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We investigate the trefoil and figure eight knot universes from Bianchi type I cosmology. In
particular, we construct several concrete models describing the knot universes related to the cyclic
universe and examine those cosmological features and properties in detail. Finally some examples
of unknotted closed curves solutions (spiky and Mobius strip universes) are presented.

1. Introduction

Inflation is one of the most important phenomena in modern cosmology and has been
confirmed by recent observations on cosmic microwave background (CMB) radiation [1-
4]. Furthermore, it is suggested by the cosmological and astronomical observations of Type
Ia supernovae [5, 6], CMB radiation [1-4], large scale structure (LSS) [7, 8], baryon acoustic
oscillations (BAO) [9], and weak lensing [10] that the expansion of the current universe is
accelerating. In order to explain the late time cosmic acceleration, we need to introduce so-
called dark energy in the framework of general relativity or modify the gravitational theory,
which can be regarded as a kind of geometrical dark energy (for reviews on dark energy, see,
e.g., [11-16], and for reviews on modified gravity, see, e.g., [17-23]).

It is considered that there happened a Big Bang singularity in the early universe. In
addition, at the dark energy dominated stage, the finite-time future singularities will occur
[24-70]. There also exists the possibility that a Big Crunch singularity will happen. To avoid
such cosmological singularities, there are various proposals such as the cyclic universe [71-
80] (in other approach of the cyclic universe, see [81]), the ekpyrotic scenario [82-85], and
the bouncing universe [86-97].

On the other hand, as a related theory to the cyclic universe, the trefoil and figure-
eight knot universes have been explored in [98-103]. In the homogeneous and isotropic
Friedmann-Lemaitre-Robertson-Walker (FLRW) and the homogeneous and anisotropic
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Bianchi-type I cosmologies, the geometrical description of these knot theories corresponds
to oscillating solutions of the gravitational field equations. Note that the terms “the trefoil
knot universe” and “the figure-eight knot universe” were introduced for the first time in
[98-103]. Moreover, the Weierstrass g(t), {(f), and o(t) functions and the Jacobian elliptic
functions have been applied to solve several issues on astrophysics and cosmology [104-106].
In particular, very recently, by combining the reconstruction method in [17, 18, 66, 107, 108]
with the Weierstrass and Jacobian elliptic functions, the equation of state (EoS) for the cyclic
universes [109] and periodic generalizations of Chaplygin gas type models [110-112] for dark
energy [113] have been examined. This procedure can be considered to be a novel approach
to cosmological models in order to investigate the properties of dark energy.

In this paper, we explore the cosmological features and properties of the trefoil
and figure-eight knot universes from Bianchi-type I cosmology in detail. In particular, we
construct several concrete models describing the trefoil and figure-eight knot universes based
on Bianchi-type I spacetime. In our previous work [98-103], the models of the knot universes
from the homogeneous and isotropic FLRW spacetime were studied. By using the equivalent
procedure, as continuous investigations, in this work we explicitly demonstrate that the knot
universes can be constructed by Bianchi-type I spacetime. In other words, our purpose is to
establish the formalism which can describe the knot universes.

It is significant to emphasize that according to the recent cosmological data analysis
[1-4], it is implied that the universe is homogeneous and isotropic. In fact, however, recently
the feature of anisotropy of cosmological phenomena such as anisotropic inflation [114, 115]
has also been studied in the literature. In such a cosmological sense, it can be regarded as
reasonable to consider the anisotropic universe including Bianchi-type I spacetime. The units
of the gravitational constant 877G = ¢ = 1 with G and ¢ being the gravitational constant and
the seed of light are used.

The organization of the paper is as follows. In Section 2, we explain the model and
derive the basic equations. In Section 3, we investigate the trefoil knot universe. Next, we
study the figure-eight knot universe in Section 4. In Section 5 we present some unknotted
closed curve solutions of the model. Finally, we give conclusions in Section 6.

2. The Model

In this section we briefly review some basic facts about Einstein’s field equation. We start
from the standard gravitational action (chosen units are ¢ = 87G = 1)

S = %lJ‘d4x\/§(R—2A+Lm), (2.1)

where R is the Ricci scalar, A is the cosmological constant, and L,, is the matter Lagrangian.
For a general metric g, the line element is

ds? = gudx'dx’, (u,v=0,1,2,3). (2.2)

The corresponding Einstein field equations are given by

1
Ry + <A - ER) Suv = —K° Ty, (2.3)
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where Ry, is the Ricci tensor. This equation forms the mathematical basis of the theory of
general relativity. In (2.3), T, is the energy-momentum tensor of the matter field defined as

2 6Ly

Ty = ﬁ@, (2.4)

and satisfies the conservation equation

Vv, T =0, (2.5)

where V, is the covariant derivative which is the relevant operator to smooth a tensor on a
differentiable manifold. Equation (2.5) yields the conservations of energy and momentums,
corresponding to the independent variables involved. The general Einstein Equation (2.3) is
a set of nonlinear partial differential equations. We consider the Bianchi-I metric

ds® = —dt* + A?dx? + B*dx3 + C*dx3, (2.6)

where we assume that T = t/ty, x; = x;/ xi0, A, B, C are dimensionless (usually we put ty =
xjo = 1). Here the metric potentials A, B, and C are functions of T = t alone. This insures that
the model is spatially homogeneous. The statistical volume for the anisotropic Bianchi type-I
model can be written as

V = ABC. (2.7)

The Ricci scalar is

A B € AB AC BC
= = 2.8
R=g'R; 2<A B C aB " ac BC) (28)
where A = dA/dr and so on. The nonvanishing components of Einstein tensor
Gi]' = R,']' - 0.58’in (2.9)
are
o AB L AC B
“ " AB" AC  BC’
B C BC
a2
Car=-A <B c’ BC>’
i e e (2.10)
_p2
o = =B <A C+AC>
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We define a = (ABC)'/? as the average scale factor so that the average Hubble parameter
may be defined as

4 . .
H=—-=-(—-+5+=). 2.11
; ( Yol N ) (2.11)
We write this average Hubble parameter H sometimes as
1
H-= g(Hl + H, + H3), (212)
where
A B C
== == == 2.13
Hy =~ Hy =, Hj C (2.13)

are the directional Hubble parameters in the directions of x1, x», and x3, respectively. Hence
we get the important relations

A=Age/ ™t B=PByelHd  C=Cyel (2.14)

where Ay, By, Cy are integration constants. The other important cosmological quantity is the
deceleration parameter g, which for our model reads as

qg=-—- (2.15)
Next, we assume that the energy-momentum tensor of fluid has the form
Ti; = diag[Too, T11, Tz, T3] = diag[p, —p1, —p2, —ps]. (2.16)

Here p; are the pressures along the x; axes, recpectively, p is the proper density of energy.
Then the Einstein equations (with gravitational units, 877G =1 and ¢ = 1) read as

1
R;j - ERgij = -Tj, (217)
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where we assumed A = 0. For the metric (2.6) these equations take the form

AB BC CA
AB 'BC ca PV
B,C BC
B c Bc TP TY
C+14+CA+_ o
ctatcatThTY
A B _AB
A'BTap™h

In terms of the Hubble parameters this system takes the form

H.H, + H2H3 + H1H3 —p= 0,
H2+H3+H22+H32+H2H3+p1 =0,
H3+H1+H§+H12+H3H1+p2=0,

Hy+ Hy+ H? + H? + HiHy +p3 =0

Also we can introduce the three EoS parameters as

and the deceleration parameters

AA BB cC
TR q2 = B’ q3=——=-

qn= 2

Finally we want to present
2H +6H*=p-p,

where

_pP1tpatps
p= 3

is the average pressure. Hence we can calculate the average parameter of the EoS as

p w1+ wy + w3
w==-=—"-""=
P 3

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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Let us also present the expression of R in terms of H;. From (2.8) and (2.13) follows
R=2(Hy + Hy + Fs + H} + H} + H} + HyHy + Hy Hy + HoHs ). (2.25)

Now we want to present the knot and unknotted universe solutions of the system (2.18) or
its equivalent (2.19). Consider some examples.

