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In our recent paper, we systematized an inverse algorithm to obtain quiver gauge theory living on the M2-branes probing the
singularities of a special kind of Calabi-Yau fourfold which were complex cones over toric Fano P3, B

1
, B
2
, B
3
. These quiver

gauge theories cannot be given a dimer tiling presentation. We use the method of partial resolution to show that the toric data
of C4 and Fano P3 can be embedded inside the toric data of Fano B theories. This method indirectly justifies that the two-node
quiver Chern-Simons theories corresponding to C4, Fano P3, and their orbifolds can be obtained by higgsing matter fields of the
three-node parent quiver corresponding to FanoB

1
,B
2
,B
3
,B
4
threefold.

1. Introduction

Initial works of Bagger-Lambert [1–3] followed by Gustavs-
son [4, 5], Van Raamsdonk [6], and Aharony-Bergman-
Jafferis-Maldacena (ABJM) [7] led to a flurry of interesting
papers during the last four years between supersymmetric
Chern-Simons gauge theory on coincident 𝑀2-branes at the
tip of Calabi-Yau fourfold and their string duals. In a review
article [8], these developments are discussed in detail.

Martelli and Sparks [9] discussed the gauge-gravity cor-
respondence (𝐴𝑑𝑆

4
/𝐶𝐹𝑇
3
) for some supersymmetric Chern-

Simons theories with a quiver diagram description. Earlier
works of Feng et al. in the context of Calabi-Yau threefold
[10] called forward algorithm can be extended to obtain
Calabi-Yau fourfold toric data from 2 + 1 dimensional quiver
supersymmetric Chern-Simons theories.

An elegant combinatorial approach called dimer tilings
[11, 12] which gives both the toric data and the corresponding
quiver gauge theories was generalised to study quiver Chern-
Simons theories [13–20]. However, the dimer tiling approach
is applicable for only a class of quiver gauge theories with𝑚-
matter fields, 𝑟 gauge group nodes, and𝑁

𝑊
number of terms

in the superpotential 𝑊 satisfying 𝑟 − 𝑚 + 𝑁
𝑊

= 0. The
Chern-Simons (CS) levels of the 𝑟-nodes can be denoted by
the vector 𝑘⃗ = (𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑟
).

One of the challenging problems was to determine quiver
gauge theories corresponding to 18 toric Fano threefold. A

Fano variety in 𝑑-complex dimension is characterized by
positive curvature and one can construct the CY (𝑑 + 1)-
fold by taking a complex cone over it. If the Fano variety is
toric, the Calabi-Yau constructed from it will also be toric,
and one can attempt to find the dual quiver gauge theories. In
2 complex dimensions, there are 5 toric Fano 2-fold which are
zeroth Hirzebruch surface F

0
and the del Pezzo surfaces 𝑑𝑃

0
,

𝑑𝑃
1
, 𝑑𝑃
2
, 𝑑𝑃
3
. The quiver gauge theories living on 𝐷3 branes

probing the toric CY 3-fold obtained from these 5 Fano 2-
fold have been studied in the literature [10]. Moving on to 3
complex dimensions, there are 18 toric Fano 3-fold [21, 22]
with nomenclature (as used in [20]) Fano P3, B

1
, B
2
, B
3
,

B
4
, C
1
, C
2
, C
3
, C
4
, C
5
, D
1
, D
2
, E
1
, E
2
, E
3
, E
4
, F
1
, F
2
.

The next problem was to obtain the quiver CS theory living
on the𝑀2 branes probing the toric CY 4-fold obtained from
these 18 Fano 3-fold.

From the forward algorithm and dimer tiling method,
quiver gauge theories corresponding to fourteen of the toric
Fano B

4
, C
1
, C
2
, C
3
, C
4
, C
5
, D
1
, D
2
, E
1
, E
2
, E
3
, E
4
,

F
1
, F
2
were determined [20]. In [23], we attempted the

inverse algorithm of obtaining the quiver gauge theories
for the remaining four Fano 3-fold P3, B

1
, B
2
, B
3
. As

expected, these quiver gauge theories do not satisfy 𝑟 − 𝑚 +

𝑁
𝑊

= 0 confirming that they cannot be given dimer tiling
presentation.

Thenext immediate question is to understand the embed-
dings inside the toric Fano B threefold by the method of
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partial resolution. In particular, we would like to obtain the
quiver Chern-Simons theory corresponding to Fano P3 by
partial resolution of FanoB threefold.

Alternatively, we could determine embeddings from hig-
gsing approach [19, 24, 25]: for the quivers with 𝑟 nodes
(usually called parent theories) which admit dimer tiling, we
could higgsize somematter fields and obtain quivers with 𝑟−1

nodes (called daughter theories). Suppose we give a vacuum
expectation value (VEV) to a bifundamental matter field𝑋

𝑎𝑏

where the subscript denotes that the matter field is charged
+1 with respect to node 𝑎 with Chern-Simons level 𝑘

𝑎
and

charged −1 with respect to node 𝑏 with Chern-Simons level
𝑘
𝑏
. This results in coalescing of two nodes 𝑎 and 𝑏 into a node

with Chern-Simons level 𝑘
𝑎
+ 𝑘
𝑏
. Higgsing of the three node

quiver corresponding to a toric FanoB
4
was discussed from

dimer tilings in [19]. In fact, the daughter theories correspond
to either phase II of C4 or phase I of C2/Z

2
× C2 depending

upon which bifundamental field was given VEV.
Another approach of higgsing called the algebraic

method [24] has been applied on parent quivers [25] cor-
responding to some toric Fano 3-fold. We will present the
algebraic higgsing for Fano B

4
and show that the toric data

corresponding to daughter theories has to be C4 or orbifolds
ofC4. We will also study the method of partial resolution [10]
and obtain the C4 toric data for the daughter theories.

