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Mesenchymal stem cells (MSCs) represent a promising source for bone repair and regeneration. Recent lines of evidence have
shown that appropriate strain could regulate the osteogenic differentiation of MSCs. Our previous study demonstrated that
hydroxyapatite/collagen (HA/Col) composite also played an important role in the osteogenic differentiation of MSCs. The aim
of this study is to investigate the effects of mechanical strain and HA/Col composite on the osteogenic differentiation of rat bone
marrow derived MSCs (rBMSCs) in vitro. rBMSCs were treated with cyclic strain generated by a self-designed stretching device
with or without the presence of HA/Col composite. Osteogenic differentiation levels were evaluated using reverse transcription
polymerase chain reaction (RT-PCR), alkaline phosphatase spectrophotometry, and western blotting. The results demonstrated
that mechanical strain combined with HA/Col composite could obviously induce the differentiation of rBMSCs into osteoblasts,
which had a better effect than only mechanical strain or HA/Col composite treatment. This provides a new avenue for mechanistic
studies of stem cell differentiation and a novel approach to obtain more committed differentiated cells.

1. Introduction

Tissue engineering is a possible alternative to current treat-
ments for large bone defects or injuries caused by trauma or
tumor [1, 2]. Recently, mesenchymal stem cells (MSCs) have
received extensive attention in the field of tissue engineering
because they can be easily isolated from bonemarrow, induce
little immune response, have marked self-renewal properties,
and possess the biological capability to differentiate into
osteogenic, adipogenic, and chondrogenic lineages [3, 4].
The application of MSCs to bone tissue engineering requires
inducing in vitro differentiation of these cells into bone
forming cells, osteoblasts [5].

MSCs can differentiate into osteoblasts in response to
multiple environmental factors. For example, specific combi-
nations of soluble factors including dexamethasone, ascorbic
acid, and 𝛽-glycerophosphate disodium have been shown
to induce osteoblastogenesis of MSCs [3, 6]. A variety of
factors, like bone morphogenetic protein (BMP) and basic
fibroblast growth factor (bFGF), can upregulate expression
of osteogenic related genes in MSCs [7]. Besides chemical
revulsants, physical factors such as mechanical strain [8, 9],
shear stress [10, 11], and compressive stress [12, 13] also play
important roles in the osteogenic differentiation of MSCs.
In addition, along with the extensive use of implantable
and interventional medical devices, implanting material has
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Table 1: Primers for RT-PCR.

Gene Forward primer Reverse primer

ALP 5󸀠-CATGTTCCTGGGAGATGGTA-3󸀠 5󸀠-GTGTTGTACGTCTTGGAGAGA-3󸀠

cbfa1 5󸀠-GCCGGGAATGATGAGAACTA-3󸀠 5󸀠-GGACCGTCCACTGTCACTTT-3󸀠

COL1A1 5󸀠-TTACTACCGGGCCGATGA-3󸀠 5󸀠-CTGCGGATGTTCTCAATCTG-3󸀠

GAPDH 5󸀠-TGTTCCTACCCCCAATGTATCCG-3󸀠 5󸀠-TGCTTCACCACCTTCTTGATGTCAT-3󸀠

an important influence on the adaptation, remodeling, or
reconstruction of tissues and cells [14–17]. Our group and
other researchers have showed that hydroxyapatite/collagen
(HA/Col) composite could induce the osteogenic differenti-
ation of rat bone marrow derived MSCs (rBMSCs) [18–20].
These studies suggest an interesting biomaterial approach to
affect the osteogenic differentiation of MSCs.

Since the in vivomicroenvironment of bones is composed
ofmany factors, it is necessary to consider the joint use of dif-
ferent factors on the osteogenic differentiation of MSCs. For
instance, the in vitromechanobiological experiments demon-
strated that mechanical loadings could affect the osteogenic
differentiation of MSCs cultured in soluble biochemical
environment [21, 22]. Although a number of experimental
and clinical studies have attempted to regenerate bones with
MSCs [23–26], the combined effects of mechanical loadings
and biomaterials on the osteogenic differentiation of MSCs
are still unclear.

In an effort to improve the efficiency of MSC osteogenic
differentiation and better understand its molecular mecha-
nism, in this study, we investigated the effects of mechanical
strain and HA/Col composite on the induction of osteoblas-
togenesis of rBMSCs in vitro.

