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One of the main topics in the modern String Theory are the AdS/CFT dualities. Proving such
conjectures is extremely difficult since the gauge and string theory perturbative regimes do not
overlap. In this perspective, the discovery of infinitely many conserved charges, that is, the
integrability, in the planar AdS/CFT has allowed us to reach immense progresses in understanding
and confirming the duality. We review the fundamental concepts and properties of integrability
in two-dimensional σ-models and in the AdS/CFT context. The first part is focused on the
AdS5/CFT4 duality, especially the classical and quantum integrability of the type IIB superstring
on AdS5 × S5 which is discussed in both pure spinor and Green-Schwarz formulations. The second
part is dedicated to the AdS4/CFT3 duality with particular attention to the type IIA superstring
on AdS4 × CP 3 and its integrability. This review is based on the author’s PhD thesis discussed at
Uppsala University the 21st September 2009.

1. Introduction: Motivations, Overview, and Outline

In 1997, Maldacena conjectured that type IIB superstrings on AdS5 × S5 describe the
same physics of the supersymmetric SU(N) Yang-Mills theory in four dimensions [1]
(AdS5/CFT4). The background where the string lives (AdS5 × S5) is built of a five-
dimensional anti-De Sitter space (AdS), a space with constant negative curvature, times a
five-dimensional sphere (S), cf. Figure 1. In 2008, Aharony et al. proposed the existence of
a further gauge/gravity duality between a theory of M2-branes in eleven dimensions and a
certain three-dimensional gauge theory [2] (AdS4/CFT3). The eleven-dimensionalM2-theory
can be effectively described by type IIA superstrings when the string coupling constant is
very small. For a reason that will be clear later, I will consider only the type IIA as the
gravitational dual in the AdS4/CFT3 correspondence, but the reader should keep in mind
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Figure 1: AdS5 × S5. The five-dimensional anti-De Sitter space is represented as a hyperboloid on the right
hand side, while the five-dimensional sphere is drawn on the left hand side.

that this is just a particular regime of the full correspondence. The backgroundwhere the type
IIA strings live is a four-dimensional anti-De Sitter space times a six-dimensional projective
space (CP 3).1

The conformal field theories contained in the AdS/CFT dualities, namely, N = 4
super Yang-Mills (SYM) in the AdS5/CFT4 case and the supersymmetric N = 6 Chern-
Simons (CS) theory in the AdS4/CFT3 case, are rather difficult to solve. A general approach to
quantum field theory is to compute quantities such as cross-sections, scattering amplitudes,
and correlation functions. In particular, for conformal field theories the correlation functions
are constrained by the conformal symmetry.2 For a certain class of operators (the conformal
primary operators) their two-point function has a characteristic behavior: in the configuration
space it is an inverse power function of the distance. The specific behavior, namely, the
specific power (the so-called scaling dimension) depends on the nature of the operators and
of the theory we are considering. It reflects how this operator transforms under conformal
symmetry, in particular for the scaling dimension it reflects how the conformal primary
operator transforms under the action of the dilatation operator. At high energy, the scaling
dimensions acquire quantum corrections, that is, the anomalous dimension.3 In conformal
field theories, the anomalous dimension encodes the physical information about the behavior
of the operators under the renormalization process. I will expand this point in Section 2. For
the moment it is enough to note that collecting the spectrum of the correlation functions,
namely, the spectrum of the anomalous dimensions, gives an outstanding insight of the
theory. However, in general it is a very hard task to reach such a knowledge for a quantum
field theory.

For this purpose the gauge/string dualities can play a decisive role. Let me explain
why. Both correspondences are strong/weak-coupling dualities: the strongly coupled gauge
theory corresponds to a free noninteracting string and vice versa fully quantum strings are
equivalent to weakly interacting particles. The two perturbative regimes on the string and
on the gauge theory side do not overlap. Technical difficulties usually prevent to depart
from such regimes. This implies that it is incredibly difficult to compare directly observable
computed on the string and on the gauge theory side, and thus to prove the dualities.
However, there is a positive aspect of such a weak/strong-coupling duality: in this way it
is possible to reach the nonperturbative gauge theory once we acquire enough knowledge of
the classical string theory.

Ironically, we are moving on a circle. In 1968, String Theory has been developed with
the purposes to explain the strong nuclear interactions. Thus it started as a theory for particle
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physics. With the advent of the Quantum Chromo Dynamics (QCD), namely, the quantum
field theory describing strong nuclear forces, String Theory was abandoned and only later in
1974 it has been realized that the theory necessarily contained gravity. The AdS/CFT dualities
give us the possibility to reach a better insight and knowledge of SYM (and hopefully of the
CS theory) by means of String Theory. In this sense, String Theory is turning back to a particle
physics theory. In this scenario the long-term and ambitious hope is that also QCD might
have a dual string description which might give us a deeper theoretical understanding of its
nonperturbative regime.

At this point I will mostly refer to the AdS5/CFT4 correspondence, I will explicitly
comment on the new-born duality at the end of the section. On one side of the
correspondence, the AdS5 × S5 type IIB string is described by a quantum two-dimensional
σ-model in a very nontrivial background. On the other side, we have a quantum field theory,
the SYM theory, which is also a rather complicated model. Some simplifications come from
considering the planar limit, namely, when in the gauge theory the number of colorsN of the
gluons is very large, or equivalently in the string theory when one does not consider higher-
genus world-sheet. In this limit both gauge and string theories show their integrable structure,
which turns out to be an incredible tool to explore the duality.

What does “integrable” mean? We could interpret such a word as “solvable” in a first
approximation. However, this definition is not precise enough and slightly unsatisfactory.
Integrable theories posses infinitely many (local and nonlocal) conserved charges which
allow one to solve completely the model. Such charges generalize the energy and momentum
conservation which is present in all the physical phenomena as, for example, the particle
scatterings. Among all the integrable theories, those which live in two-dimensions are very
special: in this case, the infinite set of charges manifests its presence by severely constraining
the dynamics of the model through selection rules and through the factorization, cf. Section 3.
In order to fix the ideas, let me consider the scattering of n particles in two-dimensions.
The above statement means that for an integrable two-dimensional field theory, a general
n-particle scattering will be reduced to a sequence of two-particle scattering. The set of
necessary information to solve the model is then restricted in a dramatic way: we only need
to solve the two-body problem to have access to the full model! This is indeed the ultimate
power of integrability.

The impressing result (which has been historically the starting point of the exploit of
integrability in the AdS/CFT context) has been the discovery of a relation between the SYM
gauge theory and certain spin chain models. In 2002, Minahan and Zarembo understood
that the single trace operators (which are the only relevant ones in the planar limit) could
be represented as spin chains [3]: each field in the trace becomes a spin in the chain. This
is not only a pictorial representation: the equivalence is concretely extended also to the
dilatation operator whose eigenvalues are the anomalous dimensions and to the spin chain
Hamiltonian. The key-point is that such a spin chain Hamiltonian is integrable, “solvable.”
On the gravity side, the integrability of the AdS5 × S5 type IIB string has been rigorously
proved only at classical level, which, in general, does not imply that the infinite conserved
charges survive at quantum level. However, the assumption of an exact quantum integrability
on both sides of AdS5/CFT4 has allowed one to reach enormous progresses in testing and
in investigating the duality, thanks to the S-matrix program and to the entire Bethe Ansatz
machinery, whose construction relies on such a hypothesis. Nowadays, nobody doubts about
the existence of integrable structures underlying the gauge and the gravity side of the
AdS5/CFT4 correspondence. There have been numerous and reliable manifestations, even
though indirect. Despite of such remarkable developments one essentially assumes that the
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AdS5×S5 type IIB superstring theory is quantum integrable.4 And on general ground, proving
integrability at quantum level is a very hard task as much as proving the correspondence
itself. For this reason, there have been very few direct checks of quantum integrability in the
string theory side. These are the main motivations of the present work: give some direct and
explicit evidence for the quantum integrability of the AdS superstring.

For the “younger” AdS4/CFT3 duality, valuable results have been already obtained,
cf. Section 7. It is very natural to ask whether and when it is possible to expect the existence
of similar infinite symmetries also in this case. Considering the impressing history of the
last ten years in AdS5/CFT4, one would like to reach analogous results also in this second
gauge/string duality. Probably understanding which are the differences between these two
dualities might provide another perspective of how we should think about the gauge/string
dualities and their infinite “hidden” symmetries.

Outline

In Section 2, I will briefly introduce the AdS5/CFT4 correspondence and the N = 4 SYM
theory. It contains also a description of the symmetry algebra, psu(2, 2 | 4), which controls the
duality. I will also explain the crucial relation between the anomalous dimension and the spin
chain systems as well as the Bethe Ansatz equations for a subsector of the full psu(2, 2 | 4)
algebra.

Section 3 is dedicated to two-dimensional integrable field theories, in particular to
some prototypes for our string theory, such as the Principal Chiral Models and the Coset
σ-models. I will explain the definition of integrability in the first-order formalism approach
as well as its dynamical implications for a two-dimensional integrable theory. I will stress the
importance of the distinction between classical and quantum integrability.

In Section 4, I will review the type IIB string theory on AdS5 × S5: starting from the
Green-Schwarz formalism, the Metsaev-Tseytlin formulation of the theory based on a coset
approach and finally its classical integrability.

In Section 5, it is presented an alternative formulation of the type IIB AdS5 × S5

superstring based on the Berkovits formalism, also called Pure Spinor formalism, and I will
focus on its relation with integrability topics, such as the construction of the BRST charges,
the finiteness of the monodromy matrix and of its path deformation.

In Section 6, I will come back to the Green-Schwarz formalism and discuss some
important limits of the AdS5 × S5 string theory such as the plane wave limit (also called BMN
limit) and the near-flat-space limit. I will present the Arutyunov-Frolov-Staudacher dressing
phase, sketch the construction of the world-sheet scattering matrix, also in the near-flat-space
limit, and finally, I will illustrate its factorization.

Section 7 is entirely based on the AdS4/CFT3 duality. I will retrace certain fundamental
results of the AdS5/CFT4 correspondence in the new context, with a special attention to the
near-BMN corrections of string theory.

In the appendices, some complementary material is reported. In the first appendix,
notation and conventions are summarized. The second one contains the full all-loop Bethe
Ansatz equations. The third one is devoted to the pure spinor formalism, in particular
the results concerning the operator product expansion for the matter and Lorentz ghost
currents are listed. The fourth appendix contains an example showing the three-body S-
matrix factorization. Finally, in the last one, the geometrical set-up for the AdS4/CFT3 is
reported.
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Note Added

This work is a shortened and revised version of the author’s PhD thesis, submitted to Uppsala
University, Uppsala. It is based on the papers [4–7].

2. The AdS5/CFT4 Duality

The first part of this section is an introduction to the AdS5/CFT4 correspondence, based on
the original works which are cited in the main text, and on the following reviews [8–10]. For
the introductory part dedicated to the N = 4 SYM and to the Coordinate Bethe Ansatz, I
mainly refer to Minahan’s review [11], Plefka’s review [12], and Faddeev’s review [13] and
by Dorey at RTN Winter School (2008) [14]. Finally, I find very useful also the PhD theses
written by Beisert [15] and Okamura [16].

2.1. Introduction

The Maldacena correspondence [1, 17, 18] conjectures an exact duality between the type IIB
superstring theory on the curved space AdS5 × S5 andN = 4 super Yang-Mills (SYM) theory
on the flat four-dimensional space R

3,1 with gauge group SU(N). In order to briefly illustrate
the content of the duality, we will start by recalling all the parameters which are present in
both theories.

The geometrical background in which the string lives is supported by a self-dual
Ramond-Ramond (RR) five-form F5. In particular, the flux through the sphere is quantized,
namely, it is an integer N, multiple of the unit flux. Both the sphere and the anti-De Sitter
space have the same radius R:

ds2IIB = R2ds2AdS5
+ R2ds2

S5
, (2.1)

where ds2AdS5
and ds2

S5
are the unit metric in AdS5 and S5, respectively. The string coupling

constant is gs and the effective string tension is T = R2/2πα′ with α′ = l2s . The string theory
side thus has two parameters:5 T, gs.

On the other side, SYM is a gauge theory with gauge group SU(N), thus N is the
number of colors. The theory is maximally supersymmetric, namely, it contains the maximal
number of global supersymmetries which are allowed in four dimensions (N = 4) [19, 20].
Another important aspect is that SYM is scale invariant at classical and quantum level, which
means that the coupling constant gYM is not renormalized [21–25]. The theory contains
two parameters, that is, N and gYM. One can introduce the ’t Hooft coupling constant
λ = g2

YMN. Notice that λ is a continuous parameter. Summarizing, the gauge theory side
has two parameters, we choose λ andN.

The correspondence states an identification between the coupling constants in the two
theories, that is,

g2
YM = 4πgs, T =

√
λ

2π
(2.2)

(or in terms of λ: gs = λ/4πN), and between the observables, that is, between the string
energy and the scaling dimension for local operators:

E(λ,N) = Δ(λ,N). (2.3)

The conjecture is valid for any value of the coupling constant λ and for any value ofN6.
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We can consider certain limits of the full general AdS5/CFT4 duality, which are simpler
to be treated but still extremely interesting.

Let us consider the limit where N is very large and λ is kept fixed, namely, gYM → 0
[26]. In this limit, N is a continuous parameter and the gauge theory admits a 1/N-
expansion. In the large-N regime (also called the ’t Hooft limit) of the SYM theory only the
planar diagrams survive, namely, all the Feynman diagrams whose topology is a sphere. The
corresponding gravity dual is a free string propagating in a nontrivial background (AdS5×S5).
The string is noninteracting since now gs → 0 and the tension T is kept fixed, cf. (2.2).
Notice that even though we are suppressing gs-corrections, so that the string is a free string
on a curved background, it is still described by a nonlinear sigma model whose target-space
geometry is AdS5 × S5. This is a highly nontrivial quantum field theory: the string can have
quantum fluctuations which are described by an α′-expansion.

Furthermore, we can also vary the smooth parameter λ between the strong-coupling
regime (λ � 1) and the weak-coupling regime (λ � 1). In the first case the gauge theory is
strongly coupled, while the gravity dual can be effectively described by type IIB supergravity.
Indeed, the radius of the background is very large (R = λ1/4ls), thus the string is in a classical
regime (T � 1).

Conversely, when λ takes very small values (λ � 1), the gauge theory can be treated
with a perturbative analysis, while the background where the string lives is highly curved.
The string is still free, but now the quantum effects become important (i.e., T � 1).

For what we have learned above, the Maldacena duality is also called a weak/strong-
coupling correspondence. This is an incredibly powerful feature, since it allows one to reach
strong coupling regimes through perturbative computations in the dual description. At the
same time, proving such a correspondence becomes an extremely ambitious task, simply
because it is hard to directly compare the relevant quantities. For a summary about the
different regimes and parameters we refer the reader to Table 1.

We will only deal with the planar AdS/CFT, since it is in this regime that both theories
have integrable structures. In particular, we are interested in the strong coupling regime (λ�
1), since the string theory side is reachable perturbatively (1/

√
λ expansion) in the large ’t

Hooft coupling limit (cf. Table 1). The present work is mainly devoted to this sector.
If the two theories are dual, then they should have the same symmetries. This is the

theme of the next section, after a more detailed introduction toN = 4 SYM theory.

2.2.N = 4 Super Yang-Mills Theory in 4d

As already mentioned, the N = 4 super Yang-Mills theory in four dimensions [19, 20]
is a maximally supersymmetric and superconformal gauge theory. The theory is scale
invariant at classical and quantum level and the β-function is believed to vanish to all
orders in perturbation theory as well as nonperturbatively [21–25]. The action can be derived
by dimensional reduction from the corresponding N = 1 SU(N) gauge theory in ten
dimensions:

LYM =
1
g2
10

Tr
(
−1
2
FMNF

MN + iψΓMDMψ

)
. (2.4)

DM is the covariant derivative, DM = ∂M − iAM, where AM is the gauge field with M the
SO(9, 1) Lorentz index, M = 0, 1, . . . , 9, and FMN the corresponding field strength, which is
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Table 1: Summary of the contents and parameters involved in AdS5/CFT4 duality.

Gauge theory String theory
Yang Mills coupling gYM String coupling gs
Number of colorsN String tension T ≡ R2/2πα′

’t Hooft coupling λ ≡ g2
YMN AdS5 × S5 radius R

AdS5/CFT4

gs = g2
YM/4π

T =
√
λ/2π

’t Hooft limit
N → ∞ λ = fixed gs → 0 T = fixed
planar limit noninteracting string

Strong Coupling
N → ∞ λ� 1 gs → 0 T � 1

classical supergravity
Weak coupling

N → ∞ λ� 1 gs → 0 T � 1
perturbative SYM

given by FMN = ∂MAN − ∂NAM − i[AM,AN]. The matter content ψ is a ten-dimensional
Majorana-Weyl spinor. The gauge group is SU(N) and the fields AM and ψ transform in the
adjoint representation of SU(N).

By dimensionally reducing the action (2.4), the ten-dimensional Lorentz group
SO(9, 1) is broken to SO(3, 1) × SO(6), where the first group is the Lorentz group in
four dimensions and the second one remains as a residual global symmetry (R-symmetry).
Correspondingly, the Lorentz index splits in two sets: M = (μ, I), where μ = 0, 1, 2, 3 and
I = 1, . . . , 6. We need to require that the fields do not depend on the transverse coordinates I.
Hence, the gauge fieldAM gives rise to a set of six scalars φI and to four gauge fieldsAμ. Also
the fermions split in two sets of four complexWeyl fermions ψa,α and ψ

a,α̇ in four dimensions,
where a = 1, . . . , 4 is an SO(6) ∼= SU(4) spinor index and α, α̇ = 1, 2 are both SU(2) indices.

The final action forN = 4 SYM in four dimensions is

LYM =
1
g2
YM

Tr
(
−1
2
FμνF

μν −
(
DμφI

)2 + 1
2
[
φI, φJ

]2 + iψΓμDμψ + ψΓI
[
φI, ψ

])
. (2.5)

2.3. The Algebra

We have already stressed that the theory has an SU(N) gauge symmetry, thus the gauge fields
are su(N)-valued, and they also carry an index i = 1, . . . ,N2 − 1, which is not explicit in the
formulas above.

The conformal group in four dimensions is7 SO(4, 2) ∼= SU(2, 2). The generators
for the conformal algebra so(4, 2) are the Lorentz transformation generators, which consist
of three boosts and three rotations Mμν, the four translation generators Pμ, coming from
the Poincaré symmetry, the four special conformal transformation generators Kμ, and the
dilatation generator D. Hence in total we have fifteen generators.
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The theory is also invariant under the R-symmetry, which plays the role of an internal
flavor symmetry which can rotate the supercharges and the scalar fields. The R-symmetry
group is SO(6) ∼= SU(4) and it is spanned by fifteen generators, RIJ .

The supersymmetry chargesQa
α,Q

aα̇
, which transform under R-symmetry in the four-

dimensional representations of SU(4) (4 and 4, resp.), commute with the Poincaré generators
Pμ. They do not commutewith the special conformal transformation generatorsKμ. However,
their commutation relations give rise to a new set of supercharges. We denote this new set of

supercharges with Saα and S
aα̇
. They transform in the 4 and 4 representation of SU(4). Thus

we have in total 32 real fermionic generators.
The SO(4, 2) × SO(6) bosonic symmetry groups and the supersymmetries merge in a

unique superconformal group SU(2, 2 | 4). Actually, due to the vanishing of central charge
for SYM, the final symmetry group is PSU(2, 2 | 4), where P denotes the fact that we are
removing ad hoc the identity generators which can appear in the commutators. Notice that
in supersymmetric theories usually the anticommutators between the supercharges Q and S
give an operator which commutes with all the rest, the so-called central charge.

The relevant relations are

[
D,Pμ

]
= −iPμ,

[
D,Kμ

]
= iKμ,

[
Pμ,Kν

]
= 2i
(
Mμν − ημνD

)
,

[
Mμν, Pλ

]
= i
(
ηλνPμ − ημλPν

)
,

[
Mμν,Kλ

]
= i
(
ηλνKμ − ημλKν

)
,

[
Mμν,Mλρ

]
= −iημλMνρ + cycl. perm.

{
Qa
α,Q

b

α̇

}
= γμαα̇δ

abPμ,

{
Saα, S

b

α̇

}
= γμαα̇δ

abKμ,

[D,Qa
α] = −

i

2
Qa
α,

[
D,Q

a

α̇

]
= − i

2
Q
a

α̇,

[
D,Saα

]
=
i

2
Saα,

[
D,S

aα̇]
=
i

2
S
aα̇
,

[Kμ,Qa
α] = σ

μ
αα̇ε

α̇β̇S
a

β̇,

[
Kμ,Q

a

α̇

]
= σμαα̇ε

αβSaβ,

[
Pμ, S

a
α

]
=
(
σμ
)
αα̇
εα̇β̇Q

a

β̇,
[
Pμ, S

a

α̇

]
=
(
σμ
)
αα̇
εαβQa

β,

[Mμν,Qa
α] = iσ

μν

αβ ε
βγQa

γ ,

[
Mμν,Q

a

α̇

]
= iσμν

α̇β̇
εβ̇γ̇Q

a

γ̇ ,

[
Mμν, Saα

]
= iσμναβ ε

βγSaγ ,
[
Mμν, S

a

α̇

]
= iσμν

α̇β̇
εβ̇γ̇S

a

γ̇ ,

{
Qa
α, S

b
β

}
= −iεαβ

(
σIJ
)ab

RIJ + σ
μν

αβδ
abMμν − εαβδabD,

{
Q
a

α̇, S
b

β̇

}
= −iεα̇β̇

(
σIJ
)ab

RIJ + σ
μν

α̇β̇
δabMμν − εα̇β̇δabD.

(2.6)

The matrices σμαα̇ are the Dirac 2× 2 matrices and (σIJ)ab are the antisymmetric product of the
Dirac 4 × 4 matrices.
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Matrix Realization

It is natural to reorganize the su(2, 2 | 4) generators as 8 × 8 supermatrices:

M =

⎛
⎝Pμ,Kμ, Lμν,D Qαa, S

α̇a

Saα,Q
a

α̇ RIJ

⎞
⎠. (2.7)

On the diagonal blocks we have the generators for two bosonic subsectors, su(2, 2) and
su(4), while on the off-diagonal blocks we have the fermionic generators. The superalgebra
is realized by two conditions which naturally generalize the su(n,m) algebra. First, the
supertrace8 of the matrix (A) vanishes. Second it satisfies a reality condition

HM† −MH = 0, (2.8)

where

H =

(
γ5 0

0 1

)
. (2.9)

The 4 × 4 matrix γ5 appears in the above condition because γ5 realizes the Hermitian
conjugation in the SU(2, 2) ∼= SO(4, 2) sector.

Actually, we want to consider the psu(2, 2 | 4) algebra. The 8 × 8 su(2, 2 | 4) identity
matrix trivially satisfies both properties of tracelessness and of Hermicity. This means that
even though such a matrix is not among our set of initial generators of the su(2, 2 | 4) algebra,
at some point it will appear as a product of some commutators. This is analogous to what
we have discussed above, where the anticommutator between Q and S might have a term
proportional to the unit matrix. In the SYM, the central charge is zero, thus we would like
to remove the unit matrix. We therefore mod out the u(1) factor ad hoc. This is indeed the
meaning of the p in psu(2, 2 | 4). Note that such an algebra cannot be realized in terms of
matrices.

