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By the Maslov index theory, we will study the existence and multiplicity of homoclinic orbits for a class of asymptotically linear
nonperiodic Hamiltonian systems with some twisted conditions on the Hamiltonian functions.

1. Introduction and Main Results

Consider the following first-order nonautonomous Hamilto-
nian systems

�̇� = 𝐽𝐻

𝑧
(𝑡, 𝑧) , (HS)

where 𝑧 : R → R2𝑁, 𝐽 = ( 0 −𝐼𝑁
𝐼𝑁 0

),𝐻 ∈ 𝐶1(R ×R2𝑁,R) and
∇

𝑧
𝐻(𝑡, 𝑧) denotes the gradient of𝐻(𝑡, 𝑧)with respect to 𝑧. As

usual we say that a nonzero solution 𝑧(𝑡) of (HS) is homo-
clinic (to 0) if 𝑧(𝑡) → 0 as |𝑡| → ∞.

As a special case of dynamical systems, Hamiltonian sys-
tems are very important in the study of gas dynamics, fluid
mechanics, relativistic mechanics and nuclear physics. How-
ever it is well known that homoclinic solutions play an impor-
tant role in analyzing the chaos of Hamiltonian systems. If a
system has the transversely intersected homoclinic solutions,
then it must be chaotic. If it has the smoothly connected
homoclinic solutions, then it cannot stand the perturbation,
and its perturbed system probably produces chaotic phenom-
ena.Therefore, it is of practical importance andmathematical
significance to consider the existence of homoclinic solutions
of Hamiltonian systems emanating from 0.

In the last years, the existence and multiplicity of homo-
clinic orbits for the first-order system (HS) were studied
extensively bymeans of critical point theory, andmany results
were obtained under the assumption that 𝐻(𝑡, 𝑧) depends
periodically on 𝑡 (see, e.g., [1–12]). Without assumptions of

periodicity, the problem is quite different in nature and there
is not much work done so far. To the best of our knowledge,
the authors in [13] firstly obtained the existence of homoclinic
orbits for a class of first-order systemswithout any periodicity
on the Hamiltonian function. After this, there were a few
papers dealing with the existence and multiplicity of homo-
clinic orbits for the first-order system (HS) in this situation
(see, e.g., [14–17]).

In the present paper, with the Maslov index theory of
homoclinic orbits introduced by Chen andHu in [18], we will
study the existence and multiplicity of homoclinic orbits for
(HS) without any periodicity on the Hamiltonian function.
To the best of the author’s knowledge, the Maslov index
theory of homoclinic orbits is the first time to be used to
study the existence of homoclinic solutions. We are mainly
interested in the Hamiltonian functions of the form

𝐻(𝑡, 𝑧) = −𝐿 (𝑡) 𝑧 ⋅ 𝑧 + 𝑅 (𝑡, 𝑧) , (1)

where 𝐿 is a 2𝑁× 2𝑁 symmetric matrix valued function. We
assume that (𝐿

1
)𝐿 ∈ 𝐶(R,R𝑁

2

), and there are 𝛼, 𝑐 > 0, 𝑡
0
≥ 0

and a constant matrix 𝑃, satisfying

𝑃𝐿 (𝑡) − 𝑐|𝑡|

𝛼

𝐼

2𝑁
≥ 0, ∀ |𝑡| ≥ 𝑡

0
, (2)

where 𝐼
2𝑁

is the identity map on R2𝑁, and for a 2𝑁 × 2𝑁

matrix𝑀, we say that𝑀 ≥ 0 if and only if

inf
𝜉∈R2𝑁,|𝜉|=1

𝑀𝜉 ⋅ 𝜉 ≥ 0. (3)
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In (𝐿
1
), if 𝑃 = ( 0 𝐼𝑁

𝐼𝑁 0
), then (𝐿

1
) is similar to the condition

(𝑅
0
) in [14]. But the restrictions on 𝑅(𝑡, 𝑧) will be different

from [14], andwewill give some examples in Remark 5. If𝑃 =
±𝐼

2𝑁
or 𝑃 = ( 𝐼𝑁+𝑚 0

0 −𝐼𝑁−𝑚

) in condition (𝐿
1
), for example, it is

quite different from the existing results as authors known. In
short, condition (𝐿

1
) means that the eigenvalues of 𝐿(𝑡) will

tend to ±∞with the speed no less than |𝑡|𝛼. But (𝐿
1
) does not

contain all of these cases. For examples, let𝑁 = 1 and 𝐿(𝑡) =
|𝑡|

𝛼

(

cos 2𝑡 sin 2𝑡
sin 2𝑡 − cos 2𝑡 ), we have the eigenvalues of 𝐿(𝑡) are ±|𝑡|𝛼,

but there is no constant matrix 𝑃 satisfying 𝑃𝐿(𝑡) − 𝑐|𝑡|𝛼𝐼
2𝑁
≥

0, for all |𝑡| ≥ 𝑡
0
.

Denote by ̃𝐹 the self-adjoint operator −J(𝑑/𝑑𝑡) + 𝐿(𝑡) on
𝐿

2

≡ 𝐿

2

(R,R2𝑁), with domain 𝐷(̃𝐹) = 𝐻1(R,R2𝑁) if 𝐿(𝑡) is
bounded and 𝐷(̃𝐹) ⊂ 𝐻1(R,R2𝑁) if 𝐿(𝑡) is unbounded. Let
|

̃

𝐹| be the absolute value of ̃𝐹, and let | ̃𝐹|1/2 be the square root
of | ̃𝐹|.𝐷(̃𝐹) is a Hilbert space equipped with the norm

‖𝑧‖

𝐹
=











(𝐼 +











̃

𝐹











) 𝑧









𝐿
2
, ∀𝑧 ∈ 𝐷 (

̃

𝐹) . (4)

Let 𝐸 = 𝐷(|

̃

𝐹|

1/2

), and define on 𝐸 the inner product and
norm by

(𝑢, V)
𝐸
= (|

̃

𝐹|

1/2

𝑢, |

̃

𝐹|

1/2

V)
2

+ (𝑢, V)
2
,

‖𝑢‖

𝐸
= (𝑢, 𝑢)

1/2

𝐸
,

(5)

where (⋅, ⋅)
𝐿
2 denotes the usual inner product on 𝐿2(R,R2𝑁).

Then, 𝐸 is a Hilbert space. It is easy to see that 𝐸 is contin-
uously embedded in 𝐻1/2(R,R2𝑁), and we further have the
following lemma.

Lemma 1. Suppose that 𝐿 satisfies (𝐿
1
). Then 𝐸 is compactly

embedded in 𝐿𝑝(R,R2𝑁) with the usual norm ‖ ⋅ ‖

𝐿
𝑝 for any

1 ≤ 𝑝 ∈ (2/(1 + 𝛼),∞).

This lemma is similar to Lemmas 2.1–2.3 in [13], and we
will prove it in Section 3. Define the quadratic form Q on 𝐸
by

Q (𝑢, V) = ∫
R

((−𝐽�̇�, V) + (𝐿 (𝑡) 𝑢, V)) 𝑑𝑡, ∀𝑢, V ∈ 𝐸. (6)

It is easy to check that Q(𝑢, V) is a bounded quadratic form
on 𝐸, and, hence, there exists a unique bounded self-adjoint
operator 𝐹 : 𝐸 → 𝐸 such that

(𝐹𝑢, V)
𝐸
= Q (𝑢, V) , ∀𝑢, V ∈ 𝐸. (7)

Besides, define a linear operator 𝐾 : 𝐿2 → 𝐸 by

(𝐾𝑢, V)
𝐸
= (𝑢, V)

𝐿
2 , ∀𝑢 ∈ 𝐿

2

, V ∈ 𝐸. (8)

In view of Lemma 1, we know that 𝐹 is a Fredholm operator
and𝐾 is a compact operator.

Denote byB the set of all uniformly bounded symmetric
2𝑁 × 2𝑁 matric functions. That is to say, 𝐵 ∈ B if and only
if 𝐵𝑇(𝑡) = 𝐵(𝑡) for all 𝑡 ∈ R, and 𝐵(𝑡) is uniformly bounded
in 𝑡 as the operator on R2𝑁. For any 𝐵 ∈ B, it is easy to see
that 𝐵 determines a bounded self-adjoint operator on 𝐿2, by

𝑧(𝑡) → 𝐵(𝑡)𝑧(𝑡), for any 𝑧 ∈ 𝐿2, we still denote this operator
by 𝐵 and then 𝐾𝐵 : 𝐸 ⊂ 𝐿2 → 𝐸 is a self-adjoint compact
operator on 𝐸 and satisfies

(𝐾𝐵𝑢, V)
𝐸
= (𝐵𝑢, V)

𝐿
2 , ∀𝑢, V ∈ 𝐸. (9)

Before presenting the conditions on 𝑅(𝑡, 𝑧), we need the
concept of Maslov index for homoclinic orbits introduced by
Chen andHu in [18] which is equivalent to the relativeMorse
index. We will give a brief introduction of it by Definition 7,
where for any 𝐵 ∈B, we denote the associated index pair by
(𝜇
𝐹
(𝐾𝐵), 𝜐

𝐹
(𝐾𝐵)).

Now we can present the conditions on 𝑅(𝑡, 𝑧) as follows.
For notational simplicity, we set 𝐵

0
(𝑡) = ∇

2

𝑧
𝑅(𝑡, 0), and in

what follows, the letter 𝑐 will be repeatedly used to denote
various positive constants whose exact value is irrelevant.
Besides, for two 2𝑁 × 2𝑁 symmetric matrices𝑀

1
and𝑀

2
,

𝑀

1
≤ 𝑀

2
means that𝑀

2
−𝑀

1
is semipositive definite.