For the 3-node quivers corresponding to Fano B
1
, B
2
,

and B
3
, which do not admit dimer tiling presentation, we

have to obtain daughter theories by the algebraic higgsing
method [25] or the partial resolution method [10]. We shall
show that the algebraic higgsing on these 3-node quivers
always gives C4 or orbifolds of C4. We also study the method
of partial resolution to check whether the approach gives
more information about the embedded theories. Interest-
ingly, this method shows that the toric data of Fano P3 or its
orbifolds is embedded in the toric data of FanoB

2
and Fano

B
3
.
The plan of the paper is as follows: in Section 2, we briefly

review the well-known 2-node quiver Chern-Simons theory
with four matter fields and their toric data. In Section 3, we
will first perform the higgsing of toric Fano B

4
using the

algebraicmethod and determine the daughter quiver theories
with 2 nodes. Finally, we show that the partial resolution
method gives C4 toric data. In Section 4, we will briefly
present the necessary data of the quiver corresponding to
Fano B

3
. Then, we study the algebraic higgsing and the

method of partial resolution for Fano B
3
. Particularly, we

show that the algebraic higgsing gives C4 or orbifolds of
C4 whereas the method of partial resolution gives nontrivial
embeddings inside Fano B

3
. In Section 5, we study the

method of partial resolution for Fano B
2
. We present the

results of partial resolution of Fano B
1
in Section 6. We

summarize and discuss some open problems in Section 7.

2. Two-Node Quiver Chern-Simons Theories

Our aim is to study partial resolution of toric data corre-
sponding to 3-node parent quiver resulting in a toric data
corresponding to a 2-node daughter quiver. So, in this section

𝑋1,2
12

𝑋1,2
21

𝑘1 = 𝑘 𝑘2 = −𝑘

1 2

Figure 1: Quiver diagram (a).
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1 2 𝜙1,22

Figure 2: Quiver diagram (b).

we will briefly recapitulate the 2-node quivers with four
matter fields corresponding to toric data ofC4, orbifolds ofC4
and Fano P3. There can be three possible quivers as follows.

(1) Theory with 4 bifundamental matter fields 𝑋
𝑖

12
and

𝑋
𝑖

21
(where 𝑖 = 1, 2), with CS levels (𝑘, −𝑘) and the super-

potential 𝑊 = Tr[𝜖
𝑖𝑗
𝑋
1

12
𝑋
𝑖

21
𝑋
2

12
𝑋
𝑗

21
]. For the abelian groups,

𝑊 = 0. The quiver diagram is shown in Figure 1. This theory
admits tiling and the corresponding toric data is as follows
[18]:

G
𝑎
(𝑘) = (

𝑝
1

𝑝
2

𝑝
3

𝑝
4

1 1 1 1

−1 0 −1 0

0 −1 −1 0

0 0 𝑘 0

). (1)

The charge matrix𝑄
𝑎
for this theory given by 𝑄

𝑎
⋅G𝑇
𝑎
(𝑘) = 0

is trivial, 𝑄
𝑎

= 0. This theory is Z
𝑘
orbifold of C4, denoted

byC4/Z
𝑘
. For 𝑘 = 1, that is, when the CS-levels of the theory

is (1, −1), there is no orbifolding action and this theory in the
literature is known as Phase I of C4 [18].

(2) Theory with 2 adjoints 𝜙
1

2
, 𝜙
2

2
present at the same

node (say node 2) and two bifundamentals 𝑋
12
, 𝑋
21
, with

CS-levels (𝑘, −𝑘). Abelian 𝑊 of this theory is again zero
with nonabelian superpotential𝑊 = Tr[𝑋

12
[𝜙
1

2
, 𝜙
2

2
]𝑋
21
].The

quiver diagram is shown in Figure 2. This theory also admits
tiling and the toric data for this theory is as follows [18]:

G
𝑏
(𝑘) = (

𝑝
1

𝑝
2

𝑝
3

𝑝
4

1 1 1 1

1 0 1 0

0 −1 0 0

0 0 𝑘 0

). (2)

The charge matrix 𝑄
𝑏
of this theory given by 𝑄

𝑏
⋅ G𝑇
𝑏
(𝑘) = 0

is also trivial, 𝑄
𝑏
= 0. This is (C2/Z

𝑘
) × C2 theory. For 𝑘 = 1,

this theory is known as Phase II of C4.
It is pertinent to spell out the following obvious facts.

(i) We can deduce that the two quiver theories are
distinct for 𝑘 ̸= 1 because the toric data of the two
theories (G

𝑎
(𝑘) and G

𝑏
(𝑘)) are not related by any

𝐺𝐿(4,Z) transformation.
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Figure 3: Quiver diagram (c).

(ii) When there is no orbifolding—that is, 𝑘 = 1,
both theories are the same up to some 𝐺𝐿(4,Z)

transformation.Hence, these theories are actually just
the phases of C4 theory, known as Phase I and Phase
II of C4, respectively.

(3) Theory with 2 bifundamentals 𝑋
12
, 𝑋
21
and adjoints

𝜙
1
, 𝜙
2
at two different nodes with trivial𝑊 = 0.The quiver of

this theory is shown in Figure 3. This theory does not admit
tiling and was first obtained using the inverse algorithm in
[23], which was identified as the Fano P3 theory.

However, we cannot determine the CS levels from the
inverse algorithm [23] for all the three 2-node quiver theories.
From the tiling description, we can obtain the CS levels
for the quiver diagrams (a) and (b). Comparing the inverse
algorithm of the three theories, we had inferred that the
theory corresponding to FanoP3 could have CS levels (4, −4).
As we do not know any method of determining the actual CS
levels, the theory shown in quiver diagram (c) with 𝑘 = 1

could be Fano P3 theory.
A possible choice of toric data for the theory shown in

Figure 3 can be

G
𝑐
(𝑘) = (

𝑝
1

𝑝
2

𝑝
3

𝑝
4

𝑝
5

1 1 1 1 1

1 −1 0 0 0

0 1 −1 0 0

0 0 𝑘 −𝑘 0

), (3)

which is related to the toric dataG
𝑐
(𝑘 = 1) ≡ GP3 by𝐺𝐿(4,Z)

transformationT(𝑘), such that the determinant ofT is 𝑘.
The charge matrix 𝑄

𝑐
(𝑘) of this theory given by 𝑄

𝑐
(𝑘) ⋅

G
𝑐
(𝑘)
𝑇
= 0 consists only of 𝑄

𝐹
and is given by [23]

𝑄
𝑐
(𝑘) = 𝑄

P3

𝐹
= (1, 1, 1, 1, −4) , (4)

for all 𝑘. This indicates that the charge 𝑄
𝐹
will not be able to

detect the orbifolding Z
𝑘
.