2. Materials and Methods

2.1. Cell Culture. All experiments involving the use of 30-day-
old male Sprague-Dawley rats (Peking University Laboratory
Animal Center, Beijing, China) were in compliance with
the Provisions and General Recommendation of Chinese
Experimental Animals Administration Legislation and were
approved by the Beijing Municipal Science & Technology
Commission (Permit Number: SYXK (Beijing) 2006-0025).
rBMSCs were isolated from the femurs and tibias as previ-
ously described [27, 28]. To isolate cells from bone marrow,
density gradient centrifugation was performed using the per-
coll technique (Pharmacia, Uppsala, Sweden). rBMSCs were
cultured in Dulbecco’s modified Eagle medium-low glucose
(DMEM-LG; Gibco, Grand Island, NY) supplemented with
10% fetal bovine serum (MDgenics, St. Louis, MO) at 37∘C
in humid air containing 5% CO

2
. rBMSCs in passages 2–4

were, divided into four groups: the control group (rBMSCs
cultured with regular complete medium), the strain group
(rBMSCs treated with 5% strain at a frequency of 0.5Hz for
24 h), the HA/Col group (rBMSCs treated with medium con-
taining 75𝜇g/mL HA/Col), and the strain + HA/Col group
(rBMSCs treated with 5% strain at a frequency of 0.5Hz
for 24 h and cultured with medium containing 75𝜇g/mL

HA/Col). A self-designed mechanical stretching device was
used to applymechanical strain to cultured cells as previously
described [28]. After one-day culture, F-actin filaments of
cells were stained. Relative numbers of cells were evaluated
by measuring the reduction of 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) to formazan. After
7 days, the expression levels of alkaline phosphatase (ALP),
core binding factor alpha l (cbfa1), and the alpha l chain
of type I Col (COL1A1) were assessed using reverse tran-
scription polymerase chain reaction (RT-PCR). After 14 days,
the ALP activity was detected by ALP spectrophotometry,
and the expression of osteocalcin was assessed by western
blotting.

2.2. Cytoskeletal Staining. Cells were fixed in 4% paraform-
aldehyde, then permeabilized with 0.1% Triton X-100 in
PBS and blocked in 1% bovine serum albumin. Cells were
incubated in Texas red isothiocyanate conjugated phalloidin
(Molecular Probes, Eugene,OR) for 30min to stain all F-actin
filaments and with DAPI for 5min to label the nuclei at room
temperature. Fluorescent images were taken under a Leica
TCS SPE confocal microscope (Wetzlar, Germany).

2.3. MTT Measuring. Five mg/mL MTT was added to cells
and mixed by shaking briefly on an orbital shaker. Samples
were incubated for 4 h at 37∘C after that process. Then, the
supernatant was removed, and 150 𝜇L dimethyl sulfoxide was
added following 10min of oscillation. The optical density
(OD) of samples was measured at 490 nm using a Thermo
Scientific Varioskan Flash Multiplate Reader (Thermo Inc.,
Waltham, MA).

2.4. RT-PCR Analysis. Total RNA was extracted from cul-
tured cells using TRIzol reagent (Invitrogen, Carlsbad, CA)
according to the manufacturer’s protocol and quantified
using a Genequant pro RNA/DNA Calculator (Bio-Rad,
Hercules, CA). cDNA was synthesized by two-step RT using
the Reverse Transcriptase M-MLV (Takara, Kyoto, Japan),
followed by PCR using Taq DNA Polymerase (Fermentas,
Ontario, Canada). The forward and reverse sequences of the
primers (synthesized by Invitrogen) in PCR are listed in
Table 1. RT-PCR was performed for 30 cycles of 94∘C for 30 s,
55∘C for 1.5min, and 68∘C for 1min, with an additional 7min
incubation at 72∘C after completion of the final cycle. A 10 𝜇L
sample of each PCR product was size-fractionated by 1.5%
agarose gel electrophoresis, and bands were visualized with
a UV Transilluminator (Tanon, Shanghai, China).
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(a) Control (b) Strain

(c) HA/Col (d) Strain + HA/Col

Figure 1: F-actin cytoskeletal changes of rBMSCs exposed to mechanical strain. (a) Control; (b) strain; (c) HA/Col; (d) strain + HA/Col.
rBMSCs were incubated in Texas red isothiocyanate-conjugated phalloidin to stain all F-actin filaments (red) and with DAPI to label the
nuclei (blue). Mechanical strain was in left→ right direction. Scale bar, 50mm.

