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The arresting dynamics of the aircraft on the aircraft carrier involves both a transient wave propagation process in rope and a smooth
decelerating of aircraft. This brings great challenge on simulating the whole process since the former one needs small time-step to
guarantee the stability, while the later needs large time-step to reduce calculation time. To solve this problem, this paper proposes
a full-scale multibody dynamics model of arresting gear system making use of variable time-step integration scheme. Especially, a
kind of new cable element that is capable of describing the arbitrary large displacement and rotation in three-dimensional space
is adopted to mesh the wire cables, and damping force is used to model the effect of hydraulic system. Then, the stress of the wire
ropes during the landing process is studied. Results show that propagation, reflection, and superposition of the stress wave between
the deck sheaves contribute mainly to the peak value of stress. And the maximum stress in the case of landing deviate from the
centerline is a little bit smaller than the case of landing along centerline. The multibody approach and arresting gear system model
proposed here also provide an efficient way to design and optimize the whole mechanism.

1. Introduction

The arresting gear system is an essential unit equipped by
aircraft carrier to assist landing of high-speed aircraft within
limited distance. Its first prototype was invented in 1911 by
Hugh Robinson [1], the rope of which across the deck is
grasped and pulled out by the aircraft tailhook, raising sand-
bags at both ends of the rope via the pulleys and slowing down
the aircraft. Afterwards, the hydraulic arresting gears, which
replaced the retarding force from the gravity of sandbags to
hydraulic damping, appeared [2]. It soon became popular in
modern aircraft carriers since the hydraulic force is adjustable
to land aircrafts of different weights and velocities with the
same mechanism. The most often equipped one is the MK7
type hydraulic arresting gears.

A typical arresting process contains two sequential stages
with completely different dynamical characters: the first stage
is dominated by the stress wave propagation and reflection
within rope, triggered by the impact between pendant and
tailhook; the second stage is governed by the quasi-steady
hydraulic forces when the stress wave is decayed and followed

by a smooth large overall motion of the cable and quick decel-
eration of the aircraft. The whole process is so complicated
that some mechanical problems are hard to answer through
theory analysis and even numerical simulation, such as when
the maximum stress in rope will happen and where it is, what
is the key factor when the aircraft is landing along or deviate
from the centerline, how to control the hydraulic forces to
make sure that the aircraft is arrested within limited distance
accompanying a steady deceleration process. Although many
scholars have been devoted on studying different aspects of
arresting gear system, there are still many problems concern-
ing the deck pendant which result in several flight accidents
nowadays, the most recent of which was the fracture of the
ropes at USS George Washington in 2003 [3].

In literatures, Billec [4] tested experimentally the acceler-
ation of aircraftwith different deck pendant length in 1967. He
pointed out that the maximum deceleration reduced about
14 percent when the pendant increased from 100 feet to
130 feet. In 2010, Zhuokun et al. [5, 6] analytically calculated
the maximum steady tension of the wire rope with quasi-
steady landing assumption; they conclude that the maximum
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tension in the offline landing case will be about 3.3% smaller
than the centerline landing case. In 2009, Mikhaluk et al. [7]
proposed to build thewhole arresting gear systemwith aids of
commercial finite element software LS-DYNA. They meshed
the cables with beam element, defined the contact between
cables andpulleys asHertz contactmodel, anddevelopednew
hydraulic damping to model the hydraulic forces.The center-
line landing cases with an aircraft of a weight of 14 ton and
a velocity ranging from 180 km/h to 240 km/h are simulated,
and the achieved hydraulic pressure is similar to that of the
experiment data. Later, Xinyu [8] and Lihua et al. [9, 10]
also adopted the LS-DYNA to construct the whole arresting
system, and the cables are modeled with concentrated spring
and mass units. They pointed out that the maximum stress
appeared at the moment that the stress wave reached the
pulley and reflected from the pulley to the tailhook.

Although the LS-DYNA model is competent to simulate
the whole arresting process and capture the stress wave
dynamics at initial impact stage, the explicit dynamics strat-
egy in LS-DYNA requires both fine mesh for the flexible
cables and small time-step to guarantee the stability of inte-
gration algorithm. These two facts reduce the efficiency
greatly both at the first impact stage and the second steady
stage. Besides, the current available studies are focused on the
centerline landing case, and no simulation has appeared in
literature about the offline landing cases.

Based on the above problems, in this paper a full-scale
MK7 model of the whole arresting gear system under the
frame of the multibody system dynamics is presented. The
governing equations of the whole system are solved through
an implicit backward differentiation formula to reduce the
simulation time, since it can use larger time-step compared
with explicit integration algorithm and the time-step is
adjustable according to the dynamical properties of problem.
The model includes an aircraft and its tailhook, hydraulic
system and dampers, deck pendant, and purchase wire. The
cable element is introduced to simulate the arbitrary large
displacement and rotation of the wire ropes, and damping
force is used to model the effect of hydraulic system. The
functionality of hydraulic parts is studied in detail. Further-
more, the stress of the wire ropes in the along and deviate
from centerline landing cases are simulated and analyzed. It is
found repeatedly that the reflection and superposition of the
stress wave at the deck sheave contribute mainly to the peak
value of stress. And it draws a conclusion that the maximum
stress in the offline landing case is a little bit smaller than the
along centerline landing case.