3. The Trefoil Knot Universe

Our aim in this section is to construct the simplest examples of the knot universes, namely,
the trefoil knot universes. Consider the following examples.

3.1. Example 1

Let us assume that our universe is filled by the fluid with the following parametric EoS:

— _Dl
Pl - El 7
D,
p2 = EQ,
(3.1)
__Ds
P3 - E3/
— DO
p EO 4

where

Dy = <—125in2(37') +36¢0s(3T) + 18cos? (3T)> cos(2T)
. 26 .
—49sin(271) <E + cos(37‘)> sin(371),

E; = sin(37)(2 + cos(37)) sin(27),

D, = —18sin(27)cos?(37) + (49 sin(37) cos(27) — 36 sin(27)) cos(3T)
—26sin(37) cos(27) + 12sin*(37) sin(27),

E; = sin(371)(2 + cos(37)) cos(27),

D3 = —30sin(37)(2 + cos(37))cos*(27)

—38sin(27) <c052(37) - (%)sinz(?n') + (%) cos(37) + %) cos(21)

+305sin(37)sin?(27) (2 + cos(37)),
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E; = (2 + cos(37))* cos(27) sin(27),
Dy = <6C052(2T) - 6Si1’12(2T)>C053(3T)
+ <24cos2(27') —225sin(37) sin(27) cos(2T) — 24sin2(27')>cosz(37')
+ <<—6sin2(37') + 24) cos?(27) - 52 sin(37) sin(27) cos(27)

+ <6sir12 (37) - 24> Sil’lz(ZT)> cos(37)

- (12<cos(2’r) - <Z> sin(37) sin(27‘))>

X <sin(3T) cos(2T) + <§> sin(2‘r)> sin(37),

Eo = (2 + cos(37))? cos(27) sin(27) sin(37).
(3.2)

Substituting these expressions for the pressures and density of energy into the system (2.18),
we obtain the following solution:

A = Ag + [2 + cos(37)] cos(27),

B = By + [2 + cos(37T)] sin(27), (3.3)
C =Cy +sin(37),

where Ay, By, Cy are some real constants. We see that this solution describes the trefoil knot.
In fact the solution (3.3) is the parametric equation of the trefoil knot. In Figure 1 we plot the
trefoil knot for (3.3), where we assume

Ag=By=Cy=0 (3.4)

and the initial conditions are A(0) = 3, B(0) = C(0) = 0. The Hubble parameters for the
solution (3.3) with (3.4) read as

a 2sin(37)
Hi = -2tan(27) 2 +cos(31)’
H, = —2cot(27) - 2sin(37) (3.5)

2+ cos(31)’

Hj3 = 3cot(37).

In Figure 2 we plot the evolution of H; for thr solution (3.5) with (3.4). It is interesting to
study the evolution of the volume of the trefoil knot universe. For our case it is given by

V = [2 + cos(37)]% cos(27) sin(27) sin(37). (3.6)
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Figure 1: The trefoil knot for (3.3), where Ay = By = Cy = 0.

In Figure 3 we plot the evolution of the volume of the trefoil knot universe with respect to the
cosmic time 7 for (3.6) with (3.4). To get V > 0, we must consider Ay, By, Co > 0, if exactly for
example, as Ag > 3, By > 3, Cy > 1. But below for simplicity we take the case (3.4). The other
interesting quantity is the scalar curvature. For the trefoil knot solution (3.3), it has the form

R= (6(1251n2(3r)sin2(27-) - 285in(37) cos(27) sin(27)
+ 3sin’(37) cos(27) sin(27)
— 12sin?(37)cos? (2T) — 8 cos(37)sin?(27)
— 8cos*(37)sin?(27) — 2cos® (37)sin (27)
+ 8 cos(37)cos?(2T) + 8cos?(37)cos?(27) + 2cos® (3T)cos? (27)
—525sin(37) cos(27) cos(37) sin(27) (3.7)
— 19 cos(27) sin(27) sin(37)cos?(37)
+ 6sin?(27)sin?(37) cos(3T)

— 6c0s?(27)sin?(37) cos(3’r)>>

/ <sin(27‘) cos(27)(2 + cos(?rr))2 sin(37‘)>.

In Figure 4 we plot the evolution of the R with respect of the cosmic time 7.

So we have shown that the universe can live in the trefoil knot orbit according to the
solution (3.3). It is interesting to note that this trefoil knot solution admits infinite number
accelerated and decelerated expansion phases of the universe. To show this, as an example
let us consider the solution for C from (3.3) that is C = Cy + sin(37). In this case we have
C = -9sin(37) so that C > 0 (accelerating phase) as 7 € ((or/3) + (2nxr/3), (27 /3) + (2nx/3))
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H, 10

Figure 3: The evolution of the volume of the trefoil knot universe with respect to the cosmic time 7 for
(3.6).

and C < 0 (decelerating phase) as 7 € ((2nx/3), (7r/3) + (2nar/3)) with the transion points
C =3cos(37;) = 0as 7; = (0.5 + nor)/3, where n is integer thatisn =0,+1,£2,43,---.

3.2. Example 2

Now we consider the following parametric EoS:
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Figure 4: The evolution of the R with respect of the cosmic time 7 for (3.7).

PS - E3 7
p EO 4

(3.8)

D; = —sin?(27)cos?(37)
+ (—2 cos(27) — 4sin®(27) - 3 — sin(37) sin(2r)) cos(37)
+sin(37) sin(27) — 4 cos(27)
—sin?(37) — 4sin®(27),

Eq
D, = - (2 + COSZ(3T)>COSZ(2T) —sin(37) (-1 + cos(37)) cos(2T)

1,

+ (=3 +25sin(27)) cos(37) + 4sin(27) — sin®(37),

E,

1,

S
Il

- (2 + COSZ(3T)>COSZ(2T)
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+ (— sin(27)cos?(37) + (—4sin(27) — 2) cos(37)
+3sin(37) —4 -4 sin(2’r)> c0s(27) + 2 8in(27) cos(37)
+ (4 + 3sin(37)) sin(27) — sin’(37),
Es=1,
Do = (2 +cos(37))
x (((2 + cos(37)) sin(27) + sin(37)) cos(2T) + sin(37) sin(27)),

E=1.
(3.9)

Substituting these expressions for the pressures and density of energy into the system (3.8),
we obtain the following solution:

H;y = [2+ cos(3T)] cos(27)
= 2cos(27) + 0.5[cos(57) + cos(T)],
H; = [2 + cos(3T)] sin(27) (3.10)

2sin(27) + 0.5[sin(57) —sin(7)],
Hj; = sin(37).

We see that this solution again describes the trefoil knot but for the “coordinates” H;. Note
that the scale factors we can recovered from (2.14). We get
A= Aoesin(27)+0.1 sin(57)+0.5 sin(T)
B = Boe—[cos(27)+0.l cos(57)—0.5cos(T)] (311)

C= Coe—(l/S) cos(37)

where Ay, By, Cy are some real constants. In Figure 5 we plot the evolution of A, B, C
accordingly to (3.11) and for the initial conditions A(0) = 1, B(0) = e%¢, C(0) = e'/3, where
we assume that Ag = By = Cy = 1. For this example, the volume of the universe is given by

V = Vye {sin(27)+0.15in(57)+0.5 sin(7)~[cos(27)+0.1 cos(57) 0.5 cos(7)]-(1/3) cos(37) } (3_12)

The evolution of the volume for (3.12) is presented in Figure 6 for Ao = By = Cp = Vy = 1 and
for the intial condition V (0) = e 14/15,
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Figure 5: The evolution of A, B, C accordingly to (3.11), t € [0, 2ur].

Figure 6: The evolution of the volume for (3.12) with A9 =By =Cop = Vp = 1.