2.5. ALP Quantification Assays. The ALP activity was de-
tected by ALP spectrophotometry. The cell culture super-
natants were collected, centrifuged at 2000 g for 10min at 4∘C
to remove any debris, and analyzed for ALP using an ALP
Kit (Biosino, Beijing, China) according to the manufacturer’s
instructions. The absorbance was read at 405 nm after the
addition of reagents using a Thermo Scientific Varioskan
Flash Multiplate Reader.

2.6. Western Blotting. Whole-cell protein extracts (20𝜇g/
lane) were separated by SDS-PAGE and transferred to
a polyvinylidene difluoride Immobilon-P membrane (Mil-
lipore, Bedford, MA) using an electroblotter (Bio-Rad).
Membranes were blocked with nonfat milk (Applygen,
Beijing, China) for 30min at room temperature, followed
by overnight incubation at 4∘C with primary antibodies
to osteocalcin (Boster, Wuhan, China) at a dilution of
1 : 1000. Primary antibody binding was detected using aHRP-
conjugated secondary antibody (Zhongshan Goldenbridge
Biotechnology, Beijing, China) and super ECL (Applygen).

2.7. Statistical Analysis. Each experiment was conducted at
least three times. All data were collected from cultures
obtained from independent isolations. Statistical analysis was
performed using one-way analysis of variance (ANOVA). A
Turkey’s test was used to determine the difference between
two groups within the multiple groups. All data were
expressed as mean ± SD. Differences were considered signif-
icant when 𝑃 < 0.05. All calculations were performed using
SPSS 17.0 (SPSS Inc., Chicago, IL).

3. Results

3.1. Effects of Mechanical Strain on F-Actin Filaments of
rBMSCs. Confocal image of F-actin filaments showed that
the cells cultured under static conditions had random fiber
orientation. Strained rBMSCs showed filaments aligned per-
pendicular to the axis of mechanical strain (Figure 1).

3.2. Effects of Mechanical Strain and HA/Col Composite on
the Proliferation of rBMSCs. The results of MTT analysis of
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Figure 2: Effects ofmechanical strain andHA/Col composite on the
proliferation of rBMSCs measured by MTT assay.

rBMSCs in the four groups were shown in Figure 2. There
were no statistical differences detected in the proliferation
among the cells cultured in the four groups.

3.3. Effects of Mechanical Strain and HA/Col Composite on the
Osteoblast-Related Gene Expressions of rBMSCs. As shown
in Figure 3, both mechanical strain and HA/Col composite
induced the expression of ALP, cbfa1, and COL1A1, an
attribute that was absent in untreated cells (𝑛 = 3, 𝑃 <
0.05). Combination of mechanical strain and HA/Col had
a stronger effect on mRNA expression of ALP, cbfa1, and
COL1A1 than either treatment alone (𝑛 = 3, 𝑃 < 0.05), but
there was no significant difference betweenmechanical strain
and HA/Col stimulation groups (𝑛 = 3, 𝑃 > 0.05).

3.4. Effects of Mechanical Strain and HA/Col Composite on the
Osteoblast-Related Protein Productions of rBMSCs. To fur-
ther determine the effects of mechanical strain and HA/Col
composite on rBMSCs differentiation into osteoblast, the
expression of ALP was assessed by ALPs pectrophotometry
(Figure 4), and the expression of osteocalcin was evaluated
using western blotting (Figure 5) after 14 days. In agreement
with the RT-PCR results, the expressions of ALP and osteo-
calcin were induced by mechanical strain and/or HA/Col
composite compared to untreated cell layers (𝑛 = 3, 𝑃 <
0.05), especially by the strain + HA/Col treatment (𝑛 = 3,
𝑃 < 0.05).

4. Discussion

In this study, we put emphasis upon the role of mechanical
loadings and biomaterials on the osteogenic differentiation of
MSCs in vitro.The results demonstrate thatmechanical strain
combined with HA/Col composite can obviously induce the
differentiation of rBMSCs into osteoblasts, which has a better

effect than only mechanical strain or HA/Col composite
treatment.