The total rank for the PSU(2, 2 | 4) supergroup is 7. The unitary representation is
labelled by the quantum numbers for the bosonic subgroup. This means that the fields of
N = 4 SYM, or better, local gauge invariant operators, and the states of the AdS5 × S5 string
are characterized by 6 charges, which are the Casimirs of the group

(Δ = E, S1, S2, J1, J2, J3 ). (2.10)

The equality for the first charge is really the expression of the AdS/CFT correspondence. Let
us see inmore detail what these quantum numbers are. Coming from the SU(2, 2) sector, since
SO(1, 1) × SO(3, 1) ⊂ SO(4, 2), we have the dilatation operator eigenvalue Δ (or the string
energy E), which can take continuous values, and the two spin eigenvalues S1, S2, which
can have half-integer values, and which are the charges related to the Lorentz rotations in
SO(3, 1). Notice that Δ and E depend on the coupling constant λ, cf. (2.3). The other sector
SU(4) ∼= SO(6) contributes with the “spins” J1, J2, J3, which characterize how the scalars can
be rotated.
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The String Side

The isometry group of AdS5 × S5 is SO(4, 2) × SO(6), which is nothing but the bosonic sector
of PSU(2, 2, | 4). Thus on the string side the bosonic symmetries are realized as isometries
of the background where the string lives. The superstring also contains fermionic degrees of
freedom which will mix the two bosonic sectors corresponding to AdS5 and S5. The string
spectrum is labelled by the charges (2.10). In principle one can also have winding numbers
to characterize the string state, in addition to (2.10). The string energy E is the charge
corresponding to global time translation in AdS5, while S1, S2 correspond to the Cartan
generators of rotations in AdS5. The last three charges correspond to Cartan generators for S5

rotations, since the five-dimensional sphere can be embedded in R
6, so we have three planes

the rotations.

2.4. Anomalous Dimension and Spin Chains

In a conformal field theory the correlation functions between local gauge invariant operators
contain most of the relevant dynamical information. There is a special class of local operators,
the (super) conformal primary operators, whose correlators are fixed by conformal symmetry.
In particular, these are the operators annihilated by the special conformal generators K and
by the supercharges S, that is, KO = 0 and SO = 0. Thus, representations corresponding
to primary operators are classified by how the dilatation operator D and the Lorentz
transformation generatorsM act on O, that is, by the 3-tuplet (Δ, S1, S2):

DO = ΔO, MO = ΣS1,S2O, (2.11)

whereΔ is the scaling dimension, namely, the dilatation operator eigenvalues, and ΣS1,S2 tells
us how the operatorO transforms under Lorentz transformations. Since the special conformal
transformation generator K lowers the dimension by 1 and the supercharge S by 1/2, cf.
(2.6), in a unitary field theory the primary operators correspond to those operators with
lowest dimension. They are also called highest-weight states. All the other operators in the
same multiplet can be obtained by applying iteratively the translation operator P and the
supercharges Q (descendant conformal operators).

The correlation functions of primary operators are highly restricted by the invariance
under conformal transformations, and they are of the form

〈
Om(x)On

(
y
)〉

=
Cδmn∣∣x − y∣∣2Δ . (2.12)

In the scaling dimension there are actually two contributions:

Δ = Δ0 + γ. (2.13)

Δ0 is the classical dimension and γ is the so-called anomalous dimension. It is in general a
nontrivial function of the coupling constant λ. It appears once one starts to consider quantum
corrections, since in general the correlators will receive quantum corrections from their free
field theory values.



Advances in High Energy Physics 11

When we move from the classical to the quantum field theory we also need to face
the problem of renormalization. In general in quantum field theory the renormalization is
multiplicative. The operators are redefined by a field strength function Z according to

Om = Zn
mOn,0, (2.14)

where the subscript 0 denotes the bare operator, and Z depends on the physical scale μ
(typically Z ∼ μγ). As an example, we can consider the correlators in (2.12). Applying the
Callan-Symanzik equation, recalling that the β-function vanishes and defining the so-called
mixing matrix Γ as

Γkm =
∑
n

(
Z−1
)n
m

∂Zk
n

∂ logμ
, (2.15)

we see that when the operator Γ acts on a basis {Om}, then the corresponding eigenvalues are
indeed the anomalous dimensions γm:

ΓOm = γmOm. (2.16)

Hence, Γ provides the quantum correction to the scaling operator D, that is, D = D0 + Γ.

2.4.1. The Coordinate Bethe Ansatz for the su(2) Sector

In this section, I will sketch the Coordinate Bethe Ansatz, also called Asymptotic Bethe Equations
(ABE), for the bosonic closed SU(2) subsector, as the title suggested, in order to get feeling
of why such techniques are so important. The ABE are the basic connection between
integrability, SYM theory, spin chain, and the S-matrix.

As pointed out in the previous section, a lot of the relevant physical information are
contained in the anomalous dimension of a certain class of gauge invariant operators. The
fact that the operators are gauge invariant means that we have to contract the SU(N) indices.
This can be done by taking the trace. In general, we can have multitrace operators. However,
in the planar limit (N → ∞) the gauge invariant operators which survive are the single trace
ones. Thus from now on, we are only dealing with single trace local operators (and with their
anomalous dimension).

The incredible upshot of this section will be that the mixing matrix (2.15) is the
Hamiltonian of an integrable (1+1) dimensional spin chain! There are two important points in
the last sentence. First, it means that the eigenvalues of the mixing matrix are the eigenvalues
of a spin chain Hamiltonian, namely, the corresponding anomalous dimensions are nothing but the
solutions of the Schrödinger equation of certain spin chain Hamiltonians. I cannot say whether it is
easier to compute γ , or to solve some quantummechanical system such as a one-dimensional
spin chain. But here it enters the second keyword used: integrable. The spin system has an
infinite set of conserved charges, all commuting with the Hamiltonian (which is just one of
the charges), which allows us to solve the model itself. In concrete terms, this means that we
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Figure 2: Example of a spin chain. The “up” arrow represents the field Z, while the down spin is
represented by the fieldW .

can compute the energies of the spin chain, namely, the anomalous dimension (of a certain
class) ofN = 4 SYM operators! Here the advantage is not purely conceptual but also practical:
we can exploit and/or export in a string theory context somemethods and techniques usually
used in the condensed matter physics, for example. And this is what we will see in a moment.

We have just claimed that the anomalous dimensions (for a certain class of operators)
can be computed via spin chain picture. We have to make this statement more precise. In
particular, we need to specify when and how it is true. In order to illustrate how integrability
enters in the gauge theory side, and its amazing implications, I have chosen to review in
detail the simplest example: the closed bosonic SU(2) subsector of SO(6). Historically, the
connection between SYM gauge theory and spin chain was discovered by Minahan and
Zarembo for the scalar SO(6) sector of the planar PSU(2, 2 | 4) group [3]. This has been
the starting point for all the integrability machinery in AdS/CFT.9

The scalar fields φI with I = 1, . . . , 6 can be rearranged in a complex basis. For example,
we can write

Z = φ1 + iφ2, W = φ3 + iφ4, Y = φ5 + iφ6. (2.17)

The three complex fields Z, W, and Y generate SU(4). The SU(2) subgroup is constructed by
considering two of the three complex scalars. For example, we can take the fields Z and W .
We are considering gauge invariant operators of the type

O(x) = Tr (WZWWZWWWWZZWW)|x + · · · , (2.18)

where the dots indicate permutations of the fields and the subscript on the right hand side
stresses the fact that these fields are all evaluated in the point x. If one identifies the fields in
the following way

Z = ↑, W = ↓, (2.19)

then the operatorO in (2.18) can be represented by a spin chain. In particular, for the operator
(2.18), the corresponding spin chain is represented in Figure 2. If we have L fields sitting in
the trace of the operator O, it means that we are considering a spin chain of length L, with L
sites. Each site has assigned a spin, up or down, according to the identification (2.19).
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At one-loop the dilation operator for gauge invariant local operators which are su(2)
multiplets that can be identified with the Hamiltonian of a Heisenberg spin chain, also
denoted as an XXX1/2 spin chain. Note that this is a quantum mechanics system.

The identification between the Heisenberg spin chain Hamiltonian and the SU(2) one-
loop dilatation operator can be seen by an explicit computation of such an operator [3]. In
particular, one has that

Γ(1) =
λ

8π2

L∑
l=1

Hl,l+1, (2.20)

whereHl,l+1 is the operator acting on the sites l and l + 1, explicitly:

H =
λ

8π2

L∑
l=1

Hl,l+1 =
λ

8π2

L∑
l=1

(Il,l+1 − Pl,l+1)

=
λ

16π2

L∑
l=1

(
Il,l+1 − −→σ l · −→σ l+1

)
,

(2.21)

where Pl,l+1 = (1/2)(Il,l+1 + −→σ l · −→σ l+1) is the permutation operator. The one-loop order is
mirrored by the fact that the Hamiltonian only acts on the sites which are nearest neighbors.
The identity operator Il,l+1 leaves the spins invariant, while the permutation operator Pl,l+1
exchanges the two spins.

We want to compute the spectrum. This means that we want to solve the Schrödinger
equation H|Ψ〉 = E|Ψ〉. |Ψ〉 will be some operators of the type (2.18), and the energy will
give us the one-loop anomalous dimension for such operator. The standard approach would
require us to list all the 2L states and then, after evaluating the Hamiltonian on such a basis,
we should diagonalize it. This is doable for a very short spin chain, not in general for any
value L. The brute force here does not help, and indeed there are smarter ways as the one
found by Bethe in 1931 [27].

One-Magnon Sector

Let us choose a vacuum of the type

|0〉 ≡ |↑↑ · · · ↑↑ · · · ↑〉, (2.22)

and consider an infinite long spin chain, that is, L → ∞. The vacuum has all spins up and
it is annihilated by the Hamiltonian (2.21). The choice of the vacuum breaks the initial SU(2)
symmetry to a U(1) symmetry. Consider now the state with one excitation, namely, with an
impurity in the spin chain

|x〉 ≡

∣∣∣∣∣∣↑↑ · · · ↑ ↓︸︷︷︸
x

↑ · · · ↑
〉
. (2.23)
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The excitation, called a magnon, is sitting in the site x of the spin chain. The wave function is

|Ψ〉 =
∞∑

x=−∞
Ψ(x)|x〉. (2.24)

By computing the action of the HamiltonianH on |Ψ〉, one obtains

H|Ψ〉 =
∞∑

x=−∞
Ψ(x)(|x〉 − |x + 1〉 − |x − 1〉)

=
∞∑

x=−∞
(2Ψ(x) −Ψ(x + 1) −Ψ(x + 1))|x〉.

(2.25)

Let us make an ansatz for the wave-function. Choosing

Ψ(x) = eipx, p ∈ R, (2.26)

then the Schrödinger equation for the one-impurity state reads

H|Ψ〉 =
∞∑

x=−∞
eipx
(
2 − eip − e−ip

)
|x〉. (2.27)

This means that the energy for the one magnon state is

E
(
p
)
=

λ

8π2

(
2 − eip − e−ip

)
=

λ

2π2
sin2 p

2
. (2.28)

This is nothing but a plane wave along the spin chain.
The spin chain is a discrete system. There is a well-defined length scale, which is given

by the lattice size, and the momentum is confined in a region of definite length, typically the
interval [−π,π] (the first Brillouin zone). An infinite chain might be obtained by considering
a chain of length L and assume periodicity. Thus we need to impose a periodic boundary
condition on the magnon wave function, which means

Ψ(x + L) = Ψ(x) =⇒ eipL = 1 =⇒ pn =
2πn
L

, n ∈ Z . (2.29)

These are the Coordinate Bethe equations for the one-magnon sector.10 They are the periodicity
conditions of the spin chain.

Leaving the spin chain picture, and going back to the gauge theory, the operator O in
(2.18) is not only periodic but cyclic (due to the trace). For the single magnon, this implies
that the excited spin must be symmetrized over all the sites of the chain. Thus the total energy
vanishes11. Indeed, operators of the kind

O = Tr(· · ·ZZZWZZ · · · ) (2.30)
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are chiral primary operators: their dimension is protected and one can see that the cyclicity of
the trace means that the total momentum vanishes, which is another way of saying that the
energy is zero, cf. (2.28).

Thus there is no operator in SYM that corresponds to the single magnon state. This is
actually true for all sectors, since it follows from the cyclicity of the trace.

Two-Magnon Sectors

Consider now a state with two excitations, namely, two spins down:

∣∣x < y〉 =
∣∣∣∣∣∣∣
↑ · · · ↑ ↓︸︷︷︸

x

↑ · · · ↑↑ ↓︸︷︷︸
y

↑ · · ·
〉
,

|Ψ〉 =
∞∑

x<y=−∞
Ψ
(
x, y
)∣∣x < y〉.

(2.31)

The Hamiltonian (2.21) is short-ranged, thus when x + 1 < y it proceeds as before for the
single magnon state, just that in this case the energy E would be the sum of two magnon
dispersion relations. The problem starts when x + 1 = y, namely, in the contact terms. In this
case the Scrödinger equation for the wave-function gives

2Ψ(x, x + 1) −Ψ(x − 1, x + 1) −Ψ(x, x + 2) = 0. (2.32)

It is clear that a wave function given by a simple sum of the two single magnon states as
in (2.26) does not diagonalize the Hamiltonian (2.21), but “almost.” Using the following
ansatz:12

Ψ
(
x, y
)
= eipx+iqy−i(δ/2) + eiqx+ipy+i(δ/2), x < y, (2.33)

and imposing that it diagonalizes the Hamiltonian, one finds the value for the phase shift δ
that solves the equation, namely,

eiδ(p,q) = −1 − 2e
iq + eip+iq

1 − 2eip + eiq+ιp
= −

cot p/2 − cot q/2 − 2i
cot p/2 − cot q/2 + 2i

. (2.34)

For this phase shift the total energy is just the sum of two single magnon dispersion relations
(trivially the ansatz (2.33)with the phase shift given by (2.34) solves the case with x + 1 < y).
What does this phase shift represent? This is the shift experienced by the magnon once it
passes through the other excitation, namely, when it scatters a magnon of momentum q.
Hence, S(p, q) ≡ eiδ(p,q) is nothing but the corresponding scattering-matrix.

We still have to impose the periodic boundary conditions on the wave functions:13

Ψ
(
0, y
)
= Ψ
(
L, y
)
, (2.35)
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which, after substituting the phase shift (2.34) in (2.33), gives

eipL = e−iδ(p,q) = eiδ(q,p) = S
(
q, p
)
, eiqL = eiδ(p,q) = S

(
p, q
)
. (2.36)

Again, these are the Coordinate Bethe equations for the su(2) sector with two magnons.
Finally, we need to impose the cyclicity condition, that is, p + q = 0, which means that

the Bethe equations (2.36) are solved for

p =
2πn
L − 1 = −q. (2.37)

The energy becomes

E = E
(
p
)
+ E
(
q
)
=

λ

π2
sin2
(

πn

L − 1

)
. (2.38)

May be the reader is more familiar to the Bethe equations expressed in terms of the rapidities,
also called Bethe roots,14 namely, introducing

uk =
1
2
cot

pk
2
, (2.39)

and using p = −q, the phase shift reads

eiδ(u,−u) = S(u,−u) = −u − (i/2)
u + (i/2)

. (2.40)

K Magnon Sectors

The results of the previous section can be generalized to any number of magnons K (with
K < L). The Bethe equations for general K are

eipkL =
K∏
j /= k

e−iδ(pk,pj ) =
K∏
j /= k

S
(
pj , pk

)
. (2.41)

The energy is a sum of K single particle energies

E =
K∑
k=1

Ek =
λ

2π2

K∑
k=1

sin2 pk
2
, (2.42)

and the cyclicity condition is

K∏
k=1

eipkL = 1. (2.43)
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In terms of the rapidities (2.39) all these conditions take the maybe more common form of

1 =
(
uk + (i/2)
uk − (i/2)

)L K∏
j=1, k /= j

uj − uk + i
uj − uk − i

,
(
Bethe equations

)
,

E =
K∑
k=1

⎛
⎜⎜⎝ i

uk +
(
i

2

) − i

uk −
(
i

2

)
⎞
⎟⎟⎠,

(
energy

)
,

1 =
K∏
k=1

uk + (i/2)
uk − (i/2)

,
(
cyclicity

)
.

(2.44)

What have we achieved? The remarkable point is that the Hamiltonian of a (1 + 1)-
dimensional spin chain has been diagonalized by means of the 2-body S-matrix S(p, q), cf.
(2.41). Indeed, in order to know the spectrum of K magnons, where K is arbitrary, we
only need to solve the Bethe equations and to compute the two-body S-matrix. The K-body
problem is then reduced to a 2-body problem, which is an incredible achievement. This does
not happen in general. The underlying notion that we are using here is that each magnon
goes around the spin chain and scatters only with one magnon each time. This is possible only
for integrable spin chains, or in general for integrable models.15 We will come back more
extensively on this in the next section.

2.4.2. The Full Planar PSU(2, 2 | 4) ABE

Here we have shown in details the SU(2) subsector for the fields in the spin 1/2
representation. However, this can be generalized to other representations for the same group,
or to other groups (e.g., SU(N)) and also to higher loops. What is really interesting for
us, in an AdS/CFT perspective, is that the asymptotic Bethe equations for the full (planar)
PSU(2, 2 | 4) group have been written down. This has been done by Beisert and Staudacher
[28]. They are reported in Appendix B.

At the beginning of the section we explained that the Bethe equations are called
“asymptotic.” “Asymptotic” since the Bethe procedure captures the correct behavior of the
anomalous dimension only up to λL order for a chain of length L. After this order, wrapping
effects have to be taken into account. They reflect the fact that the chain has a finite size. At
the order n in perturbation theory, the spin chain Hamiltonian involves interaction up to n+1
sites:Hl,l+1,...,l+n. If the spin chain has total length L = n + 1, then it is clear that there might be
interactions that go over all the spin chain, namely, they wrap the chain.16 At this point the
ABE are no longer valid. In order to compute these finite-size effects, one might proceed with
different techniques as the Lüscher corrections [29, 30],17 the Thermodynamic Bethe Ansatz
(TBA) [31], cf. [32–35] for very recent results, and the Y -system [36]. These topics currently
are one of the main area of research in the context of integrability and AdS/CFT, however
here we will not face the problem of finite-size effects.18 The explicit one-loop PSU(2, 2 | 4)
spin chain Hamiltonian has been derived by Beisert in [37]. This means that the expression of
the one-loop dilatation operator for the N = 4 SYM is known. Increasing the loop order
usually makes things (and thus also the dilatation operator) sensibly more complicated,
cf., for example, see [38]. Moreover, we do not really need the explicit expression of the
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Hamiltonian, once one has the Bethe equations. Indeed, nowadays we have from the one-
loop [39] to the all loop asymptotic Bethe equations for the planar PSU(2, 2 | 4) [28].

3. Classical versus Quantum Integrability

The superstring theory on AdS5 × S5 can be described by a very special two-dimensional
field theory. Indeed, such a theory shows an infinite symmetry algebra. Before discussing
such an algebra for the specific case of the superstring we will review other integrable (1 + 1)
field theories, their conserved (local and nonlocal) charges and finally stress the difference
between integrability at classical and quantum level.

The discovery of an infinite set of conserved charges in two-dimensional classical σ
models is due to Pohlmeyer [40] and Lüscher and Pohlmeyer [41]. A different derivation of
the tower of conserved charges has been given by Brezin et al. in [42]. A very useful review
is Eichenherr’s paper [43].

3.1. Principal Chiral Model

As a prototype to start our discussion with, we consider the so-called Principal Chiral Model
(PCM). The following presentation is mostly based on [44]. The PCM is defined by the
following Lagrangian:

L =
1
γ2

Tr
(
∂μg

−1∂μg
)
, (3.1)

where g is a group valued map, g : Σ → G with Σ a two-dimensional manifold and G a
Lie group. In particular Σ is parameterized by σμ = (τ, σ). We can think to Σ as the string
world-sheet. γ is a dimensionless coupling constant, the model is conformally invariant. The
model (3.1) possesses a GL × GR global symmetry (simply due to the trace cyclicity) which
corresponds to left and right multiplications by a constant matrix, that is, GL × GR : g →
g0Lgg

−1
0R. The conserved Noether currents associated to such symmetries are

jR = −dgg−1, jL = +g−1dg, with gjLg−1 = −jR. (3.2)

These currents are one-forms and they are also calledMaurer-Cartan forms (MC-forms). They
are nothing but vielbeins; indeed j(L,R) are g-valued functions and they span the tangent space
for any point g(τ, σ) in G. We can then write

j = jata = EaMdX
Mta,

jRμ = −∂μgg−1, jLμ = +g−1∂μg,
(3.3)

where XM denotes the specific parameterization chosen for the M-dimensional group
manifoldG. ta are the generators of the corresponding Lie algebra g, which obey the standard
Lie algebra relations [ta, tb] = fabctc.
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The Lagrangian (3.1) can be written in terms of the right and left currents, namely,
L = −(1/γ2)Tr(jLμ jμL) = −(1/γ2)Tr(jRμ jμR). The equations of motion following from (3.1) are
nothing but the conservation laws for the right and left currents:

∂μjLμ = ∂μjRμ = 0. (3.4)

Moreover, by construction the currents also satisfy the so-called Maurer-Cartan identities

∂μj
(R,L)
ν − ∂νj(R,L)μ +

[
j
(R,L)
μ , j

(R,L)
ν

]
= 0. (3.5)

Equation (3.5) encodes all the information about the algebraic structure of the model. Also,
j
(R,L)
μ can be seen as a two-dimensional gauge field. Then, when one introduces the covariant

derivative D(R,L)
μ = ∂μ + [j(R,L)μ ,], the identity (3.5) can be interpreted as a zero-curvature

equation. The covariant derivative Dμ acts on the elements of the Lie algebra g.

Local and Nonlocal Conserved Charges in PCM

The PCM has two different sets of conserved charges: the local and the nonlocal ones. Both
conserved quantities can be obtained from a unique generating functional, the monodromy
matrix. They correspond to an expansion of the monodromymatrix around different points,19

and I will discuss these aspects more extensively below.
First consider the following charges:

Qa
(0) =

∫∞
−∞

jaτ (σ)dσ,

Qa
(1) =

∫∞
−∞

jaσ(σ)dσ −
1
2
fabc

∫∞
−∞

dσjbτ (σ)
∫σ
−∞

dσ ′jcτ
(
σ ′
)
.

(3.6)

The first one is local, that is, it is an integral of local functions, and it is the global right and left
symmetry of the model; while the second one is bilocal. The Poisson brackets between Qa

(0)
and Qa

(1) generate a series of charges, Qa
(n), which are conserved and which are integrals of

nonlocal functions. Therefore the set of charges generated byQa
(0) andQ

a
(1) are called nonlocal

charges. The basic idea is that such charges show certain “hidden” symmetries of the two-
dimensional model, not the ones directly seen by dynamical point-particles. The conservation
laws for Qa

(n) follow directly from the equations of motion (3.4). Note that since the charges
Qa

(n) are nonlocal, they will not commute in general, and they will not be additive when
acting on some generic multiparticle state. They are fundamental in order to understand the
classical and quantum integrability of the model. In particular when it is possible to extend
such charges to the quantum level, they generate a quantum group called Yangian, whose
structure yields to the factorizability of the S-matrix.

Beside the charges Qa
(n) there are another type of conserved quantities, which

are integrals of local functions of the fields. Such charges are additive on (asymptotic)
multiparticle states and since they commute this puts severe constraints on the dynamics,
as we will discuss in Section 3.3. The basic idea is that such local charges directly generalize
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the energy-momentum conservation law to higher spin. Indeed, consider the quantities
Tr(j(R,L)± j

(R,L)
± ), where we have rewritten the currents in the light-cone coordinates x± = σ ± τ .

