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The two-dimensionalmagnetohydrodynamic (MHD) stagnation-point flowof electrically conducting non-NewtonianCasson fluid
and heat transfer towards a stretching sheet have been considered.The effect of thermal radiation is also investigated. Implementing
similarity transformations, the governing momentum, and energy equations are transformed to self-similar nonlinear ODEs and
numerical computations are performed to solve those. The investigation reveals many important aspects of flow and heat transfer.
If velocity ratio parameter (B) and magnetic parameter (M) increase, then the velocity boundary layer thickness becomes thinner.
On the other hand, for Casson fluid it is found that the velocity boundary layer thickness is larger compared to that of Newtonian
fluid. The magnitude of wall skin-friction coefficient reduces with Casson parameter (𝛽). The velocity ratio parameter, Casson
parameter, and magnetic parameter also have major effects on temperature distribution. The heat transfer rate is enhanced with
increasing values of velocity ratio parameter. The rate of heat transfer is enhanced with increasing magnetic parameterM for B >
1 and it decreases withM for B < 1. Moreover, the presence of thermal radiation reduces temperature and thermal boundary layer
thickness.

1. Introduction
In fluid dynamics the effects of external magnetic field on
magnetohydrodynamic (MHD) flow over a stretching sheet
are very important due to its applications in many engineer-
ing problems, such as glass manufacturing, geophysics, paper
production, and purification of crude oil. The flow due to
stretching of a flat surface was first investigated by Crane [1].
Pavlov [2] studied the effect of external magnetic field on the
MHD flow over a stretching sheet. Andersson [3] discussed
the MHD flow of viscous fluid on a stretching sheet and
Mukhopadhyay et al. [4] presented the MHD flow and heat
transfer over a stretching sheet with variable fluid viscosity.
On the other hand, Fang and Zhang [5] reported the exact
solution ofMHDflowdue to a shrinking sheet with wall mass
suction. Bhattacharyya and Layek [6] showed the behavior
of solute distribution in MHD boundary layer flow past a
stretching sheet. Furthermore,many vital properties ofMHD
flow over stretching sheet were explored in various articles
[7–12] in the literature. Several important investigations on
the flow due to stretching/shrinking sheet are available in the
literature [13–16].

Chiam [17] investigated the stagnation-point flow tow-
ards a stretching sheet with the stretching velocity of the
plate being equal to the straining velocity of the stagnation-
point flow and found no boundary layer structure near the
sheet.Mahapatra andGupta [18] reconsidered the stagnation-
point flow problem towards a stretching sheet taking different
stretching and straining velocities and they observed two
different kinds of boundary layer near the sheet depending
on the ratio of the stretching and straining constants. The
detailed discussion on the stagnation-point flow over stretch-
ing/shrinking sheet can be found in the works of Mahapatra
and Gupta [19], Nazar et al. [20], Layek et al. [21], Nadeem et
al. [22], Bhattacharyya [23–25], Bhattacharyya et al. [26–28],
Bhattacharyya and Vajravelu [29], and Van Gorder et al. [30].

Many fluids used in industries show non-Newtonian
behaviour, so themodern-day researchers aremore interested
in those industrial non-Newtonian fluids and their dynamics.
A single constitutive equation is not enough to cover all
properties of such non-Newtonian fluids and hence many
non-Newtonian fluid models [31–34] have been proposed
to clarify all physical behaviours. Casson fluid is one of the
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types of such non-Newtonian fluids, which behaves like an
elastic solid, and for this fluid, a yield shear stress exists in
the constitutive equation. Fredrickson [35] investigated the
steady flowof aCassonfluid in a tube.Theunsteady boundary
layer flow and heat transfer of a Casson fluid over a moving
flat plate with a parallel free stream were studied by Mustafa
et al. [36] and they solved the problem analytically using
homotopy analysis method (HAM). Bhattacharyya et al. [37,
38] reported the exact solution for boundary layer flow of
Casson fluid over a permeable stretching/shrinking sheet
with and without external magnetic field. The important
characteristics of the flows of various non-Newtonian fluids
over a stretching/shrinking sheet can be found in the articles
[39–46].

Motivated by the previously mentioned investigations
on flow of non-Newtonian fluids due to a stretching sheet
and its vast applications in many industries, in the present
paper, the steady two-dimensional MHD stagnation-point
flow of electrically conducting non-Newtonian Casson fluid
and heat transfer past a stretching sheet in presence of
thermal radiation effect are investigated. Using similarity
transformations, the governing equations are transformed.
The converted self-similar ordinary differential equations are
solved by shooting method.The numerical results are plotted
in some figures to see the effects of physical parameters on the
flow and heat transfer.