(𝑅

1
) 𝑅 ∈ 𝐶

2

(R×R2𝑁,R), and there exists a constant 𝑐 > 0
such that











∇

2

𝑧
𝑅 (𝑡, 𝑧)











≤ 𝑐, ∀ (𝑡, 𝑧) ∈ R ×R
2𝑁

. (10)

(𝑅

0
) ∇

𝑧
𝑅(𝑡, 0) ≡ 0 and 𝐵

0
∈B.

(𝑅

∞
)There exists some 𝑅

0
> 0 and continuous symmetric

matrix functions 𝐵
1
, 𝐵

2
∈ B with 𝜇

𝐹
(𝐾𝐵

1
) =

𝜇

𝐹
(𝐾𝐵

2
) and 𝜐

𝐹
(𝐾𝐵

2
) = 0 such that

𝐵

1
(𝑡) ≤ ∇

2

𝑧
𝑅 (𝑡, 𝑧) ≤ 𝐵

2
(𝑡) , ∀𝑡 ∈ R, |𝑧| > 𝑅

0
. (11)

Then, we have our first result.

Theorem 2. Assume that (𝐿
1
), (𝑅

1
), (𝑅

0
), and (𝑅

∞
) hold. If

𝜇

𝐹
(𝐾𝐵

1
) ∉ [𝜇

𝐹
(𝐾𝐵

0
) , 𝜇

𝐹
(𝐾𝐵

0
) + 𝜐

𝐹
(𝐾𝐵

0
)] , (12)

then (HS) has at least one nontrivial homoclinic orbit. More-
over, if 𝜐

𝐹
(𝐾𝐵

0
) = 0 and |𝜇

𝐹
(𝐾𝐵

1
) − 𝜇

𝐹
(𝐾𝐵

0
)| ≥ 𝑁, the pro-

blem possesses at least two nontrivial homoclinic orbits.

Condition (𝑅
∞
) is a two-side pinching condition near the

infinity, and we can relax (𝑅
∞
) to condition (𝑅±

∞
) as follows.

(𝑅

±

∞
)There exist some 𝑅

0
> 0 and a continuous symmetric

matrix function𝐵
∞
∈Bwith 𝜐

𝐹
(𝐾𝐵

∞
) = 0 such that

±∇

2

𝑧
𝑅 (𝑡, 𝑧) ≥ ±𝐵

∞
(𝑡) , ∀𝑡 ∈ R, |𝑧| > 𝑅

0
. (13)

Then, we have the following results.

Theorem 3. Assumes (𝐿
1
), (𝑅

1
), (𝑅

0
), (𝑅+

∞
) (or (𝑅−

∞
)), and

𝜐

𝐹
(𝐾𝐵

0
) = 0 hold. If 𝜇

𝐹
(𝐾𝐵

∞
) ≥ 𝜇

𝐹
(𝐾𝐵

0
) + 2 (or 𝜇

𝐹
(𝐾𝐵

∞
) ≤

𝜇

𝐹
(𝐾𝐵

0
) − 2), then (HS) has at least one nontrivial homoclinic

orbit.

Theorem 4. Suppose that (𝐿
1
), (𝑅

1
), (𝑅

0
), (𝑅+

∞
) (or (𝑅−

∞
)),

and 𝜐
𝐹
(𝐾𝐵

0
) = 0 are satisfied. If in addition 𝑅 is even in 𝑧 and

𝜇

𝐹
(𝐾𝐵

∞
) ≥ 𝜇

𝐹
(𝐾𝐵

0
) + 2 (or 𝜇

𝐹
(𝐾𝐵

∞
) ≤ 𝜇

𝐹
(𝐾𝐵

0
) − 2), then

(HS) has at least |𝜇
𝐹
(𝐾𝐵

∞
) − 𝜇

𝐹
(𝐾𝐵

0
)| − 1 pairs of nontrivial

homoclinic orbits.
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Remark 5. Lemma 1 shows that 𝜎(𝐴), the spectrum of 𝐴,
consists of eigenvalues numbered by (counted in their mul-
tiplicities):

⋅ ⋅ ⋅ ≤ 𝜆

−2
≤ 𝜆

−1
≤ 0 < 𝜆

1
≤ 𝜆

2
≤ ⋅ ⋅ ⋅ (14)

with 𝜆
±𝑘
→ ±∞ as 𝑘 → ∞. Let 𝐵

0
(𝑡) ≡ 𝐵

0
and 𝐵

∞
(𝑡) ≡

𝐵

∞
, with the constants 𝐵

0
, 𝐵
∞

satisfying 𝜆
𝑙
< 𝐵

0
< 𝜆

𝑙+1
, and

𝜆

𝑙+𝑖
< 𝐵

∞
< 𝜆

𝑙+𝑖+1
for some 𝑙 ∈ Z and 𝑖 ≥ 1 (or 𝑖 ≤ −1).

Define

𝑅 (𝑡, 𝑧) = 𝛿 (|𝑧|)

1

2

𝐵

0
|𝑧|

2

+ (1 − 𝛿 (|𝑧|))

1

2

𝐵

∞
|𝑧|

2

, (15)

where 𝛿 is a smooth cutoff function satisfying 𝛿(|𝑧|) =

{

1, |𝑧|<1,

0, |𝑧|>2.
By Proposition 12 that, it is easy to verify 𝑅 satisfies

all the conditions inTheorem 2. Furthermore, let the constant
𝐵

∞
satisfy 𝜆

𝑙+𝑖
< 𝐵

∞
< 𝜆

𝑙+𝑖+1
for some 𝑙 ∈ Z and 𝑖 ≥ 2 (or

𝑖 ≤ −2). Define

𝑅 (𝑡, 𝑧) = 𝛿 (|𝑧|)

1

2

𝐵

0
|𝑧|

2

+ (1 − 𝛿 (|𝑧|))

1

2

𝐵

∞
|𝑧|

2

. (16)

Then 𝑅 satisfies all the conditions inTheorems 3 and 4. How-
ever, it is easy to see that some conditions of the main results
in [13–15, 17] do not hold for these examples.

Remark 6. Note that the assumption 𝜐
𝐹
(𝐾𝐵

∞
) = 0 in (𝑅±

∞
) is

not essential for our main results. For the case of (𝑅+
∞
) with

𝜐

𝐹
(𝐾𝐵

∞
) ̸= 0, let ̃𝐵

∞
= 𝐵

∞
− 𝜀𝐼

2𝑁
with 𝜀 > 0 small enough,

where 𝐼
2𝑁

is the identity map on R2𝑁; then, 𝜇
𝐹
(𝐾

̃

𝐵

∞
) =

𝜇

𝐹
(𝐾𝐵

∞
) and 𝜐

𝐹
(𝐾

̃

𝐵

∞
) = 0, and, hence, (𝑅+

∞
) holds for ̃𝐵

∞
.

Therefore, Theorems 3 and 4 still hold in this case. While for
the case of (𝑅−

∞
)with 𝜐

𝐹
(𝐾𝐵

∞
) ̸= 0, if we replace 𝜇

𝐹
(𝐾𝐵

∞
) by

𝜇

𝐹
(𝐾𝐵

∞
)+𝜐

𝐹
(𝐾𝐵

∞
) inTheorems 3 and 4, then similar results

hold. Indeed, let ̃𝐵
∞
= 𝐵

∞
+ 𝜀𝐼

2𝑁
with 𝜀 > 0 small enough

such that 𝜇
𝐹
(𝐾

̃

𝐵

∞
) = 𝜇

𝐹
(𝐾𝐵

∞
) + 𝜐

𝐹
(𝐾𝐵

∞
) and 𝜐

𝐹
(𝐾

̃

𝐵

∞
) =

0, then this case is also reduced to the case of (𝑊−

∞
) for ̃𝐵

∞

with 𝜐
𝐹
(𝐾

̃

𝐵

∞
) = 0.

2. Preliminaries

In this section, we recall the definition of relativeMorse index
and saddle point reduction and give the relationship between
them. For this propose, the notion of spectral flow will be
used.

2.1. RelativeMorse Index. LetH be a separable Hilbert space;
for any self-adjoint operator 𝐴 on H, there is a unique 𝐴-
invariant orthogonal splitting

H =H
+

(𝐴) ⊕H
−

(𝐴) ⊕H
0

(𝐴) , (17)

where H0

(𝐴) is the null space of 𝐴, 𝐴 is positive definite
on H+

(𝐴) and negative definite on H−

(𝐴), and 𝑃
𝐴
denotes

the orthogonal projection from H to H−

(𝐴). For any
bounded self-adjoint Fredholm operator F and a compact
self-adjoint operator T on H, 𝑃F − 𝑃F−T is compact

(see [19, Lemma 2.7]), where𝑃F :H → H−

(F) and𝑃F−T :
H → H−

(F −T) are the respective projections. Then, by
Fredholm operator theory, 𝑃F|H−(F−T) : H

−

(F − T) →

H−

(F) is a Fredholm operator. Here and in the sequel, we
denote by ind(⋅) the Fredholm index of a Fredholm operator.