From the equations of motion (3.4) and the Maurer-Cartan identities (3.5) it follows that

∂+ Tr
(
j
(R,L)
− j

(R,L)
−

)
= ∂− Tr

(
j
(R,L)
+ j

(R,L)
+

)
= 0. (3.7)

This is nothing but the conservation of the PCM energy-momentum tensor. Differentiating
the action (3.1)with respect to the two-dimensional (world-sheet) metric gμν one has

Tμν = −
1
2γ2

Tr
(
jμjν −

1
2
gμν
(
jλj

λ
))

, (3.8)

and in the light-cone coordinates it becomes T±± = −(1/2γ2)Tr(j±j±). In general, we can
extend (3.7) by considering a higherm rank tensor, namely,

∂+Tr
((
j
(R,L)
−

)m)
= ∂−Tr

((
j
(R,L)
+

)m)
= 0. (3.9)

In particular, in order to satisfy (3.9), any higherm-rank tensor should be associated with the
invariant and completely symmetric Casimir tensor Ca1···amta1 · · · tam . Note that, for the case
m = 2, the invariant tensor is simply the trace of two generators, that is, Cab ∝ δab (multiplied
by a constant numerical factor which depends on the particular normalization of the algebra).
Then, the conservation laws (3.7) and (3.9) follow, apart from the equations of motion for the
currents, also from the algebraic identities which involve the products of symmetric tensors
Ca1···am and the antisymmetric structure constant fabc. The corresponding charges are then

qs± =
∫∞
−∞

dσCa1···amja1± (σ) · · · jam± (σ), (3.10)

where s denotes the Lorentz spin, namely, s = m − 1. The currents in qs can be the right or
left-invariant ones, they will give the same local conservation laws.

The Lax Pair in PCM

Wehave seen that we have currents which are conserved andwhich are flat, cf. (3.4) and (3.5),
respectively. At this point, we would like to construct a flat linear combination of the currents
j themselves. This means that we consider a linear combination with arbitrary coefficients
and demand that it should satisfy (3.5):

aμ = αjμ + βεμνjν such that ∂μaν − ∂νaμ +
[
aμ, aν

]
= 0. (3.11)

Since the mixed terms with αβ are zero, and the terms with the product εε gives a factor −1,
the solution for the coefficients are obtained from the equation α2 − α − β2 = 0, explicitly:

β =
1
2
sinhλ, α =

1
2
(1 ± coshλ) (3.12)
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with λ ∈ R. This means that there is an entire family of solutions depending on a parameter
λ, the spectral parameter.20 The zero-curvature equation for the connection a encodes all the
dynamical informations, such as equations of motion and Maurer-Cartan identities. Note
that in general a is not conserved, namely, it does not satisfy the equations of motion (3.4).

We now explain why we want such connection a. The flatness condition for a is
associated with a two-dimensional differential system. In particular, for the generic group-
valued functionU(τ, σ), the compatibility condition for the differential equations

∂U

∂τ
= aτ(λ)U,

∂U

∂σ
= aσ(λ)U (3.13)

gives (∂2U/∂τ∂σ) = (∂2U/∂σ∂τ), which corresponds to the zero-curvature equation for the
connection a, (3.11). The system (3.13) is also called the Lax representation, and for this
reason, the two components of the connection a are called the Lax pair. The system (3.13)
is integrable provided that a is flat and the solution forU is given by

U(C, λ) = Pe−
∫
C a, (3.14)

where P denotes the path-order prescription for the generators contained in a and C is a path
on the world-sheet Σ. For any initial data, or boundary conditionU(τ0, σ0), the system (3.13)
has a unique solution given by the operator (3.14). This Wilson line operator, which defines
the parallel transport along the path Cwith the connection a, is called the monodromy matrix.

The integrability of the system (3.13) is guaranteed by the fact that the connection has
a zero curvature (3.11), namely, the solution (3.14) is independent of path deformations. Let
s parameterize the path C. A small variation of the contour of integration, σμ(s) → σμ(s) +
δσμ(s), produces a variation on the Wilson loop operator according to [45]

δ

δσμ(s)
U = P

(
Fμν

dσν

ds
e
∫
C a(s)

)
, (3.15)

where Fμν is the field strength for the connection a. It is clear that for a flat current, that is,
when Fμν = 0, such variation vanishes, namely, the Wilson line operator is invariant under
continuos path deformations if the connection is flat. This is a key point: From the fact that
U cannot be deformed, it follows that it might be the proper generating functional for the
conserved charges. Considering paths C of constant time and looking at small deformations
of the contours in the τ direction, then for a flat connection the Wilson line operator will
be invariant under variations of these particular paths, namely, under deformations in time.
Explicitly:

Q(λ) = lim
σ→±∞

U(C0;λ) = Pe−
∫∞
−∞ a|τ0 , (3.16)

where it has been stressed that the contour C0 is over surfaces of constant time τ0 and that
σ → ±∞.21 Thus, summarizing, the conservation of the chargesQ(λ, τ0) is guaranteed by the
flatness of a (3.11). One can easily differentiate U, and assuming that the currents fall down
to zero at infinity and that a is flat, one will get a vanishing time derivative for Q(λ, τ0).
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The nonlocal charges which we have discussed above can be obtained as a Taylor
expansion around the zero value of the spectral parameter λ. Around λ = 0 the expansion of
the flat connection awith the minus solution in (3.12) is

aμ(λ) ∼=
λ

2
εμνj

ν − λ
2

4
jμ +O

(
λ3
)
. (3.17)

Then defining

Q(λ) ≡ 1 +
∞∑
n=1

(−1)n

n!
λnQ(n−1), (3.18)

one has at the leading order in λ expanding the exponential in (3.16)

Q(0) =
1
2

∫∞
−∞

dσjτ(σ),

Q(1) =
1
2

∫∞
−∞

dσjσ(σ) −
1
4

∫∞
−∞

dσ

∫σ
−∞

dσ ′
[
jτ(σ), jτ

(
σ ′
)]
.

(3.19)

Apart for an irrelevant numerical factor these charges are the same presented above in (3.6).
Some concrete examples of the PCM are the models with group G = SU(N) and the

O(4) ∼ SU(2) × SU(2)model. Most relevant for us is the GS type IIB superstring in AdS5 × S5
in the light-cone gauge with symmetry group P(SU(2 | 2) × SU(2 | 2)). This model will be
elaborated on in Section 6.

3.2. Coset Model

We now review some other very special two-dimensional σ-models, namely, those defined
on a coset space. The presentation closely follows the paper by Bena et al. [46].

For a coset space, the map g(τ, σ) takes values in the quotient space G/H. H is a
G-subgroup, called isotropy group or stabilizer since it is required to leave invariant the G
elements. The coset space G/H corresponds to the identification

g(τ, σ) ∼= g(τ, σ)h(τ, σ), h(τ, σ) ∈ H. (3.20)

In some sense we can say that we have “half” of the global symmetries compared with the
PCM of the previous Section 3.1: what is now left is only the invariance under global left
multiplication. However, now the subgroupH plays the important role of gauge group, since
each point in every orbit in the target-space is defined up to a local transformation, that is,
a gauge transformation, which does not contain any further physical information. For this
reason g(τ, σ) is the coset representative. Note that we could have used left-multiplication in
(3.20) to identify different g and then the remaining global symmetry would have been the
right one. The forthcoming arguments then run analogously, with some obvious exchange
between the left and right sectors.
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It is possible to give a geometric construction for spaces such as CPn = SU(n +
1)/(U(1)×SU(n)), AdSn = SO(n− 1, 2)/SO(n− 1, 1) and Sn = SO(n+ 1)/SO(n). For example,
consider the n-dimensional sphere Sn embedded in R

n+1. Fixing the north-pole (0, 0, . . . , 1)
we still can have all the rotations in the n transverse directions, namely, SO(n), which leave
the north pole fixed and do not change the points on the sphere Sn.

As already seen in the previous section, we can introduce the one-forms

Jμ = Jaμt
a = g−1∂μg. (3.21)

We follow the literature and use capital letters Jμ for the left-invariant currents and vice versa,
small letters jμ for the conjugated currents, since now the roles played by the two kinds of
Maurer-Cartan forms are very different. Indeed, the group G acts on the coset representative
as a left multiplication g0, thus the currents Jμ transform according to

Jμ = g−1∂μg −→
(
g0g
)−1

∂μ
(
g0g
)
= g−1∂μg, (3.22)

since g0 is constant. Thus the currents are left-invariant, which corresponds to the action
of the global symmetry G. What happens to the MC-forms when we consider the coset
identification? This means that an element g will be multiplied by an element of the subgroup
H, which now depends on the world-sheet coordinates σμ. Replacing g → gh in J we obtain
the following transformation

Jμ −→ h−1g−1∂μgh + h−1∂μh. (3.23)

The first term transforms covariantly under a local gauge H transformation, but not the
second term. Considering the conjugate currents

jμ = −gJμg−1 = −∂μgg−1, (3.24)

we see that they transform covariantly under global left-multiplication:

g −→ g0g, jμ −→ g0 jμ g
−1
0 . (3.25)

For this reason it is important to distinguish between the left and right sectors, since now the
two types of currents are not both conserved anymore as it was in the PCM case (3.4), and
they transform in different ways under gauge transformations. Obviously, we could have
started defining the coset space by a left-multiplication and inverted the role between “small”
and “capital” currents.

The algebra g is split in two sectors with respect to theH-action: g = h⊕k, where k ≡ g/h

is the orthogonal complement in g with respect to h. As a consequence, also the left-invariant
currents undergo the same split, namely,

J = K +H, (3.26)
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with obvious notation for the various terms. Thus H is really a connection, a gauge field,
while K represents the part of the one-form which transforms covariantly under gauge
transformations, that is, h−1g−1∂gh in (3.23). Notice that the current

k = −gKg−1 (3.27)

is gauge invariant. Finally, the current jμ does not have a defined grading, since the rotation
with g and g−1 mixes the two sectors h and g/h, however one keeps the notation h and k to
denote gHg−1 and gKg−1, respectively.

The Lagrangian is as for the PCM (3.1)

L =
1
γ2

Tr
(
∂μg

−1∂μg
)
=

1
γ2

Tr
(
JμJ

μ) = 1
γ2

Tr
(
jμj

μ). (3.28)

Since the two tangent spaces h and k are orthogonal, this leads to the following expression for
the L

L =
1
γ2

Tr
(
HμH

μ +KμK
μ). (3.29)

The term Tr(A|G/HB|H) vanishes, as it should, since the trace is a bilinear invariant tensor that
respects the structure of the space:

[k, h] ⊆ k, [h, h] ⊆ h. (3.30)

Indeed, the grading g = h ⊕ k means that the generators of one set span the tangent space
labelled by k and the other complementary set generates h, and there is no generator left.
Thus, the trace between any two elements spanning orthogonal spaces vanishes, since the
trace is nothing but a scalar product in this tangent space.

Since the action (3.29) is gauge invariant, it is clear that one can integrate out the gauge
fieldH so that the only remaining contribution to the currents in G/H is

LG/H =
1
γ2

Tr
(
KμK

μ), (3.31)

which is again manifestly gauge invariant (recall that K is covariant under local H
transformations) and it is naturally defined on the quotient space G/H.

Again it follows from the equations of motion that the left-invariant currents are
conserved; they satisfy the usual identity ∂μJν − ∂νJμ + [Jμ, Jν] = 0. As for the PCM, we
can construct the flat linear combination a. However, in the coset space we need a further
requirement: the space should be symmetric, namely, beyond the standard algebraic structure
for a coset space (3.30), we need also that

[k, k] ⊆ h. (3.32)
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This is indeed a necessary and sufficient condition for a bosonic coset space to have a Lax
representation [47, 48]. Note that other models can still have a Lax representation. The AdS5×
S5 superstring case is eloquent in this sense: the bosonic subsector, which is strictly the coset
AdS5 × S5, is a symmetric space. However, its full supersymmetric generalization is not. The
corresponding superstring action is not simply SG/H but there is a further contribution of the
Wess-Zumino-Witten (WZW) type [49] which allows a Lax pair reformulation [46].

In order to construct a flat connection, let us consider the projections of the Maurer-
Cartan identities over h and k. Then ∂μJν − ∂νJμ + [Jμ, Jν] = 0 gives

∂μHν − ∂νHμ +
[
Hμ,Hν

]
+
[
Kμ,Kν

]
= 0,

∂μKν − ∂νKμ +
[
Hμ,Kν

]
+
[
Kμ,Hν

]
= 0.

(3.33)

Without the condition (3.32) the commutator [Kμ,Kν] would have contributed to both the
differentials, dH and dK.22 Using the following identity

∂μlν − ∂νlμ = −g
(
∂μLν − ∂νLμ

)
g−1 −

[
lμ, jν

]
−
[
jμ, lν

]
(3.34)

valid for any current L and its conjugate l = −gLg−1, one has

∂μkν − ∂νkμ + 2
[
kμ, kν

]
= 0. (3.35)

In this way, the flat connection corresponding to a in the PCM is just the gauge-invariant one-
form 2kμ, since it is conserved and it is also flat. Then the construction for the monodromy
matrix follows exactly the PCM model in Section 3.1.

3.3. The Magic of (1 + 1)-Dimensional Theories

Something special happens for two-dimensional field theories which have an infinite amount
of conserved higher charges. This is mainly due to the fact that there is only one spatial
dimension, and that the charges can be used to reshuffle the amplitudes in scattering
processes. The role of integrability in constraining the dynamics of the theory was discovered
in the late 1970s and early 1980s by Zamolodchikov and Zamolodchikov [50], Lüscher [51],
Kulish [52], Parke [53], and by Shankar and Witten [54]. In order to illustrate this point, we
start with a two-dimensional theory with an infinite set of charges, which are integrals of local
functions andwhich are diagonal in one-particle states. The charges are of the kind illustrated
in Section 3.1.

Let us first introduce some notations and define what we mean by scattering. We
denote the particle state with the wave-function |A(θ)〉, where θ is the rapidity, which is
defined for a massive field theory23 as

p+a = 2mae
θa , p−a = 2mae

−θa . (3.36)
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p+ and p− are the momenta in the light-cone coordinates.24 Suppose the asymptotic in-state is
composed ofm particles. We can then write

|in〉 = |Aa1(θ1) · · ·Aam(θm)〉. (3.37)

The hypothesis is that the particles are described by wave packets with an approximate
position for each momentum (for each rapidity) and that all the interactions are short-
ranged (since we are discussing massive field theories) such that the m-particle state can
be approximated by a sum of m single-particle states (the wave packets are far enough
apart to be considered single particle states). An asymptotic in-state means that sufficiently
backwards in time them particles do not interact. This imposes a certain ordering in the state,
since the particle which is traveling faster must be on the left in order to avoid crossing with
all other particles, vice versa the slowest particle should be the first on the right, that is,

θ1 > θ2 > · · · > θm, for in-states. (3.38)

This also implies the reversed ordering for the out-state. Consider as well the asymptotic state
containing n particles, namely, n independent wave packets

|out〉 = |Ab1(θ1) · · ·Abn(θn)〉. (3.39)

Now the particles should travel without interacting for future times and the slowest particle
should be on the left and the particle moving fastest on the right, namely, in terms of rapidities

θ1 < θ2 < · · · < θn, for out-states. (3.40)

The letters a1, . . . , am and b1 · · · bn denote any possible set of quantum numbers characterizing
the particles.

The S-matrix or scattering matrix is by definition the mapping relating the in- and out-
states, namely, it is defined by

|Aa1(θ1) · · ·Aam(θm)〉 = S
b1···bn
a1···am

(
θ1 · · · θm; θ′1 · · · θ

′
n

)∣∣Ab1

(
θ′1
)
· · ·Abm

(
θ′n
)〉
, (3.41)

where it is intended to sum over the indices b1 · · · bn, and over the outgoing rapidities, which
are ordered as explained above. We can also introduce the Faddeev-Zamolodchikov (ZF)
notation [50, 55] and write each asymptotic state as a sequence of Aa(θ)’s, remembering that
they do not commute and they are ordered in increasing or decreasing rapidity for in- or
out-state, respectively, according to (3.38) and (3.40). Then one can write the state and the
S-matrix element in the following way:

Aa1(θ1) · · ·Aam(θm),

Aa1(θ1) · · ·Aam(θm) = S
b1···bn
a1···am

(
θ1 · · · θm; θ′1 · · · θ

′
n

)
Ab1

(
θ′1
)
· · ·Abn

(
θ′n
)
.

(3.42)
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The S-matrix is a unitary operator, namely, it should respect the condition (in operator
notation)

S(θ1, θ2) S†(θ2, θ1) = 1. (3.43)

In general one also requires that the S-matrix is invariant under parity transformation (in
our case the discrete symmetry which flips the spatial coordinate σ to −σ), time reversal,
and charge conjugation. In relativistic quantum field theories the S-matrix turns out to be
invariant also under the crossing symmetry, namely, the transformation which exchanges
one incoming particle of momentum p with an outgoing antiparticle of momentum −p, cf.
discussion in Section 6.4.

Selection Rules

Let us now come back to the local charges qs±. Since they commute with the momentum
operator, for a single particle state we have

qs±|Aa(θ)〉 = ω(s)
a e±sθ|Aa(θ)〉, (3.44)

where ω(s)
a are the corresponding eigenvalues. For s = 0 and s = 1 we can think about them

as the energy and the momentum. However, we are assuming that there exists an infinite
number of higher rank local conserved charges, namely, we are assuming s > 1. Suppose now
we act with the local conserved charges on the in- and out-states. Since the wave packets are
well separated and the charges are integrals of local functions, their action on such states is
additive, namely,

qs|Aa1(θ1) · · ·Aam(θm)〉 =
(
ω

(s)
a1 e

sθ1 + · · · +ω(s)
ame

sθm
)
|Aa1(θ1) · · ·Aam(θm)〉. (3.45)

Again, just to understand, for s = 0 the above relation is the energy conservation condition
and for s = 1 the momentum conservation law. Obviously we can write the expression above
(3.45) also for outgoing states:

qs
∣∣Ab1

(
θ′1
)
· · ·Abm

(
θ′m
)〉

=
(
ω

(s)
b1
esθ

′
1 + · · · +ω(s)

bm
esθ

′
m

)∣∣Ab1

(
θ′1
)
· · ·Abm

(
θ′m
)〉
. (3.46)

The charges are conserved during the entire scattering process and they are diagonalized
by asymptotic multiparticle states as stated above (3.45) and (3.46). Then for any m → n
scattering amplitude it must be true that

ω
(s)
a1 e

sθ1 + · · · +ω(s)
ame

sθm = ω(s)
b1
esθ

′
1 + · · · +ω(s)

bn
esθ

′
n (3.47)

for all the possible infinite values of s. Thus there are s such equations, with s taking infinitely
many values. Hence, the only solution for generic values of the incoming momenta is

n = m, ω
(s)
ai = ω(s)

bi
, θi = θ′i, (3.48)
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with i = 1, . . . , m. The consequences of the solutions (3.48) are severe for the dynamics of the
system.

(i) Since n must be equal to m this implies that there cannot be processes where the
number of particles changes, namely, the number of particles is conserved during
the scattering and there cannot be particle production.

(ii) The set of incoming momenta, {pi} must be equal to the set of outgoing momenta
{p′i}, or in terms of rapidities {θi} = {θ′i}.

However, this does not imply that the sets of quantum numbers before and after the scattering
{ai} and {bi} should be the same. They can have different values, namely, scatterings which
lead to changing flavor are still allowed. There is some subtlety, in the sense that one might
find solutions to (3.47) for specific values of the incoming momenta and for n/=m. However
these values turn out to not be physical [56]. The scatterings which are possible and consistent
with the infinite set of charges are the elastic processes.

S-Matrix Factorization

There is still another dynamical constraint which makes the two-dimensional integrability a
really powerful tool: the factorizability of the S-matrix. Each wave packet is localized, and we
can model it by a gaussian distribution around the position xi with momentum pi. Acting on
such a state with an operator of the type e−ιcP

s
shifts the phase factor by a function depending

on the momentum:25 in particular, the position is shifted by δxi = csps−1i . When the operator
acts on an m-particle state of the type seen before, namely, m times a single particle state,
then each localized wave packet is shifted by a different quantity since such shift depends on
the wave packet momentum. Then, since the asymptotic states are eigenstates for the higher
conserved charges and since such charges commute with the S-matrix, we can use them in
order to reshuffle the in- and out-states. Explicitly one can write

〈out|S|in〉 =
〈
out
∣∣∣eicPsSe−icPs∣∣∣in〉. (3.49)

We can rearrange the wave-packets and make their phase factor change according to their
momenta. In order to illustrate the ideas, let us consider the 3 → 3 scattering. At tree level
we can have three types of diagrams, cf. Figure 3. The first graph (a) visualizes the scattering
of three particles at the same point, while the remaining two diagrams, (b) and (c), represent
a series of three two-body scatterings. Namely, in the diagram (b), first the particles 2 and
3 meet, collide and then the particle 3 collides further with 1 and then the particle 2 with 1.
Of course we can start with the initial scattering between 1 and 2 and proceed analogously,
as in Figure 3(c). Now, we use the operator e−icP

s
in order to shift the particle positions as

in (3.49). However, everything must respect the macro-causality principle, namely, it cannot
happen that the particle 1 goes out before that also the particle 3 participates in the scattering.
Otherwise, the corresponding amplitude would just vanish.26 Namely, nothing can happen
between the slowest incoming particle and the fastest outgoing particle before that all the
incoming particles have collided. Now the point is that one can use the higher charges to
rearrange the phase shift for the multiparticle state, but indeed the diagrams in Figure 3 only
differ by a phase factor. This means that we can use the operators Ps in order tomove the lines
1, 2, and 3 in Figure 3(a), in order to get any of the two other graphs in Figure 3. Hence all the
graphs in Figure 3 are equal. This implies that the three-body S-matrix (Figure 3(a)) is equal
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Figure 3: Tree level diagrams for three-body scattering 3 −→ 3.
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Figure 4: Factorization of the three-body S-matrix and Yang-Baxter equation.

to a sequence of two-body S-matrices (Figures 3(b) and 3(c)). This is the meaning of the first
equality in Figure 4, where what we have discussed for the tree-level is extended to generic
n-loop order. The second equality in Figure 4 represents the Yang-Baxter equations. They are
really nontrivial equations, since they fix the flow of indices that we can have in the S-matrix
elements. This is something special which can happen in two dimensions. Indeed, we are
using the higher charges to reshuffle the incoming particle positions. Hence, if their rapidities
differ, theywill still meet at some point in space. This is not true for the four-dimensional case,
where there are still two dimensions where the incoming particles can completely avoid the
scattering. This is the main reason why an integrable theory in 4 dimensions only has a trivial
S-matrix, which is stated in the Coleman-Mandula theorem [57]. In one spatial dimension the
particles necessary will meet at some point: They run in the same line there is no way to go
out.27

Let us pause here and summarize the previous paragraph. In any (1 + 1)-dimensional
theory with infinitely many local conserved charges, any n → n process can actually be
known since the corresponding S-matrix element is given by a sequence of n(n − 1)/2 two-
body S-matrix elements. In many well-understood theories even if the 2-body S-matrix is
computed, it is hopeless to compute the three-particle S-matrix. But now we are saying that
we do not need it. We can compute any particle number scattering and the corresponding
amplitude will be a product of 2 → 2 scattering amplitudes. Thus, any scattering process
involving more than two particles is a sequence of 2 by 2 collisions, which are all elastic and
before and after any collision the particles keep on traveling freely.
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Until now we have only discussed the local conserved charges since the arguments
in order to run need to use the fact that these objects are additive on multiparticle states.
However, in [58] Iagolnitzer gave a more general proof for the S-matrix factorization and
for the selection rules. The same is done in Lüscher’s paper [51]where he proved the relation
between nonlocal charges and S-matrix factorization for theO(n) sigmamodel. For simplicity
and for pedagogical reasons we have chosen to use the local charges to simpler visualize the
arguments.