The scalar curvature has the form

R= <2C052(27) + 2sin?(27) + 2 cos(27) Sin(ZT)>C082(3T)
+ <8cosz(27') + (2sin(37) + 4 + 8sin(27)) cos(27)
+ 6 +8sin?(27) + (—4 + 2sin(37)) sin(27)> cos(37) (3.13)
+8c0s2(27) + (-2sin(37) + 8 + 8sin(27)) cos(2T)
+8sin?(27) + (=8 — 25in(37)) sin(27) + 2sin*(37).
In Figure 7 we plot the evolution of the R with respect of the cosmic time 7. Finally we
conclude that the Einstein equations for the Bianchi I type metric admit the trefoil knot

solution of the form (3.10) or (3.11). These solutions describe the accelerated and decelerated
phases of the expansion of the universe.
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Figure 7: The evolution of the R with respect of the cosmic time 7 for (3.13).

Figure 8: The knotted closed curve corresponding to the solution (3.14) with (3.4), t € [0,4x], k =1/3.

3.3. Example 3

Now we present a new kind of the trefoil knot universes. Let the system (2.18) has the
solution

A= Ap+[2+n(37)]en(27),

B =By + [2 + cn(37)]sn(27), (3.14)
C=Cy+sn(37),
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where cn(t) = cn(t k) and sn(t) = sn(t, k) are the Jacobian elliptic functions which are
doubly periodic functions, and k is the elliptic modulus. Figure 8 shows the knotted closed
curve corresponding to the solution (3.14) with (3.4). Substituting (3.14) into the system
(2.18) we get the corresponding expressions for p and p; that gives us the parametric EoS.
This parametric EoS reads as

D,
P=oE
P
E,’
b (3.15)
P3 = - E3 7
Dy
p = EO,

where

D; = 9k%en (37, k)sn® (3T, k)sn (27, k)

0 ) 0
- 12$am(37,k)5n (37, k)en(2T, k)aam(Zr,k)

—4sn(27, k) < (Z)cn3 (31, k)k* + <§>cn2(37', k)k?

45\ 0 5 2 2, 0 o )
+ << 1 )aTam (37, k) + en“ (21, k) k* + aTam (21, k) )en(37, k)

9 5 9\ 0 2 2
+ 267‘ am”~ (21, k) + <2> 57 am (37, k) + 2cn” (27, k) k )sn(37‘, k)

+ 18cn (37, k) ;—Tam(?)r, k)(2 + en(37, k))en (27, k)a—i_am(ZT, k),

E; = 2+ on(37, k))sn(27, k)sn(37, k),

D5 = 9k%en (3, k)sn® (3T, k)en (2T, k) + 12£am(3r, k)sn? (3, k)%am(ZT, k)sn(2t, k)
—9en(27, k)en® (3T, k)k? + 2en® (3T, k) k2

é i 2 2 2 _ % s o >
’ <<9> aro (27, k) +537-am (37, k) <9>k sn”(27, k) )en(37, k)

8\o 9 5 (8, 2.2
+ <9>6Tam (21, k) +26Tam (37, k) <9>k sn” (27, k)sn (3, k)

—18cn(37, k) ;—Tam(37', k)(2 + en(37, k)) a%_am(ZT, k)sn(2t, k),
E; = sn(37, k)(2 + cn(37, k))en(27, k),

D3 = —4k%*sn(27,k)(2 + en(3T, k))zcn3(27', k)

- BOa—iam(Zr, k)sn(3t, k) aa—Tam(ST, k)(2 + en(37, k))en? (27, k) + 4sn(27, k)
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x <k2 (2 +cn? (3T, k))snz(ZT, k)
+ <— (;) a%_amz(&', k) + < )kzsn2(3’r, k) - SEamz(ZT, k)) cn?(37, k)

+ <—206%_am2 (27, k) + 9k?sn? (3, k) — 9a%am2(37', k))cn(3’r, k)

7AW > 002
+ <Z>sn (3, k)gam(?ﬂ, k) ZOaTam (2, k)>cn(27', k)

+ BOagam(BT k)sn(3r, k) am(ZT k)sn?(27,k)(2 + en(3T, k)),
Es; = (2 + en(3T, k))%en(27, k)sn(27, k),
Dy = —4sn(37, k)sn(2t, k)en(27, k) (2 + en (37, k))za%_am2 (21, k)

+ 6;—Tam(7', k)(2 + en(37,k))

X (cn2(3r, k) + 2en (37, k) — sn?(3T, k)) (en(21, k) — sn(27, k))

x (cn(21, k) + sn(2, k)) 0 am(ZT k) — 18sn(3t, k)sn (27, k)

x (- (%) sn?(37, k) + cn?(37, k) + 2cn(37, k)>cn(27‘, k) %amz(BT, k),

Ey = (2 +cn? (37, k))cn(ZT, k)sn(27, k)sn (37, k).
(3.16)
The volume of the universe for the solution (3.14) with (3.4) looks like

V = [2+ en(37)]* en(27)sn(27)sn(37). (3.17)

The evolution of the volume for (3.17) is presented in Figure 9 The scalar curvature has the
form

R= < - 8sn (27, k)sn (3T, k)k?(2 + en(3T, k))*en® (27, k)
+ 12dn(27, k)dn (37, k) (2 + cn(37, k))
x (an(ST, k) +2en (31, k) — 3sn? (3, k)>cn2 (27, k) — 18sn(37, k)
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Figure 9: The evolution of the volume of the trefoil knot universe with respect to the cosmic time 7 for
(3.17).

x <—<§>k2(2 +cn(37, k))?sn? (27, k)

+ (—4k2cn(37', k) — 2en? (37, k)k? — dn” (37, k))snz(BT, k)
+ (2 + cn(37,k))

X <cn3(37', k)k? + 2en? (3T, k) k>
+ <5dn2(31', k) + (g)dn2 (2, k))cn(?n‘, k)
+ <§>dn2(27', k) +2dn*(3, k)) ) sn(2t, k)en(27, k)
- 12dn (27, k)sn?(27, k)dn (3T, k) (2 + en(37, k))
x (Cn2(37', k) + 2en(37, k) — 3sn2(37, k)>>

/ <CI‘l(2T, k)sn(27, k) (2 + en(37, k))*sn (3, k)).
(3.18)

In Figure 10 we plot the evolution of the R with respect of the cosmic time 7.
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Figure 10: The evolution of the R with respect of the cosmic time 7 for (3.18).

3.4. Example 4
Our fourth example is given by
H; = [2 +on(37)]en(271),
H; = [2+on(37)]sn(27), (3.19)

H; =sn(37),

Which again the knotted closed curve in Figure 8 but for the “coordinates” H;. Note that the
corresponding parametric EoS looks like

— _Dl
P1 E ’
p2 = EQ 7
D, (3.20)
PB - E3 7
— DO
p EO 4

where

D; = — (2 +en(37,k))*sn?(27, k) — sn(37, k) <—3%am(37‘, k) +2+cn(37, k)>sn(27', k)

+ (—ch(ZT, k)%am(ZT, k) - 3%am(37‘, k)>cn(37‘, k) —4cen(27, k)%am(ZT, k)

—sn?(37, k),
E =1,
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D, = — (2 +en(37, k))*en? (27, k) — sn(3T, k) (—3%am(3’r, k) + 2+ cn(37, k)>cn(27', k)

0 0 0
+ (—BEam(?ﬂ, k) + ZEam(ZT, k)sn(2T, k))cn(?n', k) + 4$am(2‘r, k)sn(2t, k)

—sn? (37, k),
E,=1,

D3 = — (2 +cn(37, k))%en? (27, k)

+ (—sn(ZT,k)an(ST, k) + <—4sn(27',k) - 2;—Tam(27', k)>cn(37', k)

+ 3sn(37, k) %am(?n‘, k) - 4%am(27‘, k) —4sn (27, k)>

x cn(27, k) + 2%am(27‘, k)sn(2t, k)en (37, k)