The following context is organized in this way. In
Section 2, we build the arresting gear system model through
multibody system dynamics approach, verify some elements
at Section 3, and simulate the full scale MK7 type arresting
gear system at Section 4. Conclusions are given in Section 5.

2. Modeling MK7 Type Arresting Gear System

Thebasic structure andworking principle ofMK7 type arrest-
ing gear system are shown in Figure 1. During the deck land-
ing, the aircraft tailhook grasps the deck pendent (1) which is
a cross the deck. The pendent is connected through muffles

(2) with two purchase cables (3) on its both ends. Each pur-
chase cable is reeved through the fixed (5) and movable (8)
carriage of one group, and the endpoint is connected by the
anchor damper (9). The movable carriage is forced to run
toward the fixed carriage when the rope is pulling out by
aircraft. And the hydraulic oil in the main cylinder (6) flows
out since the plunger (7) of the hydraulic cylinder is fixedwith
themovable carriage.Theflow is separated into two branches.
The main one goes through the constant runout control
valve (10) whose open area is passively adjusted during the
landing processes to produce a steady retraction force for
slowing down the aircraft. The minor one goes to the anchor
dampers (9) to provide damping forces for absorbing shocks
and vibrations of purchase cable. Besides, when the tailhook
of the aircraft grasps the deck pendant at initial stage, there
appears a severe vibration of the rope. Two damper sheave
installations (4) are introduced to reduce the amplitude of the
vibration in deck pendent.

Obviously, the arresting gear system is a complicated
mechanical and hydraulic coupled system which contains
rigid bodies, flex ropes, and hydraulic units. All of the them
will be modeled here through multibody system dynamic
approach as illustrated in Figure 2. And the governing equa-
tion of each part will be discussed in the left context of this
section.

2.1. Governing Equations of Rigid Bodies. The landing aircraft,
deck sheaves, fixed and movable carriage, plunger of the
hydraulic cylinder, and muffles are modeled as rigid bod-
ies. Generally speaking, a rigid body undergoing arbitrary
large three-dimensional motion owns six, three translational
and three rotational, degrees of freedom. In the multibody
dynamic approach, the mass center rrigid = [𝑥, 𝑦, 𝑧]

𝑇 in
Cartesian space is usually adopted to describe the transla-
tional motion, where the superscript 𝑇 represents transpose
transformation of vector or matrix hereafter. However, there
are various ways to parameterize three-dimensional finite
rotation, such as Euler angles or rotation vector with three
variables and Euler parameters with four variables. Here,
we use Euler parameters 𝜆rigid = [𝜆

0
, 𝜆

1
, 𝜆

2
, 𝜆

3
]

𝑇 since it is
singularity free in contrast to each three-parameters parame-
terization of finite rotation that involves singularity problem
as proved by [11] and reviewed by [12].The definition of Euler
parameters is based on Euler’s rotation theorem, saying that
any rotation movement of a rigid body, or composition of
them, can be achieved by rotation by an angle 𝜃 with respect
to an axis n. And the Euler parameters are defined as

𝜆

0
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(1)

where 𝑛
𝑥
, 𝑛
𝑦
, and 𝑛

𝑧
are the three components of the rotation

axis n and 𝜃 is the rotation angle. The four Euler parameters
are not independent, satisfying the following normalization
constraint equation

𝜆
𝑇

rigid𝜆rigid − 1 = 0. (2)



Mathematical Problems in Engineering 3

Air
Fluid
Air
Fluid
Air
Fluid
Fluid
Fluid

(1)

(3)

Runway

Aircraft

(2)

(4)

(5)

(6)

(10)

(7)

(11)

(8)

(9)

(1) Deck pendant
(2) Connecting muffle
(3) Purchase cable
(4) Deck sheave installation
(5) Fixed carriage
(6) Hydraulic cylinder

(7) Plunger of hydraulic cylinder
(8) Movable carriage
(9) Cable anchor damper
(10) Constant runout control valve
(11) Accumulator

Figure 1: Structure and working principle of MK7 type arresting gear system.