2. Mathematical Analysis of the Flow

Consider the steady two-dimensional incompressible flow of
electrically conducting Casson fluid bounded by a stretching
sheet at 𝑦 = 0, with the flow being confined in 𝑦 > 0. It is also
assumed that the rheological equation of state for an isotropic
and incompressible flow of a Casson fluid can be written as
[37, 47]
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=
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where 𝜇
𝐵
is plastic dynamic viscosity of the non-Newtonian

fluid, 𝑝
𝑦
is the yield stress of fluid, 𝜋 is the product of the

component of deformation rate with itself, namely, 𝜋 = 𝑒
𝑖𝑗
𝑒
𝑖𝑗
,

𝑒
𝑖𝑗
is the (𝑖, 𝑗)th component of the deformation rate, and 𝜋

𝑐
is

critical value of 𝜋 based on non-Newtonian model.
Under the previous conditions, the MHD boundary layer

equations for steady stagnation-point flow can be written as
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where 𝑢 and V are the velocity components in 𝑥 and 𝑦
directions, respectively, 𝑈

𝑠
= 𝑎𝑥 is the straining velocity

of the stagnation-point flow with 𝑎 (>0) being the straining

constant, 𝜐 is the kinematic fluid viscosity, 𝜌 is the fluid
density, 𝛽 = 𝜇

𝐵
√2𝜋
𝑐
/𝑝
𝑦
is the non-Newtonian or Casson

parameter, 𝜎 is the electrical conductivity of the fluid, and𝐻
0

is the strength of magnetic field applied in the 𝑦 direction,
with the induced magnetic field being neglected.

The boundary conditions for the velocity components are

𝑢 = 𝑈
𝑤
, V = 0 at 𝑦 = 0,

𝑢 󳨀→ 𝑈
𝑠

as 𝑦 󳨀→ ∞,
(4)

where 𝑈
𝑤
= 𝑐𝑥 is stretching velocity of the sheet with 𝑐 (>0)

being the stretching constant.
The stream function Ψ is introduced as

𝑢 =
𝜕Ψ

𝜕𝑦
, V = −

𝜕Ψ

𝜕𝑥
. (5)

For relations of (5), (2) is satisfied automatically and (3) takes
the following form:
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Also, boundary conditions in (4) reduce to

𝜕Ψ

𝜕𝑦
= 𝑈
𝑤
,

𝜕Ψ

𝜕𝑥
= 0, at 𝑦 = 0,

𝜕Ψ

𝜕𝑦
󳨀→ 𝑈

𝑠
as 𝑦 󳨀→ ∞.

(7)

Now, the dimensionless variable for the stream function is
implemented as

Ψ = √𝑐𝜐𝑥𝑓 (𝜂) , (8)

where the similarity variable 𝜂 is given by 𝜂 = 𝑦√𝑐/𝜐.
Using relation (8) and similarity variable, (6) finally takes

the following self-similar form:

(1 +
1

𝛽
)𝑓󸀠󸀠󸀠 + 𝑓𝑓󸀠󸀠 − 𝑓󸀠2 −𝑀(𝑓󸀠 − 𝐵) + 𝐵2 = 0, (9)

where primes denote differentiation with respect to 𝜂, 𝑀 =

𝜎𝐻2
0
/𝜌𝑐 is themagnetic parameter, and𝐵 = 𝑎/𝑐 is the velocity

ratio parameter.
The boundary conditions reduce to

𝑓 (𝜂) = 0, 𝑓󸀠 (𝜂) = 1 at 𝜂 = 0,

𝑓󸀠 (𝜂) 󳨀→ 𝐵 as 𝜂 󳨀→ ∞.
(10)

3. Analysis of Heat Transfer

For the temperature distribution in the flow field with the-
rmal radiation, the governing energy equation can be written
as
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where 𝑇 is the temperature, 𝜅 is the thermal conductivity, 𝑐
𝑝

is the specific heat, and 𝑞
𝑟
is the radiative heat flux.

The appropriate boundary conditions are

𝑇 = 𝑇
𝑤

at 𝑦 = 0,

𝑇 󳨀→ 𝑇
∞

as 𝑦 󳨀→ ∞,
(12)

where 𝑇
𝑤
is the constant temperature at the sheet and 𝑇

∞
is

the free stream temperature assumed to be constant.
Using the Rosseland approximation for radiation [48],

𝑞
𝑟
= −(4𝜎∗/3𝑘

1
)𝜕𝑇4/𝜕𝑦 is obtained, where 𝜎∗ is the Stefan-

Boltzmann constant and 𝑘
1
is the absorption coefficient. We

presume that the temperature variation within the flow is
such that 𝑇4 may be expanded in a Taylor’s series. Expanding
𝑇4 about 𝑇

∞
and neglecting higher-order terms we get 𝑇4 =

4𝑇3
∞
𝑇 − 3𝑇4

∞
.

Now (11) reduces to
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Next, the dimensionless temperature 𝜃 is introduced as

𝜃 (𝜂) =
𝑇 − 𝑇
∞

𝑇
𝑤
− 𝑇
∞

. (14)

Using (8), (14), and the similarity variable, (13) reduces to

(3𝑅 + 4) 𝜃
󸀠󸀠 + 3𝑅Pr𝑓𝜃󸀠 = 0, (15)

where primes denote differentiation with respect to 𝜂, Pr =

𝑐
𝑝
𝜇/𝜅 is the Prandtl number, and 𝑅 = 𝜅∗𝑘

1
/4𝜎𝑇3
∞

is the
thermal radiation parameter.