0 0
+ <4$am(27', k) + 3sn(3t, k) gam(&r, k)>sn(2’r, k)

- sn?(3T, k),
E3=1,

Dy = (((2 + en(37, k))sn (27, k) + sn(37, k) )en(27, k) + sn(27, k)sn(37, k))
x (2 +cn(371,k)),

Eo=1.
(3.21)

In Figure 11 we plot the evolution of p;, p for (3.20). The scalar curvature has the form

R = 2(2 + en(37, k))*en?(27, k)
+ <25n(27‘, k)cn2 (37, k)
+ (8sn(27, k) + 4dn(27, k) + 2sn (37, k))en (37, k)
+8sn(27, k) + (4 — 6dn (37, k))sn (37, k)
+ 8dn(27, k) )en (2, k) + 2sn? (27, k)en? (37, k)
+ (85n2 (21, k) + (—4dn (27, k) + 2sn(37, k))sn (27, k) + 6dn(37, k))
x en(37, k) + 8sn2(27, k) + ((4 — 6dn (37, k))sn (37, k) — 8dn (2, k))
x sn(21, k) + 2sn (37, k),

(3.22)

In Figure 12 we plot the evolution of the R with respect of the cosmic time 7.
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Figure 11: The evolution of p;, p for (3.20), t € [0,2x], k =1/3, p (red), p1 (blue), p» (green), ps (black).
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Figure 12: The evolution of the R with respect of the cosmic time 7 for (3.22).

4. The Figure-Eight Knot Universe

Our aim in this section is to demonstrate some examples of the figure-eight knot universes
for the Bianchi type I metric (2.6). We give some particular figure-eight knot universe models.

4.1. Example 1

Again, let us assume that our universe is filled by the fluid with the following parametric
EoS:
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pa= -2
Eqo
__Dn
Ps = En

(4.1)
where
Dg = (-2sin(27) cos(37) — (3(2 + cos(271))) sin(37))
x (=2sin(27) sin(37) + (3(2 + cos(27))) cos(37))
x sin(4t) + 12 cos(37)
x <(2 + cos(21)) cos(3T) — <§> sin(27) sin(37‘)>
x (2 + cos(27)) cos(41) — (12(2 + cos(27))) cos(4T)
* ((2 + cos(271)) sin(37) + <§> sin(21) cos(37')> sin(37),
Eg=(2+ cos(27'))2 cos(37) sin(37) sin(47),
Dg = ((72 + 36 cos(27)) cos(47) — 12 sin(47) sin(27)) cos(37)
- <29 ( (%) * cos(47) sin(27) + <cos(27') + %) sin(41‘)>> sin(37), (4.2)
Eq = sin(471)(2 + cos(27)) sin(37),
D1 = (—24 cos(47) sin(27) + sin(47) (29 cos(27) — 50)) cos(37)
36( (2 2 4 Y si 41) sin(2 in(3
- ( <( + cos(271)) cos(4T) — <§> sin(4t) sin( T))> sin(37),
Eq1y = sin(471)(2 + cos(27)) cos(37),
D11 = — (30(2 + cos(27))) sin(2T) cos (37‘)2 + sin(37)
X (12 sin (27)% - 196 cos(27) — 180 — 53 cos (27')2> cos(37)
+30sin(27) sin (37)%(2 + cos(27)),

En = (2 + cos(27))? cos(37) sin(37).

Substituting these expressions for the pressuries and the density of energy into the
system (2.18), we obtain the following its solution [98-103]:

A= Ag+ [2+cos(2T)] cos(3T),
B = By + [2 + cos(27)] sin(37), (4.3)
C = Cp +sin(4r).



Advances in High Energy Physics 21
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Figure 13: The figure-eight knot for (4.3) with (3.4).
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Figure 14: The evolution of the volume for the solution (4.3) with (3.4), t € [0, 2sr].
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This solution is nothing but the parametric equation of the figure-eight knot as we can see
from Figure 13, where we assume that Ay = By = Cyp = 0 and the initial conditions have the
form A(0) = 3,B(0) = 0, C(0) = 0. And for that reason in [98-103] we called such models
as the figure-eight knot universes. Note that the “coordinates” A, B, C with (3.4) satisfy the
equation

4(h-2)"-4h-2)*+2> =0, (4.4)
where h =2 + cos(27). Let us calculate the volume of the universe. For our case it is given by

V = [2 + cos(27)]? cos(37) sin(37) sin(4T), (4.5)
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where we used (3.4). In Figure 14 we present the evolution of the volume for the solution
(4.3) with (3.4). The scalar curvature has the form

3\ . .
R= <<24 <cos(4T) cos(2T) — <§> sin(4t) sin(27) + 2cos(4’r)>>
x (2 + cos(27))cos?(3T) — 102 sin(37)

X <sir1(47')cos2 2r) + <<15$> sin(41) + (;—?) cos(4Tt) sin(ZT)) cos(2T)

+ <§—?> cos(4t) sin(27) + <15¥) sin(4T) (4.6)

- (%)SiHZ(ZT) sin(4’r)> cos(37) — 24sin(37)

X (COS(4T) cos(2T) — <;> sin(47) sin(27) + ZCOS(4T)) 2+ COS(2T))>

/ <sin(37') cos(37) * (2 + cos(27))? sin(4T)>.

In Figure 15 we plot the evolution of the R with respect of the cosmic time 7. So we found the
figure-eight knot solution of the Einstein equations which again describe the accelerated and
decelerated expansion phases of the universe.

4.2. Example 2

Now we consider the system (2.19). Its solution is given by

H; = [2 + cos(271)] cos(37) = 2cos(37) + cos(5T) + cos(T),
Hj = [2 + cos(27)] sin(3T) = 2sin(37) + sin(7) + sin(57), 4.7)
Hj = sin(47).

Then the coorresponding scale factors read as

A= Aoe(2/3) sin(37)+0.2 sin(57)+sin(7)

B = Boe_[(2/3) cos(37)+0.2 cos(57)+cos(T)] (48)

C= C08_0’25 cos(41) .
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Figure 15: The evolution of the R with respect of the cosmic time 7 for (4.6).
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Figure 16: The plot of the EoS (4.9), t € [0,2r], p (red), p1 (blue), p» (green), ps (black).
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For this solution the parametric EoS looks like

! (4.9)
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where

Dy = (((2 + cos(27)) sin(37) + sin(471)) cos(37) + sin(37) sin(471)) (2 + cos(271)),

Ey=1,

D; = — (2 +cos(27))*sin®(37) + (2sin(27) — 2 sin(47) — sin(47) cos(27)) sin(37)

— 6c0s(37) — 3cos(37) cos(2T) — 4 cos(4T) — sin®(47),

Ei=1,
D, = — (2 + cos(27))*cos?(37)
+ (2sin(27) — 2sin(47) — sin(47) cos(27)) cos(37)
—4c0s(47) + 65sin(37) + 3in(37) cos(27) — sin?(47), (4.10)
E, =1,
D3 = —3sin(t) — 64 sin(T)cos’ (1) + 36 sin(7)cos’ (1)
+40sin(t)cos*(T) + 4 sin(7)cos’ (1)
— 65sin(T)cos?(T) — 3sin(t) cos(T) — 25c0s(T)
+5cos(T) — 40cos’(T) — 64cos'0(T)
+96c0s%(T) — 84cos® (1) + 68cos* () + 26c0s® (),
E;=1.

In Figure 16 we plot the EoS (4.9). For this example, the evolution of the volume of the
universe is given by

V= VOe(Z/S) sin(37)+0.2sin(57) +sin(7)~(2/3) cos(37)-0.2 cos(57) ~cos(7)~0.25 cos (47) (4_11)

The evolution of the volume is presented in Figure 17 for Ay = By = Cy = Vp = 1 and for the
intial condition V(0) = e '%/%, The scalar curvature has the form

R = 2(2 + cos(27))*cos?(37)
+ <2(2 + cos(27‘))2 sin(37) + (6 + 2sin(47)) cos(27)

+ 12 -4sin(27) + 4Si1‘1(4T)> cos(31) (4.12)

+2(2+ COS(ZT))ZSin2(3T)
+ ((—6 + 2sin(47)) cos(27) + 4sin(41) — 4sin(27) — 12)

% sin(37) + 2sin?(47) + 8 cos(47).
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Figure 17: The evolution of the volume for the expression (4.11) with Vy =1, t € [0, 2or].
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Figure 18: The evolution of the R with respect of the cosmic time 7 for (4.12).