Definition 7. For any bounded self-adjoint Fredholm oper-
ator F and a compact self-adjoint operator T on H, the
relative Morse index pair (𝜇F(T), 𝜐F(T)) is defined by

𝜇F (T) = ind (𝑃F|H−(F−T)) ,

𝜐F (T) = dimH
0

(F −T) .
(18)

2.2. Saddle Point Reduction. In this subsection, we describe
the saddle point reduction in [20–22]. Recall thatH is a real
Hilbert space, and 𝐴 is a self-adjoint operator with domain
𝐷(𝐴) ⊂H. Let Φ ∈ 𝐶1(H,R), withΦ(𝜃) = 0. Assume that

(1) there exist real numbers 𝛼 < 𝛽 such that 𝛼, 𝛽 ∉ 𝜎(𝐴),
and that 𝜎(𝐴)∩[𝛼, 𝛽] consists of at most finitelymany
eigenvalues of finite multiplicities;

(2) Φ is Gateaux differentiable inH, which satisfies
















𝑑Φ



(𝑢) −

𝛼 + 𝛽

2

𝐼

















≤

𝛽 − 𝛼

2

, ∀𝑢 ∈H, (19)

andwithout loss of generality, wemay assume that𝛼 =
−𝛽, 𝛽 > 0;

(3) Φ ∈ 𝐶2(𝑉,R), 𝑉 = 𝐷(|𝐴|1/2), with the norm

‖𝑧‖

𝑉
= (











|𝐴|

1/2

𝑧











2

H
+ 𝜀

2

‖𝑧‖

2

H)

1/2

,

(20)

where 𝜀 > 0 small and −𝜀 ∉ 𝜎(𝐴).

Consider the solutions of the following equation:

𝐴𝑧 = Φ



(𝑧) , 𝑧 ∈ 𝐷 (𝐴) . (21)

Let

𝑃

0
= ∫

𝛽

−𝛽

𝑑𝐸

𝜆
, 𝑃

+
= ∫

+∞

𝛽

𝑑𝐸

𝜆
,

𝑃

−
= ∫

−𝛽

−∞

𝑑𝐸

𝜆
,

(22)

where {𝐸
𝜆
} is the spectral resolution of 𝐴, and let

H
∗
= 𝑃

∗
H, ∗ = 0, ±. (23)

Decompose the space 𝑉 as follows:

𝑉 = 𝑉

0
⊕ 𝑉

−
⊕ 𝑉

+
, (24)

where 𝑉
∗
= |𝐴

𝜀
|

−1/2H
∗
, ∗ = 0, ±, and 𝐴

𝜀
= 𝐴 + 𝜀𝐼.

For each 𝑢 ∈H, we have the decomposition

𝑢 = 𝑢

+
+ 𝑢

0
+ 𝑢

−
, (25)
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where 𝑢
∗
∈H

∗
and ∗ = 0, ±; let 𝑧 = 𝑧

+
+ 𝑧

0
+ 𝑧

−
, with

𝑧

∗
=









𝐴

𝜀









−1/2

𝑢

∗
, ∗ = 0, ±.

(26)

Define a functional 𝑓 onH as follows:

𝑓 (𝑢) =

1

2

(









𝑢

+









2

+ 𝑄

+









𝑢

0









2

− 𝑄

−









𝑢

0









2

− ‖𝑢‖

2

)

− Φ

𝜀
(𝑧) ,

(27)

where 𝑄
+
= ∫

∞

0
𝑑𝐸

𝜆
, 𝑄

−
= ∫

0

−∞
𝑑𝐸

𝜆
, and Φ

𝜀
(𝑧) = (𝜀/2)

‖𝑧‖H + Φ(𝑧).
The Euler equation of this functional is the system

𝑢

±
= ±









𝐴

𝜀









−1/2

𝑃

±
Φ



𝜀
(𝑧) ,

(28)

𝑄

±
𝑢

0
= ±









𝐴

𝜀









−1/2

𝑄

±
𝑃

0
Φ



𝜀
(𝑧) .

(29)

Thus, 𝑧 = 𝑧
+
+ 𝑧

0
+ 𝑧

−
is a solution of (21) if and only if

𝑢 = 𝑢

+
+ 𝑢

0
+ 𝑢

−
is a critical point of 𝑓. The implicit function

can be applied, yielding a solution 𝑧
±
(𝑧

0
) for fixed 𝑧

0
∈ 𝑉

0
,

such that 𝑧
±
∈ 𝐶

1

(𝑉

0
, 𝑉

±
). Since dim𝑉

0
is finite, all topologies

on𝑉
0
are equivalent, andwe choose ‖ ⋅ ‖H as it norm.Wehave

𝑢

±
(𝑧

0
) =









𝐴

𝜀









1/2

𝑧

±
(𝑧

0
) ∈ 𝐶

1

(H
0
,H) , (30)

which solves the system (28).
Let

𝑎 (𝑧

0
) = 𝑓 (𝑢

+
(𝑧

0
) + 𝑢

−
(𝑧

0
) + 𝑢

0
(𝑧

0
)) , (31)

where 𝑢
0
(𝑧

0
) = |𝐴

𝜀
|

1/2

𝑧

0
, and let 𝑧

0
= 𝑥 we have

𝑎 (𝑥) =

1

2

(𝐴 (𝑧 (𝑥) , 𝑧 (𝑥))) − Φ (𝑧 (𝑥)) , (32)

where 𝑧(𝑥) = 𝜉(𝑥)+𝑥, 𝜉(𝑥) = 𝑧
+
(𝑥)+𝑧

−
(𝑥) ∈ 𝐷(𝐴).Then, we

have the following theorem due to Amann [20], Chang [21],
and Long [22].

Theorem8. Under assumptions (1), (2), and (3), there is a one-
one correspondence

𝑥 → 𝑧 = 𝑧 (𝑥) = 𝑧

+
(𝑥) + 𝑧

−
(𝑥) + 𝑥 (33)

between the critical points of the 𝐶2-function 𝑎 ∈ 𝐶2(H
0
,R)

with the solutions of the operator equation

𝐴𝑧 = Φ



(𝑧) , 𝑧 ∈ 𝐷 (𝐴) . (34)

Moreover, the functional 𝑎 satisfies

𝑎 (𝑥) =

1

2

(𝐴 (𝑧 (𝑥) , 𝑧 (𝑥))) − Φ (𝑧 (𝑥)) ,

𝑎



(𝑥) = 𝐴 (𝑧 (𝑥)) − Φ



(𝑧 (𝑥))

= 𝐴𝑥 − 𝑃

0
Φ



(𝑧 (𝑥)) ,

𝑎



(𝑥) = [𝐴 − Φ



(𝑧 (𝑥))] 𝑧



(𝑥)

= 𝐴𝑃

0
− 𝑃

0
Φ



(𝑧 (𝑥)) 𝑧



(𝑥) .

(35)

Since H
0
is a finite dimensional space, for every critical

point 𝑥 of 𝑎 inH
0
, the Morse index and nullity are finite, and

we denote them by (𝑚−
𝑎
(𝑥), 𝑚

0

𝑎
(𝑥)).

Now, let theHilbert spaceH be𝐿2(R,R2𝑁), and the oper-
ator𝐴 be ̃𝐹 = −𝐽(𝑑/𝑑𝑡)+𝐿,Φ(𝑢) = ∫∞

−∞
𝑅(𝑡, 𝑢).Thenwe have

𝑉 = 𝐸. For𝑅 ∈ 𝐶2(R×R2𝑁,R) and |∇2
𝑧
𝑅| ≤ 𝐶

𝑅
, for all (𝑡, 𝑧) ∈

R×R2𝑁, let −𝛼 = 𝛽 ≥ 2(𝐶
𝑅
+1) and 𝛽 ∉ 𝜎( ̃𝐹); we have𝐴 and

Φ satisfying the previous conditions. Thus, fromTheorem 8,
we can solve our problems on the finite dimensional space.
Similar to Lemma 2.2 and Remark 2.3 in [23], we have the
following estimates.

Lemma 9. Assume that 𝑅 ∈ 𝐶2(R ×R2𝑁,R), |∇2
𝑧
𝑅| ≤ 𝐶

𝑅
, for

all (𝑡, 𝑧) ∈ R ×R2𝑁 and ∇
𝑧
𝑅(𝑡, 0) ≡ 0; then one has









𝑢

±

(𝑥)







𝐿
2 ≤

2√𝛽 (𝐶

𝑅
+ 1)

𝛽 − 2𝐶

𝑅
− 3𝜀

‖𝑥‖

𝐿
2 , ∀𝑥 ∈H

0
.

(36)

Moreover, one has












(𝑢

±

)



(𝑥)











𝐿
2
→ 0, 𝛽 → ∞. (37)

Proof. Note that

𝑢

±

(𝑥) = ±









𝐴

𝜀









−1/2

𝑃

±
Φ



𝜀
(𝑧

+

+ 𝑧

−

+ 𝑥) .
(38)

From ∇

𝑧
𝑅(𝑡, 0) = 0, |∇2

𝑧
𝑅| ≤ 𝐶

𝑅
, we have Φ(0) = 0 and

‖Φ



(𝑧)‖

𝐿
2 ≤ 𝐶

𝑅
‖𝑧‖

𝐿
2 . Since ‖|𝐴

𝜀
|

−1/2

𝑃

±
‖ ≤ 1/√(𝛽 − 𝜀), we

have








𝑢

±

(𝑥)







𝐿
2

≤

1

√𝛽 − 𝜀











Φ



(𝑧

+

+ 𝑧

−

+ 𝑥) + 𝜀(𝑧

+

+ 𝑧

−

+ 𝑥)









𝐿
2

≤

𝐶

𝑅
+ 𝜀

√𝛽 − 𝜀









𝑧

+

+ 𝑧

−

+ 𝑥







𝐿
2

≤

𝐶

𝑅
+ 𝜀

√𝛽 − 𝜀

(









𝑢

+

(𝑥)







𝐿
2

√𝛽

+









𝑢

−

(𝑥)







𝐿
2

√𝛽

+ ‖𝑥‖

𝐿
2) .

