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Soil respiration rate in two types of grassland dominated with Zoysia japonica andMiscanthus sinensis, respectively, and under two
management practices (undisturbed and intentionally burned) for theM. sinensis grassland was investigated for understanding the
effects of grassland vegetation type and management practices on the relationship between soil temperature and soil respiration in
northern Japan. Soil temperatures at depth of 1 cm in the Z. japonica (ZJ) and burnedM. sinensis (MSb) plots had a larger temporal
variation than that in the controlM. sinensis (MSc) plot prior to early July. However, the coefficient of temperature sensitivity (Q

10
)

values, based on soil respiration rates and soil temperatures at 5 cm depth in the ZJ and MSb plots, were 1.3 and 2.9. These rates
were lower than that in the MSc plot (4.3), meaning that soil respiration showed lower activity to an increase in soil temperature
in the ZJ and MSb plots. In addition, monthly carbon fluxes from soil in these plots were smaller than that in the MSc plot. These
results suggested that artificial disturbance would decrease soil microbial or/and plant root respiration, and it would contribute to
the plant productivity. Future studies should examine the effects of the intensity and period of management on the soil respiration
rate.

1. Introduction

Temperate grasslands comprise approximately 16% of the
land area in east Asia [1]. In Japan, because the climax
vegetation is forest, most grasslands are seminatural or
artificial grasslands that require intensive management such
as mowing or controlled burning [2]. The area of grassland
in Japan is about 387,945 ha, or about 1% of the total land
area [3]. The area of controlled burning in Japan is small,
with only 0.3% of the total land area burned between
April and August in 2000, a typical year [4]. Seminatural
and artificial grasslands require continual management by
mowing, grazing, or controlled burning.The vegetation types
of grasslands differ depending on the strength and frequency
of management; for example,Miscanthus sinensis dominated
areas are cut once or twice per year, whereas Zoysia japonica
dominated areas are cut three times per year [5].

Soil is a major carbon reserve in terrestrial ecosystems,
and carbon flux from soil (soil respiration) is an important

component because of the second largest carbonflux from the
ecosystems. In particular, soil temperature would vary with
changes in management type [6, 7], and it would influence
soil respiration rate. For instance, many studies around the
world reported that land use change, management, and
vegetation type influenced microbial biomass and activity
[8–15], soil respiration [16], and soil organic carbon content
[17]. Numerous studies have found that soil respiration
increases exponentially with increasing soil temperature in
various types of cool temperate ecosystems in Japan [18–
24]. In central Japan, the annual soil respiration rate in a
Z. japonica grassland ranged from 719 to 1037 g C m−2 [25]
or from 1121 to 1213 g C m−2 [23], which is larger than that
in a deciduous forest (853 gCm−2) [20] in the same area.
Likewise, the maximum soil temperature at depth of 1 cm
in the Z. japonica grassland was over 25∘C [23, 25], whereas
that in the deciduous forest was under 20∘C [20]. Cao et
al. [26] reported that the soil-temperature-dependence of
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Figure 1: Location of the study site.

soil respiration varied with grazing intensity on the Tibetan
plateau: the soil respiration rate at the low-intensity grazing
site was greater than that at the high-intensity grazing site
throughout the growing season.Mukhopahyay andMaiti [27]
also reported that soil respiration rate at natural grassland site
was greater than that atmowed grassland site in India, in spite
of maximum soil temperature at mowed grassland site being
higher than that at natural grassland site.Therefore, intensive
management to maintain grassland would likely affect the
relationship between soil respiration and soil temperature;
however, there is little information about the effect of artificial
management on soil respiration. In this study, we investigated
the effects of grassland vegetation type and management
practices on the relationship between soil temperature and
soil respiration in northern Japan. The objectives of the
present study were (1) to compare soil respiration between
two types of grassland (Z. japonica and M. sinensis) and
between different management practices inM. sinensis grass-
land (undisturbed and intentionally burned) and (2) to
clarify the effects of vegetation type and management on
soil environmental factors, particularly soil temperature, as
well as the relationships between soil respiration and soil
environmental factors.