The boundary conditions for 𝜃 are obtained from (12) as

𝜃 (𝜂) = 1 at 𝜂 = 0,

𝜃 (𝜂) 󳨀→ 0 as 𝜂 󳨀→ ∞.
(16)

4. Skin Friction Coefficient and
Nusselt Number

The physical quantities of interest are the wall skin friction
coefficient 𝐶

𝑓
and the local Nusselt number Nu

𝑥
, which are

defined as

𝐶
𝑓
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)
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where 𝜏
𝑤
is the shear stress or skin friction along the stretch-

ing sheet and 𝑞
𝑤
is the heat flux from the sheet and those are

defined as
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Thus, we get the wall skin friction coefficient𝐶
𝑓
and the local

Nusselt number Nu
𝑥
as follows:

𝐶
𝑓
√Re
𝑥
= (1 +

1

𝛽
)𝑓󸀠󸀠 (0) ,

Nu
𝑥

√Re
𝑥

= −𝜃󸀠 (0) ,

(19)

where Re
𝑥
= 𝑈
𝑤
𝑥/𝜐 is the local Reynolds number.

5. Numerical Method for Solution

Equations (9) and (15) along with boundary conditions
(10) and (16) are solved using shooting method [49–51] by
converting them to an initial value problem. In this method,
it is necessary to choose a suitable finite value of 𝜂 → ∞,
say 𝜂
∞
. The following system is set

𝑓󸀠 = 𝑝, 𝑝󸀠 = 𝑞,

𝑞󸀠 =
{𝑝2 +𝑀(𝑝 − 𝐵) − 𝑓𝑞 − 𝐵2}

(1 + 1/𝛽)
,

𝜃󸀠 = 𝑧, 𝑧󸀠 =
3𝑅Pr𝑓𝑧
(3𝑅 + 4)

(20)

with the boundary conditions

𝑓 (0) = 0, 𝑝 (0) = 1, 𝜃 (0) = 1. (21)

In order to integrate (20) with (21) as an initial value problem,
the values of 𝑞(0), that is, 𝑓󸀠󸀠(0) and 𝑧(0), that is, 𝜃󸀠(0), are
required, but no such values are given in the boundary
conditions. The suitable guess values for 𝑓󸀠󸀠(0) and 𝜃󸀠(0)
are chosen and then integration is carried out. Then, the
calculated values for 𝑓󸀠and 𝜃 at 𝜂

∞
= 15 (say) are compared

with the given boundary conditions𝑓󸀠(15) = 𝐵 and 𝜃(15) = 0
and the estimated values,𝑓󸀠󸀠(0) and 𝜃󸀠(0), are adjusted to
give a better approximation for the solution. We take the
series of values for𝑓󸀠󸀠(0) and 𝜃󸀠(0) and apply the fourth-order
classical Runge-Kutta method with step-size Δ𝜂 = 0.01. The
previous procedure is repeated until we get the asymptotically
converged results within a tolerance level of 10−5.

6. Results and Discussion

The abovementioned numerical scheme is carried out for
various values of physical parameters, namely, the velocity
ratio parameter (𝐵), themagnetic parameter (𝑀), the Casson
parameter (𝛽), the Prandtl number (Pr), and the thermal
radiation parameter (𝑅) to obtain the effects of those parame-
ters on dimensionless velocity and temperature distributions.
The obtained computational results are presented graphically
in Figures 1–12 and the variations in velocity and temperature
are discussed.

Firstly, a comparison of the obtained results with previ-
ously published data is performed. The values of wall skin-
friction coefficient 𝑓󸀠󸀠(0) for Newtonian fluid case (𝛽 = ∞)
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Figure 1: Velocity profiles 𝑓(𝜂) for several values of 𝐵.

Table 1: Values of 𝑓󸀠󸀠(0) for several values of B with 𝑀 = 0 and
𝛽 = ∞ (Newtonian fluid case without magnetic field).

B Mahapatra and Gupta [19] Nazar et al. [20] Present study
0.1 −0.9694 −0.9694 −0.969386
0.2 −0.9181 −0.9181 −0.918107
0.5 −0.6673 −0.6673 −0.667263
2.0 2.0175 2.0176 2.017503
3.0 4.7293 4.7296 4.729284

in the absence of external magnetic field for different values
of velocity ratio parameter (B) are compared with those
obtained by Mahapatra and Gupta [19], Nazar et al. [20] in
Table 1 in order to verify the validity of the numerical scheme
used and those are found in excellent agreement.

