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Multilabel learning is now receiving an increasing attention from a variety of domains and many learning algorithms have been
witnessed. Similarly, the multilabel learning may also suffer from the problems of high dimensionality, and little attention has been
paid to this issue. In this paper, we propose a new ensemble learning algorithms for multilabel data. The main characteristic of
our method is that it exploits the features with local discriminative capabilities for each label to serve the purpose of classification.
Specifically, for each label, the discriminative capabilities of features on positive and negative data are estimated, and then the
top features with the highest capabilities are obtained. Finally, a binary classifier for each label is constructed on the top features.
Experimental results on the benchmark data sets show that the proposed method outperforms four popular and previously

published multilabel learning algorithms.

1. Introduction

Data classification is one of the major issues in data mining
and machine learning. Generally speaking, it consists of two
stages, that is, building classification models and predicting
labels for unknown data. Depending on the number of
labels tagged on each data, the classification problems can
be divided into single-label and multilabel classification [1].
In the former, the class labels are mutually exclusive and
each instance is tagged with only one class label. On the
contrary, each instance may be tagged with more than
one class label simultaneously. The multilabel classification
problems are ubiquitous in real-world applications, such as
text categorization, image annotation, bioinformatics, and
information retrieval [1, 2]. For example, the movie “avatar”
may be tagged with action, science fiction, and love types.

Now, many multilabel classification algorithms have been
witnessed. Roughly speaking, they can be grouped into
two categories, that is, algorithm adaption and problem
transformation [1]. The first kind of technique extends tra-
ditional single-label classifiers, such as kNN, C4.5, SVM, and
AdaBoost, by modifying some constraint conditions to han-
dle multilabel data. Typical examples include AdaBoost. MH
[3], BRKNN [4], and LPkNN [4]. For instance, Zhang and

Zhou [5] proposed MLANN and applied tscene classification,
while Clare and King [2] employed C4.5 to deal with
multilabel data by altering the discriminative formula of
information entropy.

The second technique of multilabel learning transforms
multilabel data into corresponding single-label ones and then
handle them one by one using the traditional methods.
An intuitive approach is to treat the multilabel problem
as a set of independent binary classification problems, one
for each class label [6, 7]. However, they often have not
considered the correlations among the class labels and may
suffer from the problem of unbalanced data, especially when
there are a large number of the class labels [8]. To cope with
these problems, several strategies have been introduced. For
example, Zhu et al. [9] explored the label correlation with
maximum entropy, while Cai and Hofmann [10] captured
the correlation information among the labels by virtue of a
hierarchical structure.

Analogous to traditional classification, multilabel learn-
ing may also encounter the problems, such as over-fitting and
the curse of dimensionality, raised from high dimensionality
of data [11, 12]. To alleviate this problem, an effective solution
is to perform dimension reduction or feature selection on
data in advance. As a typical example, Ji et al. [13] extracted



a common subspace shared among multiple labels by using
ridge regression. One common characteristic of these meth-
ods is that they make use of only one feature set to achieve
the learning purpose under the context of multilabel data.
However, in reality, only one feature subset can not represent
the properties of different labels exactly. Therefore, it is
necessary to choose different features for each label during
the multilabel learning stage. A representative example of
such kind is LIFT [14].

In this paper, we propose a new multilabel learning algo-
rithm. The main characteristic of our method is that during
the procedure of constructing binary classifiers different fea-
ture subsets will be exploited for each label. More specifically,
given a class label, the features with high discriminative
capabilities with respect to the label are chosen and then
used to train a binary classifier. This means that the selected
features have local properties. Note that they may have lower
discriminative capabilities with respect to other class labels.
Other binary classifiers can also be constructed in a similar
manner. Finally, all binary classifiers are assembled into an
overall one, which will be used to predict or classify the labels
of unknown data.

The rest of this paper is organized as follows. We describe
the details of the proposed method in Section 2. Experi-
mental results conducted to evaluate the effectiveness of our
method are presented in Section 3. Finally, conclusions and
future works are given in the end.