2. Materials and Methods

2.1. Site Description. The study was conducted in 2004 (only
aboveground biomass; ABG of ZJ plot) and 2008 at Mt.
Kanpu (39∘55󸀠N, 139∘52󸀠E, 355m a.s.l.; Figure 1) in Akita
Prefecture, northern Japan. From 1981 to 2010, the annual
mean temperature was 11.0∘C, and annual mean precipitation
was 1571mm (Figure 2; Japan Meteorological Agency). The
area has snow cover from mid-November to early April. The
vegetation types and management of the three plots were as
follows: (1) Z. japonica grassland (ZJ) plot: mowing once by
August every year and high treading stress by humans; (2)
control M. sinensis (MSc) plot: mowing once every year, but
the land was abandoned since 2001 and little treading stress;
(3) intentionally burned M. sinensis (MSb) plot: the same as
the MSc plot, but it was intentionally burned in early April
2008 and abandoned.
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Figure 2: Monthly mean precipitation, and monthly mean, maxi-
mum, and minimum air temperatures at the study site from 1981 to
2010 (data from Japan Meteorological Agency).

2.2. Measurement of Soil Respiration. Soil respiration (SR)
rates were measured at the three sites (ZJ, MSc, and MSb
plots) in April, May, and September 2008, using an LI-
6400 portable photosynthesis system (Li-Cor, Lincoln, NE,
USA) fitted with a SR chamber (6400-09, Li-Cor). SR in the
MSb plot was measured shortly after the intentional burn in
April 2008. One of 10m × 10m quadrat per one plot was
established, and the SR rate was measured within 2m × 2m
subquadrats (𝑛 = 25). Soil chamber was put on soil directly,
soil color was not used. Simultaneously, soil temperature was
measured at each point at depths of 1 cm (ST1) and 5 cm
(ST5) using a thermometer (CT-450WR, Custom, Tokyo,
Japan), and soil water content was measured at 5 cm depth
with a time domain reflectometry sensor (TDR; TRIME-FM,
IMKO, Ettlingen, Germany). ST1 and ST5 were continuously
measured at 1 h intervals at the three sites from 7 April to 8
September 2008 using a Stowaway Tidbit Temperature Data
Logger (Onset Computer, MA, USA). SR rate was regressed
exponentially against ST5 as follows:

SR = 𝑎 × exp (ST5 × 𝑏) , (1)

where 𝑎 and 𝑏 are coefficients. The coefficient of temperature
sensitivity (𝑄

10
) values of SR was calculated as follows [28]:

𝑄
10
= exp (10 × 𝑏) . (2)

2.3. Plant Biomass and Soil Properties. AGB of the ZJ plot was
measured in April 2004 (𝑛 = 5), and that of the MSb plot
was measured in April 2008 (𝑛 = 3). All of the aboveground
plants at 1m2 were taken as one sample and dried at 65∘C
during three days, and weights were measured. Nine 100mL
soil samples were taken from three plots using a soil corer
(height 5 cm) in May 2008; the six samples at each plot
were dried at room temperature (about 25∘C) for a week,
and then soil N and C contents were measured with an
N/C analyzer (SumigraphNC-22, Sumika Chemical Analysis
Service, Tokyo, Japan). Bulk density was measured from the
other three soil samples using fresh and dry weight which
were dried at 105∘C for 48 h.
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(a) ZJ (1 cm depth)
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(b) MSc (1 cm depth)
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(c) MSb (1 cm depth)
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(d) ZJ (5 cm depth)
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(e) MSc (5 cm depth)
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(f) MSb (5 cm depth)

Figure 3: Seasonal variation in soil temperature at 1 cm and 5 cm depths in the ZJ plot, MSc plot, and MSb plot in 2008. The solid black line,
gray line, and broken line represent dailymaximum,mean, andminimum soil temperatures, respectively, from early April to early September.
Closed circles represent mean soil temperature at each point where soil respiration rate was measured (𝑛 = 25).