The velocity boundary layer thickness (𝛿) and thermal
boundary layer thickness (𝛿

𝑇
) are, respectively, described

by the equations 𝛿 = 𝜂
𝛿
√𝜐/𝑐 and 𝛿

𝑇
= 𝜂
𝛿𝑇
√𝜐/𝑐. The

dimensionless boundary layer thicknesses 𝜂
𝛿
and 𝜂

𝛿𝑇
are

defined as the values of 𝜂 (nondimensional distance from
the surface) at which the difference of dimensionless velocity
𝑓󸀠(𝜂) and the parameter 𝐵 has been reduced to 0.001
and the dimensionless temperature 𝜃(𝜂) has been decayed
to 0.001, respectively. The velocity and thermal boundary
layer thicknesses for various parametric values are given in
Table 2.The velocity boundary layer thickness decreases with
increasing values 𝐵 (both for 𝐵 > 1 and 𝐵 < 1) and also the
thermal boundary layer thickness decreases with increasing
𝐵. So, when the straining velocity rate increases compared
to that of stretching velocity rate, then both the boundary
layer thicknesses reduce. Actually, downward vorticity due
to straining velocity causes the reduction of boundary layer
thickness. Similar to velocity ratio parameter, the increase of
Casson parameter 𝛽 also makes the velocity boundary layer
thickness thinner. So, the velocity boundary layer thickness
for Casson fluid is larger than that of Newtonian fluid. Thus,
the plasticity of the fluid causes the increment of the velocity
boundary layer thickness. On the other hand, for 𝐵 = 0.1
(<1), the thermal boundary layer thickness increases with
increasing values of Casson parameter, but for 𝐵 = 2 (>1)
the thermal boundary layer thickness decreases with Casson

Table 2: Values of 𝜂
𝛿
and 𝜂

𝛿𝑇
for several values of B, 𝛽,M, Pr, and R.

𝛽 = 2,𝑀 = 0.5,
Pr = 1, 𝑅 = 1

𝐵 → 0.1 0.5 1 1.5 2.0
𝜂
𝛿

5.76 4.81 — 2.59 2.48
𝜂
𝛿𝑇

10.78 6.59 5.04 4.25 3.75

𝑀 = 0.5, Pr = 1,
𝑅 = 1

𝛽 → 0.5 1 2 5 ∞

𝜂
𝛿

𝐵 = 0.1 8.14 6.65 5.76 5.15 4.70
𝐵 = 2 3.50 2.86 2.48 2.22 2.03

𝜂
𝛿𝑇

𝐵 = 0.1 9.45 10.24 10.78 11.17 11.48
𝐵 = 2 3.82 3.78 3.75 3.73 3.72

𝛽 = 2, Pr = 1,
𝑅 = 1

𝑀 → 0 0.5 1 2

𝜂
𝛿

𝐵 = 0.1 6.49 5.76 5.20 4.43
𝐵 = 2 2.53 2.48 2.43 2.33

𝜂
𝛿𝑇

𝐵 = 0.1 10.17 10.78 11.21 11.75
𝐵 = 2 3.76 3.75 3.74 3.73

𝛽 = 2,𝑀 = 0.5,
𝑅 = 1

Pr → 0.5 1 2

𝜂
𝛿𝑇

𝐵 = 0.1 14.46 10.78 6.69
𝐵 = 2 5.22 3.75 2.70

𝛽 = 2,𝑀 = 0.5,
Pr = 1

𝑅 → 1 2 5

𝜂
𝛿𝑇

𝐵 = 0.1 10.78 8.58 7.09
𝐵 = 2 3.75 3.20 2.81

parameter. Furthermore, due to magnetic field, the velocity
boundary layer thickness reduces in all cases. But the thermal
boundary layer thickness reduces (increases) for 𝐵 = 2
(𝐵 = 0.1) with stronger magnetic field. Finally, for the
Prandtl number and for radiation parameter, the thermal
boundary layer thickness decreases, which is the same as that
of Newtonian fluid case.

The velocity and temperature profiles for various values
of velocity ratio parameter 𝐵 are plotted in Figures 1 and 2,
respectively. Depending on the velocity ratio parameter, two
different kinds of boundary layers are obtained as described
byMahapatra and Gupta [18] for Newtonian fluid. In the first
kind, the velocity of fluid inside the boundary layer decreases
from the surface towards the edge of the layer (for 𝐵 < 1)
and in the second kind the fluid velocity increases from the
surface towards the edge (for 𝐵 > 1). Those characters can
be seen from velocity profiles in Figure 1. Also, it is important
to note that if 𝐵 = 1 (𝑎 = 𝑐), that is, the stretching velocity
and the straining velocity are equal, then there is no boundary
layer of Casson fluid flow near the sheet, which is similar to
that of Chiam’s [17] observation for Newtonian fluid. From
Figure 2, it is seen that in all cases thermal boundary layer
is formed and the temperature at a point decreases with
𝐵.

