGA resources using an extended MJPEG application.
Based on the evaluation discussed in the previous sections,
we can summarize the following conclusions.

(i) The comparison of different FPGAs shows that with
very limited resources (in case of small FPGAs), the

16 International Journal of Reconfigurable Computing

3210

Reusability efficiency (%)

XC4VFX40

XC4VFX60

XC4VFX100

XC4VFX140

XC4VFX12

XC4VFX20

FP
G

A
s

RBH
CBH
IBH

AMAP

STonly
HWonly

Figure 10: Heuristics comparison under different FPGAs condi-
tions in terms of application reusability efficiency (REapp). RBH has
better REapp compared to other heuristics.

number of tasks that can be mapped onto the FPGA
is low. Consequently, these tasks are mapped onto the
GPP. This leads to a poor application performance.

(ii) More resources (in case of moderate/higher FPGAs)
imply more tasks mapped onto the FPGA. Con-
sequently, we can obtain better application perfor-
mance.

(iii) Runtime mapping provides better performance in
case of dynamic application/architecture conditions.
If the application behavior is well known in advance,
design time mapping can give equal performance.

(iv) Mapping all the tasks onto the FPGA gives better per-
formance, but it consumes more hardware resources.
Runtime mapping performs task mapping based on
the runtime system conditions. As a matter of fact,
with the runtime mapping, a tradeoff can be obtained
in terms of performance and resources.

(v) Comparing different heuristics, in case of limited
resources conditions (small FPGAs), the adhoc task
mapping of AMAP performs better compared to
CBH, IBH, and RBH. Due to limited resources, the
careful task selection with RBH, CHB, and IBH
cannot be fully exploited in such cases.

(vi) The reuse of hardware configurations is better in case
of sufficient resource conditions (medium-to-large
FPGAs). As a result, the configuration reuse can be

well exploited. Additionally, the RBH provides better
application performance than AMAP and CBH.

(vii) In case of abundant resource conditions (very large
FPGAs), the performance saturates due to appli-
cation constraints. Under such scenarios, all the
heuristics have similar performances.

Acknowledgments

This research is partially supported by Artemisia iFEST
Project (Grant 100203), Artemisia SMECY (Grant 100230),
FP7 Reflect (Grant 248976).

References

[1] K. Compton and S. Hauck, “Reconfigurable computing: a
survey of systems and software,” ACM Computing Surveys, vol.
34, no. 2, pp. 171–210, 2002.

[2] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O.
Mencer, W. Luk, and P. Y. K. Cheung, “Reconfigurable com-
puting: architectures and design methods,” IEE Proceedings—
Computers and Digital Techniques, vol. 152, no. 2, pp. 193–207.

[3] S. Hauck, “The roles of FPGA’s in reprogrammable systems,”
Proceedings of the IEEE, vol. 86, no. 4, pp. 615–638, 1998.

[4] R. J. F. Stephen, D. Brown, and J. Rose, Field-Programmable
Gate Arrays, vol. 180 of The Springer International Series in
Engineering and Computer Science, Kluwer Academic Publish-
ers, 1992.

[5] Xilinx Corporation, Coolrunner-II CPLDs Family Overview,
September 2008.

[6] R. W. Hartenstein and R. Kress, “A datapath synthesis system
for thereconfigurable datapath architecture,” in Proceedings of
the Asia andSouth Pacific Design Automation Conference (ASP-
DAC ’95), pp. 479–484, September 1995.

[7] S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Reconfig-
urable Computing, vol. 16, Springer, Berlin, Germany, 2007.

[8] N. S. Voros and and K. Masselos, System-Level Design of
Reconfigurable Systems-on-Chip, Springer, Berlin, Germany,
1st edition, 2005.

[9] K. Sigdel, M. Thompson, C. Galuzzi, A. D. Pimentel, and K.
Bertels, “rSesame —a generic system-level runtime simulation
framework for reconfigurable architectures,” in Proceedings of
the International Conference on Field-Programmable Technol-
ogy (FPT ’09), pp. 460–464, 2009.

[10] K. Sigdel, M. Thompson, C. Galuzzi, A. D. Pimentel, and
K. Bertels, “Evaluation of runtime task mapping heuristics
with rSesame—a case study,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition
(DATE ’10), pp. 831–836, deu, March 2010.

[11] K. Sigdel, C. Galuzzi, K. Bertels, M. Thompson, and A. D.
Pimentel, “Runtime task mapping based on hardware config-
uration reuse,” in Proceedingsof the International Conference on
Reconfigurable Computing and FPGAs (ReConFig ’10), pp. 25–
30, 2010.

[12] P. V. Knudsen and J. Madsen, “PACE: a dynamic programming
algorithm for hardware/software partitioning,” in Proceedings
of the 4th International Workshop on Hardware/Software Co-
Design (Codes/CASHE ’96), pp. 85–92, March 1996.

[13] M. Kaul and R. Vemuri, “Design-space exploration for block-
processing based temporal partitioning of run-time reconfig-
urable systems,” Journal of VLSI Signal Processing Systems for

International Journal of Reconfigurable Computing 17

Signal, Image, and Video Technology, vol. 24, no. 2, pp. 181–
209, 2000.

[14] B. Miramond and J. M. Delosme, “Design space exploration
for dynamically reconflgurable architectures,” in Proceedings
of the Design, Automation and Test in Europe (DATE ’05), pp.
366–371, March 2005.

[15] B. Miramond and J. M. Delosme, “Decision guide environ-
ment for design space exploration,” in Proceedings of the 10th
IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA ’05), pp. 881–888, September 2005.

[16] L. Y. Li and M. Shi, “Software-hardware partitioning strategy
using hybrid genetic and Tabu search,” in Proceedings of the
International Conference on Computer Science and Software
Engineering (CSSE ’08), vol. 4, pp. 83–86, 2008.