2.4. Statistical Analyses. All statistical analyses were con-
ducted using the Aabel 3 software package (Gigawiz Ltd. Co.,
OK, USA). ANOVA (Scheffé’s test) was used to determine the
significance of differences in soil carbon and nitrogen con-
tent, bulk density, SR rates, and soil temperatures among the
ZJ,MSc, andMSbplots. Pearson product-moment correlation
was used to clarify the relationship between the SR rate and
ST1, ST5, and soil water content at depth of 5 cm.

3. Results

Table 1 shows AGB and soil properties of the three plots,
and soil properties were not significantly different among
the three plots (Scheffé’s test). Differences in vegetation and
management greatly influenced the temporal variation in soil
surface temperature (Figure 3). In the ZJ plot, the difference
between maximum and minimum ST1 was very large during
April and May, and there were more than 10 days when the
difference was greater than 10∘C (Figure 3(a)). ST1 in the
MSb plot had a larger temporal variation than that in the
MSc plot prior to early July, and thereafter the soil surface
temperatures were similar in both plots (Figure 3(c)). The
temporal variations in soil temperatures at both soil depths
were smallest in the MSc plot (Figures 3(b) and 3(e)).

SR rates in April were not significantly different among
the three plots, but there were significant differences in
September (Table 2, Scheffé’s test, 𝑃 < 0.05). ST1 and ST5
in the ZJ plot were significantly higher than those in the

other plots in September, when the SR in the ZJ plot was
significantly lower than that in the other plots. In September,
the SR rate in the MSc plot was significantly higher than
that in the MSb plot, despite the fact that ST1 in these
plots was similar. SR showed no significant correlation with
soil water content at 5 cm depth in the MSc plot (data not
shown, Pearson product-moment correlation, 𝑃 = 0.623),
but SR in the ZJ and MSb plots had a significant negative
correlation with soil water content at 5 cm depth (data not
shown, Pearson product-moment correlation, 𝑃 < 0.001,
𝑟 = −0.483 in the ZJ plot; 𝑃 < 0.001, 𝑟 = −0.564 in the MSb
plot). Seasonal variations in SR in the ZJ and MSb plots were
smaller than that in the MSc plot (Figure 4). The correlation
coefficients of soil temperature in the ZJ and MSb plots were
lower than that in the MSc plot. The correlation coefficient
between SR and ST1 was lowest in the MSb plot, because the
SR rate tended to have a negative relationship with ST1 in this
plot in May (Figure 4(c): open triangles; Figure 5; Pearson
product-moment correlation coefficient, 𝑃 = 0.021). In the
MSb plot, ST1 in May was higher than that in September, but
SR in May was much lower than that in September (Table 2).
The𝑄

10
values based on SR rate and ST5 using the coefficient

at Figures 4(d), 4(e), and 4(f)in the ZJ andMSb plot, were 1.3
and 2.9, whereas that in the MSc plot was 4.3. The estimated
soil carbon flux from April to September was estimated as
631 g Cm−2 in the ZJ plot, 1304.8 g C m−2 in the MSc plot,
and 1002.3 g C m−2 in the MSb plot (Figure 6).
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Figure 4: The relationships between soil temperature at 1 cm and 5 cm depths and soil respiration rate in the ZJ plot, MSc plot, and MSb
plot. The closed circle, open triangle, and closed triangle represent the data in April, May, and September 2008, respectively. 𝑃 values were
calculated by Pearson product-moment correlation test.
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Figure 5:The relationship between soil respiration and soil temper-
ature at depth of 1 cm in the MSb plot in May 2008.

4. Discussion

The 𝑄
10

values indicate that SR showed lower activity to an
increase in soil temperature in the ZJ and MSb plots, and the
monthly carbon fluxes from soil in these plots were smaller
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Figure 6: Monthly carbon flux from soil in the ZJ plot, MSc plot,
and MSb plot from April to September 2008.

than that in the MSc plot (Figure 6). Different mechanisms
were driving the weaker SR responses to increasing soil
temperature in the ZJ and MSb plots. In September, the
SR rate was significantly lower in the ZJ plot than in the
other plots, although ST1 and ST5 were highest in the
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Table 1: Aboveground biomass (AGB), soil carbon (C) content,
soil nitrogen (N) content, and bulk density in the Zoysia japonica
(ZJ), control Miscanthus sinensis (MSc), and intentionally burned
M. sinensis (MSb) plots.