2. Binary Classification with Feature Selection

Assume that L = {I;,...,1],} denotes the finite set of labels
in a multilabel learning task. Let & = {(x;,y;), (X, V),
..o»(x,,¥,)} be a multilabel data set. It consists of n
independently identically distributed (iid) samples. x; =
(Xi1> Xigs > X;g). € Xand y; = (Jips Vigs-- > Vi) € Y are
the d-dimensional feature and m-dimensional label vectors
of the ith sample, respectively. y;; takes a value of 1 or 0,
indicating whether is the ith sample associated with the jth
label or not.

2.1. Binary Classification. According to the formal descrip-
tion of &, we know that the multilabel data is a general
form of traditional single-label data, whereas y; only involves
one single label. Thus, a natural and intuitive solution for
multilabel learning is to transform the multilabel data into its
corresponding single-label data and then train classifiers on
the generated data. There are many transformation strategies.
Copy, selection, and ignore are three typical transformation
techniques [1]. Besides, the power set of labels is also
introduced in the literature, where everyy; is often taken as a
new class label.

Before giving the principle of binary classification, let us

introduce the concepts of positive and negative samples of
labels.

Definition 1. Given a multilabel data set & with n samples
associated with m labels L, for each class label [, € L, its
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positive samples P(I;) and negative samples N(I;) are defined
as follows:

P(h) = {x | (xp¥:) € D,y = 1}, 1)
N (L) ={x | (x5¥:) € D, yy = 0}. (2)

From this definition, we know that, given a label [, all
examples of the original data set are positive if they are
associated with the class label [, and negatively otherwise.
Moreover, P(l,) N N(I,) = 0 and P(I;) U N(I) = X.

Binary relevance (BR), also known as one-against-all
method, is the most popular and most commonly used trans-
formation method for multilabel learning in the literature
[1]. It learns m different binary classifiers independently, one
for each different label in L. Specifically, it transforms the
original data set & into m data sets &;, i = 1,.,m. Each
data set 9; consists of the positive samples P(l;) and negative
samples N(I;) with respect to [;. Based on the new data set
D,, a binary classifier f; for the label I; can be built using
the off-the-shelf learning methods, for example, kNN and
SVM. After obtaining m binary classifiers for all labels, the
prediction of BR for a new sample x is the union of the labels
I, that are positively predicted by the m classifiers; that is,
f(x) = [fi(x), fr(x),... ,fm(x)]T, where f;(x) takes a value
of 0 or 1, indicating x is predicted positively or negatively by
the classifier f;.

BR is a straight forward transformation method and
widely used as a baseline in comparson with multilabel
learning algorithms. However, the drawback of BR is that it
does not take correlations among the labels into account and
treats all labels independently. In addition, it also suffers from
the class imbalance problem. In multilabel data, the number
of positive samples P(l} ) is significantly less than the number
of negative samples N(J;) for some labels due to the typical
sparsity of labels. To alleviate this problem, feature selection
should be performed on the data sets in advance.

2.2. Feature Selection. The purpose of feature selection is
to select significant features to represent data from the
original space without losing information greatly. It has
been extensively studied in the traditional learning. However,
little work of feature selection has been done in the context
of multilabel learning. Currently, there are many criteria
avaijlable to measure the interestingness of features [15]. Here,
we exploit the concept of density distribution of data to
represent the interestingness of features.

Definition 2. Given a data set &, with n samples, the density
of value distribution of the ith feature is defined as

p.k (91() = 22:1 Z:Zl sim (xm’ x,;
1

. . bl
- min; o, <, S1IM (xui’ xvi)

3)

where x,,; denotes the ith feature value of x,, and sim is a
similar function between two values.

In (3), the sim function is often taken as the form of
inverse Euclidean distance. If the positive samples P(l;) and
negative samples N(I;) are considered in (3), we can get the
positive and negative densities of features.
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Definition 3. Given the positive samples P(l;) and negative
samples N(I;), the positive and negative densities of the ith
feature are defined as

P = Pt (P (), (4)
Pl =P (N (). ®)

The positive density pl.k+, as well as the negative density
Pk, can effectively represent the specific characteristic of data.