[17] B. Mei, P. Schaumont, and S. Vernalde, “A hardware-software
partitioning and scheduling algorithm for dynamically recon-
figurable embedded systems,” in Proceedings of the Annual
Workshop on Circuits, Systemsand Signal Processing (ProRISC
’00), pp. 1–8, November 2000.

[18] C. Haubelt, S. Otto, C. Grabbe, and J. Teich, “A system-level
approachto hardware reconfigurable systems,” in Proceedings
of the Asia and South Pacific Design Automation Conference
(ASP-DAC ’05), pp. 298–301, 2005.

[19] G. Wang, W. Gong, and R. Kastner, “Application partitioning
on programmable platforms using the ant colony optimiza-
tion,” Embedded Computing, vol. 2, no. 1, pp. 119–136, 2006.

[20] G. Still, R. Lysecky, and F. Vahid, “Dynamic hardware/software
partitioning: a first approach,” in Proceedings of the Design
AutomationConference (DAC ’03), 2003.

[21] V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest, and H.
Corporaal, “Run-time management of a MPSoC containing
FPGA fabric tiles,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 16, no. 1, pp. 24–33, 2008.

[22] C. Huang and F. Vahid, “Dynamic coprocessor management
for FPGA-enhanced compute platforms,” in Proceedings of
the International Conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES ’08), pp. 71–78, 2008.

[23] W. Fu and K. Compton, “An execution environment for
reconfigurable computing,” in Proceedings of the 13th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM ’05), pp. 149–158, April 2005.

[24] F. Ghaffari, M. Auguin, M. Abid, and M. B. Jemaa, “Dynamic
and on-line design space exploration for reconfigurable
architectures,” Transactions on High-Performance Embedded
Architectures and Compilers, vol. 4050, pp. 179–193, 2007.

[25] A. Kumar, B. Mesman, B. Theelen, H. Corporaal, and H.
Yajun, “Resource manager for non-preemptive heteroge-
neous multiprocessor system-on-chip,” in Proceedings of the
IEEE/ACM/IFIP Workshop on Embedded Systems for Real Time
Multimedia (ESTIMEDIA ’06), pp. 33–38, October 2006.

[26] O. Moreira, J. J. D. Mol, and M. Bekooij, “Online resource
management in a multiprocessor with a network-on-chip,”
in Proceedings of the ACM Symposium on Applied Computing
(SAC ’07), pp. 1557–1564, March 2007.

[27] L. T. Smit, J. L. Hurink, and G. J. M. Smit, “Run-time mapping
of applications to a heterogeneous SoC,” in Proceedings of the
International Symposium on System-on-Chip (SoC ’05), pp. 78–
81, November 2005.

[28] L. T. Smit, G. J. M. Smit, J. L. Hurink, H. Broersma,
D. Paulusma, and P. T. Wolkotte, “Run-time mapping of
applications to a heterogeneous reconfigurable tiled system
on chip architecture,” in Proceedings of the IEEE International
Conference on Field-Programmable Technology (FPT ’04), pp.

421–424, December 2004.
[29] P. K. F. Hölzenspies, G. J. M. Smit, and J. Kuper, “Mapping

streaming applications on a reconfigurable MPSoC platform
at run-time,” in Proceedings of the International Symposium on
System-on-Chip (SOC ’07), pp. 74–77, November 2007.

[30] M. A. A. Faruque, R. Krist, and J. Henkel, “ADAM: run-
time agent-based distributed application mapping for on-chip
communication,” in Proceedings of the 45th Design Automation
Conference (DAC ’08), pp. 760–765, June 2008.

[31] C. Ykman-Couvreur, E. Brockmeyer, V. Nollet, T. Marescaux,
F. Catthoor, and H. Corporaal, “Design-time application
exploration for MPSoC customized runtime management,”
in Proceesings of InternationalSymposium on System-on-Chip
(SOC ’05), pp. 66–69, 2005.

[32] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic
approach to exploring embedded system architectures at
multiple abstraction levels,” IEEE Transactions on Computers,
vol. 55, no. 2, pp. 99–111, 2006.

[33] G. Kahn, “The semantics of a simple language for parallel
programming,” in Proceedings of the IFIP Congress, vol. 74,
1974.

[34] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. L. M. Bertels, G.
Kuzmanov, and E. M. Panainte, “The MOLEN polymorphic
processor,” IEEE Transactions on Computers, vol. 53, no. 11,
pp. 1363–1375, 2004.

[35] S. Vassiliadis, G. N. Gaydadjiev, K. Bertels, and E. M. Panainte,
“The Molen programming paradigm,” in Proceeding of the
International workshopon Systems, Architectures, Modeling and
Simulation (SAMOS ’03), pp. 1–30, July 2003.

[36] Xilinx Corporation, “Virtex-4 family overview (V3.0)”.
[37] Xilinx DS86, “LogiCORE IP XPS HWICAP (v5.00a),” 2010.
[38] H. Nikolov, M. Thompson, T. Stefanov et al., “Daedalus:

toward composable multimedia MPSoC design,” in Proceed-
ings of the 45th annual Design Automation Conference (DAC
’08), pp. 574–579, 2008.

[39] A. D. Pimentel, M. Thompson, S. Polstra, and C. Erbas,
“Calibration of abstract performance models for system-level
design space exploration,” Journal of Signal Processing Systems,
vol. 50, no. 2, pp. 99–114, 2008.

[40] R. Meeuws, Y. Yankova, K. Bertels, G. Gaydadjiev, and
S. Vassiliadis, “A quantitative prediction model for hard-
ware/software partitioning,” in Proceedings of the International
Conference on Field Programmable Logic and Applications (FPL
’07), pp. 735–739, August 2007.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

