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Epidemic dynamics of computer viruses is an emerging discipline aiming to understand the way
that computer viruses spread on networks. This paper is intended to establish a series of rational
epidemic models of computer viruses. First, a close inspection of some common characteristics
shared by all typical computer viruses clearly reveals the flaws of previous models. Then, a generic
epidemic model of viruses, which is named as the SLBS model, is proposed. Finally, diverse
generalizations of the SLBS model are suggested. We believe this work opens a door to the full
understanding of how computer viruses prevail on the Internet.

1. Introduction

As a technical term coined by Cohen, a computer virus is a malicious program that
can replicate itself and spread from computer to computer. Once breaking out, a virus
can perform devastating operations such as modifying data, deleting data, deleting files,
encrypting files, and formatting disks [1]. In the past, massive outbreaks of computer viruses
have brought about huge financial losses. With the advent of the era of cloud computing
and the Internet of Things, the threat from viruses would become increasingly serious, even
leading to a havoc [2]. As we all know, antivirus software is the major means of defending
against viruses. With the continual emergence of new variants of existing viruses as well as
new types of virus strains, the struggle waged by human being against viruses is doomed to
be endless, arduous, and devious; indeed, the development of new types of antivirus software
always lags behind the emergence of new types of viruses. As thus, antivirus technique
cannot predict the evolution trend of viruses and, hence, cannot provide global suggestions
for their prevention and control.
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Inspired by the intriguing analogies between computer viruses and their biological
counterparts, Cohen [3] andMurray [4] inventively suggested that the techniques developed
in the epidemic dynamics of infectious diseases should be exploited to study the spread
of computer viruses. Later, Kephart and White [5] borrowed a biological epidemic model
(the SIS model) to investigate the way that computer viruses spread on the Internet. The
researches in this field have since been made mainly in the following two different directions.

(i) The finding that the autonomous system level topological structure of the Internet
follows diverse power law distributions [6–8] has stimulated the interest in the spreading
behavior of viruses on complex networks. Previous work in this direction focused on the
existence and estimation of the epidemic threshold under the SI model [9, 10], the SIS
model [11–21], and the SIR model [19, 21–24], leading to the most surprising finding that
the epidemic threshold vanishes for scale-free networks with infinite size [11]. Due to the
extreme diversity of topologies of large-sized complex networks, the global stability of the
endemic equilibrium, if present, was examined experimentally rather than theoretically.
Although Pastor-Satorras and Vespignani [11] indicated the necessity of studying other types
of epidemic models on complex networks, to our knowledge no relevant work has been
reported in the literature.

(ii) The strong desire to understand the spread mechanism of computer viruses has
motivated the proposal of a variety of epidemic models that are based on fully connected
networks, that is, networks where each computer is equally likely to be accessed by any other
computer. Previous work in this direction was focused mainly on the theoretical study of
complex dynamical properties of the models, such as the global stability of equilibria, the
emergence of periodic solutions, and the occurrence of chaotic phenomena [25–34].

The epidemic dynamics of computer viruses is still in its infancy. While previous
models lay emphasis on the similarity between computer viruses and infectious diseases,
the majority of them more or less neglect the intrinsic difference between them.

This paper is intended to present a series of rational epidemic models of computer
viruses. A close inspection of the characteristics of computer viruses reveals the flaws of
previous models. On this basis, a generic epidemic model of viruses, which is known as
the SLBS model, is proposed. By taking into account the impact of various factors, such as
the impulsive emergence of new viruses, the impulsive succeed in the development of new
antivirus software, and the fluctuation of the system parameters, a variety of generalizations
of the SLBS model are suggested. We believe the proposed models open a door to the
macroscopic understanding of the spread of computer viruses on the Internet.

The subsequent materials are organized this way: Section 2 elucidates the defects of
previous models. Sections 3 and 4 formulate the SLBS model and some of its generalizations,
respectively. Finally, This work is summarized in Section 5.

2. Flaws of Previous Models

2.1. Basic Terminologies

For convenience, let us introduce the following terminologies.
A computer is referred to as internal or external depending on whether it is connected

to the Internet or not.
A computer is referred to as infected or uninfected depending on whether there is a

virus staying in it or not.
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A computer is referred to as the host computer of a virus if the virus has entered it and
is staying in it. By the life cycle of a virus we mean the interval from the time it enters its host
computer to the time it is eradicated. By the lifetime of a virus, we mean the length of its life
cycle. The lifetime of a virus is not fixed. Rather, it is affected by a multiplicity of factors.