Aircraft

Crosshead

Fixed sheave assembly

Cable anchor damper

Damper sheaver installation

Deck pendant

Purchase cable

Sheave

Tc

F1

Fs

Fs
Tc

Figure 2: Multibody model of the arresting gear system.
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The mass center rrigid and Euler parameter 𝜆rigid form the
generalized coordinates of a rigid body as

qrigid = [r𝑇rigid,𝜆
𝑇

rigid]
𝑇

. (3)

Assume that the whole arresting gear system contains 𝑛
𝑏

rigid bodies and they are interconnected through 𝑛
𝑐
con-

straints which can be expressed in the following unified form

Φ
𝑘
(q
1
, q
2
, ..., q
𝑛𝑏
, 𝑡) = 0 𝑘 = 1, ..., 𝑛

𝑐
. (4)

Then the governing equations of the whole system will be

M
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𝑖
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+ F
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(5)

derived from the first kind Lagrange equations, where 𝜇
𝑘
is

the Lagrangemultiplier corresponding to constraintΦ
𝑘
,Φ
𝑘,q𝑖

is the partial derivative of Φ
𝑘
with respect to q
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(6)

where𝑚
𝑖
and J
𝑖
are themass and inertia tensor of the 𝑖th rigid

body and I
3×3

is a 3 × 3 identity matrix; the generalized force
F
𝑖
contains all of the contribution from external forces such

as gravity and contact forces.

2.2. Governing Equations of Flexible Cables. During the
arresting process, the deck pendant and purchase cable
are stretched and bended accompanying large displacement
movement. To modele a cable with circular cross-section for
multibody dynamics, Shabana [13, 14] and several pioneers
have proposed absolute nodal coordinate formulation, in
which the global position and slope of cable are adopted
as generalized coordinates to interpolate the displacement
field and calculate the normal strain and bending curvatures.
Although this formulation is capable of modeling cables in
arresting system, we prefer to introduce nodal position only
as generalized coordinate to reduce the calculation scale
since the bending energy is negligible. As shown in Figure 3,
consider a cable element with a circular cross section area 𝐴

and length 𝐿. It contains three uniformly located nodes 𝑁
1
,

𝑁
2
, and 𝑁

3
with positions r

1
, r
2
, and r

3
under the global

coordinate system OXYZ. Then the arc length 𝑙 equals to
0 at 𝑁

1
, 0.5 𝐿 at 𝑁

2
, and 𝐿 at 𝑁

3
. A normalized elemental

parameter 𝑠 = 𝑙/𝐿 is introduced for mathematical simplicity.
The cable is subjected to a distributed or concentrated
external load f(𝑠, 𝑡) which is a function of both space 𝑠 and
time 𝑡.The governing equation of this element will be derived
hereafter.
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Figure 3: Cable element.

The generalized elemental coordinate q
𝑒
is the direct

union of three nodal positions, or

q
𝑒
= [r
1

𝑇
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2
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3

𝑇
]

𝑇

.
(7)

Lagrange functions are introduced as the shape functions to
interpolate the elemental position filed. The position vector r
at 𝑠 is

r (𝑠, 𝑡) = N (𝑠) q𝑒 (8)

with N(𝑠) = [𝑁
1
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(9)

Then the normal strain of the cable element is

𝜀 =

1

2𝐿

2
(r𝑇r − 1) (10)

according to Green’s strain definition in the theory of elastic-
ity [15], where the prime represents the partial derivative with
respect to parameter s or

r = 𝜕r
𝜕𝑠

= N (𝑠) q𝑒. (11)

A simple elastoplastic constitutive equation is adopted here to
introduce damping force for elastic deformation only, which
means that the stress 𝜎 is

𝜎 = 𝐸 (𝜀 + 𝛽 ̇𝜀) , (12)

where 𝐸 is the Yong’s modulus, 𝛽 is the damping ratio of
material, and the overdot represents the partial derivative
with respect to time 𝑡.

Then the virtual work done by inertial force, internal
elastic and damping force, and external forces should be zero,
which means that

𝐿∫

1

0

(−𝜌𝐴 ̈r𝑇𝛿r − 𝐴𝜎𝛿𝜀 + f(𝑠, 𝑡)𝑇𝛿r) d𝑠 = 0, (13)
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where symbol 𝛿 represents the variation operation. After sim-
plifying, we got the governing equation of the element

M
𝑒
q̈
𝑒
+ K
𝑒
(q
𝑒
, q̇
𝑒
) q
𝑒
= F
𝑒 (14)

with

M
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= 𝜌𝐴𝐿∫

1

0

N𝑇Nd𝑠, K
𝑒
= 𝐸𝐴𝐿∫

1

0

(𝜀 + 𝛽 ̇𝜀)N𝑇Nd𝑠,

F
𝑒
= 𝐿∫

1

0

N𝑇f (𝑠, 𝑡) d𝑠.
(15)

It is interesting to note that the elemental mass matrixM
𝑒
is a

constant matrix and the elemental stiffness matrix K
𝑒
vanish

once the strain and the time derivative of strain are zeros,
which means that cable has stiffness only when it is pre-
stressed.

2.3. Contact between Cable and Rigid Body. According to the
assumption of the cable elements, cable is simplified to an
axial line in the process of collision between cable and rigid
body. When some detecting points are set on the surface of
the rigid body and the axial line of the cable, we transform
the detection between cable and rigid body to the detection
between rigid body and points, as is illustrated in Figure 4.