Remarks on the AdS5 × S5 String World-Sheet S-Matrix

From the discussion above, it is clear that we can use the factorization of the S-matrix and
the selection rules (and the Yang-Baxter equations) as a definition for a two-dimensional
integrable field theory. It is often really difficult to explicitly construct the (nonlocal and
local) charges and usually it is more useful to know the S-matrix elements. This has been
studied in [5], where we have explicitly verified the factorization of the one-loop S-matrix
for the near-flat-space limit of the type IIB superstring on AdS5 × S5. This is equivalent to
state the integrability of the model at leading order in perturbation theory. However, this will
be explained in more detail in Section 6. Here, we only want to stress once more that these
dynamical constraints severely restrict the motion in the phase space. For example, consider
the 3 → 3 process. Any scattering amplitude must respect the energy and the momentum
conservation laws. In the light-cone coordinates one has that p−p+ = 4m2. Then p± can be
parameterized as p+ = 2ma and p− = 2m/a and the energy-momentum conservation laws
become

1
a
+
1
b
+
1
c
=

1
d
+
1
e
+

1
f
,

a + b + c = d + e + f,

(3.50)

where the set (a, b, c) is for the incoming momenta, which are fixed (it is the external input
which we give when we start to run our collision), while (d, e, f) is the set of outgoing
momenta, which are constrained to respect the above (3.50). The equations in (3.50) describe
two surfaces. Without any further conservation law the outgoing particles could lie in any
point along the curve described by the intersection of the two equations. However, since we
have a higher charge and we can impose another equation, there are only six valid points
in all the phase space! These points correspond to the permutations given by the equation
{a, b, c} = {d, e, f}, see Figure 5. This of course means that we have completely solved the
motion. If we have a 4 → 4 scattering then we need a fourth higher charge to fix univocally
the points in the phase space, and so on. This is the concrete way how the charges manifest
themselves. How to get the extra equation, namely, how the higher charges actually operate
on the phase space, will be discussed in Section 6. There we also explain why we want to
show the quantum integrability of the AdS superstring.

3.4. Quantum Charges in PCM and Coset Model

Until now the discussion has only been at the classical level. Canwe generalize the arguments
above to the corresponding quantum field theory in a straightforward way? This question
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Figure 5: Three particle phase space.

is far from trivial: numerous works in the past years (’70s–’80s) have been devoted to
understand when integrability survives at the quantum level. However, also the answer
is far from being trivial: for the O(n) model all the integrability properties survive after
quantization [51, 59, 60], which is not the case for the CPn model [61]. Can we say why?
Can we say where and how the troubles are originated? Can we learn something useful for
the type IIB string theory? In this section, we will try to partly answer these questions.

Quantum Nonlocal Charges

Going back to the definition of the nonlocal charges (3.6), one would like to implement such
definition at the quantum level. The first trouble which one needs to face is the fact that the
currents, and all fields in general, now are promoted to operators. The first term in (3.6) now
contains a product of two operators. When the two points where the operators are sitting
at get closer and closer the currents can interact and give rise to singularities. In quantum
field theory any product of operators is in general not well defined. Also, the second term in
(3.6) can get renormalized and in general there will be some field renormalization coefficient
which can be divergent.

In order to have a reliable charge definition, it is necessary to slightly modify the
expression in (3.6) [51]:

Qa
(1) = Z

∫∞
−∞

jaσ(σ)dσ −
1
2
fabc

∫∞
−∞

dσjbτ (σ)
∫σ
−∞

dσ ′jcτ
(
σ ′
)
. (3.51)

The second step is to compute the short-distance expansion for the current product in (3.51)
and see if UV-dangerous terms can come out. This means to compute the operator product
expansion (OPE) for the currents:

jaμ(x − ε)jbν(x + ε) ∼
∑
k

Ck
μν(ε)Oabk (x), ε −→ 0, (3.52)
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where the sum k denotes the sum over a basis of operators Oabk . The operators Oabk do not
depend on the short-distance parameter ε, while the coefficients in the expansion Ck

μν are
functions of the coordinates, and thus of ε. The problematic terms are linearly (i.e., 1/ε) and
logarithmically divergent in ε. For example, for the PCM by dimensional analysis and since
the currents have conformal dimension 1, we can expect an expansion of the type

jaμ(x − ε)jbν(x + ε) ∼ Cλ,abc
μν (ε)jcλ(x) +D

λρ,abc
μν (ε)∂λjcρ(x) + · · · , (3.53)

where Cλ
μν(ε) behaves as 1/ε, just by dimensional analysis. This gives rise to possible

logarithmic terms once one integrates.
For the O(n)σ model, Lüscher showed that the quantum charges are well defined, they

are conserved quantum mechanically and they force the S-matrix to factorize [51]. The same
is not true for theCPn model, whichwas investigated byAbdalla et al. in [61]. TheCPn model
is classically integrable, however, at quantum level an anomaly appears in the conservation
law for the quantum nonlocal charges. As before, one needs to study the short-distance
expansion for the currents (3.52) and then plug back the OPE in the quantum nonlocal
charge (3.51). The term responsible for the anomaly in the CPn case is the field strength of
the currents, namely, a dimension two operators, whose corresponding coefficient in (3.52)
contains logarithmically and linearly divergent terms. (Notice that the supersymmetric CPn

is quantum integrable [62].)
Can we give some kind of rules, about when or whether we could expect an anomaly

in the charge conservation laws? For symmetric coset models of the type discussed in
Section 3.2 this issue has been addressed in [63]. If one would like to summarize the results
of the paper, one could say that the breaking of integrability at quantum level is related to
U(1) factor in the denominator of the quotient space, a fact which is confirmed by the CPn

example, where the corresponding field strength gives rise to the anomaly. In some sense in
the O(n) model there is not a great variety of operators Oabk of dimension 1 and 2 with the
proper symmetries required by the model itself in order to be a candidate for the anomaly.28

Remarks on the AdS5 × S5 Superstring Case

From all this, one can understand why it is not so trivial to investigate the quantum
integrability for two-dimensional σ model, as, for example, the superstring world-sheet
theory. Recall that the supercoset AdS5 × S5 is not a symmetric space, thus we cannot extend
directly the analysis of [63]. However we can learn much from the CPn case and with this
example in mind we have started to investigate the quantum pure spinor superstring in
AdS5 × S5 in the papers [4, 7]. In particular, recall the expression for the variation of the
monodromy matrix (3.15), the integrability of the model is strictly related to the tensor Fμν,
cf. Section 5.

4. Green-Schwarz-Metsaev-Tseytlin Superstring

The section is mainly based on the textbooks by [64, 65] and also on the original papers by
Green and Schwarz [66, 67] for the first part. For the second part, I will mainly refer to the
work by Metsaev and Tseytlin [49] for the supercoset construction of the action, to the paper
by Bena et al. [46] for the classical integrability of the GSMT action, and finally to the reviews
written by Zarembo [68] and by Arutyunov and Frolov [69].
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4.1. Green-Schwarz Action in Flat Space

In the Green-Schwarz (GS) approach, the target space supersymmetries are manifest and in
some sense the superspace coordinates are treated more symmetrically with respect to the
Ramond-Neveu-Schwarz (RNS) formalism.29 In string theory, the embedding coordinates
Xa(τ, σ)map the world-sheet Σ, parameterized by (τ, σ), into the target space. Now the same
concept is generalized to the “fermionic embedding coordinates” θI(τ, σ). These are spinors
on the target space and scalars from a world-sheet point of view.

The GS superstring action in a flat background [67] is

SGS,flat = Skin + SWZW

= − 1
4πα′

∫
d2σ
√
−hhμν

(
∂μX

a − iθ
I
Γa∂μθI

)(
∂νXa − iθ

J
Γa∂νθJ

)

+
1

2πα′

∫
d2σεμν

(
−i∂μXaσ

IJ
3 θ

I
Γa∂νθJ + θ

1
Γa∂μθ1θ

2
Γa∂νθ2

)
.

(4.1)

hμν is the world-sheet metric, Xa are the ten embedding coordinates in the flat space a =
0, . . . , 9, and θI with I = 1, 2 are the two Majorana-Weyl spinors in ten dimensions,30 with
σ
IJ
3 = diag(1,−1). For the specific case of the type IIB superstring, the two fermions have the

same chirality, vice versa in type IIA they have opposite chirality, namely,

Γ11θI = θI with I = 1, 2 type IIB,

Γ11θI = (−1)I+1θ1 with I = 1, 2 type IIA,
(4.2)

where Γ11 = Γ0Γ1 · · · Γ9 and Γa are the 32 × 32 Γ-matrices which satisfy the SO(9, 1) Clifford
algebra:

{Γa,Γb} = 2ηab with ηab = diag(−1, 1, . . . , 1). (4.3)

The action (4.1) is essentially built of two terms. The first contribution Skin is a σ-model (the
term symmetric in the world-sheet indices). The second line comes from the Wess-Zumino-
Witten (WZW) term, that is, SWZW (the one antisymmetric in the world-sheet indices). I will
give more detail on the two terms at the end of the section.

An important feature of the GS action (4.1), which is valid also in curved backgrounds,
is the invariance under a local fermionic symmetry, which is called κ-symmetry [67]. Such
a symmetry fixes univocally the coefficient in front of the WZW term. The κ-symmetry
allows one to gauge away half of the fermionic degrees of freedom, leaving only the physical
ones. Counting the fermionic degrees of freedom, we start with a Dirac fermion in ten
dimensions, namely, with 2D/2 = 32 components. We impose the Majorana-Weyl condition
which removes half of the components, leaving only 16 real fermionic degrees of freedom.
Finally we can use the κ-symmetry to reduce the spinor components further, namely, to
8. Recalling that we started with two supersymmetries (I = 1, 2), we have in total 16 real
independent fermionic degrees of freedom.31 Furthermore, the action (4.1) is invariant under
super-Poincaré transformations and world-sheet reparameterizations.
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4.2. Type IIB Superstring on AdS5 × S5: GSMT Action

Before getting to the hearth of the discussion about the AdS superstring action, let me first
review certain crucial properties of the psu(2, 2 | 4) algebra. In the next paragraph, I will
heavily use the results of the two Sections 3.1 and 3.2.

More on the Algebra

A notably property of the psu(2, 2 | 4) algebra is its inner automorphism,32 defined by a map
Ωwhich decomposes the algebra in four subsets. Explicitly, we have

psu(2, 2 | 4) ≡ g = g0 + g1 + g2 + g3, (4.4)

and the Z4-grading is generated by the transformation Ω, where

Ω(M) = −ΣMSTΣ−1. (4.5)

HereM andMST are 8 × 8 supermatrices and Σ is the following matrix

Σ =

(
J 0

0 J

)
, where J =

(
−iσ2 0

0 −iσ2

)
, (4.6)

with σ2 the Pauli matrix. The subsets gk are the eigenspaces with respect to Ω, namely, Ωgk =
ikgk. The Z4-grading respects the bilinear invariants of the algebra, namely,

[gm, gn] = gm+n mod 4. (4.7)

From the above relation we can see the reason why the supersymmetric extension of AdS5×S5
is not a symmetric space, namely, [g1, g1] = [g3, g3] = g2, cf. (3.32) in Section 3.2. The bilinear
invariants can be naturally represented by the supertrace in the algebra space, and we have

〈Tm, Tn〉 = 0 unless m + n = 0 (mod 4). (4.8)

In particular, the subalgebra g0 is the invariant locus of the psu(2, 2 | 4) algebra and it is the
algebra for the gauge group H, which in our case is SO(4, 1) × SO(5). This is a crucial point
from the supercoset construction point of view. g2 contains all the bosonic generators which
are left after modding out the Lorentz generators for so(4, 1) × so(5), namely, it contains the
translation generators, and it is a ten-dimensional space. Notice that g2 is not a subalgebra.33

Finally g1 and g3 are spanned by the fermionic generators, and the two sectors are related by
complex conjugation.

According to the algebra decomposition (4.4), also the currents will respect the Z4-
grading. Denoting with Jm ≡ J|gm the projection onto the subalgebra gm, then

J = J0 + J2 + J1 + J3. (4.9)
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Notice that J1 and J3 are even since they are contracted with the generators and that the
gauge-invariant currents j mix under the Z4-grading. In the language of the previous section,
J0 isH, cf. Section 3.2.

Green-Schwarz-Metsaev-Tseytlin Action

Let me first explain the name for this action. In 1998 Metsaev and Tseytlin constructed the
world-sheet action for the type IIB superstring on AdS5 × S5 from a geometrical point of view
based on a super coset approach [49]. They use the Green-Schwarz (GS) formalism [66, 67],
where the target space supersymmetry is manifest. This is due to the fact that the background,
curved and with Ramond-Ramond (RR) fluxes, prevents the use of the Ramond-Neveau-
Schwarz (RNS) approach, (cf. Section 5).

Recalling how the anti-De Sitter spaces and the spheres are realized:

AdS5 =
SO(4, 2)
SO(4, 1)

, S5 =
SO(6)
SO(5)

, (4.10)

and that the direct product SO(4, 2)×SO(6) is the bosonic sector for the full PSU(2, 2 | 4), thus
the supersymmetric generalization of the above relation is

PSU(2, 2 | 4)
SO(4, 1) × SO(5)

= super
(
AdS5 × S5

)
. (4.11)

In particular, g maps the string world-sheet Σ into the supercoset PSU(2, 24)/(SO(4, 1) ×
SO(5)). To be more precise, we should say instead of PSU(2, 2 | 4) its corresponding universal
covering. The left-invariant Maurer-Cartan forms are defined in the same way as in (3.21):

Jμ = JAμ T
A = g−1∂μg, JAμ = JA

M̂
∂μZ

M̂, (4.12)

where A is the psu(2, 2 | 4) algebraic index, TA are the corresponding generators, which span
the four gm as in (4.9), μ is the world-sheet index, M̂ is the ten-dimensional target space
index, and the embedding coordinates are ZM̂ = (XM, θα, θ̂α̂). Recalling the action for the
coset model (3.28) and considering for simplicity only the bosonic sector, then one easily sees
that the one-forms JAμ are indeed nothing but vielbeins, namely,34

SG/H = −
√
λ

4π

∫
d2σ
√
−hhμνSTr

(
Jμ Jν

)
|g2

= −
√
λ

4π

∫
d2σ
√
−hhμνJA

M̂
JB
N̂
∂μZ

M̂∂νZ
N̂ STr

(
TA TB

)
|g2

= −
√
λ

4π

∫
d2σ
√
−hhμν∂μXM∂νX

N
(
JAM JBN gAB

)
|g2

+ fermions

= −
√
λ

4π

∫
d2σ
√
−hhμνGMN∂μX

M∂νX
N + fermions.

(4.13)
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As for the bosonic coset model the currents Jμ are invariant under global PSU(2, 2 | 4) left
multiplication while under the gauge SO(4, 1) × SO(5) transformations they transform as a
connection, cf. Section 3.2. Moreover, they satisfy the Maurer-Cartan identity ∂μJν − ∂νJμ +
[Jμ, Jν] = 0.

The kinetic term SG/H respects the structure of the bosonic coset model as discussed
in Section 3.2. The fermionic currents enter through a Wess-Zumino-Witten term, namely, a
closed and exact three form:35

IWZ ∼ κ
∫
M3

d3σ Ω3 (4.14)

with

Ω3 = (J2 ∧ J1 ∧ J1 − J2 ∧ J3 ∧ J3), (4.15)

where the boundary of M3 is the string world-sheet Σ which we are integrating over. The
form for the WZW term is indeed the only relevant one which is compatible with the
invariance under SO(4, 1)×SO(5) gauge transformations and which has the correct flat space
limit. The coefficient κ in the expression above is fixed by the the local fermionic symmetry
which characterizes the GS formalism. In particular, the values allowed are κ = ±1. The
exchange of sign is related to a parity transformation in the world-sheet coordinates and
to an exchange of the two fermionic sectors g1 and g3. Once one integrates such a three-form
(4.15), it gives the antisymmetric term

SWZ = −
√
λ

4π
κ

∫
d2σεμνJμ,1Jν,3. (4.16)

Thus the final action is the sum of the two terms (4.13) and (4.16), namely,

SGSMT = −
√
λ

4π

∫
d2σ Str

(
γμνJμ2Jν2 + κεμνJμ1Jν3

)
, (4.17)

with γμν =
√
−h hμν. Summarizing the properties of SGSMT we have that

(i) the bosonic part of SG/H reproduces the standard bosonic coset model on AdS5×S5,
cf. (4.13);

(ii) the full action (4.17) is invariant under global PSU(2, 2 | 4) invariance;

(iii) it is also invariant under local SO(4, 1) × SO(5) transformation,

(iv) and under the κ symmetry,

as it has been shown in [49]. Finally, in the flat space limit, namely, for R → ∞, the above
action (4.17) reproduces the GS type IIB superstring in flat space (4.1). This is indeed how
Metsaev and Tseytlin uniquely constrained their ansatz for the action [49].
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The Classical Equations of Motion

In order to fix the ideas, let us consider the complex world-sheet coordinates36 z, z given by

z = σ1 + iσ2, z = σ1 − iσ2. (4.18)

For the conventions and more detail, we refer the reader to Appendix A. The GSMT action
(4.17) becomes in the new coordinates

SGSMT =

√
λ

2π

∫
d2z STr

(
J2J2 −

κ

2

(
J1J3 − J1J3

))
. (4.19)

In order to derive the equations of motion, one can consider an infinitesimal variation
ξ of the PSU(2, 2 | 4) coset representative g, namely,

g = gξ, δg−1 = −ξg−1, (4.20)

where ξ =
∑3

i=1 ξi and ξi ∈ gi. This implies that small variations for the currents J = g−1dg
satisfy

δξJi = ∂ξi + [J, ξ]i, δξJi = ∂ξi +
[
J, ξ
]
i

δJ0 = [J, ξ]0, δJ0 =
[
J, ξ
]
0
.

(4.21)

Plugging such variations (4.21) in the GSMT action (4.19) and using the Maurer-Cartan
identities, one obtains the following equations of motion:

DJ2 +
1
2
(1 + κ)

[
J1, J1

]
+
1
2
(1 − κ)

[
J3, J3

]
= 0,

DJ2 +
1
2
(1 − κ)

[
J1, J1

]
+
1
2
(1 + κ)

[
J3, J3

]
= 0,

(1 − κ)
[
J2, J1

]
− (1 + κ)

[
J1, J2

]
= 0,

(1 − κ)
[
J3, J2

]
− (1 + κ)

[
J2, J3

]
= 0,

(4.22)

where the covariant derivatives are defined as

D = ∂ + [J0, ], D = ∂ +
[
J0,
]
. (4.23)
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It is clear that the choices κ = ±1 are special values, which definitely simplify the above
equations. As an example, for κ = 1 the equations of motion (4.22) become

DJ2 +
[
J1, J1

]
= 0, DJ2 +

[
J3, J3

]
= 0,

[
J1, J2

]
= 0,

[
J2, J3

]
= 0 .

(4.24)

These equations should be compared with the ones that will be derived in Berkovits
formalism in Section 5, cf. (5.52).

4.3. Classical Integrability for the GSMT Superstring Action

The integrability of the AdS5 × S5 world-sheet action has been proven at classical level in [70]
for the bosonic sector and in [46] for the full supersymmetric model by constructing the Lax
pair, as I will review in this section. The string integrable structure has been showed also in
the work [71] and in [72–75], which are mostly based on the algebraic curve techniques.37

In order to have a generating functional38 for the (local and nonlocal) charges and
prove that the type IIB superstring in AdS5 × S5 is classically integrable, we would like to
generalize the construction of the flat connection for the PCM and coset models discussed
in Sections 3.1 and 3.2. Here we also have the contribution from the fermionic currents,
however, the arguments run absolutely in the same way [46, 76]. Again we can take a linear
combination of the gauge invariant currents, namely,

aμ = αj2,μ + βεμνjν2 + γkμ + δk′μ, (4.25)

where kμ = j1,μ+j3,μ and k′μ = j1,μ−j3,μ, using the notation of [46]. Imposing the zero curvature
equation

∂μaν − ∂νaμ +
[
aμ, aν

]
= 0, (4.26)

one obtains a system of equations. The solutions, which give two one-parameter families of
flat connections, are [46]

α = −2 sinh2λ, β = ∓2 sinhλ cosh λ,

γ = 1 ± coshλ, δ = sinhλ .
(4.27)

Thus, remarkably, the classical GSMT superstring action admits a Lax representation,
showing its classical integrability. Expanding the coefficients for λ = 0 at the leading order,
one obtains exactly the Noether currents for the global PSU(2, 2 | 4) symmetry [72], namely,

aμ = 2λεμνjν2 + λk′μ. (4.28)

In order to deduce the flat connection one uses the equations of motion and the algebraic
identities, but one does not need to fix the κ symmetry. However, it has been shown in [69]
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that integrability forces the coefficient in front of theWZW term to be fixed to the same values
which are allowed by the κ-symmetry (κ = ±1). This means that the word-sheet action, in
order to have the infinite set of conserved charges, should also be κ symmetric and vice
versa.39 We will come back to the integrability of classical superstring in the discussion for
the Pure Spinor formulation of the type IIB superstring in AdS5 × S5 in Section 5, and there
we will discuss the extension to the quantum theory using the Berkovits formalism.

5. The Pure Spinor AdS5 × S5 Superstring

5.1. Motivations

One of the main advantages of the Green-Schwarz formalism is that the target space
supersymmetries are manifest. However, already for the type IIB superstring in flat space,
we encounter serious difficulties once we try to quantize the theory. Recalling the kinetic
term Sint in the GS action SGS,flat in the flat ten-dimensional space in (4.1), one sees that the
kinetic term for the fermions is degenerate:

∂μX
aθ

J
Γa∂μθJ . (5.1)

Indeed, when ∂μXa = 0 it simply vanishes. Moreover computing the canonical momenta for
the spinors

ρK ≡
δL
δθ̇K

, (5.2)

one obtains a complicated and nonlinear function of all the phase-space variables. According
to the Dirac classification, the canonical momenta are primary constraints, which can be of
first or second class. We can say that in the latter case the momenta have a nonvanishing
bracket with the constraints themselves. When the first and second class of constraints are
coupled, one needs to disentangle them and quantize the system introducing the so-called
Dirac brackets as the new anticommutation relations. In the GS superstring, the two classes
of constraints cannot be separated in a covariant way. A way of bypassing the problem is
to fix the light-cone gauge and quantize the superstring action in this gauge.40 The light-
cone quantization allows one to compute the string spectrum leaving only the physical
degrees of freedom, and it is very helpful, for example, in computing the string energies, cf.
Section 6. However, it is not completely satisfactory: one would really like to have a covariant
quantization for the string action.41

These are the main motivations in order to have a formalism with manifest space-
time supersymmetries and a full covariant formulation which allows one to quantize the
superstring action keeping the ten-dimensional Lorentz symmetry manifest.