2.2. Principle of Computer Viruses

The ultimate goal of a clever computer virus is to devastate as many computer systems as
possible. To realize that goal, the virus would try to stealthily infect as many computers as
possible before it finally breaks out. As thus, a typical virus would undergo two consecutive
phases: the latent period, that is, the interval from the time the virus enters its host computer to
the time exactly before it inflicts damage on the host system, and the breaking-out period, that
is, the interval from the time the virus begins to inflict damage to the time it is wiped out. In
this paper, we will always assume that, in its life cycle, a virus has both latent and breaking-
out periods. Furthermore, an infected computer will be referred to as latent or breaking-out
depending on whether all viruses staying in it are in their respective latent periods or at least
one virus staying in it is in its breaking-out period.

2.3. A Common Flaw of Models with E Compartment

For some biological infectious diseases, an infected individual may experience a particular
period, named as the exposed period, before having infectivity [35]. So, the corresponding
epidemic models must have a separate E compartment, that is, the compartment of
all exposed individuals. Some previous epidemic models of computer viruses were
established by borrowing biological epidemic models with E compartment, implying the
prior assumption that some infected computers possess no infectivity [25, 29–31, 36–39].

The most striking characteristic shared by all computer viruses is their infectivity. On
one hand, once infected with a narrowly defined virus, a computer possesses infectivity
immediately, because it can infect other computers through sending emails with infected
attachments or transmitting infected files. On the other hand, once infected with a worm,
a computer also possesses infectivity immediately, because it can infect those computers with
specific system vulnerabilities. Therefore, in the real world there exists no infected computer
at all that has no infectivity. Equivalently, there exists no exposed computer, implying that a
rational epidemic model of computer viruses should have no E compartment.

2.4. A Common Flaw of Models with All Infected Computers in
a Single I Compartment

Most previous epidemic models of computer viruses have all infected computers in a single
I compartment, that is, neither of these models makes a further classification of the infected
computers [9–28, 32–34, 40–42].

On one hand, the cure rate of an infected computer, that is, the probability with which
it is cured, is a major concern in the modeling process. Indeed, a breaking-out computer can
get treated with a higher probability, because it usually suffers from a marked performance
degradation or even breaks down, which can be perceived evidently by the user. In contrast,
a latent computer can get treatment only with a much lower probability, because it usually
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can work normally and hence the user cannot become aware of the presence of any virus at
all. In the context of epidemiological modeling, therefore, there is a clear distinction between
latent computers and breaking-out computers.

On the other hand, as opposed to a latent internal computer, a breaking-out internal
computer has a higher probability to be disconnected from the Internet, because the
possible system breakdown caused by the virus outbreak would yield the disconnection
automatically.

In conclusion, a sound epidemic model of computer viruses should possess a
compartment of all latent computers (L compartment) and a compartment of all breaking-
out computers (B compartment) simultaneously.

2.5. A Common Flaw of Models with Permanent R Compartment

Some previous epidemic models of computer viruses have a permanent R compartment, that
is, the compartment of all uninfected computers having permanent immunity [19, 21–24, 26–
31]. Such models are especially suitable for a specific computer virus.

When modeling the spread of a large family of existing and future viruses sharing a
small number of common features, all currently uninfected computers worldwidewill always
be confronted with the threat from new variants of existing viruses as well as new virus
strains. As thus, it is likely that a computer that has previously been cured be infected by new
kinds of viruses, implying that no computer can acquire permanent immunity. In a word,
a model that aims to capture the spread of a large family of computer viruses should not
possess a permanent R compartment.

3. The SLBS Model: A Generic Model

This section is intended to propose a generic epidemic model of computer viruses. Based on
the previous discussions, all internal computers are classified as three categories: uninfected
internal computers (S computers), latent internal computers (L computers), and breaking-
out internal computers (B computers). In parallel, all external computers are classified as
three categories: uninfected external computers (S∗ computers), latent external computers
(L∗ computers), and breaking-out external computers (B∗ computers). Let S(t), L(t), and B(t)
denote the numbers of S, L, and B computers at time t, respectively. Next, let us impose the
following assumptions.

(A1) The Internet is fully connected, that is, every internal computer is equally probable
to be accessed by any other internal computer.

(A2) S∗ computers are connected to the Internet at constant rate μ1, while L∗ computers
are connected to the Internet at constant rate μ2. Let μ = μ1 + μ2.

(A3) In normal case, every internal computer is disconnected from the Internet with
constant probability δ1.

(A4) Due to the outbreak of viruses, every B computer is disconnected from the Internet
with constant probability δ2.

(A5) Due to the contact with infected removable storage media, every S computer is
infected with constant probability θ.
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(A6) Due to the outbreak of viruses, every L computer becomes a B computer with
constant probability α.

(A7) Due to the contact with L or B computers, at time t every S computer becomes an
L computer with probability f(L(t) + B(t)), where the function f is continuously
differentiable.

(A8) Every B computer is cured with constant probability γ1, every L computer is cured
with constant probability γ2, and every B computer is partially cured, that is,
becomes an L computer, with constant probability γ3.