According to the Hertz contact theory, the contact force
f
𝑐
can be expressed as

f
𝑐
= 𝑓
𝑛
n
𝑓
+ 𝑓
𝑡
t
𝑓
, (16)

where n
𝑓
is the unit normal vector of the contact surface; t

𝑓

is the corresponding unit tangential vector; 𝑓
𝑛
is the normal

collision force; 𝑓
𝑡
is the tangential friction force.

Collision force is exerted on the nodes of the cable
element. Therefore, the generalized collision force can be
expressed below according to the virtual work principle:

Q
𝑝
= N𝑇 (𝑠

𝑛
) f
𝑛
, (17)

where N is the shape function of the cable element; 𝑠
𝑛
is the

element parameter of the detecting point; f
𝑛
is the force

exerted on the detecting point.

2.4. Hydraulic Forces. To reduce the stress peak value of the
deck pendant and vibration of the purchase cable and elimi-
nate the phenomenon of slacking of the rope, damper sheave
is installed between two deck sheaves and anchor damper is
set on the end of the rope, as is shown in Figure 5.

2.4.1. Damper Sheave Installation. The throttle of the damper
sheave installation has an invariable cross section area aper-
ture to let the oil flow goes through, producing the oil
damping force. The relationship between damping force and
the velocity of the piston motion is as follows [16]:

𝐹
𝑠
= 𝑘
𝑠
V2
𝑠
+ 𝐴
𝑠
𝑃
𝑠
, (18)

where 𝑘
𝑠
is the equivalent damping coefficient of the oil, V

𝑠
is

the velocity of the piston, 𝐴
𝑠
is the cross section area of the

piston, and 𝑃
𝑠
is the pressure of the gas in the air flask.

Omitting the variation of the volume of the oil, the
displacement of the piston in the sheave damper is defined as
𝑢
𝑠
. As the gas experiences the isentropic process, 𝑃

𝑠
satisfies

the relationship as follows

𝑃
𝑠
= 𝑃
𝑠0
(

𝑉
𝑠0

𝑉
𝑠0

+ 𝐴
𝑠
𝑢
𝑠

)

𝛾

, (19)

where𝑃
𝑠0
is the initial pressure of the air flask,𝑉

𝑠0
is the initial

volume of the air flask, and 𝛾 is the adiabatic coefficient of the
gas.

2.4.2. Cable Anchor Damper. During the arrestment of the
aircraft, the cylinder of the cable anchor damper is connected
with the main cylinder, so the pressure is equal for the two
parts. However, the oil pressure of cylinder is equal to that
of air of accumulator in the process of ram going back to its
original position.

The cross section area of piston of the cable anchor
damper is 𝐴

𝑐
, the mass of the piston is 𝑚

𝑐
, its displacement

increment is 𝑥
𝑐
, and the force of the cable anchor damper is

𝑇
𝑐
; it can be obtained that

𝑇
𝑐
= 𝑚
𝑐
�̈�
𝑐
+ 𝑃
𝑐
𝐴
𝑐
, (20)

where 𝑃
𝑐
is the pressure of the oil in the cylinder of the cable

anchor damper.

2.4.3. Main Engine Cylinder. When the aircraft is landing, the
kinetic energy of the aircraft is transferred to the arresting sys-
tem by the purchase cable, forcing the ram in themain engine
holding the pressurized hydraulic fluid, and is changed to the
heat of the hydraulic oil. Therefore, we can apply a damping
force on the ram to simulate this procedure.

The main engine cylinder and the ram are illustrated in
Figure 6, the hydraulic pressure of the oil in the main engine
cylinder is 𝑃

1
, the effective cross section area of the ram is𝐴

1
,

the mass of the ram and crosshead is 𝑚
1
, the sliding velocity

of the ram is V
1
, 𝐹
1
is the force applied on the ram by the

arresting rope, and 𝜇 is the damping ratio of the hydraulic
oil. It can be gained that

𝐹
1
= 𝑚
1

𝑑V
1

𝑑𝑡

+ 𝜇V
1
+ 𝐴
1
𝑃
1
. (21)
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The velocity of the oil in themain engine cylinder is equal
to the sliding velocity of the ram; 𝑃

1
, which is the hydraulic

pressure in the main engine cylinder, is related to the design
of the constant runout control valve. If the proposal of the
small aperture is adopted [16], the pressure is as follows:

𝑃
1
=

𝜌𝐴

2

1

2𝑐

2

𝑑
𝐴

2

2

V2
1
+ 𝑃
2
, (22)

where 𝑐
𝑑
is the coefficient of the flow which is related to the

area of the aperture and the mass of liquid, and so forth, 𝐴
2

is the cross section area of the hole of the throttle, and 𝑃
2
is

the pressure of the energy accumulator.

2.4.4. Constant Runout Valve. Constant runout valve is
located between the main engine cylinder and the accumula-
tor, controlling the arresting force to arrest the aircraft within
a prescribed distance in that it can adjust the increment of
the oil in the main engine cylinder by changing the area of
the hole of the throttle. Constant runout valve is composed of
cam, valve stem, plunger, and the control valve drive system,
as is illustrated in the Figure 7.