We would like to see these Calabi-Yau 4-fold, particularly
Fano P3, as embeddings inside Calabi-Yau 4-fold toric data
corresponding to some 3-node quivers. In the following
section, we will extensively discuss the 3-node quiver corre-
sponding to Fano B

4
which admits dimer tiling. Higgsing

of the theory corresponding to FanoB
4
[19], from the tiling

approach, has shown that the daughter theories are only
quiver diagram (b). From the method of algebraic higgsing,
we get the toric data to be C4 and orbifolds of C4 whereas
partial resolution gives toric data of C4. This will set the
necessary tools and notations for studying the embeddings
inside other three FanoB

𝑖
’s in the later sections.

𝑋1,2,3
31 𝑋1,2,3

12

𝑋1,2,3
23 𝑘 = −2𝑘 = 1

𝑘 = 1

1

23

Figure 4: Quiver diagram for FanoB
4
.

3. Fano B
4

The quiver corresponding to the complex cone over FanoB
4

is a theory with 3 nodes and 9 bifundamental fields𝑋𝑖
12
,𝑋𝑖
23
,

𝑋
𝑖

31
, where 𝑖 = 1, 2, 3. This theory admits tiling and is known

in the literature as Fano B
4
or 𝑀
1,1,1 theory with CS levels

𝑘⃗ = (𝑘
1
, 𝑘
2
, 𝑘
3
) = (1, −2, 1) [20]. The quiver diagram for this

theory is shown in Figure 4.The superpotential of the theory
is given by

𝑊 = Tr [𝜖
𝑖𝑗𝑘

𝑋
𝑖

12
𝑋
𝑗

23
𝑋
𝑘

31
] . (5)

The incidence matrix of this theory is given by

𝑑 =

𝑋
1

12
𝑋
2

12
𝑋
3

12
𝑋
1

23
𝑋
2

23
𝑋
3

23
𝑋
1

31
𝑋
2

31
𝑋
3

31

𝐺 = 1 1 1 1 0 0 0 −1 −1 −1

𝐺 = 2 −1 −1 −1 1 1 1 0 0 0

𝐺 = 3 0 0 0 −1 −1 −1 1 1 1

,

(6)

where the rows indicate the gauge groups or the nodes in the
quiver, and columns indicate the matter fields.

The projected charge matrix (Δ) will consist of a single
row whose elements will be given by

Δ
𝑖
= 𝑘
2
𝑑
1𝑖
− 𝑘
1
𝑑
2𝑖

= − (2𝑑
1𝑖
+ 𝑑
2𝑖
) . (7)

Hence, Δmatrix will be given by

Δ = (
𝑋
1

12
𝑋
2

12
𝑋
3

12
𝑋
1

23
𝑋
2

23
𝑋
3

23
𝑋
1

31
𝑋
2

31
𝑋
3

31

−1 −1 −1 −1 −1 −1 2 2 2
) . (8)

From the superpotential 𝑊 (5), one can find the 𝐹-term
constraints given by the set of equations {𝜕𝑊/𝜕𝑋

𝑖
= 0},

whichmeans that thematter fields𝑋
𝑖
’s can bewritten in terms

of 5 independent V-fields, and the relation between them can
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be encoded in a matrix 𝐾. The matrix 𝐾 and its dual matrix
𝑇 are given as

𝐾 =

V
1
V
2
V
3
V
4
V
5

𝑋
(1)

12
0 0 1 0 0

𝑋
(2)

12
0 0 1 0 1

𝑋
(3)

12
0 0 1 1 0

𝑋
(1)

23
0 1 0 0 0

𝑋
(2)

23
0 1 0 0 1

𝑋
(3)

23
0 1 0 1 0

𝑋
(1)

31
1 0 0 0 0

𝑋
(2)

31
1 0 0 0 1

𝑋
(3)

31
1 0 0 1 0

,

𝑇 = (

1 0 0 0 0 1

1 0 0 0 1 0

1 0 0 0 1 0

−1 0 1 0 0 0

−1 1 0 0 0 0

).

(9)

From𝐾 and 𝑇, we can write the matrix 𝑃 = 𝐾 ⋅𝑇. The entries
of the matrix 𝑃 are all nonnegative and they give the relation
of the matter fields𝑋

𝑖
’s with the GLSM fields 𝑝

𝑖
’s:

𝑃 =

𝑝
1

𝑝
2

𝑝
3

𝑝
4

𝑝
5

𝑝
6

𝑋
1

12
1 0 0 1 0 0

𝑋
2

12
0 1 0 1 0 0

𝑋
3

12
0 0 1 1 0 0

𝑋
1

23
1 0 0 0 1 0

𝑋
2

23
0 1 0 0 1 0

𝑋
3

23
0 0 1 0 1 0

𝑋
1

31
1 0 0 0 0 1

𝑋
2

31
0 1 0 0 0 1

𝑋
3

31
0 0 1 0 0 1

. (10)

The 𝑄
𝐹
charge matrix is given by the null space of 𝑃:

𝑄
𝐹
= (1 1 1 −1 −1 −1) . (11)

The steps done so far in obtaining 𝑃-matrix and the charge
𝑄
𝐹
are independent of the CS levels. The information about

CS levels is contained only in the charge 𝑄
𝐷
matrix which is

a single row obeying the symmetry of the Calabi-Yau which
is given as

𝑄
𝐷

= 𝑃 ⋅ Δ
𝑡
= [0 0 0 1 1 −2] . (12)

The total charge matrix can be obtained by concatenating (11)
and (12) in a single matrix 𝑄:

𝑄 = (
𝑄
𝐹

𝑄
𝐷

) = (
1 1 1 −1 −1 −1

0 0 0 1 1 −2
) . (13)

The toric data of this theory is [20]:

G (1, −2, 1) = (

𝑝
1

𝑝
2

𝑝
3

𝑝
4

𝑝
5

𝑝
6

1 1 1 1 1 1

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 0 1 −1 0

). (14)

Suppose that we rescale the levels of this theory as
(𝑘
1
, 𝑘
2
, 𝑘
3
) = (𝑛, −2𝑛, 𝑛), where 𝑛 is some nonzero integer.