The effects of Casson parameter 𝛽 on the velocity and
temperature fields are depicted in Figures 3 and 4. It is
worthwhile to note that the velocity increases with the
increase in values of 𝛽 for 𝐵 = 2 and it decreases with
𝛽 for 𝐵 = 0.1. Consequently, the velocity boundary layer
thickness reduces for both values of 𝐵. Due to the increase of
Casson parameter𝛽, the yield stress𝑝

𝑦
falls and consequently
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Figure 4: Temperature profiles 𝜃(𝜂) for several values of 𝛽.

velocity boundary layer thickness decreases. The influences
of Casson parameter on the temperature profiles are different
in two cases, 𝐵 = 2 and 𝐵 = 0.1. Temperature at a point
decreases with increasing 𝛽 for 𝐵 = 2 and increases with
increasing 𝛽 for 𝐵 = 0.1.

In Figures 5 and 6, the velocity and temperature profiles
are presented for several values of magnetic parameter 𝑀.
Similar to that of Casson parameter, due to the increase of
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Figure 6: Temperature profiles 𝜃(𝜂) for several values of𝑀.

magnetic parameter the dimensionless velocity at fixed 𝜂
increases for 𝐵 = 2 and for 𝐵 = 0.1 the velocity decre-
ases. Consequently, for both types of boundary layers, the
thickness decreases. The Lorentz force induced by the dual
actions of electric and magnetic fields reduces the velocity
boundary layer thickness by opposing the transport phe-
nomenon. Also, for 𝐵 = 2, the temperature decreases with
𝑀 and increases with𝑀 for 𝐵 = 0.1.

The dimensionless temperature profiles 𝜃(𝜂) for several
values of Prandtl Number Pr and thermal radiation para-
meter 𝑅 are exhibited in Figures 7 and 8, respectively, for
two values of 𝐵. In both cases (𝐵 = 0.1 and 2), the
temperature decreases with increasing values of Prandtl
number and radiation parameter and the thermal boundary
layer thickness becomes smaller in all cases. Actually, the
rate of heat transfer is enhanced with Prandtl Number and
radiation parameter and this causes the reduction of thermal
boundary layer thickness.

The physical quantities, the wall skin friction coefficient
𝐶
𝑓
, and the local Nusselt number Nu

𝑥
, which have immense

engineering applications, are proportional to the values of
(1 + 1/𝛽)𝑓󸀠󸀠(0) and −𝜃󸀠(0), respectively. The values of (1 +
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1/𝛽)𝑓󸀠󸀠(0) and −𝜃󸀠(0) against the magnetic parameter𝑀 are
plotted in Figures 9 and 10 for different values of 𝐵. From the
figures, it is observed that the magnitude of wall skin friction
coefficient decreases with increasing values of velocity ratio
parameter 𝐵 when 𝐵 < 0.1, whereas for 𝐵 > 0.1 the
magnitude of skin-friction increases with𝐵.The local Nusselt
number (Figure 10) increases with 𝐵; that is, the heat transfer
rate is enhanced with 𝐵. Due to higher values of Casson
parameter 𝛽, the magnitude of (1 + 1/𝛽)𝑓󸀠󸀠(0) decreases
(Figure 11) for both values of 𝐵 (for 𝐵 > 1 as well as for
𝐵 < 1). On the other hand, the value of −𝜃󸀠(0), that is, the
heat transfer (Figure 12), increases with 𝛽 for 𝐵 = 2 (>1)
and decreases with 𝛽 when 𝐵 = 0.1 (<1). Finally, from those
figures (Figures 9–12), it can be noticed that the wall skin
friction coefficient always becomes larger when the external
magnetic field is stronger and the rate of heat transfer is
enhanced (reduced) with increasing magnetic parameter 𝑀
for 𝐵 > 1 (𝐵 < 1).
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7. Conclusions

The MHD stagnation-point flow of Casson fluid and heat
transfer over a stretching sheet are investigated taking into
consideration the thermal radiation effect. Using similarity
transformations, the governing equations are transformed to
self-similar ordinary differential equations which are then
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solved using shooting method. From the study, the following
remarks can be summarized.

(a) The velocity boundary layer thickness reduces with
velocity ratio parameter and magnetic parameter.

(b) The velocity boundary layer thickness for Casson
fluid is larger than that of Newtonian fluid.

(c) For Casson fluid, that is, for decrease of Casson para-
meter, the thermal boundary layer thickness decre-
ases for 𝐵 = 0.1 (<1) and, in contrast, for 𝐵 = 2 (>1)
the thickness increases.

(d) Due to thermal radiation, the temperature inside the
boundary layer decreases.

(e) Themagnitude of wall skin-friction coefficient decre-
ases with Casson parameter 𝛽.