The cross section area of the hole of the throttle is 𝐴
2
,

whose relationship with the position of the valve stem 𝑥 is as
follows:

𝐴
2
= 𝜋𝑑𝑥 sin𝜙(1 −

𝑥

2𝑑

sin 2𝜙) , (23)

where 𝜙 is half of the top angle of valve stem; 𝑑 is the diameter
of the valve which connects the main oil cylinder and the
throttle, and the relationship between diameter and the 𝛼

which is the rotation angle of the cam is as follows:

𝑥 = 𝑥
0
(1 − 𝑘

1
𝛼 − 𝑘
2
𝛼

2
) , (24)

Accumulator

Cam

Plunger
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Control valve
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d

x

𝜙

Figure 7: Constant runout control valve.

where 𝑘
1
and 𝑘

2
are the functions describing the shape of

the surface of the cam; 𝑥
0
is initial area of the throttle whose

relationship with diameter of the valve is as follows:

𝑥
0
=

𝑑

𝑘
𝑚

, (25)

where 𝑘
𝑚
is the weight adjusting coefficient. We can change

the initial area of the throttle by changing 𝑘
𝑚
, so the arresting

gear system can capture the aircrafts of different weights.
The control valve drive system is installed between

crosshead and the fixed sheaves, so the relationship between
the position of the crosshead 𝑢 and the rotation angle of the
cam of the throttle 𝛼 is as follows:

𝛼 =

𝑢

𝑘
𝑢

, (26)

where 𝑘
𝑢
is the transfer coefficient between crosshead posi-

tion and the rotation angle of cam. When the association
of the area of the throttle and the position of the crosshead
is established, the arresting distance of the aircraft can be
controlled.

2.4.5. Integration Method of the Whole System. Based on the
above description, the governing equations of the arresting
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gear system form a set of differentiation and algebraic equa-
tions (DAEs).They can be generally and uniformly expressed
as

E (𝑡, q, q̇, q̈) = 0, (27)

where q is a ne-dimensional vector of variables, to be solved
in the whole system, including rigid bodies’ position, Euler
parameters, cable node position, and Lagrangian multipliers
of constraints, E is the implicit equations with same dimen-
sion ne. One popular numerical algorithm for solving DAEs
with contact problems is the implicit first-order backward
differentiation formula (BDF). Although the details of first-
order BDF could be found in Shampine and Reichelt’s paper
[17] or Hairer andWanner’s monograph [18], it is preferred to
outline the basic idea here for the integrity of this paper.

Assume that we are going to solve q
𝑛+1

at time 𝑡
𝑛+1

, which
satisfies

E (𝑡
𝑛+1

, q
𝑛+1

, q̇
𝑛+1

, q̈
𝑛+1

) = 0. (28)

Given the values of q at time 𝑡
𝑛
and 𝑡
𝑛−1

as q
𝑛
and q

𝑛−1
,

the first and second time derivative of q
𝑛+1

could be derived
through numerical discrete as

q̇
𝑛+1

=

1

ℎ

q
𝑛+1

+ 𝛼, 𝛼 = −

1

ℎ

q
𝑛
,

q̈
𝑛+1

=

1

ℎ

2
q
𝑛+1

+ 𝛽,

𝛽 =

1

ℎ

(

1

𝑡
𝑛
− 𝑡
𝑛−1

−

1

ℎ

) q
𝑛
+

1

ℎ

1

𝑡
𝑛
− 𝑡
𝑛−1

q
𝑛−1

,

(29)

where ℎ = 1/(𝑡
𝑛+1

− 𝑡
𝑛
) is the current time-step. After sub-

stituting (29) into (28), the DAEs are simplified to nonlinear
algebraic equations of variables q

𝑛+1
only

E(𝑡
𝑛+1

, q
𝑛+1

,

1

ℎ

q
𝑛+1

+ 𝛼,
1

ℎ

2
q
𝑛+1

+ 𝛽) = 0 (30)

since both 𝛼 and 𝛽 are known. This nonlinear equation
(30) can be solved in terms of the classical Newton-Raphson
iteration method, and one possible initial guess q0

𝑛+1
of q
𝑛+1

for iteration could be get by assuming that q is linear variable
and extending q

𝑛
and q

𝑛−1
to time 𝑡

𝑛+1

q0
𝑛+1

= q
𝑛
+

q
𝑛
− q
𝑛−1

𝑡
𝑛
− 𝑡
𝑛−1

ℎ. (31)

There are three cases in which the current time-step ℎ will be
adjusted.

(1) If the Newton-Raphson iteration fails to get a con-
verged solution, then the ℎ will be reduced and the
nonlinear equation (30) will be resolved.

(2) If the Newton-Raphson iteration successfully gives a
converged solution q∗

𝑛+1
and the integration tolerance

𝜏
𝑖
is larger than the settled tolerance 𝜏 or 𝜏

𝑖
> 𝜏, then

the current time-step ℎ will be reduced, where

𝜏
𝑖
= max(











q∗
𝑛+1

− q0
𝑛+1

q
𝑛











)

1

ℎ

2
. (32)

Cable

Cylinder

T1

T2

Figure 8: Model of a cable wrapped around a fixed cylinder.