Since this theory admits brane tiling description, the toric
data for the scaled levels (𝑛, −2𝑛, 𝑛) can be readily obtained
from the Kastelyn matrix method [20]. The toric data is
dependent on the scale 𝑛 and is given below:

G (𝑛, −2𝑛, 𝑛) = (

1 1 1 1 1 1

1 0 −1 0 0 0

−1 1 0 0 0 0

0 0 0 𝑛 −𝑛 0

) . (15)

Unfortunately, when we perform forward algorithm for the
scaled CS levels (𝑛, −2𝑛, 𝑛), we see from (7) and (12) that 𝑄

𝐷

gets scaled by factor 𝑛 but 𝑄
𝐹
remains unchanged. Clearly,

the toric data G(1, −2, 1) obtained as the null space of total
charge matrix 𝑄, that is, G ⋅ 𝑄

𝑡
= 0, is still satisfied by 𝑄

𝑡
=

(𝑄
𝑡

𝐹
𝑛𝑄
𝑡

𝐷
).

Equivalently, the toric data G obtained from forward
algorithm has scaling ambiguity of any of the rows and hence
not unique. These arguments on ambiguity of G, scaling of
𝑄
𝐷
and Δ under 𝑘⃗ → 𝑛𝑘⃗ hold for inverse algorithm as well.

Following the works on orbifolds of C4, it is a well-known
fact that G(𝑛, −2𝑛, 𝑛) obtained from tiling must be the Z

𝑛

orbifold of G(1, −2, 1) theory. The two toric data are related
by a 𝐺𝐿(4,Z) transformationT as

G (𝑛, −2𝑛, 𝑛) = T ⋅G (1, −2, 1) , (16)

where

T = (

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 𝑛

) . (17)

Here, | det(T)| = 𝑛, which means that the volume of
G(𝑛, −2𝑛, 𝑛) theory is 𝑛 times that of G(1, −2, 1) implying
that the former theory is Z

𝑛
orbifold of latter theory. This

orbifolding action, also scaling of CS levels, is explainable
only for those theories which admit tiling. From our forward
algorithm discussion, we have explicitly seen that the scaling
of CS levels does not give the orbifolding information in the
toric data. Reconciling with tiling results, we will hitherto use
that fact that the scaling of CS levels representsZ

𝑛
orbifolding

of all theories which may or may not admit tiling.
From the tiling approach, higgsing of the quiver diagram

in Figure 4 has been presented in detail in [19]. In particular,
we can obtain daughter quivers in Figure 2 corresponding
to C4 and orbifolds of C4. We will now study the algebraic
approach of higgsing which will be applicable for other
quivers that do not admit dimer tiling presentation.
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3.1. Algebraic Higgsing. We attempt the higgsing of FanoB
4

theory to obtain one of the 2 nodes theories discussed in
Section 2. In algebraic higgsing, we choose somematter field,
say 𝑋

𝑖
, and give a nonzero VEV to it. Giving a VEV makes

the matter field massive and hence removed from the quiver.
However, in the process of giving VEV, all those GLSM 𝑝

𝑗

fields which contain the matter field 𝑋
𝑖
also become massive

and hence must be removed. To do this, we delete the 𝑖th
row from the 𝑃matrix which corresponds to the matter field
𝑋
𝑖
and also, we remove all those columns (𝑝-fields) which

have nonzero entry corresponding to 𝑖th row (and hence have
become massive).

As an example, let us take the 𝑋
1

12
field of theB

4
theory

and give a VEV to it. Thus, from the 𝑃, matrix (10), we must
remove the first row and also the columns 1 and 4 which
correspond to the GLSM fields 𝑝

1
, 𝑝
4
which contain the 𝑋

1

12

field. After giving VEV to the 𝑋
1

12
field, the nodes 1 and 2 in

the Figure 4 are collapsed giving a 2-node daughter theory
with CS levels (1, −1). Removal of the corresponding row and
columns in (10) will give the following reduced 𝑃-matrix:

𝑃
𝑟
=

𝑝
2

𝑝
3

𝑝
5

𝑝
6

𝑋
2

12
1 0 0 0

𝑋
3

12
0 1 0 0

𝑋
1

23
0 0 1 0

𝑋
2

23
1 0 1 0

𝑋
3

23
0 1 1 0

𝑋
1

31
0 0 0 1

𝑋
2

31
1 0 0 1

𝑋
3

31
0 1 0 1

. (18)

The nullspace of this matrix gives the reduced charge matrix
𝑄
𝐹𝑟

= 0. Thus, we see that the 𝑄
𝐹𝑟
of the daughter theory is

trivial.The quivers (a) and (b) listed in Section 2 have𝑄
𝐹
= 0.

So, algebraic higgsing can give daughter quivers (a) as well as
quiver (b) with CS levels (1, −1).

By givingVEV to any othermatter fields, we have checked
that we get the same trivial 𝑄

𝐹𝑟
= 0. This suggests that the

algebraic higgsing of the parent quiver corresponding to Fano
B
4
will give quivers corresponding toC4 and orbifolds ofC4.

It must be mentioned at this point that the algebraic higgsing
of Fano B

1
, B
2
, B
3
also gives a daughter theory with

trivial 𝑄
𝐹
. So, the algebraic higgsing tells that only C4 or the

orbifolds ofC4 are embedded inside FanoB
1
, B
2
, B
3
, B
4
.