Cell osteogenic differentiation is most often judged in
terms of upregulation of markers indicative of a mature,
differentiated osteoblast phenotype. The results of RT-PCR
analysis in this study indicate that from gene expression level
mechanical strain and/orHA/Col composite can significantly
promote the osteogenic differentiation of rBMSCs. cbfa1,
ALP, and COL1A1 are traditionally used to evaluate the
osteogenic differentiation of MSCs [9, 29, 30]. There is a
complete lack of osteoblast development in the animal model
where the cbfa1 gene is knocked out [31, 32]. ALP is an ectoen-
zyme involved in the degradation of inorganic pyrophosphate
to provide sufficient local phosphate concentration for min-
eralization [29, 33]. COL1A1 is the most abundant protein
in the osteocyte environment and is osteoinductive [30].
Moreover, based on regulation of gene expression, differenti-
ating cells express osteoblast-related proteins including ALP
and osteocalcin. However, the relative numbers of cells in
each group exhibit no significant differences (Figure 2), so
that the increases of genes and proteins are not due to cell
proliferation but the treatment of mechanical strain and/or
HA/Col composite.

The effects of HA/Col composite on the osteogenic differ-
entiation of rBMSCs have been investigated in our previous
study, and the results exhibit that the optimal concentration of
HA/Col is 75𝜇g/mL [20].The cells ofmechanical strain group
in this study are subjected to a cyclic uniaxial stretch (0.5Hz,
5% elongation). Koike et al. examined the effects of varying
magnitudes of strain on the ST2 stromal cell line, showing
that low levels of strain (0.8% and 5%) increased ALP activity
and expression of Runx2. By contrast, high levels of strain
decreasedALP activity (10% and 15% strains ) [8]. Jagodzinski
et al. also demonstrated that mechanical stimulation with
both 2% and 8% elongations could promote the osteogenic
differentiation of MSCs [22]. All these results indicate that
mechanical strain stimulates the osteogenic differentiation of
stromal cells at low magnitudes of strain.

The expression levels of osteoblast-related markers in
rBMSCs significantly increase to a degree suggestive of a
synergistic interaction of mechanical loadings and bioma-
terials. The precise mechanism for the synergistic effects
is still unknown, possibly increasing secretion of factors
that accelerate the osteogenic differentiation or inducing
different cell populations. The cytoskeleton is affected by the
extracellular microenvironment and can transduce different
signals [34]. In the present study, microfilament organization
changed aftermechanical strain and/orHA/Col treatment(s),
which might be one of the key factors in the cellular
response to extracellular signals. Further investigations are
needed to decipher which signaling pathways are affected by
mechanical strain and/or HA/Col composite.

5. Conclusion

This study proves that combining mechanical strain and
HA/Col composite together has a synergistic interaction
on the osteogenic differentiation of rBMSCs. By combining



Journal of Nanomaterials 5

Control Strain HA/Col
Strain +

HA/Col

ALP

cbfa1

COL1A1

GAPDH

(a)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

A
LP

/G
A

PD
H

cb
fa

1/
G

A
PD

H

CO
L1

A
1/

G
A

PD
H

Control Strain HA/Col Strain +

HA/Col
Control Strain HA/Col Strain +

HA/Col
Control Strain HA/Col Strain +

HA/Col

ALP cbfa1 COL1A1

#
#

#
#

#
#

∗

∗

∗

∗

∗

∗

∗
∗

∗

(b)

Figure 3: Effects of mechanical strain and HA/Col composite on the osteoblast-related gene expressions of rBMSCs. (a) Representative
pictures of RT-PCR product bands. (b) Image analysis of (a). The relative expression of each gene was normalized to GAPDH. Results are
shown as the mean ± SD values (𝑛 = 3). ∗𝑃 < 0.05, compared to the control group; #

𝑃 < 0.05.
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Figure 4: Effects of mechanical strain and HA/Col composite on the secretion of ALP into the culture media assessed by ALP
spectrophotometry. Results are shown as the mean ± SD values (𝑛 = 3). ∗𝑃 < 0.05, compared to the control group; #

𝑃 < 0.05.
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Figure 5: Effects of mechanical strain and HA/Col composite on
the expression level of osteocalcin assessed by western blot analysis.
(a) Representative pictures of western blot product bands. (b) Image
analysis of (a).The relative expression of osteocalcin was normalized
to GAPDH. Results are shown as the mean ± SD values (𝑛 = 3).
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𝑃 < 0.05, compared to the control group; #
𝑃 < 0.05.

mechanical, biomaterial, and chemical modalities and other
influential factors, one may be able to promote more rapid
maturation of progenitor cells.
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