Based on this collection of assumptions, the corresponding mean-field model, which will be
referred to as the SLBS model, is formulated as

Ṡ = μ1 + γ1B + γ2L − f(L + B)S − (δ1 + θ)S,

L̇ = μ2 + f(L + B)S + θS + γ3B − (
α + γ2 + δ1

)
L,

Ḃ = αL − (
γ1 + γ3 + δ1 + δ2

)
B,

(3.1)

where S = S(t), L = L(t), and B = B(t).
Based on the following reasons, the SLBS model is well qualified to serve as one of the

most fundamental epidemic models of computer viruses.

(i) This model captures the main features of computer viruses.

(ii) Most factors that have conspicuous effect on the diffusion of viruses are
incorporated into this model.

(iii) As a generic model, this model includes as special cases a large number of particular
models of interest.

(iv) More complicated spreadmechanisms of viruses can be characterized bymodifying
or extending this model properly.

Now, let us give a brief analysis of the SLBSmodel. First, assume every L or B computer
infects any S computer mutually independently and with constant probability β. A simple
calculation gives

f(L + B) = 1 − (
1 − β

)L+B
. (3.2)

Suppose β � 1, which is consistent with actual conditions. There are three possibilities, which
are listed as follows:

(i) L + B � β−1. Then f(L + B) ≈ β(L + B);

(ii) L + B ∼ β−1. Then f(L + B) ≈ 1 − e−β(L+B);

(iii) L + B � β−1. Then f(L + B) ≈ 1.

Second, letN(t) = S(t) + L(t) + B(t). Then

dN(t)
dt

= μ − δ1N(t) − δ2B(t) ≤ μ − δ1N(t). (3.3)
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If N(t) > μ/δ1, then dN(t)/dt < 0, implying lim supt→∞N(t) ≤ μ/δ1. After a moment of
reflection, it can be seen that, for arbitrarily small ε > 0, the simply connected compact set

Ωε =
{
(S, L, B) ∈ R3

+ : S + L + B ≤ μ

δ1
+ ε

}
(3.4)

is positively invariant for the SLBS model.
Finally, the SLBS model would have a unique virus-free equilibrium E0 = (μ/δ1, 0, 0)

if μ2 = θ = 0. Otherwise, this model would have no virus-free equilibrium. As far as the SLBS
model is concerned, the following problems are yet to be studied:

(i) stability of the virus-free equilibrium, if it exists,

(ii) existence and number of endemic equilibria, as well as their respective stabilities,

(iii) more complex dynamic behaviors, such as bifurcations and chaos, of the model.

Very recently, the authors [43–45] proposed three new models, which are formally
analogous to special instances of the SLBS model. All of the three models, however,
assume that the number of computers connected to the Internet keeps constant, which is
not perfectly consistent with actual conditions. The proposed SLBS model removes that
unrealistic assumption and, hence, can better describe the epidemics of viruses.

4. Some Generalizations of the SLBS Model

4.1. The Impulsive SLBS Model

From the smoothness of the right-hand-sided functions in the SLBS model, it can be
concluded that the solutions to the model are all smooth. In reality, however, the emergence
of a new type of viruses often leads to a sharp rise in the number of infected computers.
Likewise, the appearance of a new type of patches could yield a drastic drop in the number
of infected computers. In this context, the SLBS model should be modified by incorporating
impulsive terms.

Let {tk}k∈N , tk → ∞, denote the sequence of time instants at each of which the number
of infected computers rises rapidly, and let {sk}k∈N , sk → ∞, denote the sequence of time
instants at each of which the number of infected computers falls dramatically. Let us adopt
the assumptions (A1)–(A6) imposed in the SLBS model, and modify the assumptions (A7)-
(A8) in the following fashion.

(A7’) If t = tk for some k, exactly pS(tk) S computers are infected simultaneously at time
t, where p is a constant. Otherwise, the assumption is the same as (A7).

(A8’) If t = sk for some k, exactly q1B(sk) B computers are cured simultaneously at time t,
exactly q2L(sk) L computers are cured simultaneously at time t, and exactly q3B(sk)
B computers are partially cured, that is, become L computers, simultaneously at
time t. Otherwise, the assumption is the same as (A8).



Discrete Dynamics in Nature and Society 7

Based on this collection of assumptions, the corresponding model, which will be
referred to as the impulsive SLBS model, is formulated as

Ṡ = μ1 + γ1B + γ2L − f(L + B)S − (δ1 + θ)S, t /= tk, sk, k ∈ N,

L̇ = μ2 + f(L + B)S + θS + γ3B − (
α + γ2 + δ1

)
L, t /= tk, sk, k ∈ N,

Ḃ = αL − (
γ1 + γ3 + δ1 + δ2

)
B, t /= sk, k ∈ N,

S(tk+) =
(
1 − p

)
S(tk), k ∈ N,

L(tk+) = L(tk) + pS(tk), k ∈ N,

S(sk+) = S(sk) + q1B(sk) + q2L(sk), k ∈ N,

L(sk+) =
(
1 − q2

)
L(sk) + q3B(sk), k ∈ N,

B(sk+) =
(
1 − q1 − q3

)
B(sk), k ∈ N.