It may be possible that we may get nontrivial 𝑄
𝐹
from the

method of partial resolution. So, we shall study the method
of partial resolution for FanoB

4
toric data.

3.2. Partial Resolution. In partial resolution, we try to remove
the points from the toric diagram.The resulting toric diagram
corresponds to some daughter theory which is embedded
in the parent theory. From the toric diagram of B

4
, we

will remove some points which amount to removing the
corresponding columns (or the corresponding 𝑝-fields) from
the toric data G. Next, we will check whether this reduced
toric data (denoted byG

𝑟
), which is obtained by removing the

columns from originalG, is related to any of the toric data of
the 2-node theories.

Take the toric dataG of FanoB
4
in (14).We see that if we

remove the points 𝑝
1
and 𝑝

4
, we get the reduced toric data

G
𝑟
= (

1 1 1 1

−1 0 0 0

1 −1 0 0

0 0 −1 0

) . (19)

This reduced toric data (19) is equivalent to the toric data
G
𝑎
(𝑘 = 1) (1) andG

𝑏
(𝑘 = 1) (2):

G
𝑎
(𝑘 = 1) = (

1 0 0 0

0 1 0 1

0 1 1 1

0 0 0 −1

) ⋅G
𝑟
,

G
𝑏
(𝑘 = 1) = (

1 0 0 0

0 −1 0 −1

0 1 1 0

0 0 0 −1

) ⋅G
𝑟
.

(20)

Thus, partial resolution of B
4
toric data (14) only gives C4

toric data. Explicit coalescing of nodes in tiling/algebraic
higgsing allows both C4 or Z

2
orbifold of C4 whereas we get

onlyG
𝑎
(𝑘 = 1) orG

𝑏
(𝑘 = 1) in the partial resolutionmethod.

Alternatively, we can take the charge matrix 𝑄 of theB
4

theory given in (13) take a linear combination, and set the
charge matrix elements corresponding to columns 𝑝

1
and 𝑝

4

to zero as described below: suppose that a row (𝑟) of𝑄 of the
daughter theory is given as some linear combination of rows
(𝑅
𝑖
) of 𝑄 (13) of parent theory; that is,

𝑟 =

2

∑

𝑖=1

(𝑎
𝑖
𝑅
𝑖
) = (𝑎

1
, 𝑎
1
, 𝑎
1
, −𝑎
1
+ 𝑎
2
, −𝑎
1
+ 𝑎
2
, −𝑎
1
− 2𝑎
2
) .

(21)

Since we are removing 𝑝
1
and 𝑝

4
points, the corresponding

columns in 𝑟 are set to 0 and also removed. This will give the
values of 𝑎

1
and 𝑎
2
, and we find that 𝑎

1
= 𝑎
2
= 0. Hence, the

𝑄 of the daughter theory is trivial.
We have obtained G

𝑟
by removing all other possible set

of points in the toric data of B
4
—namely, {𝑝

1
, 𝑝
5
}, {𝑝
2
, 𝑝
4
},

{𝑝
2
, 𝑝
5
}, {𝑝
3
, 𝑝
4
}, and {𝑝

4
, 𝑝
5
}, and checked that they are again

related by 𝐺𝐿(4,Z) toG
𝑎
(𝑘 = 1) andG

𝑏
(𝑘 = 1). For all these

cases, the linear combination of the charge𝑄matrix (13) with
the appropriate columns removed gives 𝑄 of the daughter
theory to be trivial (𝑄 = 0). Thus, we see that C4 theory is
embedded in theB

4
theory.

The quiver gauge theories corresponding to FanoB
3
and

B
2
have nontrivial superpotential 𝑊 [23] and hence can be

described by both forward and inverse algorithms. We will
briefly present in the next section the quiver and necessary
data for Fano B

3
and study algebraic higgsing and partial

resolution.

4. Fano B
3

It is a theory with 3 nodes, 2 adjoint fields 𝑋
1
, 𝑋
2
on node-

1 and 6 bifundamental fields 𝑋
3
, 𝑋
4
, 𝑋
5
, 𝑋
6
, 𝑋
7
, 𝑋
8
. The
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1

23

𝑘 = −6𝑘 = 0

𝑋1,2

𝑋3,4
𝑋7,8

𝑋5,6

𝑘 = 6

Figure 5: Quiver diagram for FanoB
3
.

quiver diagram for this theory is shown in Figure 5. This
theory does not admit tiling and was first studied in [23],
where it was identified as the quiver gauge theory for Fano
B
3
with CS levels (6, −6, 0). The superpotential of the theory

is given by

𝑊 = Tr [(𝑋
1
𝑋
4
− 𝑋
2
𝑋
3
) (𝑋
5
𝑋
8
− 𝑋
6
𝑋
7
)] . (22)

From 𝑊 given in (22), we construct 𝐾, which gives 𝑇 and
hence 𝑃:

𝑃 =

𝑝
1

𝑝
2

𝑝
3

𝑝
4

𝑝
5

𝑝
6

𝑝
7

𝑋
1

3 0 1 0 0 0 1

𝑋
2

0 3 1 0 0 0 1

𝑋
3

3 0 0 1 0 0 1

𝑋
4

0 3 0 1 0 0 1

𝑋
5

0 0 4 0 6 0 1

𝑋
6

0 0 0 4 6 0 1

𝑋
7

0 0 4 0 0 6 1

𝑋
8

0 0 0 4 0 6 1

. (23)

Total charge matrix 𝑄 is given by

𝑄 = (
𝑄
𝐹

𝑄
𝐷

) = (

1 1 3 3 −1 −1 −6

1 1 1 1 0 0 −4

0 0 2 2 −2 0 −2

) . (24)

The toric data of the theory is given as [23]:

G (6, −6, 0) = (

𝑝
1

𝑝
2

𝑝
3

𝑝
4

𝑝
5

𝑝
6

𝑝
7

1 1 1 1 1 1 1

1 −1 0 0 0 0 0

0 0 1 −1 0 0 0

0 1 0 −1 −1 −1 0

). (25)