In Figure 18 we plot the evolution of the R with respect of the cosmic time 7. Again we have
shown that the Einstein equations admit the figure-eight knot solution and it again describe
the accelerated and decelerated expansion phases of the universe.

4.3. Example 3

Now we present the figure-eight knot universe induced by the Jacobian elliptic functions. Let
the system (2.18) have the solution

A= Ap+[2+cn(27)]en(3T),
B =By + [2 +cn(27)]sn(37), (4.13)
C =Cy +sn(4r).
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Note that cn(t) and sn(t) are the doubly periodic Jacobian elliptic functions. Figure 19 shows
the knotted closed curve corresponding to the solution (4.13) with (3.4). Substituting the
formulas (4.13) into the system (2.18) we get the corresponding expressions for p and p; that
gives us the parametric EoS. The evolution of the volume of the universe for (3.4) reads as

V = [2 + en(27)]%en(37)sn(37)sn (47). (4.14)
The scalar curvature has the form
R= ( —18sn (37, k)sn(4t, k)k*(2 + en(27, k))*en® (3T, k)

+ (24 (— <§>sn(2‘r, k)dn(2t, k)sn(4t, k)
+cn(4t, k)dn (47, k) (2 + en(27, k))>>
x (2 + en(27, k))dn (37, k)en? (37, k)
( 9 2 2.2
- (32 <—<E>sn(47', k)k“(2 + en(27, k))“sn” (3T, k)
+ <<cn2(47', k)k? + G—Z)drﬁ(sf, k) + dn® (41, k)
- G)kzsnz(zr, k) + <%>dn2(2*r, k)>cn2(27, k)
+ ( — k%sn?(27, k) ( %)dn2(37', k) + dn®(27, k)

+4dn* (47, k) + 4en? (4T, k)k2>

x en(27, k) + 4 dn? (47, k)

+ <2Z7>dn2 (37, k) - <411>dn2(27', k)sn*(27, k) + 4en’ (47, k)k2>
x sn(4r, k) + cn(4r, k)dn

x (41, k)dn(27, k)sn(27, k) (2 + cn(2T, k))) )sn(?n‘, k)cn(3T, k)
- (24 (— <§>sn(2‘r, k)dn(2t, k)sn(4t, k) + cn(41, k)dn(47, k) (2 + cn(27, k))> >

x (2 +cn(27, k)> sn?(37, k)dn (3T, k))

/ <cn(37', k)sn(37, k) (2 + en(27, k))*sn (4, k)).
(4.15)

In Figure 20 we plot the evolution of the R with respect of the cosmic time 7.
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Figure 19: The knotted closed curve corresponding to the solution (4.13) with (3.4), t € [0,4or], k =1/3.
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Figure 20: The evolution of the R with respect of the cosmic time 7 for (4.15).

4.4. Example 4

We now consider the following solution of the system (2.19):

H; = [2+n(27)]en(37),
H; = [2+on(27)]sn(37), (4.16)
Hj; = sn(4r1),
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which again the trefoil knot universe as shown in Figure 19 but for the “coordinates” H;. The
corresponding parametric EoS reads as

) Dy ) D,
= = 1= "=

Eo Ex (4.17)
Dy D;

PZ = E2/ P3 :_E_l

where

Dy = (((2+ en(27, k))sn(31, k) + sn(47, k))en(37, k) + sn(37, k)sn(4t, k))
x (2 +on(27, k)),
Ey=1,

Dy = Za%am(z'r, k)sn(2t, k)sn(37, k) — (3(2 + cn(27, k)))en (37, k)a%_am(?rr, k)
— 4en (4T, k) %am(éh', k) - (2 + en(27, k))?*sn (3T, k)? — sn (4, k)?
— (2 + con (271, k))sn(37, k)sn (4T, k),
Ei=1,

D, = —4cn(47, k) %am(éh-, k) + 2%am(27‘, k)sn(2t, k)en (3T, k)

+ (3(2 + en(27, k)))a%am(.?n', k)sn(37, k) — sn?(47, k) — (2 + en(27, k) )*en? (3T, k)

- (2+ cn(21, k))en(37, k)sn(4r, k),

Ds = —(2 + en(271, k))?en® (3T, k)

+ (— sn(3t, k)en? (27, k)
0 0
+ ( —4sn(37, k) — 3gam(3’r, k) Jen(27, k) + ZEam(ZT, k)sn(2t, k)

0
—6$am(37‘, k) —4sn(3r, k))

x cn(3T, k) + 36%am(37', k)sn(3t, k)en (2T, k)

0 0
+ <6a—Tam(37, k) + ZEam(ZT,k)sn(ZT, k))

x sn(37, k) — sn*(47, k),
E;=1.
(4.18)

Its plot we give in Figure 21.
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Figure 21: The plot of the EoS (4.17), t € [0,2], k =1/3, p (red), p1 (blue), p» (green), ps (black).

The scalar curvature has the form

R = 2(2 + en(27, k))?*en(37, k)*
+ (2(2 +en(27, k))?sn(37, k) + (6dn(37, k) + 2sn(4t, k))en(27, k)
+ 12dn (371, k) — 4dn(27, k)sn(27, k) + 4sn (47, k)>

x en(37, k) + 2(2 + en(27, k) )*sn (37, k)*
+ ((-6dn (37, k) + 2sn(4t, k))cn (27, k)
+ 4sn(4r, k) — 4dn(27, k)sn(27, k) — 12dn (37, k))

% sn(37, k) + 2sn (41, k)* + 8cn(4t, k)dn (47, k).
(4.19)

In Figure 22 we plot the evolution of the R with respect of the cosmic time 7.

5. Other Unknotted Models of the Universe

In this section we would like to present some unknotted but closed curve solutions of the
Einstein equation for the Bianchi I type metric. As an examples we consider the spiky and
Mobious strip universe solutions.

5.1. Spiky Universe Solutions

Our aim in this subsection is to present some unknotted closed curve solutions namely the
spiky universe solutions.
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Figure 22: The evolution of the R with respect of the cosmic time 7 for (4.19).

5.1.1. Example 1

Let our universe be filled by the fluid with the following parametric EoS:

_Ds
=

pP1 —E—9,
__Dw

p2 = Exo ’
__Dn

p3 = Ex’

where
Dg= —[asin((n-1)7)(n-1) + a(n - 1) sin(7)]

x [acos((n—-1)T)(n-1) —a(n—1) cos(t)] sin(7)

x [acos((n—1)T) + a(n—1) cos(T)]

—[asin((n-1)T)(n-1) + a(n — 1) sin(7)]

[
[
+ [acos((n—-1)T)(n—1) —a(n—1) cos(t)] cos(T)
[
[
[

x [asin((n - 1)T) — a(n — 1) sin(7)] cos(T),

(5.1)



Advances in High Energy Physics 31

Eg = [acos((n—1)T) + a(n —1) cos(T)]
x [asin((n - 1)T) — a(n — 1) sin(7)] sin(7),
Dy = [—a sin((n-1)7)(n-1)2+a(n-1) Sil’l(T)] sin(7)
— [asin((n—1)T) — a(n - 1) sin(7)] sin(T)
+ [acos((n—-1)T)(n—1) —a(n—-1) cos(T)] cos(t),
Eg = [asin((n —1)T) — a(n — 1) sin(7)] sin(7),
Dy = [acos((n—1)T) + a(n —1) cos(T)] sin(7) + sin(7)
X [vc cos((n-1)1)(n—-1)> +a(n-1) COS(T)]
+ [asin((n—1)T)(n—1) + a(n — 1) sin(7)] cos(7),
Eiyp=—[acos((n—1)T) + a(n—1) cos(t)] sin(7),
Dip = [asin((n-1)T) —a(n - 1) sin(7)]

x [—cx cos((n-1)7)(n-1)>—a(n-1) cos(‘r)]

+ [ercos((n—1)T) +a(n - 1) cos()]

X [—(x sin((n—1)7)(n-1)*+a(n—1) sin(T)]
—[asin((n-1)7)(n-1) + a(n - 1) sin(r)]

x [acos((n - 1)7)(n 1) — a(n - 1) cos(7)],

E11 = [acos((n—1)T) + a(n—1) cos(T)]

x [asin((n - 1)T) —a(n - 1) sin(7)].
(5.2)

Substituting these expressions for the pressuries and the density of energy into the system
(2.18), we obtain the following solution:

A=acos[(n-1)7] + a(n—-1)cos[T],
B =asin[(n-1)7] —a(n—-1)sin[7], (5.3)
C =sin(7).