(3) If the Newton-Raphson iteration success with solu-
tion q∗

𝑛+1
the integration tolerance 𝜏

𝑖
is one order

smaller than the settled tolerance 𝜏 or 𝜏
𝑖
< 𝜏/10, then

the current step size will be increased.

In this way, the time-step of BDF is automatically adjusted
to fit the dynamic properties of the system. The integration
method will chose small time-step for the initial impact
stage at arresting process and large time-step for the stable
deceleration stage.This saves calculation time a lot compared
with fixed time-step integration method.

3. Verification Example

In order to verify the established cable element and the colli-
sion between the cable and the rigid body, a simplemultibody
example is presented. As shown in Figure 8, considering a
cable wrapped around a fixed cylinder with two full circles,
it is subjected to vertical forces 𝑇

1
and 𝑇

2
at two ends, respec-

tively. The friction coefficient between cable and cylinder is
] = 0.1. Then the analytical solution shows that the cable will
be balanced when 𝑇

2
= 𝑇
1
/𝑒

4𝜋]. The velocity response of the
node at the upper endunder the external forces𝑇

1
= 40Nand

𝑇
2

= 𝑇
1
/𝑒

4𝜋]
= 11.3844N is shown in Figure 9. It is almost

stable which agrees with the analytical prediction greatly.

4. Simulation of Arresting Gear System

Making use of the modeling methodology developed in the
Section 2, we build a full-scale MK7 type hydraulic arresting
gear system with parameters shown in Table 1. To determine
the mesh size of the cables in arresting gear system, we build
a simple supported cable with same physical and geometrical
parameters of the purchase cable as shown in Figure 10. It
is subject to impact with initial velocity 20m/s. The cable
is uniformly meshed by 300 elements and 600 elements,
respectively. The maximum displacement difference between
these two meshes at center point within the first second is
1.3%, and the maximum difference of stress is 4.1%. Since
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Figure 9: The velocity of the cable node.

Table 1: Parameters of the arresting gear system.

Physical parameters Symbol Unit Value
Aircraft mass 𝑚

𝑎
kg 25,000

Landing speed 𝑉
𝑎

m/s 65
Sheave mass 𝑚

𝑝
kg 277.8

Yong’s modulus 𝐸
𝑐

Pa 2 × 10

11

Cable density 𝜌
𝑐

kg/m3
7.8 × 10

3

Damping ration 𝛽
𝑐

— 1 × 10

−6

Stiffness coefficient K N/m 3 × 10

8

Damping coefficient C N⋅s/m 1 × 10

4

Collision index e — 1
Friction coefficient V — 0.02

both the displacement and stress converged to acceptable
accuracies, we decided to use 300 elements every 30 meters
to mesh the cables in arresting gear system.

In the following context, the aircraft landing along the
runway centerline and offset the centerline will be simulated
and analyzed, respectively. The acceleration, velocity, and
position of aircraft and the stress within rope are presented.
And the functionalities of cable anchor damper and damper
sheave installation on the rope stress are analyzed in detail.

4.1. Landing along Centerline of Runway. At the most ideal
situation, the landing aircraft velocity is parallel to the runway
and the anchor hooks the cable right at the middle point. In
this case, the response of aircraft from the initial arrestment
to stop and the snapshots of the whole system are shown in
Figure 11. It takes about 105m and 3.52 seconds to decelerate
the velocity from full speed to zero. And then the aircraft is
pulled back a little because of the retraction force generated
from the elastic energy stored in deck pendant.

The acceleration vibrates severely initially then stays
around 2 g for a while and reduces to zero finally. Based on
this, we divide the arresting process into three stages: (1)
capture shock stage, (2) effective arresting stage, and (3) back-
ward stage. The first stage is caused by the impact between
tailhook and deck pendent which happened at 0.016 s because
of the initial gap between them. It contains three acceleration

peaks, and the maximum one is 3.98 g which is also the
maximum acceleration of the whole arresting process. The
character of entering the second stage is that the vibration of
impact diminished, and acceleration gots stable. It ends when
the velocity reduces to zero, and the elastic force generated by
deck pendent leads to the third backward stage.

It is interesting to note that the stress at the middle of
deck pendent, shown in Figure 12, performs similar to the
acceleration of the aircraft. It also contains three peaks at the
initial stage. It runs to slowly varying stage. This similarity
implies that the acceleration of aircraft comes from the stress
of cable at contact point. The stress gets its first peak point A
once the impact between tailhook and cable happens. Then
the stress wave generated by this shock propagates toward
and reaches the deck sheave at 0.128 s; it is reflected backward
and results in the second stress peak B immediately after
superposing with the original propagating one. When the
backward wave reaches tailhook again at 0.197 s, its reflection
and superposition result in the third stress peak C with value
of 609.3MPa which is also the maximum stress during the
whole arresting process. Later, the stress wave decays, and
the hydraulic forcemainly generated by constant runout valve
leads to a smooth variable period of stress. We will see later
that the decay of the stress wave is caused by the absorbing
effect of damper sheave installation and cable anchor damper.