Similar to Fano B
4
theory, if we rescale the levels here to

(𝑘
1
, 𝑘
2
, 𝑘
3
) = (6𝑛, −6𝑛, 0), where 𝑛 is some non-zero integer,

we can write the toric data which has information about
this scaling. Note that this theory does not admit tiling

and the forward/inverse algorithm does not give an explicit
dependence of G(6𝑛, −6𝑛, 0) on 𝑛, but there is a scaling
ambiguity of any row of toric data. A choice of the toric data
will be

G (6𝑛, −6𝑛, 0) = (

1 1 1 1 1 1 1

1 −1 0 0 0 0 0

0 0 1 −1 0 0 0

0 𝑛 0 −𝑛 −𝑛 −𝑛 0

) . (26)

This toric data is related to that of G(6, −6, 0) by a volume
factor 𝑛 and hence represents the Z

𝑛
orbifolding:

G (6𝑛, −6𝑛, 0) = (

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 𝑛

) ⋅G (6, −6, 0) . (27)

We will now study algebraic higgsing and obtain two-node
daughter quivers.

4.1. Algebraic Higgsing. If we give a VEV to any of the 𝑋
𝑖

fields, thereby removing the corresponding row and columns
from the 𝑃-matrix (23), we see that we get a reduced matrix
(𝑃
𝑟
), whose null space (𝑄

𝐹𝑟
) is always trivial. Starting from the

parent quiver as shown in Figure 5, we see that the nontrivial
CS levels of the 2-node daughter quiver to be (6, −6). Thus,
we can only say that the higgsing of the Z

𝑛
orbifolds of

Fano B
3
theory will give C4/Z

6𝑛
as the daughter theory.

Moreover, we see that the last column (𝑝
7
) of 𝑃-matrix (23)

which corresponds to the internal point in the toric diagram
of Fano B

3
will always be removed because it contains all

the matter fields. So, this method cannot give a daughter
theory corresponding to FanoP3 which has an internal point
in the toric diagram. Hence, we are forced to study the
method of partial resolution to check whether toric Fano P3

is embedded insideB
3
Fano.

4.2. Partial Resolution. Here, we do the partial resolution of
Fano B

3
theory and also check whether we get nontrivial

charge 𝑄 for the daughter theory.

4.2.1. Embedding of Fano P3 inside FanoB
3
. It is interesting

to see that the method of partial resolution does embed the
toric Fano P3 inside Fano B

3
giving the correct 𝑄

𝐹
(4).

Hence, we can claim that thismethod givesmore information
than algebraic higgsing for quiver which do not admit dimer
tiling presentation. Suppose we remove the points {𝑝

5
, 𝑝
6
}

from theG (25), we get a reduced toric data

G
𝑟
= (

𝑝
1

𝑝
2

𝑝
3

𝑝
4

𝑝
7

1 1 1 1 1

1 −1 0 0 0

0 0 1 −1 0

0 1 0 −1 0

), (28)

and the toric data GP3 ≡ G
𝑐
(𝑘 = 1) (3) is related to G

𝑟
by a

𝐺𝐿(4,Z) transformation:
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GP3 = (

1 0 0 0

0 1 0 0

0 0 −1 1

0 0 1 0

) ⋅G
𝑟
. (29)

A row (𝑟) of 𝑄 of the daughter theory will be given as linear
combination of rows (𝑅

𝑖
) of 𝑄 (24); that is,

𝑟 =

3

∑

𝑖=1

(𝑎
𝑖
𝑅
𝑖
) = (𝑎

1
+ 𝑎
2
, 𝑎
1
+ 𝑎
2
, 3𝑎
1
+ 𝑎
2
+ 2𝑎
3
, 3𝑎
1
+ 𝑎
2

+2𝑎
3
, −𝑎
1
− 2𝑎
3
, −𝑎
1
, −6𝑎
1
− 4𝑎
2
− 2𝑎
3
) .

(30)

Setting the columns 5, 6 in 𝑟 to 0 gives 𝑎
1
= 𝑎
3
= 0. Removing

these columns gives the reduced charge matrix as follows:

𝑟 = (𝑎
2
, 𝑎
2
, 𝑎
2
, 𝑎
2
, −4𝑎
2
) = 𝑎
2
(1, 1, 1, 1, −4) . (31)

Thus, 𝑄 will have only one row generated by (1, 1, 1, 1, −4).
Hence, the charge matrix of daughter theory is the same as
charge matrix of the Fano P3 (4). Thus, we see that Fano P3

is embedded in the Fano B
3
theory. Similar to the partial

resolution of B
4
theory, we only get toric data of Fano P3

but not the Z
6
orbifold of P3, which is expected from the

coalescing of the nodes in Figure 5.

4.2.2. Embedding of C4 inside FanoB
3
. If we remove points

{𝑝
1
, 𝑝
3
, 𝑝
5
} from the toric data (25), wewill get a reduced toric

data given by

G
𝑟
= (

𝑝
2

𝑝
4

𝑝
6

𝑝
7

1 1 1 1

−1 0 0 0

0 −1 0 0

1 −1 −1 0

). (32)

Similar to the case of B
4
theory, G

𝑎
(𝑘 = 1) and G

𝑏
(𝑘 = 1)

are related to (32):

G
𝑎
(𝑘 = 1) = (

1 0 0 0

0 2 −1 1

0 1 0 1

0 −1 1 −1

) ⋅G
𝑟
,

G
𝑏
(𝑘 = 1) = (

1 0 0 0

0 −2 1 −1

0 0 1 0

0 −1 1 −1

) ⋅G
𝑟
.

(33)

Also, we can find the reduced charge matrix 𝑄
𝑟
in a similar

way as was done for other cases, and we find that it is trivial.
Similarly, if we remove the other set of points {𝑝

1
, 𝑝
4
, 𝑝
5
},

{𝑝
2
, 𝑝
3
, 𝑝
5
} and {𝑝

2
, 𝑝
4
, 𝑝
5
}, we will get trivial 𝑄

𝑟
and the

reduced toric data in each case is only related to G
𝑎
and G

𝑏

toric datas for 𝑘 = 1 which implies C4 toric data.
In the following section, we will briefly present the quiver

corresponding to FanoB
2
and study the partial resolution.