It is the spiky-like solution so that such solutions we call the spike universe. Its plot is
presented in Figure 23 for the initial conditions A(0) = an = 10, B(0) = 0, C(0) = 0. Let
us calculate the volume of this universe. It is given by

V = a*[cos[(n—1)T] + (n - 1) cos[7]][sin[(n — 1)T] — (n — 1) sin[7]] sin(T). (5.4)
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Figure 23: The spiky universe for (5.3), n =10, a = 1.
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Figure 24: The evolution of the volume for (5.4), n =10, a = 1.

In Figure 24 the evolution of the volume for (5.4) is shown, n = 10, a = 1. The scalar curvature
has the form

R = < —2cos(T)(n —1)cos®((n - 1)7)

+ <<6<§ -2n+ n2>) sin(t) sin((n - 1)T)

- <2<(n —2) cos (7)? + sin®(7) <n2 -3n+ 4))) (n- 1)) cos((n—1)T) (5.5)

+ 2 cos(T) (sinz((n —1)7) +sin(7) <n2 —4n+ 6> sin((n - 1)7)
+ <cos (1) - 551n2(7)>(n - 1)) (n- 1))
/((cos((n—1)T) + cos(t)(n—1))(=sin((n — 1)7) + (n - 1) sin(7)) sin(7)).
In Figure 25 we plot the evolution of the R with respect of the cosmic time 7. In this example,

we have shown that the Einstein equations admit the spike-like solution. We can show that
this solution describes the accelerated and decelerated expansion phases of the universe.
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5.1.2. Example 2

The system (2.19) admits the following solution:

Hy =acos[(n-1)7] + a(n—1) cos[7],
H; =asin[(n-1)7] - a(n - 1) sin[7], (5.6)
Hj = sin(7).

The corresponding EoS takes the form

_Dn __Di
P Ey PMTTE,
(5.7)
__Du __Ds
p2= Ei’ ps= Eis’
where
D1 = [acos((n—1)T) + a(n—1) cos(T)]
x [asin((n —1)7) + [1 —a(n-1)]sin(7)]
+ [asin((n - 1)T) — a(n — 1) sin(7)] sin(7),
Ep =1,
D13 = a(n—1)[cos((n —1)T) — cos(T)] + cos(T)
+ [asin((n - 1)T) — a(n — 1) sin(7)]?
+ [asin((n—1)7) + [1 — a(n —1)] sin(7)] sin(7),
Eiz=1,
D= —asin((n—-1)7t)(n-1) —a(n — 1) sin(t) + cos(7)
(5.8)

+ [acos((n—-1)T) +a(n—-1) Cos(T)]2

+sin (1) + [acos((n — 1)) + a * (n — 1) cos(t)] sin(7),
Euy=1,
D5 = a(n—1)[cos((n —1)T) — cos(t) —sin((n — 1)) — sin(7)]
+ [asin((n - 1)T) — a(n — 1) sin(7)]?
+ [acos((n—1)T) + a(n—1) cos(t)]?
+ [acos((n—1)T) + a(n —1) cos(7)]
x [asin((n - 1)T) — a(n — 1) sin(7)],
Eis=1.
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Figure 25: The evolution of the R with respect of the cosmic time 7 for (5.5).

The scalar curvature has the form

R = 2a%cos ((n - 1)1)*

+4a<<%>asin((n— T) + <% + <—<%)n + %)a) sin(T)
+(n-1) (tXCOS(T) + %)) cos((n—1)7) + 2a?sin ((n - 1)7)?

+2a((1+ (2 -2n)a)sin(T) + (acos(t) —1)(n—1)) sin((n - 1)7)
+ <2 +282(n-1)2+(2- 2n)a> sin (7)?

—2n-1))ax 1+ (-1+a(n-1))cos(r))sin(T)

+ <2<2a2(n —1)%cos(T) + 1 + a(-n + 1)>> cos(T).
(5.9)

In Figure 26 we plot the evolution of the R with respect of the cosmic time 7.
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Figure 26: The evolution of the R with respect of the cosmic time 7 for (5.9).

Figure 27: The evolution of the spiky type solution (5.10) withn =10, a = 1

5.1.3. Example 3
Our next solution for the system (2.19) is given by

Hy =acos[(n-1)7] —a(n-1) cos[7],
(5.10)

H; =asin[(n-1)7] —a(n—1)sin[7],

Hj = sin(7).
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In Figure 27 we plot this spiky type solution. The corresponding EoS takes the form

where

_Dis
Ei’

Dy
Eyy’

(5.11)
D
Es’

-
Ey’

Dig = [acos((n —1)T) — a(n — 1) cos(7)]
x [asin((n—1)7) + [1 - a(n —1)] sin(7)]
+ [asin((n - 1)T) — a(n - 1) sin(7)] sin(7),
Epx=1,
Dyy = a(n —1)[cos((n - 1)) — cos(r)]
+cos(7) + [asin((n - 1)T) — a(n - 1) sin(1)]?
+ [asin((n - 1)T) + [1 — a(n —1)] sin(7)] sin(7),
Ey=1,
Dig = —asin((n-1)7)(n—-1) +a(n-1)sin(r)
+cos(T) + [acos((n—1)T) — a(n—1) cos(t)]?
+sin (7)? + [acos((n —1)T) — a * (n—1) cos(t)] sin(7),
Eg=1,
Dyy = a(n—1)[cos((n — 1)) — cos(T) — sin((n — 1)T) +sin()]
+ [asin((n - 1)T) — a(n - 1) sin(7)]
+ [acos((n—1)T) — a(n—1) cos(t)]?
+ [acos((n - 1)T) — a(n— 1) cos(t)]
x [asin((n - 1)7) — a(n - 1) sin(1)],
Ey=1.
(5.12)
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Figure 28: The evolution of the R with respect of the cosmic time 7 for (5.13).
The scalar curvature has the form

R = 2a%cos ((n-1)7)?
- <4<—<%>asin((n -7) + (—% + <<%)n - %)a) sin(7)
+ (n-1) <—% + acos(7‘)>>>acos((n )

+2a%sin ((n - 1)7)?

(5.13)
- 2((-1+ (-2 +2n)a) sin(t) + (acos(t) + 1)(n—1)))asin((n - 1)T)

+ (2 +20°(n-1)*+ (2n+ 2)0() sin (7)% + (2(n - 1))

x (1+(-1+a(n-1))x*cos(r))asin(t)

+2cos(T) <a2(n ~1)%cos(T) +1+ (1 - n)a).

In Figure 28 we plot the evolution of the R with respect of the cosmic time 7.
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Figure 29: The plot of the M&bius strip universe for (5.16) with (3.4) and 7 =0 — 27 and A = [-1.1].