These two aspects are joint in the formalism proposed by Berkovits in [77], extending
and completing a previous idea of Siegel [78]: the target-space supersymmetry is manifest
and the ten-dimensional Lorentz covariance is also manifest and present in all the stages of
the theory. Obviously there is a price to pay. In order to have a standard fermionic kinetic
terms, certain ghost fields have to be introduced (the pure spinors), as well as their conjugate
momenta. The nonphysical degrees of freedom introduced in the theory in this way are later
removed through a BRST-like operator Q.
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Outline

In Section 5, I would like to review some basic notions and concepts about the pure spinor
(PS) formalism. I will focus on the type IIB superstring action and on the role of the pure
spinors in the context of integrability. Thus, the next section will not be an exhaustive
introduction to the pure spinor formalism. For this we refer the reader to the ICTP lectures
given by Berkovits in 2000 [79] and Oz in 2008 [80].

In the first part, I will discuss some basic features of the pure spinors and of their space.
Then I will formulate the PS action for open strings in flat space. The generalization to closed
strings is straightforward, since basically one “squares” the ghost fields.

The second essential step is the formulation of the superstring action in curved
backgrounds. I will focus on the AdS5 × S5 type IIB action, since this is the relevant case
for the AdS5/CFT4 correspondence.

At this point, in the context of integrability, we need to discuss the key features of
the superstring action. In order, we will see the gauge and BRST invariance of the action
at classical [81] and quantum [82] level. Notice that these properties are fundamental to
guarantee the consistency of the action also at quantum level. Hence, we will review the
classical integrability of the PS type IIB action [83] and the explicit construction of the BRST
nonlocal charges [81]. Indeed, it turns out that the higher conserved charges have to be BRST
invariant. The same steps should be repeated at quantum level. In particular, I will summarize
the results of [82] for the BRST invariance of the quantum nonlocal charges and I will discuss
the finiteness of the monodromy matrix at the quantum leading order [84].

Finally, the last section is dedicated to the finiteness of the charges, the absence of
anomaly in the variation of themonodromymatrix [7] and the operator algebra at the leading
order in perturbation theory [4].

5.2. The Pure Spinor Formalism: Basic Review

The pure spinors are world-sheet ghosts λα which carry a space-time spinor index but they
are commuting objects, which are constrained to satisfy the following condition (the pure
spinor constraint):

λαγ̂aαβλ
β = 0, (5.3)

where γ̂ a are 16 × 16 SO(9, 1) gamma matrices in the Majorana-Weyl representation, a =
0, 1, . . . , 9. Hence the pure spinors are complex Weyl spinors, however, the conjugate λα never
appears in the theory. The canonical momenta to λα are the ghost fields ωα. The system
(ωα, λ

α) is analogue to the (β, γ) system in string theory, however, now the conformal weight
is (1, 0) and the fields are not free. Their ghost number is (−1, 1).

From the condition (5.3), it follows that the actual independent components in λ are
11 and not 16 as one would naively expect. The number of exact degrees of freedom is really
important, as we will see, thus we would like to spend some time to explain how to count
them. For simplicity, we canWick-rotate SO(9, 1) to SO(10). The space where the pure spinors
live is singular in the origin, since the constraint (5.3) is degenerate at the point λ = 0 (as
well as its variation). It is indeed a cone, and removing the singularities we can describe
the space as a SO(10)/U(5) coset. We can break the SO(10) description to U(5), according to
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SO(10) → SU(5) ×U(1). The U(5) gamma matrices are

γ̂ a =
γ̂ a + iγ̂a+1

2
with a = 1, . . . , 5,

γ̂a =
γ̂ a − iγ̂a+1

2
with a = 1, . . . , 5.

(5.4)

We can interpret γ̂ a as a raising operator and γ̂a as a lowering operator. They satisfy the u(5)-
algebra, namely,

{
γ̂ a, γ̂ b

}
=
{
γ̂a, γ̂b

}
= 0,

{
γ̂ a, γ̂b

}
= δab . (5.5)

Let us define the ground state uα+ as the state annihilated by all the lowering operators, that
is, γauα+ = 0 for a = 1, . . . , 5. Then, acting with the U(5) γ-matrices we can obtain the complete
basis of the U(5) spinors. In particular, acting with an odd number of γ-matrices leads to
a change of the chirality (since the spinor index will be a lower one, that is, an antichiral
spinor). Hence, the basis for the spinor λα is

uα+

(
uab
)α
≡
(
γaγbu+

)α
uαa = εabcde

(
γbγcγdγeu+

)α
(5.6)

and any chiral U(5) spinor can be written as

λα = λ+uα+ + λab
(
uab
)α

+ λauαa. (5.7)

Notice that λ+ is a U(5) singlet, λab transforms in the 10 antisymmetric representation of U(5),
and λa in the 5 one. For an antichiral spinor we have

ωα = ω+ũ
+
α +ωa

(
γau+

)
α +ω

ab(uab)α, (5.8)

with (uab)α = εabcde(γcγdγeu+)α and ũ
+
α = εabcde(γaγbγcγdγeu+)α. At this point, one can readily

decompose the ten equations (5.3) in the U(5) basis and obtain42

λγaλ = λ+λa +
1
8
εabcdeλbcλde = 0,

λγaλ = λbλab = 0,

(5.9)

with a = 1, . . . , 5. Hence, fixing λ+ /= 0, the first equation of (5.9) is solved for λa =
−(1/8)(λ+)−1εabcdeλbcλde, which automatically solves also the second equation. Thus λα is a
function of eleven complex parameters, namely, λ+ and λab. Hence the final parameterization
for λ is

λ+ = es, λab = uab, λa =
1
8
e−sεabcdeubcude. (5.10)
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The fact that the vector λa is redundant in this description, namely, the second equation
in (5.9) is identically satisfied (for some constant nonvanishing λ+), implies that the
corresponding antichiral spinorωa is defined up to gauge transformation, that is, δωa ∼ ηaλ+,
with ηa the gauge parameter. As a consequence, it can be directly set to zero, and choose43

ω+ = e−s∂t, ωab = vab, ωa = 0. (5.11)

Some properties are better shown in the U(5) basis, where the ghost fields are free.
In particular, it is easier to understand better the origin of the “correction” term in the OPE
(5.15) between the pure spinor and its conjugate field.

The ghosts are maps from the two-dimensional world-sheet to the target-space, which
is the ten-dimensional flat space in this case. In terms of the free U(5) components, the ghost
action in a flat background in the conformal gauge is

SG =
1
πα′

∫
d2z

(
∂t∂s − 1

2
vab∂uab

)
. (5.12)

Hence, the OPE’s can be directly read from the above action:

t(z1)s(z2) ∼ log(z1 − z2),

vab(z1) ucd(z2) ∼
δ
[a
c δ

b]
d

z1 − z2
.

(5.13)

In the covariant ten-dimensional SO(10) notation, the pure spinor action in flat space
is

SG =
1
πα′

∫
d2z ωα∂λ

α. (5.14)

The two actions (5.12) and (5.14) describe the pure spinors and the conjugate fields in a
flat space (even though in different notations), but the latter contains also the nonphysical
degrees of freedom.

Without breaking the SO(10) covariance, the OPE is

ωα(z1)λβ(z2) ∼
δ
β
α

z1 − z2
− 1
2
γ̂
β+
a e−s

(
γ̂ aλ
)
α

z1 − z2
. (5.15)

As before, the + index is the 1 spinor component in the U(5) notation. The second term in
(5.15) takes care of the fact that, due to the PS condition (5.3), ω is defined only up to gauge
transformations

δωα = Λa(γ̂aλ)α. (5.16)
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This is exactly the same statement above the expressions (5.11) in the SO(10) notation.
Alternatively, we can say that the second term in (5.15) assures that the PS constraint remains
valid also when we consider the OPE between ω and the condition (5.3) itself.

Sinceωα is defined only up to gauge transformations (5.16), it means that it can appear
only in gauge covariant combinations, as for example the Lorentz ghost currents

Nab =
1
2
ω γ̂abλ. (5.17)

One can see that the second term in (5.15) does not contribute to the OPE between N and λ
due to the identity λγ̂abγ̂ cλ = 0:

Nab(z1)λα ∼
1
2

(
γ̂ ab
)α
β

λβ

z1 − z2
. (5.18)

The ghost Lorentz currents satisfy the following OPE:

Nab(z1)Ncd(z2) ∼
ηc[bNa]d(z2) − ηd[bNa]c(z2)

z1 − z2
− 3

ηadηbc − ηacηbd

(z1 − z2)2
, (5.19)

The OPE’s for the Lorentz currents and for λ are manifestly covariant. They are most easily
computed in the U(5) formalism, where all the fields are free. Indeed, decomposing Nab

in (N,N
a

b ,N
ab,Nab) and using the free field OPE’s (5.13), one can compute the expression

(5.19), cf. [85] for explicit computations.
The fact that the pure spinors have 11 degrees of freedom is essential, because it is

what one needs in order to cancel the conformal anomaly. Let us consider the kinetic term for
the GS action in flat space. In the conformal gauge, the world-sheet metric is flat. In the z, z
coordinates, cf. Appendix A, the kinetic term of (4.1) becomes

S =
1
πα′

∫
d2z

(
1
2
∂Xa∂Xa + ρα∂θα

)
, (5.20)

where ρα is the canonical momentum44

ρα =
i

2
∂Xa

(
θγ̂a
)
α
+ θγ̂a∂θ

(
θγ̂a
)
α
. (5.21)

In the flat ten-dimensional Minkowski space the PS action is given by (5.20) and (5.14).
By computing the central charge, the contribution from thematter sector is cM = 10−32 = −22,
from the bosonic and fermionic sector, respectively. Thus, the ghosts should contribute to the
central charge with cG = +22, in order to cancel the conformal anomaly. Indeed, the ghost
stress-energy tensor is

TG =
1
2
vab∂uab + ∂t∂s + ∂2s (5.22)
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and the OPE gives

TG(z1) TG(z2) ∼
dimCM
(z1 − z2)4

, (5.23)

where M is the manifold where the pure spinors live, that is, their degrees of freedom.
Eventually, the corresponding central charge is cG = 2 dimCM = +22.

For completeness, let me write the ghost number operator

JG = ωαλ
α. (5.24)

BRST Operator

One can define a BRST-like operator45 as

Q =
∮
λαdα, (5.25)

where dα is the fermionic constraint

dα = ρα −
i

2
∂Xa

(
θγ̂a
)
α
− θγ̂a∂θ

(
θγ̂a
)
α
. (5.26)

Q has ghost number 1, thus the physical string states are the elements which are in the
cohomology46 of Q and have ghost number 1. Q is guaranteed to be nilpotent by the PS
constraint (5.3), since

Q2 = λαλβ
{
dα, dβ

}
∼ λγ̂aλ = 0. (5.27)

In the GS formulation the superstring actionwas invariant under κ-symmetry. This symmetry
is no longer present and its role is replaced by the BRST symmetry. I will come back on this
point when the pure spinor action in curved background will be discussed.

Until nowwe have discussed the open string action in flat space. We want to deal with
closed strings, which means to double the system described above. Namely, we will have two
sets of ghosts (ωα, λ

α) and (ω̂α̂, λ̂
α̂)with constraints

λγ̂aλ = 0, λ̂γ̂aλ̂ = 0. (5.28)

They are left and right-moving bosonic spinors, with conformal weight (1, 0) and (−1, 0).
They are described by the following action in a flat background

SG =
1
πα′

∫
d2z

(
ωα∂λ

α + ω̂α̂∂λ̂
α̂
)
, (5.29)
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and they give rise to two BRST operators as well

Q =
∮
λαdα, Q =

∮
λ̂α̂d̂α̂. (5.30)

Essentially, all the arguments presented above run in the same way.

5.3. Type IIB Superstring on AdS5 × S5: PS Action

Matter Content

In the matter content we have two contributions [86]. The first term is the sigmamodel action
on the supercoset, which is PSU(2, 2 | 4)/(SO(4, 1) × SO(5)), namely,

SG/H =
1
2γ2

∫
d2z STr(JG/H)2. (5.31)

1/γ2 is the coupling constant, that we will fix at the end. In Section 3.2, we have explained
how to construct the above action. However, the main difference with the bosonic GSMT
action (4.13) is that now we also include the fermionic currents. Explicitly, (5.31) contains

√
−hhμνSTr

(
J2μJ2ν + J1μJ3ν + J3μJ1ν

)
. (5.32)

The action (5.31) is invariant under gauge H-transformations and under the global
G-symmetry. Hence, it is naturally defined on the coset space G/H. However, this is not
sufficient to guarantee a conformal theory.47 For this reason it is necessary to introduce a
topological term, such as the WZW term, which is a gauge invariant three-form. As for the
GS action, it should be closed and d-exact. Writing

Ω3 = dSTr(J1 ∧ J3) (5.33)

one obtains

SWZ =
k

2γ2

∫
d2z STr(J1 ∧ J3). (5.34)

TheWZW term in (5.34) is exactly the same which is in the GSMT action, cf. (4.17). However,
here the level k is fixed by requiring the superconformal invariance of the action. The k values
which are allowed are ±1/2 [87]. Recall that the coefficient in front of the WZW term is fixed
by the κ-symmetry in the GS formalism. In the PS approach the term J1J3 in (5.31) breaks
such a symmetry, but on the other hand, it gives the possibility to have a kinetic term for the
fermions, (thus to construct a fermionic propagator in the standard way and proceed with a
perturbative covariant quantization). Indeed, at the leading order one has:

J1μJ3ν ∼ ∂μθ1L∂νθ
3
R. (5.35)
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Thus the total matter contribution for the PS in the conformal gauge48 is

SM = SG/H + SWZ =
1
2γ2

∫
d2z Str

(
J2J2 +

3
2
J3J1 +

1
2
J3J1

)
. (5.36)

Note that this action corresponds to the choice k = 1/2 and that a change in the sign of
the WZW term coefficient leads to exchange J1 and J3. The one-loop beta function for the
purely matter sector (i.e., AdS2 × S2) has been computed in [86] and showed explicitly that
the renormalization of the coupling constant is proportional to (2k2 − (1/2)), namely, k and
γ are not renormalized at first quantum order for k = ±(1/2). Actually, it is believed that it is
true to all orders in perturbation theory, [87].

Ghost Content

In order to present the ghost content for the type IIB action in AdS5 × S5, let me rewrite the
pure spinor conjugate momenta and the constraints in a more suitable and elegant form. We
have two types of spinors (they are actually the same since we are discussing type IIB strings,
however I will keep distinct the indices for left- and right-moving), that is, λα, λ̂α̂. Then we
will have

λ1 = λαTα, λ3 = λ̂α̂Tα̂, (5.37)

where Tα and Tα̂ are the g1 and g3 generators, respectively. We are in the AdS5×S5 background,
thus the two fermionic sectors can talk to each other. Namely, there exists a matrix γ01234 in the
AdS directions which couples the two indices α , α̂. This is nothing but the 5-form Ramond-
Ramond flux. We can use such a matrix in order to rewrite the conjugate fields ω as chiral
spinors:

ω3+ = ωα

(
γ01234

)αα̂
Tα̂, ω1− = ω̂α̂

(
γ01234

)α̂α
Tα, (5.38)

where the ± in ω are meant to stress the conformal weight of the conjugate fields. At this
point we can rewrite the ghost Lorentz currents as

N0 = −{ω3+, λ1}, N0 = −{ω1−, λ3}, (5.39)

and one can check using the structure constants for the psu(2, 2 | 4) algebra given in
Appendix C.1, that is indeed the same definition of (5.17). The pure spinor constraints (5.28)
become

{λ1, λ1} = 0, {λ3, λ3} = 0, (5.40)

or analogously

[λ1,N0] = 0,
[
λ3,N0

]
= 0. (5.41)
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The pure spinor carries a spinor index, hence, under Lorentz transformations, they
vary according to

δΛλ1 = [λ1,Λ], δΛω3+ = [ω3+,Λ]

δΛλ3 = [λ3,Λ], δΛω1− = [ω1−,Λ],
(5.42)

where Λ is a gauge parameter. This implies that the Lorentz ghost currents transform in the
following way under local SO(4, 1) × SO(5) transformations:

δΛN0 = [N0,Λ], δΛN0 =
[
N0,Λ

]
. (5.43)

In order to write down the PS action in the AdS background, we need to covariantize the
ghost action (5.29). Our gauge field is J0, then introducing the covariant derivatives

D = ∂ + [J0, ], D = ∂ +
[
J0,
]
, (5.44)

one can rewrite the terms ω∂λ as ωDλ. Explicitly:

ω3+Dλ1 = ω3+∂λ1 +ω3+

[
J0, λ1

]
= ω3+∂λ1 −ω3+

[
λ1, J0

]

= ω3+∂λ1 − {ω3+, λ1}J0 = ω3+∂λ1 +N0J0 .

(5.45)

The same is true for the other term: ω1−Dλ3 = ω1−∂λ3 + N0J0. Note that λ1,3 and ω1,3 are
anticommuting objects, since the components λα, λ̂α̂ and ωα, ω̂

α̂ commute and they are
contracted with the fermionic generators Tα , Tα̂ (vice versa the currents J1 , J3 are commuting
objects). The pure spinors are local objects (they live on the tangent space), thus they
transform nontrivially under local tangent space Lorentz rotations. For this reason, they can
couple to the gauge field (J0, J0) and to the constant target space curvature tensor through
their currents.

The right- and left-moving sectors are mixed, once wewrite the ghost fields as in (5.37)
and in (5.38). Indeed, also the Cartan metric mixes the two sectors. It is defined in terms of
the bilinear invariant STr, in particular the elements of such metric are:

STr(TaTb) = ηab, STr
(
T[ab]T[cd]

)
= η[ab][cd],

STr
(
TαTβ̂

)
= ηαβ̂, STr

(
Tα̂Tβ

)
= ηα̂β,

(5.46)

where {T[ab], Ta, Tα, Tα̂ } span {g0, g2, g1, g3 }, respectively. An explicit representation for the
Cartan metric is not necessary here, it strictly depends on the normalization of the structure
constants of psu(2, 2 | 4) and of the supertrace, for example, cf. Appendix in [4]. For the



48 Advances in High Energy Physics

moment, it is sufficient to notice that ηαβ̂ is proportional to the matrix γ01234 and η[ab][cd] is the

combination ηa[cηd]b. Finally, the PS action for the AdS5 × S5 string is

SG =
1
γ

∫
STr
(
ω3+∂λ1 +N0J0 +ω1−∂λ3 +N0J0 −N0N0

)
. (5.47)

The coefficient in front of the coupling between matter and ghost currents, that is,N0J0 and
N0J0, is fixed by requiring the gauge invariance of the ghost action (5.47). The action (5.47)
must be gauge invariant in order to make sense in this coset construction. Further, note that
the term N0N0 in (5.47) is automatically gauge invariant under the transformations (5.43).
The coupling with the space-time connection gives rise to mixed matter-ghost terms (J0N0

and J0N0).

Summary

Let me summarize the complete action for the type IIB superstring living on AdS5 × S5 in the
pure spinor formalism [77, 88, 89]:

S = SG + SM

=
1
γ2

∫
d2z Str

(
1
2
J2J2 +

3
4
J3J1 +

1
4
J3J1 +ω3+∂λ1 +N0J0 +ω1−∂λ3 +N0J0 −N0N0

)
.

(5.48)

The coupling constant is

1
γ2

=

√
λ

4π
=

R2

4πα′
. (5.49)

Note the nonperturbative parity symmetry of the action which exchanges

z←→ z, θ ←→ θ̂, g1 ←→ g3. (5.50)

The Classical Equations of Motion

Recall the MC-current definition in terms of the supercoset representative:

J = g−1dg with g ∈ PSU(2, 2 | 4)
SO(4, 1) × SO(5)

. (5.51)

We have already seen how to derive the equations of motion in Section 4 for the GSMT
string, cf. Section 4.2. We need to consider a small variation ξ of g, that is, δg = gξ, δg−1 =
−ξg−1, which gives for the currents the expressions (4.21). Plugging the variations for the
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left-invariant currents (4.21) in the action (5.48) and using the Maurer-Cartan identities
∂J − ∂J + [J, J] = 0, provides the following equations of motion for the matter currents:

DJ2 =
[
J3, J3

]
+
[
N, J2

]
−
[
J2,N0

]
,

DJ2 = −
[
J1, J1

]
+
[
N, J2

]
−
[
J2,N0

]
,

DJ3 =
[
N, J3

]
−
[
J3,N0

]
,

DJ3 = −
[
J1, J2

]
−
[
J2, J1

]
+
[
N, J3

]
−
[
J3,N0

]
,

DJ1 =
[
J3, J2

]
+
[
J2, J3

]
+
[
N, J1

]
−
[
J1,N0

]
,

DJ1 =
[
N, J1

]
−
[
J1,N0

]
.

(5.52)

By considering a small perturbation for the ghost fields δλ, δω leads to the equations
of motion for the ghost sector:

Dλ1 −
[
N0, λ1

]
= 0, Dω3+ −

[
N0, ω3+

]
= 0,

Dλ3 − [N0, λ3] = 0, Dω1− − [N0, ω1−] = 0.
(5.53)

From the definition of the Lorentz ghost currents (5.39) and from the above equations it
follows:

DN0 +
[
N0,N0

]
= 0, DN0 +

[
N0,N0

]
= 0. (5.54)

BRST Transformations

In the context of integrability, a crucial role is played by the BRST operator. In the curved
AdS5 × S5 background it is given by

Q = QL +QR =
∮
STr
(
λ1J3 + λ3J1

)
, (5.55)

namely, it is made by a right- and a left-moving BRST operator,QL = λ1J3 andQR = λ3J1. The
BRST operator Q acts by right-multiplication on the coset representative g(x, θ, θ̂) [81], and
the infinitesimal BRST transformations for g are

εQ
(
g
)
= g(ελ1 + ελ3), εQ

(
g−1
)
= −(ελ1 + ελ3)g−1, (5.56)
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where ε is an anticommuting parameter introduced for convenience, since λ1 and λ3 are
anticommuting bosons. For the matter currents it implies

εQ(Jm) = δm+3,0∂(ελ1) + [ Jm+3, ελ1] + δm+1,0∂(ελ3) + [ Jm+1, ελ3],

εQ
(
Jm

)
= δm+3,0∂(ελ1) +

[
Jm+3, ελ1

]
+ δm+1,0∂(ελ3) +

[
Jm+1, ελ3

]
,

(5.57)

where we have used the definitions of the MC-currents, the relations (5.56) and then the
projection on gm, withm = 0, . . . , 3.

The ghost fields transform under BRST transformations according to [81]

εQ(λ1) = εQ(λ3) = 0, εQ(ω3+) = −J3ε, εQ(ω1−) = −J1ε. (5.58)

From these relations, one obtains the BRST transformations for the ghost currents,49 that is,

εQ(N0) = [ J3, ελ1], εQ
(
N0

)
=
[
J1, ελ3

]
. (5.59)

As mentioned above, the BRST operator must be nilpotent. The two operators QL and
QR are nilpotent thanks to the pure spinor constraints (5.40). HoweverQ is nilpotent only up
to gauge transformations. Using the PS constraints (5.40), one can check that

Q2(g) = −g{λ1, λ3}. (5.60)

{λ1, λ3} belongs to the g0 subalgebra, that is, SO(4, 1) × SO(5), and thus it parameterizes a
gauge transformation. As an example, computing the squared BRST transformation for J2,50

one gets

Q2(J2) = −[{λ1, λ3}, J2]. (5.61)

With the same procedure one can compute

Q2(N0) = −{λ1, Dλ3 − [N0, λ3]} − [N0, {λ1, λ3}],

Q2
(
N0

)
= −
{
λ3, Dλ1 −

[
N0, λ1

]}
−
[
N0, {λ1, λ3}

]
.