(39)

Therefore,









𝑢

+

(𝑥)







𝐿
2 +









𝑢

−

(𝑥)







𝐿
2 ≤

2√𝛽 (𝐶

𝑅
+ 𝜀)

𝛽 − 2𝐶

𝑅
− 3𝜀

‖𝑥‖

𝐿
2 . (40)

Next, since

(𝑢

±

)



(𝑥) = ±









𝐴

𝜀









−1/2

𝑃

±
Φ



𝜀

× (𝑧

+

+ 𝑧

−

+ 𝑥) ((𝑧

+

)



(𝑥) + (𝑧

−

)



(𝑥) + 𝐼) ,

(41)

where 𝐼 is the identity map onH
0
, we have













(𝑢

+

)



(𝑥)











𝐿
2
+













(𝑢

−

)



(𝑥)











𝐿
2

≤

2√𝛽 (𝐶

𝑅
+ 𝜀)

𝛽 − 2𝐶

𝑅
− 3𝜀

, ∀𝑥 ∈H
0
.

(42)
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Remark 10. For 𝑧(𝑥), we also have that there is a constant𝐶 >
0 dependent of 𝐶

𝑅
, but independent of 𝛽, such that









𝑧

±

(𝑥)







𝑉
≤

𝐶

√𝛽

‖𝑥‖

𝐿
2 ,











𝑧

±

(𝑥)









𝑉

≤

𝐶

√𝛽

, ∀𝑥 ∈H
0
.

(43)

If 𝑅 satisfies the condition (𝑅
1
), then for any homoclinic

orbit 𝑧 of (HS), ∇2
𝑧
𝑅(⋅, 𝑧) ∈ B, and, hence, we have the asso-

ciated index pair (𝜇
𝐹
(𝐾𝐵), 𝜐

𝐹
(𝐾𝐵)). For notation simplicity,

in what follows, we set

𝜇

𝐹
(𝑧) = 𝜇

𝐹
(𝐾∇

2

𝑧
(𝑅 (𝑡, 𝑧))) ,

𝜐

𝐹
(𝑧) = 𝜐

𝐹
(𝐾∇

2

𝑧
(𝑅 (𝑡, 𝑧))) .

(44)

Theorem 11. Let 𝑅 ∈ 𝐶2(R × R2𝑁,R) satisfying |∇2
𝑧
𝑅| ≤ 𝐶

𝑅
,

for all (𝑡, 𝑧) ∈ R × R2𝑁 and ∇
𝑧
𝑅(𝑡, 0) ≡ 0. For each critical

point 𝑥 of 𝑎 inH
0
, 𝑧(𝑥) is a homoclinic orbit of (HS) and one

has

𝑚

−

𝑎
(𝑥) = dim (𝐸− (H

0
)) + 𝜇

𝐹
(𝐾∇

2

𝑧
𝑅 (𝑡, 𝑧 (𝑥)))

= dim (𝐸− (H
0
)) + 𝜇

𝐹
(𝑧 (𝑥)) ,

𝑚

0

𝑎
(𝑥) = 𝜐

𝐹
(𝐾∇

2

𝑧
𝑅 (𝑡, 𝑧 (𝑥)) = 𝜐

𝐹
(𝑧 (𝑥)) ,

(45)

where dim(𝐸−(H
0
)) is the dimension of the space ∫0

−

−𝛽
𝑑𝐸

𝜆

(H
0
).

This theorem shows the relations between the relative
Morse index and the Morse index of the saddle point reduc-
tion, and it will play an important role in the proof of our
main results. The proof of this theorem will be postponed to
the next subsection where the notion of spectral flow will be
used.

2.3. The Relationship between 𝜇
𝐹
(𝑇), Spectral Flow, and the

Morse Index of Saddle Point Reduction. It is well known that
the concept of spectral flow was first introduced by Atiyah
et al. in [24] and then extensively studied in [19, 25–28].
Here, we give a brief introduction of the spectral flow as
introduced in [18]. Let H be a separable Hilbert space as
defined before, and {F

𝜃
| 𝜃 ∈ [0, 1]} be a continuous path

of self-adjoint Fredholm operators on the Hilbert space H.
The spectral flow of F

𝜃
represents the net change in the

number of negative eigenvalues of F
𝜃
as 𝜃 runs from 0

to 1, where the counting follows from the rule that each
negative eigenvalue crossing to the positive axis contributes
+1 and each positive eigenvalue crossing to the negative axis
contributes −1, and for each crossing, the multiplicity of
eigenvalue is taken into account. In the calculation of spectral
flow, a crossing operator introduced in [28] will be used. Take
a 𝐶1 path {F

𝜃
𝜃 |∈ [0, 1]} and let P

𝜃
be the projection from

H to H0

(F
𝜃
). When eigenvalue crossing occurs at F

𝜃
, the

operator

P
𝜃

𝜕

𝜕𝜃

F
𝜃
P
𝜃
:H

0

(F
𝜃
) →H

0

(F
𝜃
)

(46)

is called a crossing operator, denoted by 𝐶
𝑟
[F

𝜃
]. As men-

tioned in [28], an eigenvalue crossing at F
𝜃
is said to be

regular if the null space of 𝐶
𝑟
[F

𝜃
] is trivial. In this case, we

define

sign 𝐶
𝑟
[F

𝜃
] = dim H

+

(𝐶

𝑟
[F

𝜃
]) − dim H

−

(𝐶

𝑟
[F

𝜃
]) .

(47)

A crossing occurring at F
𝜃
is called simple crossing if

dim H0

(F
𝜃
) = 1.

As indicated in [19], the spectral flow Sf(F
𝜃
) will remain

the same after a small disturbance of F
𝜃
, that is, Sf(F

𝜃
) =

Sf(F
𝜃
+ 𝜀id) for 𝜀 > 0 and small enough, where id is the

identity map on H. Furthermore, we can choose suitable 𝜀
such that all the eigenvalue crossings occurring in F

𝜃
, 0 ≤

𝜃 ≤ 1 are regular [28]. Thus, without loss of generality, we
may assume that all the crossings are regular. LetD be the set
containing all the points in [0, 1] at which the crossing occurs.
The set D contains only finitely many points. The spectral
flow ofF

𝜃
is

Sf (F
𝜃
, 0 ≤ 𝜃 ≤ 1)

= ∑

𝜃∈D∗

sign𝐶
𝑟
[F

𝜃
] − dimH

−

(𝐶

𝑟
[F

0
])

+ dimH
+

(𝐶

𝑟
[F

1
]) ,

(48)

where D∗

= D ∩ (0, 1). In what follows, the spectral flow of
F
𝜃
will be simply denoted by Sf(F

𝜃
) when the starting and

end points of the flow are clear from the contents. And 𝑃F𝜃
will be simply denoted by 𝑃

𝜃
.

Proposition 12 (see [18, Proposition 3]). Suppose that, for
each 𝜃 ∈ [0, 1],F

𝜃
−F

0
is a compact operator onH then

ind (𝑃
0
|H−(F1)

) = −Sf (F
𝜃
) . (49)

Thus, from Definition 7,

𝜇F0
(T) = −Sf (F

𝜃
, 0 ≤ 𝜃 ≤ 1) , (50)

whereF
𝜃
= F − 𝜃T, T is a compact operator. Moreover, if

𝜎(T) ⊂ [0,∞) and 0 ∉ 𝜎
𝑃
(T), from the definition of spectral

flow, we have

𝜇F0
(T) = −Sf (F

𝜃
, 0 ≤ 𝜃 ≤ 1)

= ∑

𝜃∈[0,1)

𝜐F (𝜃T)

= ∑

𝜃∈[0,1)

dimH
0

(F − 𝜃T) .

(51)

The proof of Theorem 11 is the direct consequence of the
aformentioned Proposition 12 andTheorem 3.2 in [19], so we
omit it here.

Remark 13. The case of 𝑅−
∞

can be transformed into the case
of 𝑅+

∞
. More concretely, the 𝑅−

∞
case follows from the 𝑅+

∞

case by applying to the function ̃𝑅(𝑡, 𝑧) = −𝑅(−𝑡, 𝑧). If 𝑧(𝑡)
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is a homoclinic solution of ̃𝐹𝑧(𝑡) = ∇
𝑧
𝑅(𝑡, 𝑧(𝑡)), let �̃�(𝑡) =

𝑧(−𝑡), it is easy to check that �̃�(𝑡) is a homoclinic solution of
̃

𝐹�̃�(𝑡) = ∇

𝑧

̃

𝑅(𝑡, �̃�(𝑡)), and this is a one-one correspondence
between the two systems. By the definition of spectral flow
and it is catenation property [19], we have 𝜇

𝐹
(−𝐵

∞
(−𝑡)) −

𝜇

𝐹
(−𝐵

0
(−𝑡)) = 𝜇

𝐹
(𝐵

0
(𝑡))−𝜇

𝐹
(𝐵

∞
(𝑡)).Thus, we only consider

the case of 𝑅+
∞

from now on.

3. Proof of Our Main Results

Proof of Lemma 1. Recall the operator ̃𝐹 = −J(𝑑/𝑑𝑡) + 𝐿(𝑡),
with domain 𝐷(̃𝐹) = 𝐻

1

(R,R2𝑁) if 𝐿(𝑡) is bounded and
𝐷(

̃

𝐹) ⊂ 𝐻

1

(R,R2𝑁) if 𝐿(𝑡) is unbounded. 𝐷(̃𝐹) is a Hilbert
space equipped with the norm ‖𝑧‖

𝐹
= ‖(𝐼 + |

̃

𝐹|)𝑧‖

𝐿
2 , for all

𝑧 ∈ 𝐷(

̃

𝐹). Recall the Hilbert space 𝐸 = 𝐷(| ̃𝐹|1/2), with the
inner product and norm by

(𝑢, V)
𝐸
= (











̃

𝐹











1/2

𝑢,











̃

𝐹











1/2

V)
2

+ (𝑢, V)
2
,

‖𝑢‖

𝐸
= (𝑢, 𝑢)

1/2

𝐸
,

(52)

where (⋅, ⋅)
𝐿
2 denotes the usual inner product on 𝐿2(R,R2𝑁).