5.2. Mébius Strip Universe Solutions

If we consider the model with the “cosmological constant”, then the systems (2.18) and (2.19)
take the form, respectively,

AB BC CA
AB BCTca PTOTY
B ¢ BC
Ss+=+—=+p—-A=0,
B C BC (5.14)
C+A+CA+ -A=0
ctatcathTATY
A B AB
Z+§+E+p3—1\—0,
H1H2+H2H3+H1H3—p—A=0,
Hy+ H; + Hj + H2 + HyHy +p1 - A =0, (5.15)

Hs+ Hy + H2 + H + H3Hy +py — A =0,
Hy + Hy + H? + H? + HiH, +p3 — A = 0.

Now we want to present some solutions of these systems. Consider the following examples.

5.2.1. Example 1
One of the simplest solutions of (5.14) is given by
A=A+ (1 + 1Acos T) COST
- 2772 ’
1 T\ .
B=By+ <1 + EA cos E) sinT, (5.16)

1
C=Cp+ EAsing.
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Figure 30: The evolution of the volume of the Mébius strip universe for (5.16) with (3.4) and a = A = 1.
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Figure 31: The evolution of the R with respect of the cosmic time 7 for (5.20).

It is the parametric equation of the Mobius strip and, hence, such model we call the Mobius
strip universe. Its plot was presented in Figure 29. The evolution of the volume of the Mobius
strip universe for (5.16) with (3.4) reads as

1 2
V= 0.5A<1 + EACOS%) cosrsinTsin%.

(5.17)

The evolution of the volume with (3.4) and a = A =1 is presented in Figure 30.
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The corresponding EoS takes the form

(5.18)

where

Dy = [%Asin(%) cos(t) + (1 + %Acos(%)) Sin(T)]
x [}LA sin(%) sin(t) — <1 + %A cos<%>> COS(T)]
Co+ %Asin(%)]

A _}IA sin<g> sin(t) + (1 + %Acos(%)) COS(T)] cos(%)

X

"1

Ap + (1 + %)Acos(%) COS(T)]

A _}LA sin<§> cos(T) — (1 + %Acos(%)) sin(7)

X

ws(3)

t

o+ (145 )Acos(3) sincr)|
Ao+ (143 ) Acos(3) cos(r)]
Bo+ (14 3cos(3) ) sin(o)
G yasin(3)],

Ao+ (14 38 c0s() ) costo)]

X [Bo + <1 + %A cos(%)) sin(T)]

X

-A

X

X

Ex =

Co+ %Asin(%)],
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D21 = [CO + %ASIH(%)]
x [—% sin(T)Acos<2> - 1Asm<2> cos(T) — <1 + %Acos(%)) sin(r)]

_ % [Bo + <1 + 1Acos(%)) SIH(T)] sin %)

2 [nen(3) sin + (14 3acos(5) ) xcos(r] cos(3)
- (14 3acos(3) ) sincr)

Bo+ (1+ 3acos(3) ) sintm)| [co+ Jasin(Z)].

Av+ (14 geos(3) ) costm)| asin(3) + [co + 3 asin(3)]
< [ costrycos(5) + gasin(3 ) sin(r) - (1+ g cos(3

+ 3 [Fasin(3) costr) - (1+ Jacos(3) ) sintm)| A cos(

~afags (14 2acos(Z) ) ost)

<[cos 3asin(3)].

A+ (1+ Taeos(D) ) costr]

Dy3 = [BO + (1 + ;Acos< ) sm(T)]

Co + Asm ]

Ex =

A
Dy, = -3

Ex =

Co + %Asin(%)],

x [—% cos(T) cos<§> + EA sm(%) sin(T)
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[—}IA sin sm(T) + (l + Acos ) COS(T)]
_A[Ao+<l+ Acos( >>COS T)]
(3)) 5]

Ap + <1 + %Acos(%)) COS(’T)].

x |Bo + <1+ Acos

Ey = [BO + (1 + %A cos(§)> Sin(T)]

(5.19)

The scalar curvature has the form

= ((2snra 2cos 7w )eos( (1))

+ (<ssin (02 17cos(oysnge) sin (1))« s (20 ) os ( (1))’

+ ((esnte7 - scos 72 i ((3)r) - svcstrysinersin( () )

sscos o7 -8 ) cos( (1))
+ (s ((3)r) e costor ey
+ (12sin (A - 1205 (r°A) sin( 5 )7)
s2cosmsnn) ) sn((3)r))
/(snwreostn (24 ncs((3)r)) sn((3) 7))

N —

(5.20)

In Figure 31 we plot the evolution of the R with respect of the cosmic time 7. In this
subsubsection, we have shown that the Einstein equations have the Mobius strip universe
solution. Again we can show that this solution describes the accelerated and decelerated
expansion phases of the universe.
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5.2.2. Example 2

For the system (5.15) the Mobious solution reads as

1
H, = <1 + EAcos< ) cos(T),

NS

(]

)
)) sin(7), (5.21)

2)

1
H, = (1 + EACOS(

/N N

1. .
H; = EAsm

The corresponding EoS takes the form

Ey’ © Ey’
(5.22)
Do Dy

p2= Ex’ ps = Ey’

where

1 'NE . A A T
Doy = |1+ EAcos<§>] cos(T) sin(T) + 0 1+ 5 cos<§>]
. . /T
x [sin(T) + cos(T)] sm(z) - A,
Ey =1,

Dys = - jIA sin(%) sin(T) + [1 + %Acos(%)]

x [COS(T) + %Sin(T) sm(%)] " }LAC(’S(%)

+ [1 + %Acos(%)]zsin2(7) + ATzsin2<g> - A,

Ex =1,

Dy = — 4111\ sin(%) cos(T) — [1 + %Acos(%)]

x [sin(r) + %cos(’r) sin(%)] + %Acos(%)

+ |1+ %Acos(%)]zcosz(i") + AIzsirF(%) - A,
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Ex=1,

Doy =

1+ %cos(%) - %sin<%>] [cos(T) +sin(T)]

+ [1 + %COS(%)

Ey =1

2[1 + cos(T) sin(7)] — A,

(5.23)

The scalar curvature has the form

o= (L)oo ((3))

1
2(21 +1-2sin(7) + 4sin2(T)>

() (o))
(s v )2 on((3)7)

1
+2co0s(1) + <m>

+

x cos(T) — 2sin(t) + 2sin?(1),
(5.24)

where 2 denotes (cos(7) + sin(t))Asin((1/2)7) + 4cos?(T) + (2 + 4sin(T)) cos(T).
In Figure 32 we plot the evolution of the R with respect of the cosmic time 7.

5.3. Other Examples of Mobius Strip Like Universes Induced by
Jacobian Elliptic Functions

5.3.1. Example 1

Now we want to present some solutions in terms of the Jacobian elliptic functions. In fact, the
system (5.14) has the following particular solution:

1
A=A+ <1 + 5Acn%)cn7‘,
1 T
B=By+(1+ EAcn 5 )sn, (5.25)

1
C=Cy+ EAsng
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10 A

Figure 32: The evolution of the R with respect of the cosmic time 7 for (5.24).