Nomenclature

𝑎: Straining constant
𝐵: Velocity ratio parameter
𝑐: Stretching constant
𝐶
𝑓
: Wall skin friction coefficient

𝑐
𝑝
: Specific heat

𝑓: Dimensionless stream function
𝑓󸀠: Dimensionless velocity
𝐻
0
: Strength of magnetic field applied in the 𝑦 direction

𝑘
1
: Absorption coefficient

𝑀: Magnetic parameter
Nu
𝑥
: Local Nusselt number

Pr: Prandtl number
𝑝: A variable
𝑝
𝑦
: Yield stress of fluid

𝑞: A variable
𝑞
𝑟
: Radiative heat flux

𝑞
𝑤
: Heat flux from the sheet

𝑅: Thermal radiation parameter
Re
𝑥
: Local Reynolds number

𝑇: Temperature
𝑇
𝑤
: Constant temperature at the sheet

𝑇
∞
: Free stream temperature

𝑈
𝑠
: Straining velocity of the stagnation-point
flow

𝑈
𝑤
: Stretching velocity of the sheet

𝑢: Velocity component in 𝑥 direction
V: Velocity component in 𝑦 direction
𝑥: Distance along the sheet
𝑦: Distance perpendicular to the sheet
𝑧: A variable.

Greek Symbols

𝛽: Non-Newtonian/Casson parameter
𝛿: Velocity boundary layer thickness
𝛿
𝑇
: Thermal boundary layer thickness

𝜂: Similarity variable
𝜂
∞
: Finite value of 𝜂

𝜂
𝛿
: Dimensionless velocity boundary layer

thickness
𝜂
𝛿𝑇
: Dimensionless thermal boundary layer
thickness

𝜅: Thermal conductivity
𝜇
𝐵
: Plastic dynamic viscosity of the
non-Newtonian fluid

𝜋: Product of the component of deformation
rate with itself

𝜋
𝑐
: Critical value of 𝜋

𝜐: Kinematic fluid viscosity
𝜌: Fluid density
Ψ: Stream function
𝜎: Electrical conductivity of the fluid
𝜎∗: Stefan-Boltzmann constant
𝜏
𝑤
: Shear stress

𝜃: Dimensionless temperature.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The author gratefully acknowledges the financial support of
theNational Board forHigherMathematics (NBHM),Depart-
ment of Atomic Energy, Government of India, for pursuing
this work. The author also thanks the referees for their
valuable comments and suggestions which helped a lot in the
improvement of the quality of the paper.

References

[1] L. J. Crane, “Flow past a stretching plate,” Zeitschrift für Ange-
wandteMathematik und Physik, vol. 21, no. 4, pp. 645–647, 1970.

[2] K. B. Pavlov, “Magnetohydrodynamic flow of an incompressible
viscous fluid caused by the deformation of a plane surface,”
Magnetohydrodynamics, vol. 10, pp. 146–148, 1974.



8 Journal of Thermodynamics

[3] H. I. Andersson, “MHD flow of a viscoelastic fluid past a
stretching surface,” Acta Mechanica, vol. 95, no. 1–4, pp. 227–
230, 1992.

[4] S. Mukhopadhyay, G. C. Layek, and S. A. Samad, “Study of
MHD boundary layer flow over a heated stretching sheet with
variable viscosity,” International Journal of Heat and Mass
Transfer, vol. 48, no. 21-22, pp. 4460–4466, 2005.

[5] T. Fang and J. Zhang, “Closed-form exact solutions ofMHDvis-
cous flow over a shrinking sheet,”Communications in Nonlinear
Science and Numerical Simulation, vol. 14, no. 7, pp. 2853–2857,
2009.

[6] K. Bhattacharyya and G. C. Layek, “Chemically reactive solute
distribution in MHD boundary layer flow over a permeable
stretching sheet with suction or blowing,”Chemical Engineering
Communications, vol. 197, no. 12, pp. 1527–1540, 2010.

[7] K. Bhattacharyya, “Effects of radiation and heat source/sink on
unsteady MHD boundary layer flow and heat transfer over a
shrinking sheet with suction/injection,” Frontiers of Chemical
Engineering in China, vol. 5, no. 3, pp. 376–384, 2011.

[8] K. Bhattacharyya, “Effects of heat source/sink on mhd flow
and heat transfer over a shrinking sheet with mass suction,”
Chemical Engineering Research Bulletin, vol. 15, no. 1, pp. 12–17,
2011.

[9] K. Bhattacharyya and I. Pop, “MHDBoundary layer flow due to
an exponentially shrinking sheet,”Magnetohydrodynamics, vol.
47, pp. 337–344, 2011.

[10] H. Tabaei, M. A. Moghimi, A. Kimiaeifar, and M. A. Moghimi,
“Homotopy analysis and differential quadrature solution of the
problem of free-convective magnetohydrodynamic flow over a
stretching sheet with theHall effect andmass transfer taken into
account,” Journal of Applied Mechanics and Technical Physics,
vol. 52, no. 4, pp. 624–636, 2011.

[11] R. Kandasamy, I. Muhaimin, and G. Kamachi, “Scaling
group transformation for the effect of temperature-dependent
nanofluid viscosity on an mhd boundary layer past a porous
stretching surface,” Journal of Applied Mechanics and Technical
Physics, vol. 52, no. 6, pp. 931–940, 2011.