From (𝐿
1
), there is a matrix 𝐿

0
such that 𝑃(𝐿(𝑡) − 𝐿

0
) ≥ 0 for

all 𝑡 ∈ R.We have 𝐿(𝑡) = ̃𝐹− ̃𝐹
0
+𝐿

0
, with ̃𝐹

0
= −J(𝑑/𝑑𝑡)+𝐿

0

and𝐷(̃𝐹
0
) = 𝐻

1. Thus, for any 𝑧 ∈ 𝐸,










(𝐿 (𝑡) 𝑧, 𝑃

𝑇

𝑧)

𝐿
2











≤













(

̃

𝐹𝑧, 𝑃

𝑇

𝑧)

𝐿2













+













(

̃

𝐹

0
𝑧, 𝑃

𝑇

𝑧)

𝐿2













+













(𝐿

0
𝑧, 𝑃

𝑇

𝑧)

𝐿2













≤ 𝑐‖𝑧‖

2

𝐸
.

(53)

Let 𝐾 ⊂ 𝐸 be a bounded set. We will show that 𝐾 is pre-
compact in 𝐿𝑝 for 1 ≤ 𝑝 ∈ (2/(1 + 𝛼),∞). We divide the
proof into three steps.

Step 1 (the case of 𝑝 = 2). For 𝑅 > 0, from (𝐿
1
) and (53) we

have

∫

|𝑡|>𝑅

|𝑧|

2

𝑑𝑡 ≤ 𝑐|𝑅|

𝛼−2

∫

|𝑡|>𝑅

⟨𝐿 (𝑡) 𝑧, 𝑃

𝑇

𝑧⟩

R2𝑁
𝑑𝑡

≤ 𝑐|𝑅|

𝛼−2

‖𝑧‖

2

𝐸
.

(54)

For any 𝜀 > 0, from (54), we can choose𝑅
0
large enough, such

that

∫

|𝑡|>𝑅0

|𝑧|

2

𝑑𝑡 <

𝜀

2

4

, ∀𝑧 ∈ 𝐾. (55)

On the other hand, by the definition of ‖ ⋅ ‖
𝐸
, we have

∫

|𝑡|≤𝑅0

|𝑧|

2

𝑑𝑡 ≤ ‖𝑧‖

𝐸
≤ 𝐶, ∀𝑧 ∈ 𝐾. (56)

Thus, by the Sobolev compact embedding theorem, there
exist 𝑧

1
, 𝑧

2
, . . . , 𝑧

𝑚
∈ 𝐾, such that for any 𝑧 ∈ 𝐾, there is 𝑧

𝑖

satisfying









𝑧 − 𝑧

𝑖









𝑝

𝐿
𝑝
((−𝑅0 ,𝑅0),R

2𝑁
)
<

𝜀

2

2

.

(57)

From (55) and (57), we have ‖𝑧 − 𝑧
𝑖
‖

𝐿
2 < 𝜀; thus,𝐾 has a finite

𝜀-net in 𝐿2, and so the embedding 𝐸 → 𝐿

2 is compact.

Step 2 (the case of 𝑝 > 2). Since 𝐸 is continuously embedded
in 𝐻1/2, hence, by the Sobolev embedding theorem, 𝐸 is
continuously embedded in 𝐿𝑝, for all 𝑝 > 2. For any 𝑝 > 2,
by the Hölder inequality we have

∫

R
|𝑧|

𝑝

𝑑𝑡 ≤ ‖𝑧‖

𝐿
2‖𝑧‖

𝑝−1

𝐿
2(𝑝−1)

≤ 𝐶‖𝑧‖

𝐿
2‖𝑧‖

𝑝−1

𝐸
, (58)

thus, the embedding 𝐸 → 𝐿

𝑝 is compact, for all 𝑝 > 2.

Step 3 (the case of 1 ≤ 𝑝 ∈ (2/(1 + 𝛼), 2)). First, we have
(𝛼/(2 − 𝑝)) ⋅ 𝑝 > 1; so we can choose 𝛼

𝑝
satisfying 𝛼

𝑝
∈ (0, 𝛼)

and (𝛼
𝑝
/(2−𝑝) ⋅𝑝) > 1. Denote that 𝑟 = 𝛼

𝑝
/(2−𝑝). For𝑅 > 0

and 𝑧 ∈ 𝐸, denote that 𝐸1
𝑅
(𝑧) = {𝑡; |𝑡| ≥ 𝑅 and |𝑡|𝑟|𝑧(𝑡)| > 1}

and 𝐸2
𝑅
(𝑧) = {𝑡; |𝑡| ≥ 𝑅 and |𝑡|𝑟|𝑧(𝑡)| ≤ 1}. Then, from (53),

∫

𝐸
1

𝑅
(𝑧)

|𝑧|

𝑝

𝑑𝑡 = ∫

𝐸
1

𝑅
(𝑧)

(|𝑡|

𝑟

|𝑧|)

𝑝

|𝑡|

−𝑟𝑝

𝑑𝑡

≤ ∫

𝐸
1

𝑅
(𝑧)

|𝑧|

2

|𝑡|

𝛼𝑝
𝑑𝑡

≤

𝑐

|𝑅|

𝛼−𝛼𝑝











(𝐿 (𝑡) 𝑧, 𝑃

𝑇

𝑧)

𝐿
2











≤

𝑐

|𝑅|

𝛼−𝛼𝑝

‖𝑧‖

2

𝐸
,

(59)

and so

∫

|𝑡|≥𝑅

|𝑧|

𝑝

𝑑𝑡

= ∫

𝐸
1

𝑅
(𝑧)

|𝑧|

𝑝

𝑑𝑡 + ∫

𝐸
2

𝑅
(𝑧)

|𝑧|

𝑝

𝑑𝑡

≤

𝑐

|𝑅|

𝛼−𝛼𝑝

‖𝑧‖

2

𝐸
+

2

(𝑟𝑝 − 1) 𝑅

𝑟𝑝−1
, ∀𝑧 ∈ 𝐸.

(60)

Let𝐾 ⊂ 𝐸 be a bounded set. For any 𝜀 > 0, from (60), choose
𝑅

0
> 0 large enough, such that

∫

|𝑡|≥𝑅0

|𝑧|

𝑝

𝑑𝑡 <

𝜀

𝑝

4

, ∀𝑧 ∈ 𝐾. (61)

On the other hand, by the Sobolev compact embedding theo-
rem, there are 𝑧

1
, 𝑧

2
, . . . , 𝑧

𝑚
∈ 𝐾, such that for any 𝑧 ∈ 𝐾,

there exists 𝑧
𝑖
satisfying









𝑧 − 𝑧

𝑖









𝑝

𝐿
𝑝
((−𝑅0 ,𝑅0),R

2𝑁
)
<

𝜀

𝑝

2

.
(62)

From (61) and (62), we have








𝑧 − 𝑧

𝑖







𝐿
𝑝 < 𝜀; (63)

that is to say, 𝐾 has a finite 𝜀-net in 𝐿𝑝, and the embedding
𝐸 → 𝐿

𝑝 is compact.The proof of the lemma is complete.
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Consider the homoclinic orbits of the linear Hamiltonian
systems

�̇� (𝑡) = 𝐽𝐵 (𝑡) 𝑧 (𝑡) , ∀𝑡 ∈ R,

𝑧 (𝑡) → 0, |𝑡| → ∞,

(64)

where 𝑧(𝑡) : R → R2𝑁, 𝐽 = (

0 −𝐼𝑁

𝐼𝑁 0
), and 𝐵(𝑡) is a

continuous symmetric matrix function. Denote by 𝑆 the set
of homoclinic orbits of linear systems (64); then, 𝑆 is a linear
subspace of 𝐿2(R,R2𝑁) and we have the following lemma.

Lemma 14. The dimension of the solution space 𝑆 will be less
than or equal to𝑁. Thus for any homoclinic orbit 𝑧(𝑡) of (HS),
if 𝑅 satisfies (𝑅

1
), one has

0 ≤ 𝜐

𝐹
(𝑧) ≤ 𝑁. (65)

Proof. As usual, we define the symplectic groups on R2𝑁 by

𝑆𝑝 (2𝑁) = {𝑀 ∈L (R
2𝑁

) , | 𝑀

𝑇

𝐽𝑀 = 𝐽} , (66)

where L(R2𝑁) is the set of all 2𝑁 × 2𝑁 real matrices, and
𝑀

𝑇 denotes the transpose of𝑀. Let𝑊(𝑡) be the fundamental
solution of (64); then,𝑊(𝑡) is a path in 𝑆𝑝(2𝑁). Let 𝑧(𝑡) be a
nontrivial homoclinic orbit of (64); that is to say, 𝑧(0) ̸= 0 and
satisfies

𝑧 (𝑡) = 𝑊 (𝑡) 𝑧 (0) ,

lim
𝑡→∞

𝑊(𝑡) 𝑧 (0) = 0.

(67)

Denote by 𝑆
0
the subset of R2𝑁 satisfying

𝑆

0
= {𝑧 ∈ R

2𝑁

| lim
𝑡→∞

𝑊(𝑡) 𝑧 = 0} , (68)

Then, we have dim 𝑆 = dim(𝑆
0
).We claim that 𝐽𝑧

0
∉ 𝑆

0
if 𝑧

0
∈

𝑆

0
and 𝑧

0
̸= 0. We prove it indirectly. Assume that 𝑧

0
, 𝐽𝑧

0
∈ 𝑆

0

with 𝑧
0
̸= 0; that is to say,

lim
𝑡→∞

𝑊(𝑡) 𝑧

0
= 0,

lim
𝑡→∞

𝑊(𝑡) 𝐽𝑧

0
= 0.