4.2. Stress in Cable at Different Locations. Five points are cho-
sen as the detection points on the deck pendant and purchase
cable of the arresting gear system, as is shown in Figure 13. A
is themiddle point of the deck pendant; B is an arbitrary point
in the purchase cable; C and D are the arbitrary two points
in the purchase cable between crosshead and fixed sheaves
where C is close to point B and D is close to point E; E is
an arbitrary point in the cable anchor installation.The results
show that themaximum along the whole cable happens at the
middle point of deck pendent. Each stress at the second stage
from point A to E varies a little due to the friction between
cable and sheaves but shares the same smooth varying
process. At the first stage, the point E which is far away
from contact point is not notable, influenced by the impact
between deck pendent and cable.

4.3. Functionality of Damper Sheave Installation and Cable
Anchor Damper. To understand and evaluate the function-
ality of damper sheave installations (DSI) and cable anchor
damper (CAD), we build four models with parameters listed
inTable 1, and the only difference is: (1) removeDSI andCAD,
(2) remove CAD only, (3) remove DSI only, or (4) keep both
DSI andCAD.The stresses at themiddle of deck pendentwith
these four cases are shown in Figure 14.

Figure 14 shows the following cases.

(1) Without any damper, the stress of cable vibrates
violently not only at the first stage but also at the
second stage as shown by the red dashed line, and the
maximum stress reaches 808MPa.

(2) After installing DSI only, the maximum stress at the
first stage is reduced by 24.6 percent to 609MPa, and
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the stress vibration at the second stage is reduced
greatly although it still exists.

(3) After installing CAD only, the maximum stress at the
first stage is the same as without any damper, but the
stress vibration at the second stage almost vanished as
shown by the black dashed line.

(4) After installing both DSI and CAD, the first stage
maximum stress is reduced to 609MPa, and the sec-
ond stage vibration is also vanished as shown by the
pink solid line.
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Through the above analysis, we conclude that the CAD is
far away from the tailhook and it can not generate any effect
on the first shock stage, while the DSI is effective at both the
first and the second stages. Besides, it is also inspirational
to check the cable stress at frequency domain despite that
the dynamic behavior of the arresting system keeps changing
during arresting process. The stress at time range [0.5, 2.5]
is analyzed via fast Fourier transformation (FFT); then the
frequency resolution is 0.5Hz since the sampling time lasts
two seconds. As shown in Figure 15, there are three sharp
sparks at 3.75Hz, 7.5Hz, and 10.75Hz when no damper is
installed at all.This corresponds to the significant stress vibra-
tion in time domain. Further, it is interesting to note that the
frequencies of second and third sparks are roughly two and
three times that of the first spark.This behavior is very similar
with the eigenfrequency character of a tensioned string. In
fact, the cable length fromdeck sheave to fixed shave is always
25m during the whole arresting process, and the stable stress
within cable is around 300Mpa fromFigure 13.Therefore, the
fundamental frequency of this tensioned string is

𝑓
0
=

√𝜎/𝜌

2 𝑙

=

√300 × 10

6
/7860

2 × 25

= 3.9Hz (33)

Frequency (Hz)
0 5 10 15 20 25

A
m

pl
itu

de

0

0.4

0.8

1.2

1.6

2.0

Without any damper
With all damperWith cable anchor damper
With  damper sheave installation

Cable
damper

anchor

Damper
installation

sheave

Fixed sheave assembly

Sheave

Crosshead

×104

l =
25m

𝜎
0 = 300MPa

3.75 Hz

7.5 Hz 10.75 Hz

Figure 15: Cable stress of four cases at frequency domain.

0

100

200

300

400

500

600
St

re
ss

 (M
Pa

) A

B

C

D

E
F

Arresting landing off centre

Runway centre-line

v

FA B C D E

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

dx

0.248 s0.016 s 0.1 s 0.14 s 0.164 s 0.22 s
403.2 MPa 403.2 MPa 473.9 MPa 538.7 MPa 492.6 MPa 452.1 MPa

Time

Process

Stress

Point

Figure 16: Stress of cable in the process of landing off center.

which agrees with the frequency of the first spark 3.75Hz
considering the frequency resolution of FFT. In addition,
these sparks vanished after installing CAD or DSI since the
damping force absorbed the vibration in cables severely.

4.4. Landing off Centerline of Runway. Now we discuss the
situation of that the aircraft velocity is parallel with the run-
way centerline, while the landing point is 0.5m left off the
centerline. In this case, the stress at the middle point of the
deck pendant during the whole process is shown in Figure 16.