The larger the value of Pi]: (or pik_ ), the better discriminative
capability to distinguish positive (or negative) samples from
others.

Based on this principle, we adopt these two criteria
to choose significant features during the learning stage.
Specifically, for each feature g; in 9, we calculate its positive
density pfi and negative density pl-’i , respectively. Then, the
positive densities of all features will be ranked in a decreasing
order, and the top t features with high positive densities will
be selected. Similar situation can be done for the negative
densities. Finally, the features with high positive and negative
densities will be used to train desirable binary classifiers.

How many features should be selected for classification
is still an open problem. Here, we empirically determine
the number of selected features with a concept called m,-
minimum density, which is defined in the following.

Definition 4. Let 9, be the data set, and let P(I;) and N(I})
be the positive and negative samples of the ith feature,
respectively. The m;-minimum density of &, with respect to
lk is

my = r-min (|P (L), N ()] (6)
where r € [0,1] and | - | is the set cardinality.

The m;-minimum density can effectively measure the
information amount that one feature has. If the density is
larger than the m;,-minimum density, the corresponding fea-
ture has enough information to represent the characteristics
of data. As a result, the feature will be chosen during the stage
of feature selection. In other words, after calculating p¥ and

Pk, we retain the features with pf or p* larger than m; and
discard the others. Note that the parameter r in Definition 4
is to control the number of selected features. The larger value
of r is, the more features would be chosen. In our empirical
experiments, the classifier achieved good performance when
r was set to 0.1.

2.3. The Proposed Method. Based on the analysis above, we
propose a new multilabel learning algorithm. The frame-
work of our algorithm is shown as Algorithm 1. The pro-
posed method works in a straightforward way and can
be easily understood. It consists of two major stages, that
is, learning and prediction stages. In the training stage,
a new data set will be generated for each class label by
obtaining its positive and negative samples. Subsequently,
we estimate the interestingness of features in the data set,
s0 as to retain significant features for classification. Finally,

a binary classifier is constructed with a baseline learning
method. Given a new sample, its class labels can be predicted
by testing it with all binary classifiers.

3. Empirical Study

To validate the performance of our proposed method, we
made a comparson of EMCFS with three popular multilabel
learning algorithms. They are ML-kNN, LIFT, and Rank-
SVM, standing for different kinds of learning types. In
addition, we took a linear support vector machine as the
baseline binary classification algorithm and assigned 0.1 to
the parameter r. Other parameters were set as their default
values suggested by authors. For example, the number of
the nearest neighbors in ML-kNN was 10 and the distance
measure is the Euclidean distance [5]. In the Rank-SVM
classifier, the degree of polynomial kernels was 8 and the cost
parameter ¢ was assigned as one [16].

3.1 Data Sets. To validate the effectiveness of our method
roundly, our experiments have been conducted on four data
sets, including emotions, medical, corell6k (sample 1), and
delicious. They are often used to verify the performance of
multilabel classifiers in the literature and are available at
http://mulan.sourceforge.net/datasets.html. Table1 summa-
rizes their general information, where the cardinality and
density columns refer to the average number of class labels of
the samples and its fraction by the number of labels. These
multilabel data sets vary from the quantities of labels and
differ greatly in the sizes of samples and features [17].

3.2. Experimental Results. There are lots of evaluation criteria
available to evaluate the performance of multilabel classifiers.
In this work, average precision, hamming loss, one error, and
coverage have been adopted to assess the effectiveness of the
proposed method. Their detailed descriptions can be found
in several literatures such as those in [1, 18].

Table 2 reports the average precision of the multilabel
classifiers on the data sets. In in this table, each row denotes an
observation on the data sets. The best result comparable with
others in the same row is highlighted in boldface, where the
larger the value, the better the performance. From the table,
one may observe that the proposed method, EMCES, works
quite well and is comparable to others in most cases with the
average precision. For example, on the delicious data set (the
last row in in the table), the precision of EMCEFS is 29.5%,
which is the best one among the others.