(69)

Since𝑊(𝑡) is a path in 𝑆𝑝(2𝑁),𝑊𝑇

(𝑡)𝐽𝑊(𝑡) = 𝐽, for all 𝑡 ∈ R,
thus

0 = lim
𝑡→∞

(𝐽𝑊 (𝑡) 𝑧

0
,𝑊 (𝑡) 𝐽𝑧

0
)

R2𝑁

= − lim
𝑡→∞

(𝑧

0
,𝑊

𝑇

(𝑡) 𝐽𝑊 (𝑡) 𝐽𝑧

0
)

R2𝑁

= (𝑧

0
, 𝑧

0
)

R2𝑁
,

(70)

which contradicts 𝑧
0
̸= 0. Since 𝐽 is an isomorphism on R2𝑁,

we have dim 𝑆
0
≤ 𝑁. And from the definition of 𝜐

𝐹
(𝑧) in the

last part of Section 2.2, we have completed the proof.

Before the proof of Theorem 2, we need the following
lemma. Since 𝑅 satisfies condition (𝑅

1
), performing on (HS)

the saddle point reduction, choose a suitable number 𝛽,
which is used in the projection for the saddle point reduction
in Section 2.2. Let

𝑃 = ∫

𝛽

−𝛽

𝑑𝐸

𝜆
,

𝑋 = 𝑃𝐿

2

(R,R
2𝑁

) .

(71)

By Theorem 8, we have a functional 𝑎(𝑥) with 𝑥 ∈ 𝑋, whose
critical points give rise to solutions of (HS).

Lemma 15. (1) 𝑎 satisfies (PS) condition;
(2) 𝐻

𝑞
(𝑋, 𝑎;R) ≅ 𝛿

𝑞,𝑟
R, 𝑞 = 0, 1, . . . for −𝑎 ∈ R large

enough, where 𝑟 = dim(𝐸−(𝑋)) + 𝜇
𝐹
(𝐾𝐵

1
).

Proof. Assume that there is a sequence {𝑥
𝑛
} ⊂ 𝑋, satisfying

𝑎



(𝑥

𝑛
) → 0(𝑛 → ∞). That is,









𝐹𝑧

𝑛
− 𝐾∇

𝑧
𝑅 (𝑡, 𝑧

𝑛
)







𝐸
→ 0, (72)

where 𝑧
𝑛
= 𝑧(𝑥

𝑛
) defined in Section 2.1. Since 𝑋 is a finite

dimensional space, and from the definition of 𝑧
𝑛
, it is enough

to prove that {𝑧
𝑛
} is bounded in 𝐸. For each 𝜀 ∈ (0, 1), define

𝐶

𝑛
∈B by

𝐶

𝑛
(𝑡) =

{

{

{

{

{

{

{

∫

1

0

∇

2

𝑧
𝑅 (𝑡, 𝑠𝑧

𝑛
) 𝑑𝑠,









𝑧

𝑛
(𝑡)









≥

𝑅

0

𝜀

,

𝐵

1
(𝑡) ,









𝑧

𝑛
(𝑡)









<

𝑅

0

𝜀

.

(73)

It is easy to verify that {𝐶
𝑛
} satisfies

𝐵

1
(𝑡) − 𝜀 (𝐵

1
(𝑡) + 𝑐 ⋅ 𝐼)

≤ 𝐶

𝑛
(𝑡) ≤ 𝐵

2
(𝑡) + 𝜀 (𝑐 ⋅ 𝐼 − 𝐵

2
(𝑡)) , ∀𝑡 ∈ R,

(74)

where 𝑐 is the constant in condition (𝑅
1
) and 𝐼 is the identity

map onR2𝑁. Since 𝐵
1
≤ 𝐵

2
, 𝜇
𝐹
(𝐵

1
) = 𝜇

𝐹
(𝐵

2
) and 𝜐

𝐹
(𝐾𝐵

1
) =

𝜐

𝐹
(𝐾𝐵

2
) = 0, we can choose 𝜀 small enough, such that for

each 𝑛 ∈ N+, 𝜇
𝐹
(𝐾𝐶

𝑛
) = 𝜇

𝐹
(𝐾𝐵

1
) and 𝜐

𝐹
(𝐾𝐶

𝑛
) = 0. Thus

𝐹−𝐾𝐶

𝑛
is reversible on 𝐸, and there is a constant 𝛿 > 0, such

that








(𝐹 − 𝐾𝐶

𝑛
)𝑧







𝐸
≥ 𝛿‖𝑧‖

𝐸
, ∀𝑧 ∈ 𝐸, 𝑛 ∈ N

+

. (75)

On the other hand, for 𝑏 ∈ (0, 1), there is a constant 𝑐 > 0
depending on 𝑏, such that for each 𝑛 ∈ N+,









∇

𝑧
𝑅 (𝑡, 𝑧

𝑛
(𝑡)) − 𝐶

𝑛
𝑧

𝑛
(𝑡)









≤ 𝑐









𝑧

𝑛
(𝑡)









𝑏

, ∀𝑡 ∈ R. (76)

Choose 𝑏 > (1−𝛼)/(1+𝛼) in (76); that is, 1+𝑏 ∈ (2/(1+𝛼), 2),
we have









(𝐹𝑧

𝑛
− 𝐾∇

𝑧
𝑅 (𝑡, 𝑧

𝑛
)) − (𝐹 − 𝐾𝐶

𝑛
) 𝑧

𝑛









2

𝐸

=









𝐾 (∇

𝑧
𝑅 (𝑡, 𝑧

𝑛
) − 𝐶

𝑛
𝑧

𝑛
)









2

𝐸

≤









∇

𝑧
𝑅 (𝑡, 𝑧

𝑛
) − 𝐶

𝑛
𝑧

𝑛









2

𝐿
2

≤ 𝑐∫

R









∇

𝑧
𝑅 (𝑡, 𝑧

𝑛
) − 𝐶

𝑛
𝑧

𝑛

















𝑧

𝑛









𝑏









𝑧

𝑛









1+𝑏

𝑑𝑡

≤ 𝑐









𝑧

𝑛









1+𝑏

𝐿
1+𝑏 .

(77)
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As we claimed in the introduction, in (76) and (77), the letter
𝑐 denotes different positive constants whose exact value is
irrelevant. Thus, from (72), (75), (77), and Lemma 1, we have
that {𝑧

𝑛
} is bounded in 𝐸, and 𝑎 satisfies the (PS) conditions.

And by Lemma 5.1 in Chapter II of [21], we have

𝐻

𝑞
(𝑋

,
(𝑎)

𝛼
;R) ≅ 𝛿

𝑞,𝑟
R, 𝑞 = 0, 1, . . . , (78)

for −𝛼 ∈ R large enough.

From Theorem 11, Lemmas 14 and 15, Theorem 2 is a
direct consequence of Theorem 5.1 and Corollary 5.2 in
Chapter II of [21].

In order to proofTheorems 3 and 4, we need the following
lemmawhich is similar to Lemma 3.4 in [29] and Lemma 3.3
in [23].

Lemma 16. Assume that (𝑅
1
), (𝑅

0
), and (𝑅+

∞
) hold; then, there

exists a sequence of functions 𝑅
𝑘
∈ 𝐶

2

(R × R2𝑁,R), 𝑘 ∈ N,
satisfying the following properties.

(1) There exists an increasing sequence of real numbers
𝑀

𝑘
→ ∞ (𝑘 → ∞) such that

𝑅

𝑘
(𝑡, 𝑧) ≡ 𝑅 (𝑡, 𝑧) , ∀𝑡 ∈ R, |𝑧| ≤ 𝑀

𝑘
. (79)

(2) For each 𝑘 ∈ N, there is a 𝐶 > 0 independent of 𝑘, such
that











∇

2

𝑧
𝑅

𝑘
(𝑡, 𝑧)











≤ 𝐶, ∀𝑡 ∈ R, 𝑧 ∈ R
2𝑁

,

∇

2

𝑧
𝑅

𝑘
(𝑡, 𝑧) ≥ 𝐵

∞
, ∀𝑡 ∈ R, |𝑧| ≥ 𝑅

0
.

(80)

(3) For each 𝑘 ∈ N, there exist some 𝐶
𝑘
> 0 and a constant

𝛾 with 𝛾𝐼
2𝑁
> 𝐵

∞
, ]
𝐹
(𝐾𝛾𝐼

2𝑁
) = 0, such that









∇

𝑧
𝑅

𝑘
(𝑡, 𝑧) − 𝛾𝑧









< 𝐶

𝑘
, ∀ (𝑡, 𝑧) ∈ R ×R

2𝑁

, (81)

where 𝐼
2𝑁

is the identity map on R2𝑁.

Proof. Define 𝜂 : [0,∞) → R by

𝜂 (𝑠) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

0, 0 ≤ 𝑠 < 1,

2

9

(𝑠 − 1)

3

−

1

9

(𝑠 − 1)

4

, 1 ≤ 𝑠 < 2,

1 −

128

9 (12 + 𝑠

2
)

, 2 ≤ 𝑠 < ∞.

(82)

It is easy to see that 𝜂 ∈ 𝐶2([0,∞),R). Choose a sequence
{𝑀

𝑘
} of positive numbers such that 𝑅

0
< 𝑀

1
< 𝑀

2
< ⋅ ⋅ ⋅ <

𝑀

𝑘
< ⋅ ⋅ ⋅ → ∞ as 𝑘 → ∞. For each 𝑘 ∈ N, let 𝜂

𝑘
(𝑠) =

𝜂(𝑠/𝑀

𝑘
) and

𝑅

𝑘
(𝑡, 𝑧) = (1 − 𝜂

𝑘
(|𝑧|)) 𝑅 (𝑡, 𝑧) +

𝛾

2

𝜂

𝑘
(|𝑧|) |𝑧|

2

, 𝑘 ∈ N.

(83)

As in [23, 29], we can check that𝑅
𝑘
satisfies (79)–(81) for each

𝑘 ∈ N.