(5.62)

Hence, the BRST operator is nilpotent up to classical equations of motion and up to gauge
transformations parameterized by {λ1, λ3} [82]. This is consistent because all the action is
invariant under transformations generated by SO(4, 1) × SO(5).
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The Classical BRST and Gauge Invariance

(i) The action is BRST invariant at classical level. In particular this can be easily shown
by applying the BRST transformations (5.57)–(5.59) to the action (5.48). Then the
BRST variation coming from the purely matter sector is

δQSm ≡ εQ(Sm) = STr
(
J1D(ελ3) + J3D(ελ1)

)
(5.63)

which is exactly canceled by the BRST variation of the ghost sector

δQSg ≡ εQ
(
Sg
)
= −STr

(
J1D(ελ3) + J3D(ελ1)

)
. (5.64)

(ii) As already discussed the action is classically gauge invariant, by construction for
the matter sector and by covariantization for the ghost sector.

The Quantum Gauge and BRST Invariance

We need to consider if these properties survive at quantum level. We want to discuss
quantum integrability for type IIB string on AdS5 × S5, thus we need to consider whether
the quantum PS superstring action is consistent. The statements in [81, 82] are that

(i) The PS action (5.48) is gauge invariant at quantum level;

(ii) The PS action (5.48) is BRST invariant at quantum level.

It is worth giving some detail on how this has been shown in [82]. I will discuss the gauge
invariance first and then the BRST invariance.

If there is an anomaly at quantum level, namely, if the gauge invariance is broken
quantum mechanically, it means that there exists a local operator which generates such
anomaly. This operator should be local, since the anomaly comes from the short distance
behavior of some operator that quantum mechanically becomes ill-defined, cf. Section 3.4.
Hence, one can proceed with an engineering construction of such generic operator. Since
it is local, it should vanish for global transformations; since it is responsible for the gauge
symmetry breaking, it should be in the subalgebra g0. Then the ansatz is [82]

δΛS = STr
(
αN0∂Λ + αN0∂Λ + βJ0∂Λ + βJ0∂Λ

)
(5.65)

where (α, α, β, β) are some arbitrary coefficients and Λ parameterizes the SO(4, 1) × SO(5)
gauge transformations. Proposing a possible counter-term [82] such as

Sc = −STr
(
αN0J0 + αN0J0 +

1
2

(
β + β

)
J0J0

)
(5.66)

is possible to cancel partially the anomaly, and the remaining terms, namely,

δΛ(S + Sc) =
1
2

(
β − β

)
STr
(
J0∂Λ − J0∂Λ

)
(5.67)
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vanish due to the nonperturbative symmetry which exchanges right- and left-moving and
bar and unbar coordinates in the world-sheet, cf. (5.50), and which, in this case, constraints
to have β = β.

The quantum BRST invariance of the action (5.48) has been shown in [82], and the
arguments proceed analogously. One constructs an ansatz for the anomalous local operator.
In order to relate the terms and thus to reduce the possible linear combination, one can use
the classical equations of motion and the Maurer Cartan identities. However, one needs to
keep in mind that the anomalous terms should be a gauge invariant local ghost number 1
operator. Again, local is due to the short-distance behavior of the operators, gauge invariant
since the gauge and BRST transformation commute, and finally ghost number 1 since it is a
variation generated by the BRST operator. The required properties restrict the possibilities for
the coefficients in the linear combination. In this way it is possible to find a local counter-term
which exactly cancels the variation. Thus the quantum effective action is BRST invariant.

There are some points to notice. First, the use of the classical equations of motion and
the fact that the BRST operator, as well as the BRST transformations, are always the classical
one. Second, since the BRST variation of the effective action can bewritten as a BRST variation
of suitable counter-terms, this means that the BRST cohomology of gauge invariant local
ghost-number 1 operators is trivial, namely, they can always be written as a BRST variation
of some suitable operator. In this way, the BRST transformation of the total action, given by
the effective quantum terms plus the counter-terms, is zero [81, 82].

This was at the first order in perturbation theory. However, the arguments can be
extended by induction at any order in perturbation theory [82]. The basic idea is that if one
has proved that the effective action is BRST invariant up to order hn, then a possible anomaly
would be generated by a local operator of the same type before. Using the fact that the BRST
cohomology for such operators is trivial, proves the BRST invariance up to hn+1 order, and
thus one can go on by induction. Let me stress that we concretely use the classical BRST
operator, the classical equations of motion and Maurer-Cartan identities.51

The Quantum Conformal Invariance

The action (5.48) is conformal invariant at quantum level. By means of the background field
method (cf. Section 5.6) this has been shown to one loop in perturbation theory [89] and by
cohomology arguments to all orders [82].52

5.4. Classical Integrability of the AdS5 × S5 PS Superstring Action

The classical integrability has been proved by Vallilo in [83] by using the same approach of
Bena et al. for the GSMT action [46]. The same Lax pair has been found by Berkovits requiring
that the higher charges should be BRST invariant [81]. The integrability at classical level of
the pure spinor action in generic AdSn × Sn backgrounds has been studied in [90].

Recall from Section 3 that the existence of a flat connection a, namely, a connection
whose field strength identically vanishes, allows us to construct a nondeformable Wilson-
like operator (the monodromy matrix). Its path independence assures the conservation of
the corresponding charges. Hence, one would like to extend the analysis of Bena et al. to the
PS formulation of the AdS5 × S5 action.

The zero-curvature equations in the z, z coordinates reads

∂a − ∂a − [a, a] = 0. (5.68)
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However, it is simpler to work with the left-invariant currents, since they have a well-defined
grading. Using A = −g−1ag, the flatness condition (5.68) becomes

∂A − ∂A +
[
A,A

]
+
[
J,A
]
+
[
A, J
]
= 0, (5.69)

where J are the MC-currents J = J0 +
∑3

i=1 Ji.
The natural ansatz for A is the linear combination involving all the possible currents

A = αJ2 + βJ1 + γJ3 + δN0, A = αJ2 + β J1 + γ J3 + δN0. (5.70)

Notice that now also the Lorentz ghost currents participate to the proposed Lax pair. Further,
now no antisymmetric combination of the fermionic currents enter, as it was for the GS
formulation. The fermionic currents are treated on equal footing with the bosonic ones.

Plugging the ansatz (5.70) in the condition (5.69) and using the equations of motion
(5.52) and (5.54), one obtains for the coefficients the following solutions:

α = z − 1, β = ±z1/2 − 1, γ = ±z3/2 − 1,

α = z−1 − 1, β = ±z−3/2 − 1, γ = ±z−1/2 − 1,

δ =
(
1 − z2

)
, δ =

(
z−2 − 1

)
.

(5.71)

As it was noted by Vallilo [83], the system admits the same solution if we exclude the
ghost contributions. Thus, at classical level, the two sectors, matter and ghost, are completely
decoupled. This is not true at quantum level, as it can be seen in [7, 84, 89].

The Construction of the BRST Charges

The same result (5.71) has been found by Berkovits using a different procedure. Let me sketch
this point since it sheds some light, especially in the relations between the nonlocal charges
and the BRST operator. As it is clearly explained in [81], such charges are symmetries of the
string and can map physical states to physical states, thus they should necessarily respect the
symmetries of the theory, namely, they should be BRST invariant (and it follows for the GS
formalism that there the conserved nonlocal charges should be κ-symmetric).

The explicit construction of the charges for the type IIB superstring in AdS5 × S5 is
based in three steps [81]. First, we search for a gauge invariant current a, such that

Q(a) = ∂σΛ + [a,Λ] (5.72)

for some Λ. Then, the charges given by

P
(
e−
∫∞
−∞ dσa(σ)

)
(5.73)
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are BRST invariant, since a satisfies (5.72). In order to construct a concretely, one makes an
ansatz writing the most general linear combination in terms of all the currents (matter and
ghost currents), that is,

a = −g
(
δN0 + βJ1 + αJ2 + γJ3 + δN0 + βJ1 + αJ2 + γJ3

)
g−1. (5.74)

Note that J0 and J0 are not included in the list, since we want a gauge invariant object, for the
same reason a is written as a rotation of the left-invariant currents, recall Section 3. First, we
act with the BRST operatorQ on a (5.74), and then we impose thatQ(a) obtained in this way
satisfies (5.74)where Λ is

Λ = g
(
bλ1 + bλ3

)
g−1. (5.75)

These constraints fix the coefficients only to certain values. The specific solutions are the same
as those found by Vallilo (5.71). Moreover, the remaining coefficients b and b are

b = ±z1/2 − 1, b = ±z−1/2 − 1. (5.76)

The expansion around the value z = 1 gives back the first global charge. Namely, for the
matter sector is

q ∼= (z − 1)
∫
dσj +O

(
z2
)
= (z − 1)

∫
dσ

(
1
2
j1 + j2 +

3
2
j3

)
+O
(
z2
)
, (5.77)

with j = −gJg−1. This is the explicit construction of the charges. However, their existence is
related to the fact that the classical BRST cohomology does not contain ghost number 2 states,
namely, that such states can always be written as BRST variation of certain operators. This is
indeed the ultimate condition that guarantees the existence of the higher charges.

5.5. Quantum BRST Charges and Quantum Monodromy Matrix

The arguments presented in the previous section are classical. One needs to implement
such arguments at quantum level. This has been done in [82] at any order in perturbation
theory. The argument runs essentially as before. Suppose that we have certain BRST invariant
charges at order hn in perturbation theory, then Q̃(k̃C) = hn+1ΩC + O(hn+2), where Q̃ is
the BRST operator that generates the classical BRST transformations and their quantum
corrections, while ΩC is some generic integrated local ghost number 1 operator. Since the
BRST cohomology is trivial for such operatorsΩC, namely, for local integrated ghost number
1 operators [81, 82], then it can be always written as a BRST variation of something, namely,
it can be written as ΩC = Q(

∫∞
−∞ dσΣ

c(σ)), which means that k̃c − hn+1
∫∞
−∞ dσΣ

c(σ) is BRST
invariant up to order hn+1.
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Finiteness of the Monodromy Matrix at the Leading Order

We have discussed until now the existence of nonlocal charges and their BRST invariance
at quantum level. Nevertheless, this does not tell us whether such quantities remain well
defined quantum mechanically! Are these charges finite?

The question is very far from being trivial, since there are examples in which the bilocal
charges are not finite and they need to be regularized, cf. Section 3.4. In the pure spinor
approach, the question has been initially investigated byMikhailov and Schafer-Nameki [84].
Indeed what they have explicitly shown is that the monodromy matrix is well defined at the
leading order in perturbation theory: it does not get renormalized and all the divergences
that can pop-up cancel. They have found different types of divergences, namely, divergences
that go like 1/ε (linear divergences) and logarithmical divergences (log ε). In a perturbative
quantum field theory, the first ones depend on the regularization scheme adopted, while the
second ones are independent on the scheme and must be cancelled, also in order to have
a consistent quantum conformal invariance. Indeed, suppose to have two contours C and
C′ related by a conformal transformation, namely, C′ = λC. Then the monodromy matrices
along the two paths have divergences that should be regularized. The independence on
the contour and hence the conformal invariance of the monodromy matrices implies that
Ωreg[C] = Ωreg[C′]. On the other side, one has that Ωreg[C] = limε→ 0(Ωε[C] + Cε[C]) and by
definition Ωε[C] = Ωλε[C′]. This forces to have then limε→ 0Cε[C] = limε→ 0Cλε[C′] which is
not true for the case of logarithmic divergences [84].

5.6. Quantum Integrability

We go on following the issue about the finiteness of the conserved charges. We have already
explained in Section 3 that the independence on the contour for the monodromy matrix Ω is
equivalent to the conservation of the charges. Thus our goal is to move at quantum level and
check that the independence on the contour and the zero-curvature equation still yield [7].

How do we proceed? In the first part, we show that there cannot exist an anomaly in
the deformation of the contour for the monodromy matrix. This is done by using techniques
analogous to the ones explained in Berkovits’ papers. In the second part, we explicitly
compute the field strength (5.80) and show that all the logarithmic divergent terms disappear
to first order in perturbation theory.

5.6.1. Absence of Anomaly

Before proceeding, I will summarize some of the basic “ingredients” presented in the
previous part of the section. Recall that the Lax pair is53

J(z) = J0 + zJ2 + z1/2J1 + z3/2J3 +
(
z2 − 1

)
N,

J(z) = J0 +
1
z
J2 +

1
z3/2

J1 +
1
z1/2

J3 +
(

1
z2
− 1
)
N .

(5.78)
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From the BRST transformations for the currents (5.57) and (5.59), we can read how the Lax
pair varies under the Q action:

εQ(J) = ∂
(
z−1/2ελ3 + z1/2ελ1

)
+
[
J, z−1/2ελ3 + z1/2ελ1

]
,

εQ
(
J
)
= ∂
(
z−1/2ελ3 + z1/2ελ1

)
+
[
J, z−1/2ελ3 + z1/2ελ1

]
,

(5.79)

where notice that z−1/2ελ3 + z1/2ελ1 is nothing but what we have called Λ in (5.75). The field
strength is

F(1,1)(z) ≡ ∂J − ∂J +
[
J,J

]
(5.80)

and it satisfies

εQ
(
F(1,1)(z)

)
=
[
F(1,1)(z), z1/2λ1 + z−1/2λ3

]
. (5.81)

Using the equations of motion (5.52)–(5.54) as well the Maurer Cartan identities, one
can easily show that indeed the Lax pair with components J and J given above does satisfy
the zero-curvature equation at classical level, that is, that the field strength vanishes

F(1,1)(z) = 0. (5.82)

Let us now investigate the relation between the monodromy matrix and the world-
sheet path (3.15), which I rewrite here for convenience:

δ

δxμ(s)
Ω = P

(
Fμνẋνe

∮
CJ(s)

)
. (5.83)

Fix a point along the path C and consider an infinitesimal deformation on C, that is,
xμ(s) → xμ(s) + δxμ(s). Since the deformation is really small, the “disturbance” in this ε
path is represented by some operators O sitting on it. At higher and higher energies these
operators can interact and produce divergences which spoil the contour independence of the
monodromy matrix.

Let us try to engineeringly construct O and then we will see that such an operator
cannot indeed exist. O should be

(1) local, since as explained we are worried about the short-distance behavior of the
currents which are operators and could produce UV divergences;

(2) gauge invariant;

(3) by dimensional analysis it is expected to have conformal dimension (1, 1), this can
be seen already in (5.83);
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(4) we have also seen that the charges are BRST invariant, namely, the Wilson loop is
BRST invariant classically and quantum mechanically. This implies that O should
transform according to

εQ
(
O(1,1)

)
=
[
O(1,1), z1/2λ1 + z−1/2λ3

]
, (5.84)

which corresponds to ask for the BRST closure of O;

(5) finally, the operator should have ghost number zero, which follows from (5.83).

At this point, we can write the most general linear combination satisfying the properties from
(1) to (5). Notice that the BRST closure (5.84) implies that the matter currents J1 and J3 are not
present in the possible list, because their BRST transformations (5.57) contain derivatives of
ghosts which cannot be reabsorbed by the equations of motion. Moreover the point (2) leads
to exclude the gauge currents J0 and J0. The ansatz for the operator O(1,1) has been given in
[7], namely,

O(1,1)(z) = A2+,2−(z)
[
J2, J2

]
+A1+,3−(z)

[
J1, J3

]
+A2+,3−(z)

[
J2, J3

]

+A1+,2−(z)
[
J1, J2

]
+A0+,2−(z)

[
N0, J2

]
+A2+,0−(z)

[
J2,N0

]

+A1+,0−(z)
[
J1,N0

]
+A0+,3−(z)

[
N0, J3

]
+A0+,0−(z)

[
N0,N0

]
.

(5.85)

The coefficients A are arbitrary functions of the spectral parameter z and they are of order h,
using Berkovits terminology. All the other possible terms are related by classical equations of
motion and Maurer-Cartan identities. We have to impose the relation (5.84) to O(1,1)(z). This
is indeed the most strict requirement on O(1,1)(z) and from this constraint eventually follows
the nonexistence of such operator O(1,1)(z): The system of equations for the unknowns A
admits only the trivial solution. Since we have proven that there are no operator obeying
to the properties (1)–(5), this excludes the possibility to have an anomaly in the contour
deformation of the quantum monodromy matrix.

Actually, by using Berkovits arguments and by recalling that the nonlocal charges have
been proven to be BRST invariant to all orders in perturbation theory, we can extend the
validity of our argument to any n-loop order (hn).

In some sense, order by order in the quantum theory the BRST symmetry fixes the
contour in such a way that any small deformation in the path will not produce any anomaly
in the monodromy matrix. This is because it is really the constraint (5.84)which rules out the
possibility to have an anomaly. This is quite different from the case of quantum CPn models
[61], where there is no such a “constraining” symmetry that prevents the model from an
anomaly.

Finiteness of the Monodromy Matrix to All Orders

Finally, let us to comment about another implication. The authors of [84] have argued that the
independence of the contour for the monodromy matrix leads necessarily to the cancellation
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of the logarithmically divergent terms in the quantum monodromy matrix. Consequently,
the arguments presented in [7] indicate that since the monodromy remains independent of
the contour to all orders in perturbation theory then it is also finite, or better, it is free from
logarithmic divergences to all loops.

5.6.2. The Operator Algebra

Our aim in this section is to show and to explain how to proceed with explicit one-
loop computations in the pure spinor formalism. In particular, we want to explain the
computations of the current OPE’s and the field strength (5.80) and we want to show that
F is free from logarithmic divergent terms. The operator algebra has been derived in [4, 7] at
the leading order.54

Since the world-sheet currents are not holomorphic or antiholomorphic, it is not
possible to derive the OPE’s by symmetry considerations. They have to be computed
perturbatively. The OPE results show indeed the nonholomorphicity of the currents but also
that the Z4-grading of the psu(2, 2 | 4) algebra is preserved.

Let me sketch the procedure. The method used is the background field method
[86, 89], which means that the fields are expanding around a classical solution. The
quantum fluctuations around the classical background interact and give rise to new effective
interactions.

(1)We write each field Φ as

Φ = Φcl + Φq. (5.86)

In particular, the group-valued map g is expanded in quantum fluctuations X around a
classical solution g̃, namely,

g = g̃eγX, with X ∈ g/g0, (5.87)

where γ is the parameter of the expansion, namely, the (inverse of the) coupling constant in
front of the action in (5.48). This means that we are considering the limit

R −→ ∞, or equivalently γ −→ 0. (5.88)

The gauge invariance of the (super) coset space can be used to fix the fluctuations in g/g0.
Hence from the definition of the currents J = g−1dg, one can compute their expansion in
terms of the fields X, that is,

Ji = J̃i + γ
(
∂Xi +

[
J̃ , X
]
i

)
+
γ2

2

(
[∂X,X]i +

[[
J̃ , X
]
, X
]
i

)
+O
(
γ3
)
,

J0 = J̃0 + γ
[
J̃ , X
]
0
+
γ2

2

(
[∂X,X]0 +

[[
J̃ , X
]
, X
]
0

)
+O
(
γ3
)
,

(5.89)
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where the subscript i denotes the projection into gi and its values are i = 1, 2, 3. J̃ is the classical
current, that is, J̃ = g̃−1dg̃. The analogous expansion (5.89) holds for the bar components of

the currents, with the obvious substitutions ∂ → ∂ and J̃ → J̃ . The same method can be
applied to the ghost fields [89, 91, 92],

ω3+ −→ ω̃3+ + γ ω3+, λ1 −→ λ̃1 + γ λ1,

ω1− −→ ω̃1− + γ ω1−, λ3 −→ λ̃3 + γ λ3,

(5.90)

which means that the Lorentz ghost currents transform according to the following
expressions:

N0 = Ñ0 + γN
(1)
0 + γ2N(2)

0 ,

N0 = Ñ0 + γN
(1)
0 + γ2N

(2)
0 ,

(5.91)

with

N
(1)
0 = −

{
ω3+, λ̃1

}
− {ω̃3+, λ1}, N

(2)
0 = −{ω3+, λ1},

N
(1)
0 = −

{
ω1−, λ̃3

}
− {ω̃1−, λ3}, N

(2)
0 = −{ω1−, λ3}.

(5.92)

(2)We plug (5.89) and (5.91) in the action (5.48), we obtain an effective action,55 which
gives us the new Feynman diagrams. What is really interesting are the terms quadratic in the
quantum fluctuations, Φq, since they will give us the diagrams which correct the two-point
functions. Explicitly for the matter sector, we have

SM = SM;0 + SM;β + SM;2 (5.93)

where SM;0 is the classical matter action (5.36), SM;β is the effective action for the matter
contribution used for computing the one-loop β-function in [86, 89], while SM;2 contains the
off-diagonal terms:
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SM;β

=
1
π

∫
d2z Str

(
∂X1∂X3 +

1
2
∂X2∂X2

− [∂X2, X3]J3 −
[
∂X2, X1

]
J1 −

1
2
[∂X3, X3]J2 −

1
2

[
∂X1, X1

]
J2

+
3
4

[[
J1, X3

]
, X1

]
J3 +

1
2

[[
J1, X2

]
, X2

]
J3 +

1
4

[[
J1, X1

]
, X3

]
J3

+
1
2

[[
J2, X2

]
, X2

]
J2 +

1
4

[[
J2, X1

]
, X3

]
J2 −

1
4

[[
J2, X3

]
, X1

]
J2

−1
4

[[
J3, X3

]
, X1

]
J1 −

1
2

[[
J3, X2

]
, X2

]
J1 +

1
4

[[
J3, X1

]
, X3

]
J1

)
,

(5.94)

SM;2

=
1
π

∫
d2z

× Str
(
1
2

[[
J3, X1

]
, X1

]
J3 +

1
2

[[
J1, X3

]
, X3

]
J1 +

5
8

[[
J2, X2

]
, X1

]
J3 +

3
8

[[
J2, X1

]
, X2

]
J3

+
3
8

[[
J1, X2

]
, X3

]
J2 +

5
8

[[
J1, X3

]
, X2

]
J2 −

3
8

[[
J3, X2

]
, X1

]
J2 +

3
8

[[
J3, X1

]
, X2

]
J2

−3
8

[[
J2, X3

]
, X2

]
J1 +

3
8

[[
J2, X2

]
, X3

]
J1

)
.

(5.95)

For the ghost sector one has

SG = SG;0 + SGM;β + SGM;2 + SGM;3 + SG;2. (5.96)

SG;0 is the classical ghost action (5.47), SGM;β contributes to the one-loop β-function [89]

SGM;β

=
1
2π

∫
d2z Str

(
N0

[
∂X3, X1

]
+N0

[
∂X2, X2

]
+N0

[
∂X1, X3

]

+N0[∂X3, X1] +N0[∂X2, X2] +N0[∂X1, X3]
)

(5.97)
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and further contributions are contained in

SGM;2 =
1
2π

∫
d2z Str

(
N0

[[
J3, X3

]
, X2

]
+N0

[[
J3, X2

]
, X3

]
+N0[[J2, X1], X1]

+N0

[[
J2, X3

]
, X3

]
+N0

[[
J1, X1

]
, X2

]
+N0

[[
J1, X2

]
, X1

]

+N0

[[
J2, X1

]
, X1

]
+N0[[J3, X3], X2] +N0[[J3, X2], X3]

+N0[[J2, X3], X3] +N0[[J1, X1], X2] +N0[[J1, X2], X1]
)
,

(5.98)

SGM;3

=
1
π

∫
d2z Str

(
−N(1)

0

([
J3, X1

]
+
[
J1, X3

]
+
[
J2, X2

])
−N

(1)
0 ([J3, X1] + [J1, X3] + [J2, X2])

)

(5.99)

SG;2 = −
1
π

∫
d2zStr

(
N

(1)
0 N

(1)
0

)
. (5.100)

SG;2 is responsible for the interaction between the two types of ghost currents, so we will have
also a nonzero OPE betweenN andN.56

(3)We compute the effective propagators (or two-point functions) according to

(A + V1 + V2)−1 = A−1 −
(
A−1V1A

−1
)
+
(
A−1V1A

−1V1A
−1
)
−
(
A−1V2A

−1
)
+ · · · , (5.101)

where A represents the kinetic operator A ∼ (1/2π)∂∂. V1 represents the three-leg vertices
with interaction terms of the type J ·∂, such as those in (5.97) and the second line in (5.94); V2

contains the four-leg diagrams with interactions of the type J J , such as those contained in
(5.95), (5.99), (5.98), and in the last lines of (5.94). Notice that by dimensional analysis V1 has
conformal weight 1, while V2 has conformal weight 2, this is why we truncate the expansion
to these operators.