The corresponding EoS takes the form

Ex’ Ey’
(5.26)
Dy Dy

p2 = Exo ’ p3 Esr ’
where

1 1
Dyg = IZA dn%sn%ch + <1 + EACH§>dnTSHT]

1 T T 1 T
X [ZAdHESHESHT - <1 + EAcn§>chdn T]

X

1 T
C() + EASHE]

Al 1 T T 1 T
+ 7 [—ZAdnEsnEsnT + (1 + EAan)chdnT]

T, T
Cdn=
xcnzdng x 5

Ap + <1 + 1Acn%)cn’r
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111 T T 1 T T T
- = [—Adnisn Ecn‘r + (1 + EAcn§>dnTsnT] Acnzdn 5

414
x | By + (1 + 1Acnz>sr17'] —A[Ao + (1 + 1Acnz>cr17']
2 2 2 2
x |Bg + (1 + 1Acnz>snr] x |Co + 1Asnz],
2 2 2 2

Exg =

1 T
A+ <1 + EAcn§>ch

X

1 T
By + <1 + iAcn§>snT]

1 T
CO + EA SHE] ,

Doy =

1 T
CO + EA SHE:I

[1 1 1
X _§A cngsnzgsnr - §A dnzg cn%snr - EA dn% sn% cntdnT

1
- (l + EACI’I%)dnzTSHT—

1
1+ EA cn%] cn’Tsn T]

qs]

[ 1
+ »B0+ <1+§Acn§)sn7‘]
[ 1 )T T

1
X __§A dnzg sn% - §A cn ESHE]

Al T T 1 T
-7 [ZAdni SnoSNT - <1 + EAcn§>chdnT]

1 T
By + (1 + EAcn§>snT]

1
X [Co + EA sng] ,

T, T
—dn- - A
><cr12dn2

Eyg =

1 T 1 T
By + (1 + EA cn§>sn T] [Co + EA SHE] ,
[ 1
D3y = — -Ao + <1 + EAcng)cnr]

1 »T T 1 5T T
gAdn ESHE + gAcn Esnz

X

1 T
+ [Co + EA SHE]

1 1 1
X -gAcng anE cnT — §A dnzg cn%ch + EA dn% sn% dntsnt

1 T 2 2
+<1+ EACI’Iz)(CnTSH T- dn TCI’lT) ]

ATl T T 1 T T, T
7 [ZAdnz sn T + <1 + EACI’IE) X dnTSl’IT] cny dnE

1
—A[AO + <1 + EAcr%)cm]

1 T
CO + EA Snzjl ’
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1 T
E; = [Ao + (1 + EACHE>CHT]

1 T
CQ + EA Snz] P

1
D31 = [Bo + (1 + EAcn§>snT]

1 1
X [gA cng snzg cnT - §A dnzg Cn% cnT

1
+ EA dng sn% dntsnt

1 T 2 2
+ <1 + EACHE><SH T —dn T>C1’1T]

A+ <1 + 1Acnz>cn7']

* 2Ny

1 T »T >
X [gACHE snT<sn 5 —dn T)

1
- EA dngsngcn’r dnt

1
- <1 + EA(m%)dnsznT

1
— (1 + EA cn%)cnzﬂr sn T]

+

1 T T 1 T
ZAdnE snE cnT + (1 + EAcn§>dnTsnT

1
X [}LA dn% sn% snNT — <1 + EACH%)CannT]

-A

1
Ag + <1 + EAm%)ch]

X

1 T
By + <1 + EAcn§>snT],

1 T 1 T
Ez;1 = |By + <1 + EAcn§>snT] [Ao + <1 + EAan>ch].
(5.27)
The evolution of the volume of the universe for (3.4) reads as (Ag = By = Cy = 0)
V= 1A 1+ 1AcnZ 2chsnTsnz (5.28)
T2 2772 2’ '

The evolution of the volume with (3.4) and A =1 is presented in Figure 33.
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The scalar curvature has the form

k= (a2 (1)) A ((2)e )
() aar ()b Jentr e gn (2o

— 6Adn(T, k)dn( <%>T, k> (en (7, k) —sn(T, k))

x (en(7, k) +sn(7, k))
o) )
el (r)
(@)= (G)mr)ens (3)=2((3)=+)¢
- (3050 + ol (K
(3)((3)7) i)
<en((5)nk) +6dni(mi)+ (5 )ant((5)mk)
- 2001, KK + 2005, K
<entr,kpsn(r,sn( (3 ) k)
<2n( (3 )7k )an( (3 )7k )an b entr, k) - sn(, )

x (en(T, k) + sn(t, k))

< (raa((1)e)))

/ <CI’1(T, k)sn(z, k)

(e ())o(())

(5.29)

In Figure 34 we plot the evolution of the R with respect of the cosmic time 7.
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Figure 33: The evolution of the volume of the trefoil knot universe with respect to the cosmic time 7 for
(5.28).

5.3.2. Example 2

Similarly, we can show that the system (5.15) has the following solution:

1
H, = <1 + EAcng>ch,

1
H, = <1 + —Acnz)sm', (5.30)
2 2
1
H; = EAsng.

The corresponding EoS takes the form

(5.31)
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where

2

1 T A
D3, = 1+§Acn§ chsnT+E
X 1+1Acnz [sn’r+cn7‘]snz—A
2772 2 77
Ep =1,
1 T T 1 T
D33 = ZA dnE snz[l - snT|+ [1 + EACHE]
x chdnT+AsnTsnT
2 2
+ |1+ 1Ach 2sr127'+ 1A2sn2T -A
2 2 4 2 ’
Ey =1,
D3y = —1AdnT snT ent— 1+ 1Ach (5.32)
S R ) 272 '
X [dnTSHT+ AchsnT
2 2
1 1 2 1
+ ZA cn%dng + 1+ EAcng] cn’t + ZAzsnzg - A,
Ey =1,
D35 = — 1AdnTsn T[ch+snT]
R R R
1 T
+ [1 + —Acn—] [enT = snT]dnT
2 2
1 T 2 2 2
+ [1+ EACHE] [sn T+cn T+CnTsnT] -A,
Ess = 1.

The scalar curvature has the form

R= (%)Az <cn2(7', k) + sn®(t, k) + en(t, k)sn(, k))cn2<<%>r,k>

+ (% (A(sn(r,k) +CH(T,k))Sn<<%>T,k> +dn<<%>r,k) +4en’(7, k)

+ (4sn(t, k) +2dn(7, k))en(T, k) + 4sn’ (7, k)
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Figure 34: The evolution of the R with respect of the cosmic time 7 for (5.29).

~ 2dn(z, k)sn(T,k)>>Acn<<%>T, k)
() ((5)74) - () (on((2)7%) -2)

x (sn(t, k) + cn(T, k))sn( <%>T, k>

1
2(4dn(r, k) + 4sn(7, k)) >Cn(T’ k)

—2sn(t, k) (- sn(t, k) + dn(T, k)).

+2en?(T, k) + (

(5.33)

In Figure 35 we plot the evolution of the R with respect of the cosmic time 7.

6. Conclusion

In the present paper, we have constructed several concrete models describing the trefoil and
figure-eight knot universes from Bianchi-type I cosmology and examined the cosmological
features and properties in detail.

To realize the cyclic universes, it is necessary to a noncanonical scalar field with ill-
defined vacuum in the context of the quantum field theory or extended gravity, for example,
with adding higher order derivative terms and f(R) gravity [79]. Indeed, however, these
modified gravity theories have to satisfy the tests on the solar system scale as well as
cosmological constraints so that those can be alternative gravitational theories to general
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2 J

Figure 35: The evolution of the R with respect of the cosmic time 7 for (5.33).

relativity. The significant cosmological consequence of our approach is that we have shown
the possibility to obtain the knot universes related to the cyclic universes from Bianchi-type I
spacetime within general relativity.

Furthermore, recently it has been pointed out that the asymmetry of the EoS for
the universe can lead to cosmological hysteresis [80]. On the other hand, Bianchi-type I
spacetime describes the spatially anisotropic cosmology and hence the EoS for the universe
has the asymmetry in the oscillating process through the expanding and contracting
behaviors. Accordingly, it is considered that in the constructed models of the knot universes
cosmological hysteresis could occur. The observation of this phenomenon in our models is
one of our future works on the knot universes.

Finally, it should be remarked that by summarizing the results of our previous [98-
101, 103] and this works, the knot universes describing the cyclic universes can be realized
from the homogeneous and isotropic FLRW spacetime as well as the homogeneous and
anisotropic Bianchi-type I cosmology. In these series of works, the formulations of model
construction method of the knot universes have been established. Thus, it can be expected
that the presented formalism is useful to realize the universes with other features from both
the isotropic and anisotropic spacetimes.

Finally we would like to note that all solutions presented above describe the
accelerated and decelerated expansion phases of the universe.
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