1

2 3

𝑘 = −2 𝑘 = 0

𝑋1,2,3

𝑋4,5,6

𝑋10,11,12

𝑋7,8,9

𝑘 = 2

Figure 6: Cyclic quiver for FanoB
2
.

321

𝑋4,5,6𝑋1,2,3

𝑋10,11,12 𝑋7,8,9𝑘 = −2 𝑘 = 0𝑘 = 2

Figure 7: Linear quiver for FanoB
2
.

5. Fano B
2

The quiver Chern-Simons theory corresponding to FanoB
2

[23] has 3 nodes, 12 matter fields with 2 possible quiver
diagrams as shown in Figures 6 and 7with CS levels (2, −2, 0).
The superpotential of the theory is given by

𝑊 = Tr (𝑋
1
𝑋
4
𝑋
8
𝑋
12

− 𝑋
1
𝑋
4
𝑋
9
𝑋
11

− 𝑋
2
𝑋
5
𝑋
7
𝑋
12

+𝑋
2
𝑋
5
𝑋
9
𝑋
10

+ 𝑋
3
𝑋
6
𝑋
7
𝑋
11

− 𝑋
3
𝑋
6
𝑋
8
𝑋
10
) .

(34)

This theory does not admit dimer tiling presentation but can
be studied using forward algorithm. Using 𝑊 given in (34),
one can construct𝐾 which gives 𝑇 whence 𝑃:

𝑃 =

𝑝
1

𝑝
2

𝑝
3

𝑝
4

𝑝
5

𝑝
6

𝑝
7

𝑝
8

𝑋
1

2 0 0 2 2 0 0 1

𝑋
2

0 2 0 2 2 0 0 1

𝑋
3

0 0 2 2 2 0 0 1

𝑋
4

2 0 0 0 2 2 0 1

𝑋
5

0 2 0 0 2 2 0 1

𝑋
6

0 0 2 0 2 2 0 1

𝑋
7

4 0 0 2 0 0 2 1

𝑋
8

0 4 0 2 0 0 2 1

𝑋
9

0 0 4 2 0 0 2 1

𝑋
10

4 0 0 0 0 2 2 1

𝑋
11

0 4 0 0 0 2 2 1

𝑋
12

0 0 4 0 0 2 2 1

. (35)
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A possible choice of the total charge matrix 𝑄 is given by

𝑄 = (
𝑄
𝐹

𝑄
𝐷

) = (

1 1 1 −1 −1 −1 −2 2

0 0 0 1 −1 1 −1 0

0 0 0 0 1 0 1 −2

0 0 0 1 1 2 0 −4

) . (36)

The toric data of the theory is given as [23]:

G (2, −2, 0) = (

𝑝
1

𝑝
2

𝑝
3

𝑝
4

𝑝
5

𝑝
6

𝑝
7

𝑝
8

1 1 1 1 1 1 1 1

1 −1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0

0 0 1 −1 −1 1 1 0

). (37)

Taking the 𝑃-matrix (35), giving VEV to any of the matter
fields gives 𝑄

𝐹𝑟
= 0. Also from coalescing of nodes in the

quiver diagrams given in Figures 6 and 7, we know that the
nontrivial CS level of the 2-node daughter theory will be
(2, −2). Thus, the daughter theory will be Z

2
orbifolds of C4.

From (35), we see that giving a VEV to any of the matter
fields will always remove the last column (𝑝

8
) of 𝑃 which

corresponds to an internal point in the toric diagram of B
2
.

So if we do the algebraic higgsing ofB
2
, we are never going to

get the embedding as Fano P3 which has an internal point in
its toric diagram.We will now work out the partial resolution
to see if we can get more information.

5.1. Partial Resolution. In this case, we found that then if
we remove the set of points {𝑝

1
, 𝑝
4
, 𝑝
5
, 𝑝
7
}, {𝑝
1
, 𝑝
4
, 𝑝
6
, 𝑝
7
},

{𝑝
2
, 𝑝
4
, 𝑝
5
, 𝑝
7
}, {𝑝
2
, 𝑝
4
, 𝑝
6
, 𝑝
7
}, {𝑝
3
, 𝑝
4
, 𝑝
5
, 𝑝
7
}, {𝑝
3
, 𝑝
4
, 𝑝
6
, 𝑝
7
}

or {𝑝
4
, 𝑝
5
, 𝑝
6
, 𝑝
7
}, we will get a reduced toric data which

is related to G
𝑎
(𝑘 = 1) or G

𝑏
(𝑘 = 1) by a 𝐺𝐿(4,Z)

transformation. Further, the null space, that is, the reduced
charge matrix 𝑄

𝑟
, is trivial. This implies that the toric data of

the daughter theory is C4.

5.1.1. Embedding of FanoP3 inside FanoB
2
. If we remove the

points {𝑝
5
, 𝑝
6
, 𝑝
7
} from the toric dataG given in (37), we will

get the reduced toric data:

G
𝑟
= (

𝑝
1

𝑝
2

𝑝
3

𝑝
4

𝑝
8

1 1 1 1 1

1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

), (38)

which is exactly same as the toric data ofP3.Thus, we see that
P3 is embedded insideB

2
.

Taking a row (𝑟) of total charge 𝑄 of the daughter theory
as a linear combination of rows (𝑅

𝑖
) of total charge matrix of

B
2
given in (36),

𝑟 = (𝑎
1
, 𝑎
1
, 𝑎
1
, −𝑎
1
+ 𝑎
2
+ 𝑎
4
, −𝑎
1
− 𝑎
2
+ 𝑎
3
+ 𝑎
4
, −𝑎
1
+ 𝑎
2

+2𝑎
4
, −2𝑎
1
− 𝑎
2
+ 𝑎
3
, 2𝑎
1
− 2𝑎
3
− 4𝑎
4
) .