(4.1)

The impulsive SLBS model is a generic model, which subsumes the following two
particular models of interest:

(i) Impulsive toxication model, which is formulated as

Ṡ = μ1 + γ1B + γ2L − f(L + B)S − (δ1 + θ)S, t /= tk, k ∈ N,

L̇ = μ2 + f(L + B)S + θS + γ3B − (
α + γ2 + δ1

)
L, t /= tk, k ∈ N,

Ḃ = αL − (
γ1 + γ3 + δ1 + δ2

)
B,

S(tk+) =
(
1 − p

)
S(tk), k ∈ N,

L(tk+) = L(tk) + pS(tk), k ∈ N;

(4.2)

(ii) Impulsive detoxication model, which is formulated as

Ṡ = μ1 + γ1B + γ2L − f(L + B)S − (δ1 + θ)S, t /= sk, k ∈ N,

L̇ = μ2 + f(L + B)S + θS + γ3B − (
α + γ2 + δ1

)
L, t /= sk, k ∈ N,

Ḃ = αL − (
γ1 + γ3 + δ1 + δ2

)
B, t /= sk, k ∈ N,

S(sk+) = S(sk) + q1B(sk) + q2L(sk), k ∈ N,

L(sk+) =
(
1 − q2

)
L(sk) + q3B(sk), k ∈ N,

B(sk+) =
(
1 − q1 − q3

)
B(sk), k ∈ N.

(4.3)

4.2. A Consideration of the Delay Terms

There are three potential delay factors that have notable influence on the spread of computer
viruses.
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(i) Due to the time cost needed to develop new viruses, there is a delay from the time
a B computer is cured to the time this computer is infected again.

(ii) Due to the intrinsic latent period of viruses, there is a delay from the time an S
computer is infected to the time this computer breaks out.

(iii) Due to the time cost needed to develop new patches, there is a delay from the time
an L computer breaks out to the time this computer is cured.

A question arises: is it necessary to incorporate delay terms in the standard SLBS
model? In order to answer this question, let us make a brief analysis from four aspects.

(i) The SLBS model assumes that an S computer is infected randomly, which implicitly
includes a time delay in developing new viruses.

(ii) The SLBS model supposes that an L computer breaks out randomly, which, to a
certain extent, implies a latency-related delay.

(iii) The SLBS model postulates that a B computer is cured randomly, which, in some
sense, also implies a time delay in developing new antivirus software.

(iv) The incorporation of delay terms in the SLBS model would greatly enhance the
hardness in the theoretical study of the resulting models.

Due to these reasons, we do not suggest to study SLBSmodels incorporatedwith delay
terms.

4.3. The Stochastic SLBS Model

All of the above-mentioned models are based on the assumption that all system parameters
do not change with time. In reality, however, there are numerous uncertain factors, which
are often abstracted as noises, that have significant influence on these parameters. As a
result, some or all system parameters are constantly varying with time. Therefore, the
predictions made from any deterministic model may have a significant deviation from the
actual condition.

An alternative to the deterministic modeling of viruses is to incorporate noises in some
or all system parameters so as to form a stochastic model. As an instance, noise terms can be
incorporated in the μ1 and μ2 parameters of the original SLBS model to produce a particular
stochastic SLBS model of the form

Ṡ =
(
μ1 + σ1Ẇ1

)
+ γ1B + γ2L − f(L + B)S − (δ1 + θ)S,

L̇ =
(
μ2 + σ2Ẇ2

)
+ f(L + B)S + θS + γ3B − (

α + γ2 + δ1
)
L,

Ḃ = αL − (
γ1 + γ3 + δ1 + δ2

)
B,

(4.4)

whereW1 = W1(t) andW2 = W2(t) stand for the standard one-dimensional Wiener processes
(i.e., Brownian motions) and σ1 and σ2 stand for the standard deviations associated with W1

and W2, respectively.
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5. Concluding Remarks

By inspecting the characteristics of computer viruses carefully, the flaws of some previous
epidemic models of viruses have been indicated. On this basis, a generic epidemic model of
viruses (the SLBS model) has been established, and some of its generalizations have been
suggested.

Towards this direction, a great diversity of particular models with parameter
restrictions are yet to be investigated. Besides, the standard SLBS model is based on fully
connected networks and hence cannot capture the effect of the topological structure of the
Internet on the spread of computer viruses. It would be highly rewarding to study the
qualitative properties of the SLBS model on scale-free networks.
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