For each 𝑘 ∈ N, we consider the following problem

̃

𝐹𝑧 = ∇

𝑧
𝑅

𝑘
(𝑡, 𝑧) ,

𝑧 (𝑡) → 0, 𝑧



(𝑡) → 0, 𝑡 → ∞,

(HS)
𝑘

where 𝑅
𝑘
is given in Lemma 16. Performing on (HS)

𝑘
the

saddle point reduction, we choose the number 𝛽 which is
used in the projection for the saddle point reduction in
Section 2.2. First, we choose

𝛽 > max {2 (𝐶 + 1) , 2 (𝛾 + 1)} , 𝛽 ∉ 𝜎 (𝐴

0
) . (84)

Let

𝑃

𝛽
= ∫

𝛽

−𝛽

𝑑𝐸

𝜆
,

𝑋

𝛽
= 𝑃

𝛽
𝐿

2

(R,R
2𝑁

) .

(85)

Thus, for each 𝑘 and such a 𝛽 fixed, by Theorem 8, we have a
functional

𝑎

𝑘,𝛽
(𝑥) , 𝑥 ∈ 𝑋

𝛽
, (86)

whose critical points give rise to solutions of (HS)
𝑘
. Similarly

we have a functional

𝑎

𝛾,𝛽
(𝑥) , 𝑥 ∈ 𝑋

𝛽
, (87)

whose critical points give rise to solutions of the following
systems (HS)

𝛾

̃

𝐹𝑧 = 𝛾𝑧,

𝑧 (𝑡) → 0, 𝑧



(𝑡) → 0, 𝑡 → ∞.

(HS)
𝛾

For notational simplicity, we denote 𝑎
𝑘
, 𝑎

𝛾
for 𝑎

𝑘,𝛽
and 𝑎

𝛾,𝛽
.

Define

Φ

𝑘
(𝑧) = ∫

∞

−∞

𝑅

𝑘
(𝑡, 𝑧) 𝑑𝑡. (88)

For the functional 𝑎
𝑘
, similar to Lemma 15, we have the fol-

lowing lemma.

Lemma 17. (1) 𝑎
𝑘
satisfies (PS) condition, and the critical

point set of 𝑎
𝑘
is compact;

(2) 𝐻
𝑞
(𝑋

𝛽
, (𝑎

𝑘
)

𝛼𝑘
;R) ≅ 𝛿

𝑞,𝑟𝛽
R, 𝑞 = 0, 1, . . . for −𝛼

𝑘
∈ R

large enough, where 𝑟
𝛽
= dim(𝐸−(𝑋

𝛽
)) + 𝜇

𝐹
(𝐾𝛾𝐼

2𝑁
).

Proof. The proof is similar to Lemma 15. From Theorem 11,
we have










𝑎



𝑘
(𝑥) − 𝑎



𝛾
(0) 𝑥









𝐿
2
=











𝑃

𝛽
𝐾(∇

𝑧
Φ

𝑘
(𝑧

𝑘
(𝑥)) − 𝛾𝑥)









𝐿
2

≤











𝑃

𝛽
(∇

𝑧
𝑅

𝑘
(𝑧

𝑘
(𝑥)) − 𝛾𝑧

𝑘
(𝑥))









𝐿
2

≤









(∇

𝑧
𝑅

𝑘
(𝑧

𝑘
(𝑥)) − 𝛾𝑧

𝑘
(𝑥))







𝐿
2 .

(89)
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Similar to (76), for 𝑏 ∈ (0, 1), there is some 𝑐 > 0, such that








∇

𝑧
𝑅

𝑘
(𝑡, 𝑧

𝑘
) − 𝛾𝑧

𝑘









≤ 𝑐









𝑧

𝑘
(𝑡)









, ∀𝑡 ∈ R. (90)

Choose 𝑏 ∈ ((1 − 𝛼)/(1 + 𝛼), 1), similar to (77), and we have








∇

𝑧
𝑅

𝑘
(𝑡, 𝑧

𝑘
) − 𝛾𝑧

𝑘









2

𝐿
2 ≤ 𝑐









𝑧

𝑘









1+𝑏

𝐿
1+𝑏 .

(91)

From Lemma 1, Remark 10, and (91),








∇

𝑧
𝑅

𝑘
(𝑡, 𝑧

𝑘
) − 𝛾𝑧

𝑘









2

𝐿
2 ≤ 𝑐









𝑧

𝑘









1+𝑏

𝐸

≤ 𝑐 (𝛽) ‖𝑥‖

1+𝑏

𝐿
2 .

(92)

From (89) and (92), we have










𝑎



𝑘
(𝑥) − 𝑎



𝛾
(0) 𝑥











2

𝐿
2
≤ 𝑐 (𝛽) ‖𝑥‖

1+𝑏

𝐿
2 . (93)

Now, for each 𝑘 ∈ N, we assume that {𝑥
𝑚
} ⊂ 𝑋

𝛽
satisfying

‖𝑎



𝑘
(𝑥

𝑚
)‖ → 0. By ]

𝐹
(𝐾𝛾𝐼

2𝑁
) = 0, we have that 𝑎

𝛾
(0) is

invertible on 𝑋
𝛽
, since 𝑏 < 1 the sequence {𝑥

𝑚
} must be

bounded.Thus the (PS) condition for 𝑎
𝑘
holds. From the same

reason, we have the compactness of the critical point set of 𝑎
𝑘
.

And by Lemma 5.1 in Chapter II of [21], we have

𝐻

𝑞
(𝑋

𝛽
, (𝑎

𝑘
)

𝛼𝑘

;R) ≅ 𝛿
𝑞,𝑟𝛽

R, 𝑞 = 0, 1, . . . , (94)

for −𝛼
𝑘
∈ R large enough.

Lemma 18. There exist 𝑐 > 0, such that for any 𝑘 ∈ N, and 𝑧 ∈
𝐿

2 satisfies the systems (HS)
𝑘
, if 𝜇

𝐹
(𝑧) ≤ 𝜇

𝐹
(𝐾𝐵

∞
)−1, one has

‖𝑧‖

𝐿
∞ ≤ 𝑐.

Proof. We prove it indirectly. Assume there exist 𝑅
𝑘
and 𝑧

𝑘

satisfying the conditions, and ‖𝑧
𝑘
‖

𝐿
∞ → ∞; that is, ‖𝑧‖

𝐹
→

∞. Since |∇
𝑧
𝑅

𝑘
(𝑡, 𝑧)| < 𝑐|𝑧|, for all 𝑡 ∈ R, 𝑧 ∈ R2𝑁, we have

‖𝑧

𝑘
‖

𝐹
≤ 𝑐‖𝑧

𝑘
‖

𝐿
2 . Denote that 𝑦

𝑘
= 𝑧

𝑘
/‖𝑧

𝑘
‖

𝐹
; then, we have

𝑦

𝑘
→ 𝑦 in 𝐿2 for some 𝑦 ∈ 𝐿2 with ‖𝑦‖

𝐿
2 > 0, and

̃

𝐹𝑦

𝑘
=

𝑅



𝑘
(𝑡, 𝑧

𝑘
)









𝑧

𝑘







𝐹

. (95)

Then, for any 𝑟 > 0, there exists 𝐶
𝑟
> 0, satisfying









̇𝑦

𝑘
(𝑡)









≤ 𝐶

𝑟









𝑦

𝑘
(𝑡)









, 𝑡 ∈ 𝐼

𝑟
, (96)

where 𝐼
𝑟
= [−𝑟, 𝑟]. Since ‖𝑦‖

𝐿
2 > 0, there is a 𝑟

0
> 0, such that









𝑦







𝐿
2
(−𝑟,𝑟)

>

1

2









𝑦







𝐿
2 > 0, ∀𝑟 > 𝑟

0
. (97)

Then, from the similar argument in [23], there is a subse-
quence throught which we may assume that {𝑦

𝑘
} converges

in uniform norm to 𝑦, and 𝑦(𝑡) ̸= 0, for all 𝑡 ∈ 𝐼
𝑟
. Therefore

|𝑧

𝑘
(𝑡)| → ∞ uniformly on 𝐼

𝑟
, and there is 𝐾(𝑟) depending

on 𝑟, such that |𝑧
𝑘
(𝑡)| ≥ 𝑅

0
, for any 𝑡 ∈ 𝐼

𝑟
and 𝑘 ≥ 𝐾(𝑟).

Performing the saddle point reduction on the following
systems:

̃

𝐹𝑧 = 𝐵

∞
𝑧,

𝑧 (𝑡) → 0, 𝑧



(𝑡) → 0, 𝑡 → ∞,

(HS)
∞

for 𝛽 large enough, we have the functional 𝑎
∞,𝛽

(denote by
𝑎

∞
for simplicity) and the function 𝑧(𝑥); since 𝜐

𝐹
(𝐾𝐵

∞
) = 0,

we have the following decomposition:

𝑋

𝛽
= 𝑋

+

𝛽
+ 𝑋

−

𝛽
, (98)

where 𝑎
∞
(0) is positive definite on 𝑋+

𝛽
and negative definite

on𝑋−
𝛽
. FromRemark 10, and 𝜐

𝐹
(𝐾𝐵

∞
) = 0, there exists𝛼 > 0,

such that for 𝛽 large enough,

((

̃

𝐹 − 𝐵

∞
(𝑡)) 𝑥, 𝑥)

𝐿
2
≤ −𝛼‖𝑥‖

2

𝐿
2 , ∀𝑥 ∈ 𝑋

−

𝛽
. (99)

From the uniform boundary of ∇2
𝑧
𝑅

𝑘
(𝑡, 𝑧) and Remark 10, we

can choose 𝛽 large enough, such that











(∇

2

𝑧
𝑅

𝑘
(𝑡, 𝑧

𝑘
) 𝑧

±

𝑘
(𝑥

𝑘
) 𝑥, 𝑥









𝐿
2
≤

𝛼

4

‖𝑥‖

𝐿
2 , ∀𝑥 ∈ 𝐿

2

,

(100)

where 𝑥
𝑘
= 𝑃

𝛽
𝑧

𝑘
, 𝑧
𝑘
(𝑥

𝑘
) = 𝑧

𝑘
(𝑡) defined in Theorem 8.