[12] A. M. Salem and R. Fathy, “Effects of variable properties on
MHD heat and mass transfer flow near a stagnation point
towards a stretching sheet in a porous medium with thermal
radiation,” Chinese Physics B, vol. 21, Article ID 054701, 2012.

[13] S. Mukhopadhyay and R. S. R. Gorla, “Effects of partial slip on
boundary layer flow past a permeable exponential stretching
sheet in presence of thermal radiation,”Heat andMass Transfer,
vol. 48, pp. 1773–1781, 2012.

[14] K. Bhattacharyya and G. C. Layek, “Slip effect on diffusion
of chemically reactive species in boundary layer flow over a
vertical stretching sheet with suction or blowing,” Chemical
Engineering Communications, vol. 198, no. 11, pp. 1354–1365,
2011.

[15] K. Bhattacharyya, “Boundary layer flow and heat transfer over
an exponentially shrinking sheet,” Chinese Physics Letters, vol.
28, no. 7, Article ID 074701, 2011.

[16] I. C. Mandal and S. Mukhopadhyay, “Heat transfer analysis for
fluid flow over an exponentially stretching porous sheet with
surface heat flux in porous medium,” Ain Shams Engineering
Journal, vol. 4, pp. 103–110, 2013.

[17] T. C. Chiam, “Stagnation-point flow towards a stretching plate,”
Journal of the Physical Society of Japan, vol. 63, no. 6, pp. 2443–
2444, 1994.

[18] T. R. Mahapatra and A. S. Gupta, “Magnetohydrodynamic sta-
gnation-point flow towards a stretching sheet,”ActaMechanica,
vol. 152, no. 1-4, pp. 191–196, 2001.

[19] T. R. Mahapatra and A. S. Gupta, “Heat transfer in stagnation-
point flow towards a stretching sheet,” Heat and Mass Transfer,
vol. 38, no. 6, pp. 517–521, 2002.

[20] R. Nazar, N. Amin, D. Filip, and I. Pop, “Unsteady boundary
layer flow in the region of the stagnation point on a stretching
sheet,” International Journal of Engineering Science, vol. 42, no.
11-12, pp. 1241–1253, 2004.

[21] G. C. Layek, S. Mukhopadhyay, and S. A. Samad, “Heat and
mass transfer analysis for boundary layer stagnation-point flow
towards a heated porous stretching sheet with heat absorp-
tion/generation and suction/blowing,” International Commu-
nications in Heat and Mass Transfer, vol. 34, no. 3, pp. 347–356,
2007.

[22] S. Nadeem, A. Hussain, andM. Khan, “HAM solutions for bou-
ndary layer flow in the region of the stagnation point towards
a stretching sheet,” Communications in Nonlinear Science and
Numerical Simulation, vol. 15, no. 3, pp. 475–481, 2010.

[23] K. Bhattacharyya, “Dual solutions in boundary layer stagna-
tion-point flow and mass transfer with chemical reaction past
a stretching/shrinking sheet,” International Communications in
Heat and Mass Transfer, vol. 38, no. 7, pp. 917–922, 2011.

[24] K. Bhattacharyya, “Dual solutions in unsteady stagnation-point
flow over a shrinking sheet,” Chinese Physics Letters, vol. 28, no.
8, Article ID 084702, 2011.

[25] K. Bhattacharyya, “Heat transfer in unsteady boundary layer
stagnation-point flow towards a shrinking sheet,” Ain Shams
Engineering Journal, vol. 4, pp. 259–264, 2013.

[26] K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “Reac-
tive solute transfer in magnetohydrodynamic boundary layer
stagnation-point flow over a stretching sheet with suc-
tion/blowing,” Chemical Engineering Communications, vol. 199,
no. 3, pp. 368–383, 2012.

[27] K. Bhattacharyya, M. G. Arif, and W. A. Pramanik, “MHD
boundary layer stagnation-point flow and mass transfer over a
permeable shrinking sheet with suction/blowing and chemical
reaction,” Acta Technica, vol. 57, pp. 1–15, 2012.

[28] K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “Slip
effects on an unsteady boundary layer stagnation-point flow
and heat transfer towards a stretching sheet,” Chinese Physics
Letters, vol. 28, no. 9, Article ID 094702, 2011.

[29] K. Bhattacharyya and K. Vajravelu, “Stagnation-point flow and
heat transfer over an exponentially shrinking sheet,” Communi-
cations in Nonlinear Science and Numerical Simulation, vol. 17,
no. 7, pp. 2728–2734, 2012.

[30] R. A. Van Gorder, K. Vajravelu, and I. Pop, “Hydromagnetic
stagnation point flow of a viscous fluid over a stretching or
shrinking sheet,”Meccanica, vol. 47, no. 1, pp. 31–50, 2012.

[31] W. L. Wilkinson, “The drainage of a maxwell liquid down a
vertical plate,” The Chemical Engineering Journal, vol. 1, no. 3,
pp. 255–257, 1970.