Plot AGB
(g d.w. m−2)

C content (%)
(𝑛 = 6)

N content
(%)
(𝑛 = 6)

Bulk density
(gm−3)
(𝑛 = 3)

ZJ 330.5 ± 12.31 13.16 ± 1.13 0.81 ± 0.10 0.38 ± 0.03
MSc N.D. 12.44 ± 0.94 0.80 ± 0.05 0.33 ± 0.03

MSb 1218.1 ± 137.12 12.94 ± 0.62 0.86 ± 0.05 0.38 ± 0.03
All data indicated mean ± standard deviation. 1Measured in April 2004 (𝑛 =
5), 2measured in April 2008 (𝑛 = 3). N.D.: no data. AGB data contained
litter biomass. All soil samples were taken in May 2008, and there are not
significant differences among the three plots (Scheffé’s test).

ZJ plot (Table 2). Schmitt et al. [29] reported that plant
productivity of grassland decreased due to the reduction
of leaf area index by mowing and grazing. Because the ZJ
plot is mowed by August every year, the SR in September
would decrease with the decrease in plant productivity or
root respiration after mowing. In the MSb plot, the daily
maximum ST1 was similar to that in the ZJ plot until early
July (Figures 3(a) and 3(c)), but the SR rate tended to have
a negative relationship with ST1 in May (Figure 5). This
result is consistent with that of a study in a mixed-conifer
forest [30], but positive relationships were observed in a
subhumid grassland [31] and a semiarid grassland [32]. In the
semiarid steppe region of southeastern Spain, the SR rate also
decreased with increasing soil temperature [33]. However,
Hernández et al. [34] found that microbial biomass and
dehydrogenase activity (an indicator of microbial activity) in
burned soils were significantly lower than those in control
soils. Guénon et al. [12] also reported that microbial biomass
of the soil burned recently was significantly lower than that
of the soils burned before. Therefore, the relatively low SR
rate under high soil temperatures in MSb as compared with
other grasslands may be due to low microbial activity and/or
microbial biomass resulted from the intentional burning.The
soil temperature was the most important factor to estimate
annual or seasonal SR rate, however, in some case, SR had
a negative relationship with soil temperature. The result of
Figure 5 indicated that the estimation of SR rate using ST1
would be overestimated at the MSb plot, the estimated SR
rate during the growth season in MSb was smaller than that
in MSc. In central Africa, the SR rate in burned grassland
was significantly lower than that in a control plot 1 month
after burning, but there was no difference between the plots
at 8 months after burning [35]. Moreover, Schmitt et al.
[29] suggested that gross primary production of grassland
was strongly affected by mowing and grazing in European
mountain regions. Continuous investigation will be required
in order to evaluate the period and quantity of the influence
of intensive management. Ono et al. [36] reported that
plant productivity and ecosystems respiration are generally
closely coupled at paddy field of Japan. Therefore, our results
suggested that artificial disturbance would decrease soil
microbial or plant root respiration, and it would contribute

Table 2: Descriptive statistics for soil respiration rates, soil temper-
atures at 1 cm and 5 cm depths, and soil water content at depth of
5 cm in the Zoysia japonica (ZJ), controlMiscanthus sinensis (MSc),
and intentionally burnedM. sinensis (MSb) plots.