(39)

𝑘 = −2 𝑘 = 0

2

𝑋4,5,6

𝑋1,2,3

𝑋7,8,9

𝑘 = 2

3

1

Figure 8: Quiver diagram for FanoB
1
.

Setting the columns 5, 6, and 7 in 𝑟 to 0, we get 𝑎
1
= 𝑎
2
/3 =

𝑎
3
/5 = −𝑎

4
. The reduced charge matrix after removal of the

columns 5, 6, and 7 gives

𝑟 = (𝑎
1
, 𝑎
1
, 𝑎
1
, 𝑎
1
, −4𝑎
1
) = 𝑎
1
(1, 1, 1, 1, −4) . (40)

Thus, 𝑄 will have only 1 row generated by (1, 1, 1, 1, −4).
Hence, the charge matrix of daughter theory is 𝑄 = (𝑄

𝐹
) =

(1, 1, 1, 1, −4) which is the charge matrix of P3. Thus, partial
resolution only gives P3. However, from coalescing of nodes
in Figures 6 and 7, we expect the daughter theory to be Z

2

orbifold of P3.

6. Fano B
1

This theory was studied in [23] where the inverse algorithm
was used to find a quiver gauge theory shown in Figure 8
with CS levels (2, 0, −2).The superpotential of this theory was
obtained as

𝑊 = Tr [𝑋
2
𝑋
5
𝑋
8
(𝑋
1
𝑋
4
𝑋
9
𝑋
3
𝑋
6
𝑋
7
− 𝑋
1
𝑋
6
𝑋
7
𝑋
3
𝑋
4
𝑋
9
)] .

(41)

Note that the abelian 𝑊 = 0 and the quiver does not admit
tiling. So, there is noway to obtain the toric data of this theory
using forward algorithm or dimer tiling approach. The toric
data forB

1
theory with multiplicity is given as [23]:

G = (

𝑝
1

𝑝
2

𝑝
3

𝑝
4

𝑝
5

𝑝
6

𝑝
7

1 1 1 1 1 1 1

1 −1 0 0 0 0 0

0 1 −1 0 0 0 0

0 0 2 −1 1 1 0

). (42)

From the ansatz given in [23], we can take a choice of𝑄
𝐹
and

𝑄
𝐷
obeying the symmetry of Calabi-Yau over Fano B

1
, and

the total charge matrix will be given by

𝑄 = (
𝑄
𝐹

𝑄
𝐷

) = (

1 1 1 −2 −2 −2 3

0 0 0 2 1 1 −4

0 0 0 1 0 1 −2

) . (43)
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The algebraic higgsing in this case gives Z
2
orbifolds of

C4 and we also observe that the internal point in the toric
Fano B

1
gets removed. The partial resolution by removing

the points {𝑝
1
, 𝑝
4
, 𝑝
5
}, {𝑝
2
, 𝑝
4
, 𝑝
5
}, or {𝑝

3
, 𝑝
4
, 𝑝
5
} gives toric

data of C4. We could not obtain P3 as embedding insideB
1

by this method.

7. Conclusions

Our main motivation was to determine the 2-node daughter
quivers by the method of higgsing the 3-node parent quivers.
Particularly, we wanted to higgsizematter fields of the 3-node
quivers corresponding to FanoB

1
, B
2
, B
3
, B
4
3-fold and

obtain the daughter quivers. This procedure will determine
the CS levels of the daughter quiver theories. Unfortunately,
the algebraic method of higgsing does not give any nontrivial
charge matrix 𝑄.

For the quiver corresponding to Fano B
4
, which has

dimer tiling presentation, higgsing could be studied by tiling
approach as well as by algebraic method. By the algebraic
method of higgsing, we get the reduced charge matrix 𝑄

𝑟
=

0 which suggests that the two-node daughter theories can
be C4 and orbifolds of C4. From the method of partial
resolution of the toric data corresponding to Fano B

4
, we

obtained onlyC4. We have shown that the scaling of CS levels
(1, −2, 1) → (𝑛, −2𝑛, 𝑛) results in Z

𝑛
orbifolding of FanoB

4

theory. Hence, partial resolution of the orbifolded Fano B
4

will give C4/Z
𝑛
toric data with trivial 𝑄

𝐹
.

The 3-node quivers for other Fano B which were deter-
mined from the inverse algorithm do not admit dimer tiling
presentation. So, we cannot study higgsing of these theories
from tiling approach. The algebraic higgsing of any matter
field removes the information of the internal point in the toric
data and always gives trivial reduced charge matrix 𝑄

𝑟
= 0.

Unlike C4 and its orbifolds, the toric data of Fano P3 has an
internal point. So, we studied themethod of partial resolution
for toric Fano B

1
, B
2
, B
3
3-fold. We found that the Fano

P3 can be embedded inside FanoB
3
andB

2
theories.

Algebraic higgsing and unhiggsing of quiver theories cor-
responding to some Fano 3-fold have been studied recently
[25]. Higgsing certain matter fields in the 4-node quivers
corresponding to toric Fano C

4
gives the 3-node quiver

corresponding to Fano B
4
. Also higgsing of the quiver cor-

responding to FanoD
2
gives daughter quiver corresponding

to Fano B
4
. These results can also be reproduced using the

method of partial resolution.
It is not obvious whether we can obtain other Fano B’s

toric data as embeddings inside FanoC
4
and FanoD

2
3-fold.

One of the issues is about our choice of multiplicity of certain
points in the toric data for FanoB

1
, B
2
, B
3
.

We had chosen a charge matrix 𝑄
𝐹
, 𝑄
𝐷
with respect to

the ansatz [23] which determined the multiplicity of certain
points in the toric data of Fano B’s. The toric data with
the specific multiplicity of certain points was important to
obtain sensible quivers. In principle, we would like to apply
the method of partial resolution for toric data corresponding
to some 4-node quivers and reproduce the toric data of Fano
B
1
, B
2
, B
3
with the correct multiplicity of some of the

points. We hope to study in the future the embeddings of the
toric FanoB’s inside toric fourfold corresponding to 4-node
quiver Chern-Simons theories.
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