[32] K. R. Rajagopal, “Viscometric flows of third grade fluids,”Mec-
hanics Research Communications, vol. 7, no. 1, pp. 21–25, 1980.

[33] K. R. Rajagopal, T. Y. Na, andA. S. Gupta, “Flow of a viscoelastic
fluid over a stretching sheet,” Rheologica Acta, vol. 23, no. 2, pp.
213–215, 1984.

[34] C. Dorier and J. Tichy, “Behavior of a bingham-like viscous fluid
in lubrication flows,” Journal of Non-Newtonian Fluid Mecha-
nics, vol. 45, no. 3, pp. 291–310, 1992.



Journal of Thermodynamics 9

[35] A. G. Fredrickson, Principles and Applications of Rheology, Pre-
ntice-Hall, Englewood Cliffs, NJ, USA, 1964.

[36] M. Mustafa, T. Hayat, I. Pop, and A. Aziz, “Unsteady boundary
layer flowof aCasson fluid due to an impulsively startedmoving
flat plate,” Heat Transfer, vol. 40, no. 6, pp. 563–576, 2011.

[37] K. Bhattacharyya, T. Hayat, and A. Alsaedi, “Exact solution for
boundary layer flow of Casson fluid over a permeable stretch-
ing/shrinking sheet,” Zeitschrift für Angewandte Mathematik
und Mechanik, 2013.

[38] K. Bhattacharyya, T. Hayat, and A. Alsaedi, “Analytic solution
for magnetohydrodynamic boundary layer flow of Casson fluid
over a stretching/shrinking sheet with wall mass transfer,”
Chinese Physics B, vol. 22, Article ID 024702, 2013.

[39] T. Hayat, Z. Abbas, and N. Ali, “MHD flow andmass transfer of
a upper-convected Maxwell fluid past a porous shrinking sheet
with chemical reaction species,” Physics Letters Section A, vol.
372, no. 26, pp. 4698–4704, 2008.

[40] T. Hayat, S. Iram, T. Javed, and S. Asghar, “Shrinking flow of
second grade fluid in a rotating frame: an analytic solution,”
Communications in Nonlinear Science and Numerical Simula-
tion, vol. 15, no. 10, pp. 2932–2941, 2010.

[41] K.-L. Hsiao, “Viscoelastic fluid over a stretching sheet with
electromagnetic effects and nonuniform heat source/sink,”
Mathematical Problems in Engineering, vol. 2010, Article ID
740943, 14 pages, 2010.

[42] B. Sahoo and S. Poncet, “Flow and heat transfer of a third grade
fluid past an exponentially stretching sheet with partial slip
boundary condition,” International Journal of Heat and Mass
Transfer, vol. 54, no. 23-24, pp. 5010–5019, 2011.

[43] K. Bhattacharyya, S. Mukhopadhyay, G. C. Layek, and I. Pop,
“Effects of thermal radiation on micropolar fluid flow and heat
transfer over a porous shrinking sheet,” International Journal of
Heat and Mass Transfer, vol. 55, no. 11-12, pp. 2945–2952, 2012.

[44] S. Mukhopadhyay, “Casson fluid flow and heat transfer over a
nonlinearly stretching,” Chinese Physics B, vol. 22, Article ID
074701, 2013.

[45] S. Mukhopadhyay, P. R. De, and G. C. Layek, “Heat transfer
characteristics for the Maxwell fluid flow past an unsteady
stretching permeable surface embedded in a porous medium
with thermal radiation,” Journal of Applied Mechanics and
Technical Physics, vol. 54, pp. 385–396, 2013.

[46] T. Javed, N. Ali, Z. Abbas, and M. Sajid, “Flow of an Eyring-
Powell non-Newtonian fluid over a stretching sheet,” Chemical
Engineering Communications, vol. 200, pp. 327–336, 2013.

[47] M. Nakamura and T. Sawada, “Numerical study on the flow
of a non-Newtonian fluid through an axisymmetric stenosis,”
Journal of Biomechanical Engineering, vol. 110, no. 2, pp. 137–143,
1988.

[48] M. Q. Brewster, Thermal Radiative Transfer Properties, John
Wiley and Sons, 1972.

[49] K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “MHD
boundary layer slip flow and heat transfer over a flat plate,”
Chinese Physics Letters, vol. 28, no. 2, Article ID 024701, 2011.

[50] S. Mukhopadhyay, K. Bhattacharyya, and G. C. Layek, “Steady
boundary layer flow and heat transfer over a porous moving
plate in presence of thermal radiation,” International Journal of
Heat and Mass Transfer, vol. 54, no. 13-14, pp. 2751–2757, 2011.

[51] K. Bhattacharyya, “Dual solutions in boundary layer stag-
nation-point flow andmass transfer with chemical reaction past
a stretching/shrinking sheet,” International Communications in
Heat and Mass Transfer, vol. 38, no. 7, pp. 917–922, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