(4) Finally, it is possible to compute the current OPE’s contracting the quantum
fluctuationsΦq with the propagators of the previous point (5.101). In particular for the matter
currents the OPE’s up to order γ2 ∼ (1/R2) are

JA(x) J
B(
y
) ∼= 〈JA(x)JB(y)〉

+ γ2
(〈

∂XA(x)∂XB(y)〉 +

〈
∂XA(x)

[
J̃ , X

]B(
y
)〉

+
〈[
J̃ , X
]A

(x)∂XB(y)
〉
+

〈[
J̃ , X
]A

(x)
[
J̃ , X

]B(
y
)〉)

+ · · · ,

(5.102)

where A is a psu(2, 2 | 4) index.
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If we allow ourselves to keep up to dimension-2 operators in the OPE’s, as in [7], then
at order 1/R2 the ghosts and the matter are coupled and they give rise to the following OPE’s

N0(x)Ji
(
y
) ∼= − 1

R2

(〈{
ω3+, λ̃1

}
(x)∂Xi

(
y
)〉

+
〈
{ω̃3+, λ1}(x)∂Xi

(
y
)〉)

+ · · · ,

N0(x)Ji
(
y
) ∼= − 1

R2

(〈{
ω1−, λ̃3

}
(x)∂Xi

(
y
)〉

+
〈
{ω̃1−, λ3}(x)∂Xi

(
y
)〉)

+ · · · ,
(5.103)

N0(x)N0
(
y
) ∼= 1

R2

(〈{
ω3+, λ̃1

}
(x)
{
ω1−, λ̃3

}(
y
)〉

+
〈{

ω3+, λ̃1
}
(x){ω̃1−, λ3}

(
y
)〉

+ 〈{ω̃3+, λ1}(x)
{
ω1−, λ̃3

}(
y
)
〉

+
〈{

ω̃3+, λ̃1
}
(x){ω̃1−, λ3}

(
y
)〉)

+ · · · .

(5.104)

All the OPE results are listed in Appendix C.2.
Moreover at this order 1/R2 the currents can get renormalized, namely, there are loop-

diagrams that can contribute. In particular looking at the expansion (5.89) one sees that the
corrections at order 1/R2 contain two quantum fields X which can be contracted. Since they
are on the same point, this will give rise to one-loop diagrams, such as tadpoles or self-energy
diagrams. Explicitly:57

1
R2

〈
J(2)(x)

〉
=

1
2R2 〈[∂X,X](x)〉 + 1

2R2

〈[[
J̃ , X
]
, X
]
(x)
〉
. (5.105)

5.6.3. The Field Strength

As discussed in [7], looking at the expression (5.83) the field strength is our prototype for
the operator O. However, in (5.85) we mod out the redundancy coming from the equations
of motion and the Maurer Cartan identities. This means that there might be operators which
classically vanish on-shell and which satisfy all the requirements (1)–(5). Obviously, how
it can be readily seen, the field strength (5.80) has all these features. For this reason, we
have also explicitly computed the field strength at one-loop showing that all the logarithmic
divergences cancel. However, we have not showed the complete vanishing of the field
strength, namely, that the finite terms also cancel, due to technical difficulties.

Once we have expanded the left-invariant currents in 1/R2, cf. (5.89)–(5.91), the Lax
pair J (5.78), and the field strength F (5.80) will be also expanded consequently:

J −→ J̃ + γJ(1) + γ2J(2) +O
(
γ3
)
,

F(1,1) −→ F̃ + γF(1) + γ2F(2) +O
(
γ3
)
.

(5.106)

Notice that J̃ is the classical flat connection, which means that F̃ = 0.
One can write the curvature tensor as

F(1,1)(z) = : F(1,1)(z) : +
∑
k

Ck(ε)O(1,1)
k (z). (5.107)
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The symbol: : denotes the normal ordering prescription, namely, the contribution toF coming
from the internal contractions in the currents (5.105), while the sum

∑
k Ck(ε)Ok is the

operator product expansion (OPE) which, by definition, takes into account the effects of the
operator JJ. Explicitly, since F(1,1) is defined as in (5.80), in order to compute F(2), we need
to consider two contributions:

∂J − ∂J =: ∂J − ∂J : (5.108)

[
J(x),J

(
y
)]

= :
[
J(x),J

(
y
)]

: +fABCJ
B(x)J

C(
y
)
tA

= :
[
J(x),J

(
y
)]

: +
∑
k

Ck(ε)Ok;+−(σ),
(5.109)

when x − y ∼ ε and σ ≡ (x + y)/2. Notice that both expressions (5.108) and (5.109) depend
on the spectral parameter z. In particular, for the commutator (5.109) one has

[
J,J

]
=
[
J0, J0

]
−
[
J0,N

]
−
[
N, J0

]
+ 2
[
N,N

]
+
[
J2, J2

]
+
[
J1, J3

]
+
[
J3, J1

]

+ z−2
([
J0,N

]
−
[
N,N

])

+ z2
([
N, J0

]
−
[
N,N

])

+ z−1
([
J0, J2

]
+
[
J1, J1

]
+
[
J2,N

]
−
[
N, J2

])

+ z−3/2
([
J0, J1

]
+
[
J1,N

]
−
[
N, J1

])

+ z−1/2
([
J0, J3

]
+
[
J2, J1

]
+
[
J1, J2

]
+
[
J3,N

]
−
[
N, J3

])

+ z
([
J2, J0

]
+
[
J3, J3

]
−
[
J2,N

]
+
[
N, J2

])

+ z1/2
([
J1, J0

]
+
[
J2, J3

]
+
[
J3, J2

]
−
[
J1,N

]
+
[
N, J1

])

+ z3/2
([
J3, J0

]
−
[
J3,N

]
+
[
N, J3

])
.

(5.110)

The various sectors labelled by zs distinguish the different subalgebras and thus they cannot
mix.

The strategy is to calculate the contributions to (5.108) and (5.109) and to show the
cancellation of the divergences for each different sector zs. Notice that, in principle, each
commutator in (5.110) gives again two types of terms, namely, each commutator in (5.110) is
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written as

[
J(x), J

(
y
)]A

= fABC JB(x)J
C(
y
)
+ :
[
J(x), J

(
y
)]A

:,

[
J(x),N

(
y
)]A

= fAB[ab]J
B(x)N

[ab](
y
)
+ :
[
J(x),N

(
y
)]A

:,

[
J(x),N

(
y
)]A

= fAB[ab]J
B
(x)N[ab](y)+ :

[
J(x),N

(
y
)]A

:,

[
N(x),N

(
y
)][ab]

= f [ab]
[c1d1][c2d2]

N[c1d1](x)N
[c2d2](

y
)
+ :
[
N(x),N

(
y
)][ab]

:,

(5.111)

where again all the first terms are computed from the OPE’s while the second is the normal
ordered commutator which contributes with terms as in (5.105).

Finally, summing all the contributions illustrated in this section, and using the OPE
results listed in Appendix C, it has been possible to show that indeed the one-loop field
strength F(2) is free from UV divergences [7].

6. AdS5/CFT4 as a 2d Particle Model and the Near-Flat-Space Limit

6.1. Introduction

The integrable structures found on both sides of the correspondence allow one to treat the
planar AdS/CFT as a two-dimensional particle model. On the gauge theory side, this is
due to the correspondence between the N = 4 SYM theory and the one-dimensional spin
chain, in particular, it follows from the identification between the dilatation operator and
the spin chain Hamiltonian, cf. Section 2. We can treat the scatterings of the impurities in
the spin chain as collisions among (1 + 1) dimensional particles and consider the S-matrix
for describing all the relevant kinematical observables. In particular, the integrability of
the model ensures that each magnon only scatters with another one each time (S-matrix
factorization).

What about the string theory side? There we have a two-dimensional world-sheet
description for closed strings in AdS backgrounds. We need to identify which are the
elementary excitations of the world-sheet which correspond to the spin chain magnons. In
this sense the full GSMT formulation might seem hopeless: keeping all the symmetries for the
AdS superstring does not help to find the spectral information. However, in the (generalized)
light-cone gauge the world-sheet theory describes only the physical degrees of freedom of the
AdS superstring. And it is in this way that it is possible to interpret theworld-sheet excitations
as two-dimensional particles.

Having a theory which describes particles in (1 + 1) dimensions and which might be
integrable, means that we can know all the spectrum through the S-matrix, cf. Sections 2 and
3. In particular, even without an exact knowledge of the dilatation operator, the (asymptotic)
spectrum can be encoded in the Coordinate Bethe equations, which in turn can be derived
from the S-matrix. Naturally this should be true on both sides of the AdS/CFT duality and in
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fact it turns out that it is the same S-matrix which describes (asymptotically) the collisions of
magnons along the (infinitely long) spin chain and of world-sheet excitations (in an infinite
volume).

Historically, on the gauge theory side, the S-matrix was initially discussed by
Staudacher in [93]. Beisert explained how it is determined by the unbroken symmetries of
the model up to an abelian overall phase in [94, 95]. On the string theory side, it was initially
discussed by Arutyunov et al. in [96], by Klose and Zarembo in [97], and by Roiban et al. in

[98]. Further fundamental works in this direction are the paper by Klose et al. [99], where

the world-sheet S-matrix is computed to tree level and the papers by Arutyunov et al. [100],
where the S-matrix has been rewritten in a string basis, and by Arutyunov et al. [101], where
the symmetries are discussed on the string theory side. Actually, we will use the S-matrix in
the near-flat-space limit (NFS) which was computed to one-loop by Klose and Zarembo in
[102] and to two-loops by Klose et al. in [103].

There is a key-point in the discussion above. Such a “S-matrix-program” assumes
(quantum) integrability: the kinematical information is obtained by means of the two-body S-
matrix. As explained in the previous Section 5, proving rigorously the quantum integrability
for the type IIB superstring is an incredible hard task probably as much as proving the
gauge/string correspondence. But now, after Section 3, we know that in two-dimensional
field theories the higher conserved charges leave dynamical constraints (particle production,
elastic scattering, factorization of the S-matrix) which can be tested. For example, this is the
strategy used in [5]: Show that all these properties hold up to one-loop for the type IIB
superstring in AdS5 × S5.

We should be more precise. First point to discuss is that, even fixing the light-cone
gauge, the σ-model described by Metsaev and Tseytlin in [49] is still prohibitive or at least
very complicated. For this reason, we use for the explicit computation the so-called near-flat-
space limit, introduced in 2006 by Maldacena and Swanson [104]. We will explain the features
of the model in this limit and the corresponding S-matrix. We will also introduce the light-
cone gauge and the BMN limit [105], since we will reuse these notions in Section 7 discussing
the “new” gauge/gravity duality. Notice also that we are discussing the S-matrix and the
spectrum in the infinite volume limit.

A second point to stress: We should not be confused about which kind of S-matrix
we are discussing. As mentioned at the beginning, we are describing the superstring in AdS
spaces from a world-sheet point of view. Indeed we have always discussed the integrability of
the world-sheet action. The complete kinematical and dynamical information is contained
in this very special two-dimensional quantum field theory. In the light-cone gauge the
excitations, which are left after gauge-fixing, are only the physical ones. These are massive
excitations in the string world-sheet. Thus when we talk about and describe the S-matrix on
the string theory side, we really mean the world-sheet S-matrix, and not the target space S-
matrix. It is really the S-matrix which describes the scattering of these particle excitations on
the string world-sheet.

On the gauge theory side, it is the same, namely, we are dealing with the internal
S-matrix, adopting the expression used by Staudacher in [93]. This means that we are
considering the scattering of magnons, namely, the fundamental excitations in the spin chain
picture. This should be not confused with the external S-matrix, namely, the scattering matrix
associated with the collisions of gluons in four dimensional space-time.
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6.2. Light-Cone Gauge, BMN Limit, and Decompactification Limit

In this section, we explain more concretely what we mean by a two-dimensional particle
model from the string theory point of view, introducing the generalized light-cone gauge, the
decompactification limit and the fields.

6.2.1. Light-Cone Gauge

In the GS formalism in order to treat the AdS superstring we need to break the (super)
Lorentz covariance by imposing the light-cone gauge [69, 106–109]. We introduce the AdS5 ×
S5 metric in the global coordinates

ds2 = −Gtt(z)dt2 +Gzz(z)dz2︸ ︷︷ ︸
AdS5

+Gϕϕ(y)dϕ2 +Gyy(y)dy2

︸ ︷︷ ︸
S5

, (6.1)

with

Gtt(z) =

(
1 +
(
z2/4

)
1 − (z2/4)

)2

, Gzz(z) =
1

(1 − (z2/4))2
,

Gϕϕ

(
y
)
=

(
1 − (y2/4)
1 + (y2/4)

)2

, Gyy

(
y
)
=

1(
1 + (y2/4)

)2 .
(6.2)

In AdS5, the coordinates zi are the four transverse directions and t is the global time; in S5,
yi
′
are the four transverse coordinates and ϕ is the angle along one of the big circle of the

5-sphere. The corresponding embedding coordinates, the world-sheet fields, are denoted by

T,Zi︸︷︷︸
AdS5

, φ, Yi′︸︷︷︸
S5

with i, i′ = 1, 2, 3, 4. (6.3)

One can introduce the light-cone coordinates which mix the two U(1) directions, in
particular to keep the discussion more general we can use the following parameterization

X+ = (1 − a)T + aφ, X− = φ − T, (6.4)

where a is a real number defined between 0 ≤ a ≤ 1. The typical values for a are a = 1/2,
which is called the uniform gauge, and a = 0 which is called the temporal gauge.58 There
are some simplifications for the different gauge choices, in particular in the next Section 7
in the context of the AdS4/CFT3, we will make use of the temporal gauge. Here, we will
assume the uniform light-cone gauge, which corresponds to the most symmetric choice and
has remarkable simplifications in the S-matrix computations.
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The conjugate momenta are defined by pM = δL/δẋM. Hence inverting the relations
(6.4), T = X+ − aX− and φ = X+ + (1 − a)X−, the light-cone momenta are

p+ ≡
δL
δẊ+

= pφ + pT , p− ≡
δL
δẊ−

= −apT + (1 − a)pφ. (6.5)

In the light-cone gauge the target space time (in light-cone coordinates) is identified
with the world-sheet time coordinate59 and the conjugate momentum to the field X− is kept
constant, namely,

X+
!︷︸︸︷
= τ, p−

!︷︸︸︷
= constant (≡ C). (6.6)

Notice that this means that the total space-time momentum in the light-cone coordinates is

P− =
1

2πα′

∫π
−π
dσp− =

C

α′
,

P− =
1

2πα′

∫π
−π
dσp− =

1
2πα′

∫π
−π
dσ
(
−apT + (1 − a)pφ

)
= aE + (1 − a)J.

(6.7)

The first line in (6.7) says that the total space-time light-cone momentum P− measures the
world-sheet circumference, which we have chosen to parameterize with −π ≤ σ ≤ π .
However, we could have integrated between the interval [−s, s] after rescaling the world-
sheet coordinate σ, and nothing would have changed in the first line, a part from the
appearance of the constant 2s. Thus P− is related to the string length. Notice that we have
set R = 1, but it can be easily restored by multiplying the results in (6.7) by R2.

Let us now comment on the second line in (6.7). By definition, P− is related to the
U(1) charges which are the energy, conjugated to the global time in AdS, and the angular
momentum J , conjugated to the angle for the S5-equator. Since this is important, let me stress
that we have

E = − 1
2πα′

∫π
−π
dσpT , J =

1
2πα′

∫π
−π
dσpφ. (6.8)

Notice that for the temporal gauge (a = 0) the total space-time light-cone momentum P− is
the angular momentum J . Finally, for P+ we have

P+ =
1

2πα′

∫π
−π
dσp+ =

1
2πα′

∫π
−π
dσ
(
pφ + pT

)
= J − E. (6.9)

Even though we have fixed the light-cone gauge, there is still some choice left: there
is still the reparameterization invariance for the world-sheet coordinates. Closed strings are
parameterized by τ which can take any real values and by σ which takes values in the S1

circle, since by definition the string is closed. Then topologically the closed string world-
sheet is a cylinder. In particular, this implies that when we shift the coordinate σ along the
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circle by a constant, the physics we are describing should not change. In other words the total
momentum along the word-sheet spatial direction (namely, the operator which generates
the translation in σ) should vanish. This is the so-called level matching condition: the total
world-sheet momentum should vanish. Physical closed strings must be level-matched. The
reparameterization invariance with respect to the world-sheet coordinates is encoded in the
Virasoro constraints. Namely, we have to impose that the energy-momentum tensor for the
superstring world-sheet vanishes:

Tμν ≡ Sμν −
1
2
γμνγ

λρSλρ = 0, (6.10)

where the definition for Sμν comes from recalling that the GSMTAdS superstring world-sheet
Lagrangian is L = Lkin +LWZW, cf. Section 4.2, that is,

Lkin = −1
2
γμνSμν = −

1
2
γμν STr

(
JμJν

)
|g2

= −1
2
γμνS

(0f)
μν −

1
2
γμνS

(2f)
μν + · · ·

LWZ = L(2f)
WZ + · · · .

(6.11)

We have expanded in the inverse powers of the string tension (1/
√
λ) and for each loop in the

number of fermions. The string world-sheet metric is γμν with determinant −1 and defined
by γμν =

√
−hhμν.

We can concentrate on the bosonic sector for simplicity. In this case, Sμν is simply given

by S(0f)
μν = ∂μXM∂νX

NGMN and the Virasoro constraints read

Tbosμν = ∂μXM∂νX
NGMN −

1
2
γμνγ

λρ∂λX
M∂ρX

NGMN = 0. (6.12)

One can define the conjugate momenta as

pM = −γτμGMN∂μX
N (6.13)

which is only another way of rewriting the functional derivative δL/δẊN for the bosonic
sector. Then one has

ẊM = − 1
γττ

GMNpN −
γτσ

γττ
XM′

, (6.14)
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where the world-sheet metric basically plays the role of a Lagrange multiplier as it can be
seen also rewriting the Hamiltonian and the Lagrangian, that is,

L = − 1
2γττ

GMNpMpN +
1

2γττ
GMNX

M′
XN ′

H = pMẊM − L = − 1
2γττ

(
GMNpMpN +GMNX

M′
XN ′
)
−
γτσ

γττ
pMX

M′
.

(6.15)

Thus the Virasoro constraints just become

GMNpMpN +GMNX
M′
XN ′ = 0, pMX

M′
= 0. (6.16)

The standard procedure is to solve the second Virasoro constraints in (6.16) in order to find
X−

′
and substitute it back in the first constraint GMNpMpN + GMNX

M′
XN ′ = 0. In particular

one finds

pMX
M′

= p−X−
′
+ pIXI ′ = 0 −→ X−

′
= − 1

C
pIX

I ′ (6.17)

with the index I = 1, . . . , 8 labeling the transverse directions, that is, I = (i, i′). Thus X−
′

is a function of the physical transverse fields, which are periodic in σ. Indeed, in the light-
cone gauge, X−

′
measures the density of the variation of the fields along the σ direction,

namely, it measures theworld-sheet momentumdensity. Then, once one integrates the second
constraint in (6.16), we recognize in it the level-matching condition.

Plugging back the solution for X−
′
in the first constraint in (6.16), one obtains a

quadratic equation for p+, that can be solved by

Hlc = −p+, (6.18)

whereHlc is the light-cone world-sheet Hamiltonian density. Again p+ is now only a function
of the transverse coordinates and momenta, once that all the gauges are imposed and the
constraints are solved. Equation (6.18) tells us that the time evolution in the world-sheet
coincides with the time evolution in the target space as it should be, since we have chosen to
identify the two time coordinates X+ and τ . The world-sheet Hamiltonian is then

H =
1

2πα′

∫π
−π
dσHlc. (6.19)

In particular since the Hamiltonian density does not depend on constants related to gauge
choices, it does not depend on P−. The length of the circumference P−, (or the angular
momentum J in the temporal gauge), enters only trough the interval of integration in (6.19).
This implies that in fact one can rescale the boundary of integration by π → πP−/

√
λ,
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(or by π → πJ/
√
λ in the temporal gauge). Equation (6.18) has also another important

consequence. Rewriting p+ from (6.5), as a consistency condition one has

H =
1

2πα′

∫π
−π
Hlc = −

1
2πα′

∫π
−π
p+ = − 1

2πα′

∫π
−π

(
pT + pφ

)
= E − J, (6.20)

where we used the definitions for the U(1) charges in (6.8).

The Fields

After gauge-fixing the type IIB Lagrangian, we are left with 8 bosonic and 8 fermionic degrees
of freedom. The bosons correspond to the transverse directions in AdS5 × S5. The initial
symmetry PSU(2, 2 | 4) is broken by the gauge-choice. In particular for the bosonic sector we
have killed the directions T and φ in favor of Y and Z. Thus the manifest bosonic symmetries
left are

SO(4, 2) × SO(6) −→ SO(4) × SO(4). (6.21)

The light-cone gauge preserves the SO(4) × SO(4) symmetry. However, in the BMN limit, the
unbroken symmetry group is enhanced to SO(8), but not in the NFS limit, where the quartic
interactions break SO(8) into two copies of SO(4), cf. Sections 6.2.3 and 6.3, respectively. The
indices i, i′, with i, i′ = 1, 2, 3, 4 carried by the fields Z and Y, respectively, can be rewritten in
terms of spinorial indices thanks to the Pauli matrices [99], namely, each group SO(4) can be
decomposed as two copies of SU(2):

SO(4) ∼ (SU(2) × SU(2))/Z2. (6.22)

Notice that one SO(4) comes from the AdS isometry. It represents what is left from the
conformal group after gauge-fixing. The second SO(4) comes from the sphere isometry,
corresponding to what is left from the R-symmetry. Thus the two copies of SU(2) contained
in SO(4, 2) are the Lorentz symmetry group while the other two SU(2)’s contained in SO(6)
describe the flavor symmetry of the model.

In terms of the fields this means that the embedding coordinates can be rewritten as
bi-spinors

Zαα̇ = (σi)αα̇Z
i, Yaȧ = (σi′)aȧY

i′ , (6.23)

where the σ matrices are σi = σi′ = (1, ι−→σ ) and the indices are a = 1, 2, ȧ = 1̇, 2̇, α = 3, 4, and
α̇ = 3̇, 4̇. The fermions mix between the two different sectors:

Ψaα̇, Υαȧ, (6.24)

and one can rewrite all the fields as a 4 × 4 matrix

(
Yaȧ Ψaα̇

Υαȧ Zαα̇

)
. (6.25)
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The fields transform in the bifundamental (2 | 2)2 representation of PSU(2 | 2)L ×PSU(2 | 2)R.
The left and right group acts along the columns and the rows of thematrix (6.25), respectively.
Notice that in the matrix notation above, the first block diagonal corresponds to S5.