Apart from the average precision, we also compared
EMCEFS to the others from the perspective of the hamming
loss, one error, and coverage. Tables 3, 4, and 5 present the
averaged performance of the learning algorithms in terms
of these three criteria, respectively, where the smaller the
value, the better the performance. The best results are also
highlighted in boldface.

According to algorithms the results in these tables, we
know that similar to the average precision, EMCEFS is also
superior to other regarding the aspects of hamming loss, one
error and coverage. Although EMCEFS achieved slightly poor
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r: The parameter of m,;
U=x,,...
Output: Y = {y,,...
Training stage
For each label J, in L do

Endfor
Prediction stage
For each sample o; in U do
yi = 0;
For each classifier f, do

Endfor

Input: @ = {(x,,y,),--->(X,y,)}: The training multilabel data set;

,X,: The test data set without labels;
,¥.}: The label set of U;

Obtain P (I,) and N (I,) of I, from & according to Def.(1)(2);
Calculate m, with P (I,) and N (I, ) according to Def. (6);
For each feature g, in &, = P (I,) UN () do

Calculate pf and pf according to Def.(4)(5);
Select the features whose pf or p! is larger than m,;
Train a binary classifier f, on 9 with the selected features;

¥ =Y: U {fx (0;)}, where f returns 0 or 1;

ArcoriTHM I: Ensemble multilabel classifier using feature selection (EMCES).

TABLE 1: The brief description information of data sets in experiments.

Data set Domain Sample

Feature

Label Cardinality Density

593
978
13766
16105

Music
Text
Image
Web

Emotions
Medical
Corell6k
Delicious

72

1449

500
500

6
45
153
983

0.31
0.03
0.02
0.02

1.87

1.25

2.86
19.02

TABLE 2: A comparison of average precision of four classifiers on
data sets (%).

Data set EMCEFS ML-ANN LIFT Rank-SVM
Emotions 80.5 76.3 78.9 77.6
Medical 89.9 78.2 86.9 87.2
Corell6k 32.3 27.6 31.5 29.7
Delicious 29.5 25.7 28.2 224

TABLE 3: A comparison of hamming loss of four classifiers on data
sets.

Data set EMCES ML-kKNN LIFT Rank-SVM
Emotions 0.189 0.214 0.206 0.218
Medical 0.009 0.016 0.012 0.014
Corell6k 0.017 0.928 0.017 0.019
Delicious 0.019 0.998 0.021 0.025

coverage on the corell6k data set, the performance is 140.428,
which is slightly worse than the best one. However, it is not
the worst in comparson with ML-kNN.

4. Conclusions

In this paper, we propose a new ensemble multilabel learning
method. The central idea of our method is that, for each label,

TABLE 4: A comparison of one error of four classifiers on data sets.

Data set EMCES ML-kKNN LIFT Rank-SVM
Emotions 0.253 0.285 0.264 0.293
Medical 0.140 0.267 0.180 0.194
Corell6k 0.671 0.852 0.674 0.783
Delicious 0.401 0.482 0.433 0.665

TABLE 5: A comparison of coverage of four classifiers on data sets.

Data set EMCES ML-kKNN LIFT Rank-SVM
Emotions 2.148 2.561 2.302 2.335
Medical 1.256 2.504 1.403 1.852
Corell6k 140.428 151.853 139.592 136.527
Delicious 662.746 674.613 667.513 671.652

it exploits different features to build learning models. The
advantage is that the classifiers are constructed on the features
with strong local discriminative capabilities. Generally, the
proposed method consists of three steps. Firstly, for each
label, a new data set is generated by identifying the positive
and negative samples. Then, the interestingnes’s of features
will be estimated and the features with high density will
be retained to train a learning model. Finally, all binary
classifiers built with the selected features will be integrated
into an overall one. Experimental results on four multilabel



Mathematical Problems in Engineering

data sets show that the proposed method can potentially
improve performance and outperform other competing and
popular methods.
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