It is shown from the simulation result that the deck
pendant has 5 stress peaks at the first stage.The first is caused
by the instant collision between the arresting hook and the
deck pendant at 0.016 s, and the second peak is caused by
the reflection and superposition from the left deck sheave
of the stress wave after it reached there. However, the third
peak is caused by the reflection and superposition from the
right deck sheave of the stress wave after it reached there.The
fourth one is caused by the superposition of the transverse
wave at the position of the arresting hook of the aircraft after
it is reflected from the left deck sheaves.Thefifth one is caused
by the superposition of the transverse wave at the position of



Mathematical Problems in Engineering 11

the arresting hook of the aircraft after it is reflected from the
right deck sheaves.

Compared with along centerline landing case, we got five
peak values here instead of three. And the maximum stress
here is 539MPa which is smaller than 609MPa in case of
along centerline. This means that the offline landing case
could a little bit reduce the stress peak.

5. Conclusion

The arresting process is a complicated coupling dynamics
between rigid bodies, flex bodies, and hydraulic units. It is
strong nonlinear and involves both a transient wave propa-
gation process in rope and a smooth decelerating of aircraft.
This fact discounts the calculate efficiency of explicit method
since the former process needs small time-step to capture the
propagation events, while the later one needs large time-step
to speed up. To solve this problem, in this paper, we proposed
to build a multibody dynamic model of a full-scale MK7 type
arresting gear system. And the resulting governing algebraic
and differentiation equations are solved through a time-
variable implicit backward differentiation formula. In the
model, a kind of new cable element that is capable of describ-
ing the arbitrary large displacement and rotation in three-
dimensional space is developed to model the wire cables and
damping force is used to simulate the effect of hydraulic
system.

Dynamic simulation shows that the cable stress is dom-
inated by the propagation, refection, and superposition of
stress waves during the early stage of the arresting process,
and later the shock is quickly dissipated by the damper sheave
installations and cable anchor dampers. Simulation results
repeat that maximum stress value happens when the stress
wave is reflected and superposed between the deck sheaves.
And the maximum stress in the off centerline landing case is
a little bit smaller than the along centerline landing case. In
addition, the multibody approach and arresting gear system
model proposed here also provide an efficient way to design
and optimize the whole mechanism.

Nomenclature

qrigid: The generalized coordinate of rigid body
rrigid: Cartesian coordinate of rigid body’s

position
𝜆rigid: Euler parameter of rigid body’s attitude
𝜇
𝑘
: Lagrange multiplier

Φ
𝑘
: Constraint equations

𝑚
𝑖
: Mass tensor of the 𝑖th rigid body

J
𝑖
: Inertia tensor of the 𝑖th rigid body

F
𝑖
: The generalized force

q
𝑒
: The generalized elemental coordinates of

cable
f(𝑠, 𝑡): Concentrated external load on cable

element
𝜀: The normal strain of the cable element
𝐸: The Yong’s modulus of material
𝛽: The damping ratio of material

𝜎: The stress of cable
N: The shape function of the cable element
r: The position vector of cable node
M
𝑒
: The elemental mass matrix of cable

element
K
𝑒
: The elemental stiffness matrix of cable

element
F
𝑒
: The generalized force of cable element

f
𝑐
: The contact force

Q
𝑝
: The generalized collision force

𝑠
𝑛
: The element parameter of the detecting

point
f
𝑛
: The force exerted on the detecting point

𝐹
𝑠
: The oil damping force in damper sheave

installation
𝑘
𝑠
: The equivalent damping coefficient of the

oil in damper sheave installation
V
𝑠
: The velocity of the piston in damper

sheave installation
𝑢
𝑠
: The displacement of the piston in the

sheave damper installation
𝐴
𝑠
: The cross section area of the piston in

damper sheave installation
𝑃
𝑠
: The pressure of the gas in damper sheave

installation
𝛾: The adiabatic coefficient of the gas
𝑇
𝑐
: The force of the cable anchor damper

𝐴
𝑐
: The cross section area of piston of the

cable anchor damper
𝑚
𝑐
: The mass of the piston of the cable anchor

damper
𝑃
𝑐
: The pressure of the oil in the cylinder of

the cable anchor damper
𝑃
1
: The hydraulic pressure of the oil in the

main engine cylinder
𝐴
1
: The effective cross section area of the ram

𝑚
1
: The mass of the ram and crosshead

V
1
: The sliding velocity of the ram

𝐹
1
: The force applied on the ram by the

arresting rope
𝜇: The damping ratio of the hydraulic oil
𝑐
𝑑
: The coefficient of the hydraulic oil

𝐴
2
: The cross section area of the hole of the

throttle
𝑃
2
: The pressure of the energy accumulator

𝑥: The position of the valve stem
𝜙: Half of the top angle of valve stem
𝑑: The diameter of the valve
𝛼: The rotation angle of the cam
𝑘
1
, 𝑘
2
: The functions describing the shape of the
surface of the cam

𝑥
0
: Initial area of the throttle

𝑘
𝑚
: The weight adjusting coefficient

𝑢: The position of the crosshead
𝑘
𝑢
: The transfer coefficient between crosshead

position and the rotation angle of cam
q: Generalized coordinates of the whole

arresting system.
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