April May September
Soil respiration rate (mgCO2 m

−2 h−1)
ZJ 426.6 ± 78.0a 514.7 ± 93.1a 648.6 ± 146.1a
MSc 338.2 ± 206.6a 484.3 ± 115.8ab 2072.5 ± 545.0b
MSb 341.6 ± 261.0a 584.4 ± 101.1ac 1659.9 ± 271.2c

Soil temperature at depth of 1 cm (∘C)
ZJ 12.7 ± 1.3a 20.7 ± 0.9a 24.8 ± 0.8a
MSc 11.4 ± 2.3ab 16.8 ± 1.2b 21.9 ± 0.4b
MSb 10.5 ± 1.3b 24.2 ± 1.7c 21.4 ± 0.4b

Soil temperature at depth of 5 cm (∘C)
ZJ 9.4 ± 0.9a 19.3 ± 0.5a 23.1 ± 0.5a
MSc 7.5 ± 0.8b 15.0 ± 0.7b 21.6 ± 0.3b
MSb 7.2 ± 0.6b 19.8 ± 0.7a 21.1 ± 0.2c

Soil water content at depth of 5 cm (%)
ZJ 29.5 ± 3.7a 24.9 ± 3.0a N.D.
MSc 23.9 ± 6.9b 21.8 ± 6.2a N.D.
MSb 31.4 ± 4.1a 21.3 ± 4.4a 20.2 ± 5.9

Values represent means ± SD (𝑛 = 25). Different lowercase letters within
the samemonth indicate a significant difference between plots (Scheffé’s test,
𝛼 = 0.01, 𝑃 < 0.05). N.D.: no data.

to the plant productivity. Although defining an index of
the intensity of management would be difficult, we need to
further investigate the effect of management intensity and
duration on SR rate.

According to this and previous studies, the maximum
AGB of Z. japonica ranges from about 250 to 400 g d.w.
m−2 (approximately 250 g d.w. m−2 [37]; 297–413 g d.w. m−2
[23]), which is considerably less than that of M. sinensis
(769–837 g d.w. m−2 [19]; 1117 g d.w. m−2 [38]). The estimated
soil carbon flux from April to September in the ZJ plot was
631 g C m−2. This result was lower than that in Z. japonica
grassland in central Japan (1077 and 1170 gCm−2 from May
to October in 2007 and 2008, respectively [23]). In the
present study, soil carbon flux during the growing season was
estimated as 1304.8 g Cm−2 in the MSc plot and 1002.3 g C
m−2 in the MSb plot. In the other sites, the annual CO

2
flux

from the soil in an M. sinensis grassland was 1387 gCm−2
in 2000 and 1480 gCm−2 in 2001 [19], and these rates are
higher than the annual rates of soil carbon flux reported in
Japanese forest ecosystems: 726–854 g C m−2 in deciduous
forest [20], 592 gCm−2 in secondary deciduous forest [21],
and 680 gCm−2 in the early stage of a coppice forest [24].
Dhital et al. [23] and Yazaki et al. [19] suggested that Z.
japonica and M. sinensis grassland ecosystems would be
equilibrium and source of CO

2
, respectively; therefore, we

need to investigate the relationship between carbon budget
and management intensity of grassland ecosystems.

5. Conclusions

Intensive management to maintain grassland would likely
affect the carbon budget; however, there is little information
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about the effect of artificial management on SR. Therefore,
we investigated SR rates in two types of grassland and dif-
ferent management practices (undisturbed and intentionally
burned) to understand the effects of grassland vegetation type
and management practices in northern Japan. Our results
indicated that SR showed lower activity to an increase in
soil temperature in both of the intentionally mowing and
burned grassland (ZJ and MSb plots). However, different
mechanisms would be driving the weaker SR responses
to increasing soil temperature in the ZJ and MSb plots.
The coefficient of temperature sensitivity (𝑄

10
) values and

monthly carbon fluxes from soil in the intentionally mowing
and burned grassland plots were also smaller than that in the
undisturbed grassland plot; therefore, these results suggested
that artificial disturbance would decrease soil microbial or
plant root respiration, and it would contribute to the plant
productivity. The previous studies suggested that grassland
ecosystems in Japanwould be equilibrium and source of CO

2
,

respectively; therefore, we need to investigate the relationship
between carbon budget and management intensity of grass-
land ecosystems.
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