Choose 𝜀 > 0 small enough and 𝜀 < 𝛼/4, such that
𝜇

𝐹
(𝐾𝐵

∞
) = 𝜇

𝐹
(𝐾(𝐵

∞
−𝜀⋅𝐼𝑑)). Since𝑋−

𝛽
is finite dimensional

space, choose 𝑟 large enough, such that

((∇

2

𝑧
𝑅

𝑘
(𝑡, 𝑧

𝑘
) − 𝐵

∞
) 𝑥, 𝑥)

𝐿
2
(𝐼
𝑐

𝑟
)

≥ −𝜀(𝑥, 𝑥)

𝐿
2 , ∀𝑥 ∈ 𝑋

−

𝛽
,

(101)

where 𝐼𝑐
𝑟
= R \ 𝐼

𝑟
, and from the definition of 𝑅

𝑘
,

∇

2

𝑧
𝑅

𝑘
(𝑡, 𝑧

𝑘
(𝑡)) ≥ 𝐵

∞
(𝑡) , 𝑡 ∈ 𝐼

𝑟
, 𝑘 ≥ 𝐾 (𝑟) ; (102)

that is,

((∇

2

𝑧
𝑅

𝑘
(𝑡, 𝑧

𝑘
) − 𝐵

∞
) 𝑥, 𝑥)

𝐿
2
(𝐼𝑟)

≥ 0, ∀𝑥 ∈ 𝑋

−

𝛽
, 𝑘 ≥ 𝐾 (𝑟) .

(103)

From (101) and (103),

(∇

2

𝑧
𝑅

𝑘
(𝑡, 𝑧

𝑘
) 𝑥, 𝑥)

𝐿
2
≥ (𝐵

∞
𝑥, 𝑥)

𝐿
2 − 𝜀 (𝑥, 𝑥)𝐿

2 , (104)

for 𝑘 large enough. Thus we have

(𝑎



𝑘
(𝑥

𝑘
) 𝑥, 𝑥)

𝐿
2

= ((

̃

𝐹 − ∇

2

𝑧
𝑅

𝑘
(𝑡, 𝑧

𝑘
)) 𝑥, 𝑥)

𝐿
2

− (∇

2

𝑧
(𝑅

𝑘
(𝑡, 𝑧

𝑘
)) (𝑧

+

𝑘
+ 𝑧

−

𝑘
) 𝑥, 𝑥)

𝐿
2

≤ ((

̃

𝐹 − 𝐵

∞
) 𝑥, 𝑥)

𝐿
2
+

𝛼

2

‖𝑥‖

2

𝐿
2 + 𝜀‖𝑥‖

2

𝐿
2

≤ −

𝛼

4

‖𝑥‖

2

𝐿
2 .

(105)

That is, 𝑚−
𝑎𝑘

(𝑥) ≥ 𝑚

−

𝑎∞

(0), from Theorem 11, 𝑚−
𝑎𝑘

(𝑥

𝑘
) =

dim(𝐸−(H
0
)) + 𝜇

𝐹
(𝑧

𝑥
(𝑥

𝑘
)), 𝑚−

𝑎∞

(0) = dim(𝐸−(H
0
)) +

𝜇

𝐹
(𝐾𝐵

∞
), and thus 𝜇

𝐹
(𝑧

𝑥
) ≥ 𝜇

𝐹
(𝐾𝐵

∞
), which contradicts

the assumption.
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Proof of Theorem 3. As claimed in Remark 13, we can only
consider the case of (𝑅+

∞
). Note that 𝑧 = 0 is a critical point of

𝑎

𝑘
, and themorse index of 0 for 𝑎

𝑘
is𝑚−

𝑎𝑘

(0) = dim(𝐸−(H
0
))+

𝜇

𝐹
(𝐾𝐵

0
), since 𝛾 ⋅ 𝐼

2𝑁
> 𝐵

∞
, we have

𝜇

𝐹
(𝐾𝛾 ⋅ 𝐼

2𝑁
) ≥ 𝜇

𝐹
(𝐾𝐵

∞
) ≥ 𝜇

𝐹
(𝐾𝐵

0
) . (106)

From proposition (2) in Lemma 17, use the (𝑚−
𝑎𝑘

(0))th and
(𝑚

−

𝑎𝑘

(0) + 1)th Morse inequalities, and 𝑎
𝑘
has a nontrivial

critical point 𝑥
𝑘
with its morse index 𝑚−

𝑎𝑘

(𝑥

𝑘
) ≤ 𝑚

−

𝑎𝑘

(0) + 1;
that is, 𝜇

𝐹
(𝑧

𝑘
) ≤ 𝜇

𝐹
(𝐾𝐵

0
) + 1 ≤ 𝜇

𝐹
(𝐾𝐵

∞
) − 1, then from

Lemma 18, we have that {𝑧
𝑘
} is bounded in 𝐿∞. Thus 𝑧

𝑘
is a

nontrivial solution of (HS) for 𝑘 large enough.

The proof of Theorem 4 is similar to the proof of
Theorem 3. Instead ofMorse theory wemake use of minimax
arguments for multiplicity of critical points.

Let 𝑋 be a Hilbert space and assume 𝜙 ∈ 𝐶2(𝑋,R) is an
even functional, satisfying the (PS) condition and 𝜙(0) = 0.
Denote 𝑆

𝑐
= {𝑢 ∈| 𝑋‖𝑢‖ = 𝑐}.

Lemma 19 (see [30, Corollary 10.19]). Assume that 𝑌 and 𝑍
are subspaces of 𝑋 satisfying dim𝑌 = 𝑗 > 𝑘 = codim 𝑍. If
there exist 𝑅 > 𝑟 > 0 and 𝛼 > 0 such that

inf 𝜙 (𝑆
𝑟
∩ 𝑍) ≥ 𝛼, sup𝜙 (𝑆

𝑅
∩ 𝑌) ≤ 0, (107)

then 𝜙 has 𝑗−𝑘 pairs of nontrivial critical points {±𝑥
1
, ±𝑥

2
, . . . ,

±𝑥

𝑗−𝑘
}, so that 𝜇(𝑥

𝑖
) ≤ 𝑘 + 𝑖, for 𝑖 = 1, 2, . . . , 𝑗 − 𝑘.

First, we consider the case of (𝑅+
∞
), since 𝑅 is even, we

have that 𝑅
𝑘
is also even and satisfies Lemma 16. Let 𝑌 = 𝑋−

𝛽
,

and 𝑍 the positive space of 𝑎
𝑘
(0) in 𝑋

𝛽
, and we have and

dim𝑌 = 𝐸−(𝑋
𝛽
) + 𝜇

𝐹
(𝐾𝐵

∞
), codim𝑍 = 𝐸−(𝑋

𝛽
) + 𝜇

𝐹
(𝐾𝐵

0
),

dim𝑌 > codim𝑍. So, 𝑎
𝑘
has 𝑙 := 𝜇

𝐹
(𝐾𝐵

∞
) − 𝜇

𝐹
(𝐾𝐵

0
) pairs

of nontrivial critical points

{±𝑥

1
, ±𝑥

2
, . . . , ±𝑥

𝑙
} , (108)

and 𝑙 − 1 pairs of them satisfy

𝑚

−

(𝑥

𝑖
) ≤ 𝜇

𝐹
(𝐾𝐵

0
) + 𝑖 < 𝜇

𝐹
(𝐾𝐵

∞
) , 𝑖 = 1, 2, . . . , 𝑙 − 1.

(109)

Then, we can complete the proof. In order to prove the case
of (𝑅−

∞
), we need the following lemma.

Lemma 20 (see [21, Corollary II 4.1]). Assume that 𝑌 and 𝑍
are subspaces of 𝑋 satisfying dim 𝑌 = 𝑗 > 𝑘 = codim𝑍. If
there exist 𝑟 > 0, and 𝛼 > 0 such that

inf 𝜙 (𝑍) > −∞, sup𝜙 (𝑆
𝑟
∩ 𝑌) ≤ −𝛼, (110)

then 𝜙 has 𝑗 − 𝑘 pairs of nontrivial critical points ±𝑢
1
, ±𝑢

2
, . . . ,

±𝑢

𝑗−𝑘
so that 𝜇(𝑢

𝑖
) + ](𝑢

𝑖
) ≥ 𝑘 + 𝑖 − 1 for 𝑖 = 1, 2, . . . , 𝑗 − 𝑘.

The proof is similar to the case of (𝑅+
∞
), and we omit it

here.
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to homoclinic orbits in Hamiltonian systems,” Mathematische
Annalen, vol. 288, no. 1, pp. 133–160, 1990.

[4] Y. Ding, “Multiple homoclinics in a Hamiltonian system with
asymptotically or super linear terms,” Communications in Con-
temporary Mathematics, vol. 8, no. 4, pp. 453–480, 2006.

[5] Y. Ding and M. Girardi, “Infinitely many homoclinic orbits
of a Hamiltonian system with symmetry,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 38, no. 3, pp. 391–415, 1999.

[6] Y. Ding and M. Willem, “Homoclinic orbits of a Hamiltonian
system,” Zeitschrift für AngewandteMathematik und Physik, vol.
50, no. 5, pp. 759–778, 1999.

[7] H. Hofer and K. Wysocki, “First order elliptic systems and the
existence of homoclinic orbits in Hamiltonian systems,”Math-
ematische Annalen, vol. 288, no. 3, pp. 483–503, 1990.
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