Finally, the two (2 | 2) indices can be rearranged in the superindices A = (a, α) and
Ȧ = (ȧ, α̇), where a, ȧ are even and α, α̇ are odd.

6.2.2. Decompactification Limit

We have seen that we can rescale the interval of integration in σ by a factor depending on the
total light-cone momentum P−. Consider now the limit

P− −→ ∞. (6.26)

This means that the world-sheet action is an integral between −∞ and +∞, namely, for
the spatial world-sheet coordinate it means σ ∈ R. Equivalently, we can say that instead
of considering closed strings we are discussing open strings, whose world-sheet has the
topology of a plane.

Why would one like to consider such a limit? The point is that in this decompactification
limit the world-sheet becomes an infinite plane and it makes sense to introduce asymptotic
states (as the ones we discussed in Section 3.3) and the S-matrix for the world-sheet
excitations. It is worth noticing that on the gauge theory side the decompactification limit
corresponds to gauge-invariant operators with very large R-charge (J).

6.2.3. The BMN Limit

The name “BMN” stays for Berenstein et al. [105]: Another fundamental work in this
direction is the paper by Gubser et al. [110]. The terms BMN limit and plane-wave limit will
be used as synonyms. The plane wave limit of the AdS5 × S5 type IIB superstring action was
found in [111] by Metsaev and in [112] by Metsaev and Tseytlin.

The AdS5 × S5 metric in global coordinates can be rewritten as

ds2 = R2
(
−dt2cosh2ρ + dρ2 + sinh2ρdΩ2

3 + dφ
2cos2θ + dθ2 + sin2θdΩ′23

)
, (6.27)

where the explicit dependence in the radius R is restored.60 The metric is the same as in (6.1)
after transforming the coordinates according to

cosh ρ =
1 +
(
z2/4

)
1 − (z2/4)

, cos θ =
1 +
(
y2/4

)
1 −
(
y2/4

) . (6.28)

Wewill deal with an infinitely boosted string along the S5 equator parameterized by φ.
Such a string carries a very large angular momentum J . One can treat it semi-classically and
consider small fluctuations around the classical null geodesic of the point-like string which is
described by ρ = θ = 0. By dimensional analysis one has that J ∼ R2, thus it is equivalent to
consider the large radius limit (R → ∞) of the AdS5 × S5 background (Penrose limit).
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It is useful to rescale the coordinates for the choice a = 0 according to

t −→ x+, ϕ −→ x+ +
x−

R2
, zi −→ zi

R
, yi

′ −→
yi
′

R
. (6.29)

Notice that X+ is dimensionless, X− has length dimension 2 while the transverse coordinates
have dimension 1. Plugging back the coordinate transformations (6.29) in the metric (6.27)
and taking the large R limit one obtains

ds2 ∼= 2dx+dx− + dz2 + dy2 −
(
z2 + y2

)
(dx+)2 +O

(
1
R2

)
. (6.30)

This is the Penrose limit of AdS5 × S5 space, which is equivalent to the plane-wave geometry
seen by a very fast particle.

The Ramond-Ramond (RR) flux survives the Penrose limit, thus we need to impose
the light-cone gauge in order to study the fate of our string:

X+ = τ, p− = constant. (6.31)

Notice that after the rescaling (6.29) the U(1) charge corresponding to the angularmomentum
J gets also rescaled by a factor R2, namely, now we have

P− =
J

R2
, P+ = J − E. (6.32)

The limit we are considering is

R −→ ∞, J −→ ∞, P− = fixed, E − J = fixed, (6.33)

and we will neglect all the terms of order O(1/R2). Notice that (λ/J2) ∼ (R4/J2) and P−
plays the role of an effective parameter. For example, recalling that at the leading order the
bosonic Lagrangian is L = −(1/2)S(0f)

μν = −(1/2)∂μXM∂νX
NGMN and plugging in GMN the

plane-wave metric (6.30), one obtains at the leading order

LB,BMN =
1
2

4∑
i=1

{(
Z′i
)2

+
(
Zi
)2
−
(
Żi
)2}

+
1
2

4∑
i′=1

{(
Y ′

i′
)2

+
(
Y i′
)2
−
(
Ẏ i′
)2}

,

HB,BMN =
1
2

4∑
i=1

{(
Z′

i
)2

+
(
Zi
)2}

+
1
2

4∑
i′=1

{(
Y ′

i′
)2

+
(
Y i′
)2}

.

(6.34)

We have distinguished between Y and Z coordinates just to make contact with the notation
used in the previous section, but indeed they should be treated on equal footing. The above
Hamiltonian describes a free system of 8 bosonic massive fields. It is straightforward to
introduce the fermions, in particular at the leading order we will have only bilinear fermionic
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terms (L(2f)
kin ). After gauge-fixing the local fermionic κ symmetry, only the SO(8) spinors

survive and they also acquire mass from the RR flux (the term is contained in the covariant
derivative).

After expanding in Fouriermodes the bosonic (and the fermionic) fields, the quantized
Hamiltonian

HB,pp =
∞∑

n=−∞
ωn

8∑
I=1

(
aIn

)†(
aIn

)
(6.35)

describes 8 different kinds of free oscillators, completely decoupled and with unit mass.61

The BMN dispersion relation is relativistic, namely,

ω2
n = 1 + k2 = 1 +

(
n

α′P−

)2

= 1 +

(
nR2

α′J

)2

, (6.36)

which is valid for fermions and bosons. Notice that since the theory is free the S-matrix is
trivially the identity.

Let us consider the first nontrivial case,62 namely, a string state where only two level-
matched oscillators are excited, that is, (aIn)

† (aI−n)
†|0〉. The corresponding energy is

2ωn = 2

√√√√1 +

(
nR2

α′J

)2

� 2 +

(
nR2

α′J

)2

+O
(
λ

J2

)
. (6.37)

It is possible to consider the same limit also on the gauge theory side. The
corresponding spin chain carries operators with an infinite R-charge (J) and the dispersion
relation computed gives the same result (6.36). In Section 2.4.1, we have analyzed the
dispersion relation for an operator such as

Tr
(
ZL−KWK

)
. (6.38)

In the particular case whereK = 2, we have computed EK=2 = (λ/π2)sin2(πn/(L − 1))where
the quantized momentum for the magnons is ±p = ±(2πn/(L − 1)). L is the spin chain
length and the R-charge is J = L − K. Let us consider the small momentum limit p → 0,
or equivalently the large L limit, then

EK=2
∼=
λn2

L2
∼=
(
R2n

α′J

)2

, (6.39)

where we have made all the factors explicit to facilitate the comparison with the formula
(6.36), namely, (R4/α′

2
J2) = (λ/J2), and we are using the fact that J ∼ L → ∞ while

K ∼ O(1). Indeed the two dispersion relations match exactly, recalling that now the scaling
dimension is Δ = J + 2 + γ and the string energy is E = Δ − J , where J is just the bare
scaling dimension. Thus, EK=2 gives the first λ/J2 correction to the string energy E and to the



74 Advances in High Energy Physics

anomalous dimension Δ − J . Hence, the plane-wave string is dual to a single trace operator
with infinite R-charge.63

The BMN Scaling

Notice that on the string side the BMN limit means λ → ∞ and J → ∞, but the ratio
λ′ ≡ λ/J2 is kept fixed. One might wonder what happens if we consider λ′ as a small effective
parameter. This is the so-called BMN scaling, where an expansion in λ′ gives the subleading
terms to the dispersion relation:

E = J + J

[(
∞∑
l=0

a
(l)
1

Jl

)
λ′ +

(
∞∑
l=0

a
(l)
2

Jl

)
λ′

2 + · · ·
]
. (6.40)

Notice that it is a joint expansion64 in λ′ and 1/J .
The coefficient a(l)n gives the nth term in the λ′ expansion at l loop order in the string σ

model, that is, (1/
√
λ)l−1, with n = 1, 2, . . . and l = 0, 1, 2, . . . . The relation (6.40) was initially

understood by Frolov and Tseytlin in [113] and there are many examples in literature, mostly
due to Frolov and Tseytlin,65 where for strings with very large (multi)-spins their energy
scales according to (6.40). I refer the reader to Tseytlin’s review [114] and references therein.

On the gauge theory side, it is also possible to organize the scaling dimension in the
same kind of expansion, where here λ� 1, J → ∞ and the ratio λ′ is small, namely,

Δ = J + J

[(
∞∑
l=0

c
(l)
1

Jl

)
λ′ +

(
∞∑
l=0

c
(l)
2

Jl

)
λ′

2 + · · ·
]
. (6.41)

Here, the l loop term in the coefficients c(l)n corresponds to terms of order λl.
The BMN scaling opens the possibility of a direct comparison between gauge and

string theory, since it offers a window where the two perturbative regimes overlap. Hence
the proposal is that the two series of coefficients in (6.40) and (6.41) should match:

a
(l)
n

?︷︸︸︷
= c

(l)
n with n = 1, 2, . . . , l = 0, 1, . . . . (6.42)

The computations of the near-BMN and Frolov-Tseytlin strings [71, 115] showed an
agreement with the gauge theory predictions [116–127] up to one and two-loop order, cf.
also the works [128, 129] where the matching was verified also for the infinite commuting
conserved charges. However, at three loops the proposed equality (6.42) breaks down: The
explicit three-loop computation of the near-BMN strings [106, 130, 131], that is, a(1)3 , and of
the spinning strings [129] showed a mismatch with the gauge theory predictions coming
from the Bethe Ansatz [125, 132, 133], (“three loop discrepancy”).

The physical reason for such a disagreement, as initially pointed out by Serban and
Staudacher [132] and then by Beisert et al. [134], is that we are really comparing two different
perturbative regions, where the order of the limits, which have been used to construct the
expressions (6.40) and (6.41), matters. On the string theory side, one firstly sends J → ∞ and
then expands in small λ′, vice versa, on the gauge theory side the first step is the perturbative
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expansion in small λ and secondly in the large R-charge J . The two limits do not commute
and thus the results for the string energy and for the anomalous dimension coefficients,
that is, a(l)n and c

(l)
n , will not necessarily match. In particular, the gauge theory perturbative

computation neglects wrapping effects, as discussed at the end of Section 2.4.1. Thus, one
should re-sum the corresponding Feynman diagrams (namely, the series in λ, J) in order to
correctly compare the two BMN scalings (6.40) and (6.41). I will come back on the three-loop
disagreement in Section 6.4.2.

6.3. The Near-Flat-Space Limit

The curved background (AdS5 × S5) as well as the RR fluxes give rise to interactions in the
world-sheet. The spectrum that we want to compute is the spectrum in the presence of such
intricate effects. In order to perform concrete computations we need some simplifications.

In 2006 Maldacena and Swanson proposed an interesting truncation of the AdS
superstring action [104]. The remarkable feature of such a model, (Near-flat-space model,
NFS) is that even though more treatable than the original MT action, it is still capable of
containing interesting physics. In particular, we will see that it interpolates between two
regimes as the BMN limit and the giant magnon regime.

The region we are discussing is the strong coupling region, namely, the region where
the ’t Hooft coupling is very large, that is, λ → ∞. The momentum p of the single excitation
(magnon),66 can be chosen to scale in different ways and this will give different regimes. In
particular, scaling p as

√
λ, when λ� 1 one obtains the BMN limit, where the theory is a free

massive (8 | 8) theory and the S-matrix is trivial, cf. Section 6.2.3. Keeping p fixed to some
constant value (it can take periodic values), the regime covered is dominated by the giant
magnon [135], which is a solitonic solution of the two-dimensional world-sheet theory. In this
region the theory is highly interacting. The scaling considered by Maldacena and Swanson is
something in between these two regions, namely, p scales as λ−1/4.

The magnon dispersion relation is67

E
(
λ, p
)
=

√
1 +

λ

π2
sin2 p

2
. (6.43)

Introducing g and rescaling the momenta as

g2 ≡ λ

8π2
, p

√
g
√
2
≡ k, (6.44)

in the strong coupling limit (λ� 1) one obtains the following expansion for the energy:

E
(
λ, p
)
∼
√
2gk − 1√

2g

(
k3

6
− 1
2k

)
+ · · · . (6.45)

The first term is the free energy in the plane wave limit, where the particles have an ultra-
relativistic dispersion relation. The other two terms are the ones which characterize the near-
flat-space limit and they correspond to keeping up to the second order term in the expansion
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Giant magnon

Near flat space

Plane wave
p

ε

Figure 6: Near-flat-space limit. It interpolates between the plane wave regime and the giant magnon
regime. The diagram shows the energy as a function of the momentum. In the plane wave limit the
momentum p scales as ∼ λ−1/2, in the NFS region p ∼ λ−1/4 and finally in the giant magnon regime p
is a constant (an angle).

of the sine function in (6.43). Namely, now we are keeping the subleading corrections in
the momentum dependence of E. This is really the region corresponding to the near-flat-
space limit, cf. Figure 6. The dispersion relation is not relativistic, not in the exact sense, and
it represents some deviation from the Fermi surface. The velocity v = dE/dk turns out to
depend on the momentum k and the scattering between two excitations carrying different
momenta will be nontrivial.68 Notice that for the giant magnon the dispersion relation69 reads
E ∼ (

√
λ/π) sin(p/2).

The NFS Action

The form for the near-flat-space Lagrangian used here is the one presented in [102], where
the world-sheet coordinates and the fermions are rescaled by

σ± −→ γ±1/2mσ±, ψ± −→ γ∓1/4m−1/2ψ±, (6.46)

where γ (half inverse string tension) is a power-counting parameter

γ =
π√
λ
. (6.47)

Indeed Maldacena-Swanson action in [104] does not depend anymore on any dimensionless
or dimensional parameter. The embedding coordinates are also rescaled by 1/2 in order
to bring the action in the canonical form for the kinetic and mass terms. Finally, after the
rescaling (6.46), the ψ+ fermions are integrated out since they only enter quadratically in the
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action, for more details we refer the reader to [102] or to the appendix contained in [5]. Hence,
the final version for the near-flat-space model is

LNFS =
1
2
(∂Y )2 − m

2

2
Y 2 +

1
2
(∂Z)2 − m

2

2
Z2 +

i

2
ψ
∂2 +m2

∂−
ψ

+ γ
(
Y 2 − Z2

)[
(∂−Y )

2 + (∂−Z)
2
]
+ iγ
(
Y 2 − Z2

)
ψ∂−ψ

+ iγψ
(
∂−Y

i′Γi
′
+ ∂−ZiΓi

)(
Yj ′Γj

′ − ZjΓj
)
ψ

−
γ

24

(
ψΓi

′j ′ψψΓi
′j ′ψ − ψΓijψψΓijψ

)
,

(6.48)

where ψ are only the ψ− components of the original spinors.
Let us summarize and stress once more what the NFS truncation concretely implies.

We are considering the following rescaling for the world-sheet excitation momenta

p±λ
±1/4 = fixed (6.49)

which implies that

p+ −→ 0, p− −→ ∞, when λ −→ ∞. (6.50)

Hence, the NFS limit is a decoupling limit, which factorizes the left- and right-moving sectors
of the AdS string by suppressing the right-moving modes. Further, notice that the truncation
breaks the two-dimensional Lorentz invariance of the action.

The NFS model inherits the symmetry of the original GSMT superstring in the light-
cone gauge, that is, P(SU(2 | 2) × SU(2 | 2)). However, as mentioned at the beginning, the
quartic interactions break SO(8) to SO(4) × SO(4), as it can be seen in the Lagrangian (6.48),
where there is a relative sign for the interactions with four bosonic fields.

The NFS model has been useful most in the simplification of the S-matrix, such as for
example, to test the dressing phase at two loops [103] or to verify the factorization of the
S-matrix [5]. The key point is that the interactions which appear in (6.48) are at most quartic
interactions, and in this sense they make our life easier.

6.4. The S-Matrix

In Section 3, we have presented the S-matrix as a unitary operator mapping asymptotic in
and out states. In Section 2, we have introduced the Coordinate Bethe equations for the
Heisenberg spin chain, written in terms of the phase shift. Naturally the phase shifts are
nothing but the S-matrix elements for the Heisenberg model. Now it is time to recollect the
two pictures. We have already explained that there is one S-matrix for the planar asymptotic
AdS/CFT. In a certain sense the derivation of the S-matrix gives a theoretical background for
the Bethe Ansatz equations.

We want to discuss the S-matrix for the full (asymptotic) PSU(2, 2 | 4) model. We are
going to skip many details and this presentation is far from being a rigorous derivation, for
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which we refer the reader to the original papers [94, 99–101]. Nevertheless we want to make
some comments and illustrate the results.

6.4.1. Introduction

The Symmetries and Beisert’s Derivation

First, we need to discuss which are the symmetries of the S-matrix. On the gauge theory side,
the initial global symmetry is broken by the choice of the spin chain vacuum. The unbroken
symmetry left is P(SU(2 | 2) × SU(2 | 2)), whose corresponding algebra is psu(2 | 2) ⊕ psu(2 |
2) � R. The two copies of psu(2 | 2) share the same central extension C (this is the meaning
of the symbol �) which is nothing but the energy. Considering only one sector of the full
psu(2 | 2) ⊕ psu(2 | 2) � R, the fields transform in the (2 | 2) bifundamental representation.70

However, in this representation the algebra requires a central charge with semi-integer values
±1/2 [94]. This cannot be, since we know that the dispersion relation depends continuously
on the coupling constant (λ), as for example, it can be seen in the BMN limit, cf. Section 6.2.3.
The apparent contradiction is solved by introducing two other central charges such that the
enlarged algebra71 becomes psu(2 | 2) � R

3, or extensively psu(2 | 2) ⊕ psu(2 | 2) � R
3.

The new central charges P and K are unphysical and they play the role of a momentum
and its complex conjugated. “Unphysical” means that they should vanish on physical gauge
invariant states. It might seem that they have been introduced ad hoc but indeed they are
responsible for changing the length of the spin chain by removing or adding a background
field in the chain [94]. For this reason the spin chain is said to be dynamical: its length is not
fixed.72

Focusing on one sector, the psu(2 | 2) � R
3 algebra is spanned by the SU(2) × SU(2)

generators Lα
β
and Ra

b
and by the supercharges Qα

a, S
b
β
through the following relations

[
Ra
b , J

c ] = δcbJa − 1
2
δabJ

c,
[
Lα
β, J

γ
]
= δγ

β
Jα − 1

2
δαβJ

γ ,

{
Qα
a,S

b
β

}
= δbaL

α
β + δ

α
βR

b
a +

1
2
C δbaδ

α
β ,

{
Qα
a,Q

β

b

}
= εαβεabP,

{
Sa
α,S

b
β

}
= εαβεabK,

(6.51)

where Jγ and Jc are generic generators and C, P, and K are the central extensions
corresponding to the energy and the momenta, respectively. The same relations hold for the
other psu(2 | 2) sector just replacing undotted with dotted indices. One of the main results is
the derivation of the central charges, in particular of the dispersion relation

C =
√
1 + 8g2sin2 p

2
, (6.52)

where the coupling constant73 is

g2 =
λ

8π2
. (6.53)
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The dispersion relation (6.52) has been conjectured by Beisert et al. in [134], but Beisert
showed that its specific functional dependence is constrained by the symmetry algebra, even
though in order to determine the dependence on the coupling constant g2 one needs to use
the BMN limit, for example, [94].

Under the full symmetry algebra psu(2 | 2) ⊕ psu(2 | 2) � R
3 the two-body S-matrix

undergoes a group factorization, namely, we can rewrite the total scattering operator as

S = SPSU(2|2) ⊗ SPSU(2|2). (6.54)

S is an operator which acts on the vector space given by the tensor product of single particle
vector spaces, explicating the indices we can write

S : Va ⊗ Vb −→ Va ⊗ Vb

|ΦAȦ(a)ΦBḂ(b)〉 −→ |ΦCĊ(a)ΦDḊ(b)〉SCĊDḊAȦBḂ
(a, b),

(6.55)

where the a, b are the particle momenta. Thus the group factorization leads to the expression

SCĊDḊ
AȦBḂ

(a, b) = (−)|Ȧ||B|+|Ċ||D|S0(a, b)SCDAB (a, b)S
ĊḊ
ȦḂ

(a, b). (6.56)

Actually this is a graded tensor product according to the statistic of the indices, namely, |A| is
0 and 1 for even and odd indices, respectively. The group factorization in (6.54) turns out to
be true whenever the symmetry group is a direct product of two groups and the Yang-Baxter
equations are satisfied [136].

In order to compute the S-matrix elements we must write down the action of the
SPSU(2|2) on two-particle states where the fields are in the fundamental representation and ask
for the invariance of the S-matrix under the algebra generators. Let us call the superfield in
the (2 | 2) fundamental representation as χA, where A is the superindex A = (a, α) discussed
previously, namely, χA = (φa, ψα), with a = 1, 2 and α = 3, 4. The psu(2 | 2) � R

3 generators in
(6.51) act on χA according to

Ra
b

∣∣φc〉 = δcb
∣∣φa〉 − 1

2
δab
∣∣φc〉, Ra

b

∣∣ψα〉 = 0,

Lα
β

∣∣φc〉 = 0, Lα
β

∣∣ψγ〉 = δγβ
∣∣ψα〉 − 1

2
δαβ
∣∣ψγ〉,

Qα
a

∣∣∣φb〉 = aδba
∣∣ψα〉, Qα

a

∣∣∣ψβ〉 = bεαβεab
∣∣∣φbZ+

〉
,

Sa
α

∣∣∣φb〉 = cεabεαβ
∣∣∣ψβZ−〉, Sa

α

∣∣∣ψβ〉 = dδβα
∣∣φa〉.

(6.57)

From the fulfillment of the algebra (6.51) the coefficients a, b, c,d turn out to be

a =
√
g

21/4
γ, b = −

√
g

21/4γ
, c = i

√
g

21/4
γ
1
x−
, d = −i

√
g

21/4γ
(
x+ − x−

)
, (6.58)
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with γ =
√
i(x− − x+) and eip = x+/x−. In (6.57) Z± represent the insertion (Z+) and the

removal (Z−) of a background field in the spin chain.
The two-body S-matrix (6.54) acts on the two-particle states |χA χB〉 as

S
∣∣∣φa1φb2

〉
= A12

∣∣∣φ{a2 φb}1
〉
+ B12

∣∣∣φ[a
2 φ

b]
1

〉
+
1
2
C12ε

abεαβ
∣∣∣ψα2ψβ1Z−

〉
,

S
∣∣∣ψα1ψβ2

〉
= D12

∣∣∣ψ{α2 ψβ}1
〉
+ E12

∣∣∣ψ[α
2 ψ

β]
1

〉
+
1
2
F12εabε

αβ
∣∣∣φa2φb1Z+

〉
,

S
∣∣∣φa1ψβ2

〉
= G12

∣∣∣ψβ2φa1
〉
+H12

∣∣∣φa2ψβ1
〉
,

S
∣∣∣ψα1φb2

〉
= K12

∣∣∣ψα2φb1
〉
+ L12

∣∣∣φb2ψα1
〉
,

(6.59)

with p1 ≡ 1 and p2 ≡ 2. The ten coefficients are functions of the particle momenta. In order
to compute the arbitrary coefficients A12, . . . , L12 we impose the invariance of the S-matrix
under the algebra, that is,

[J1 + J2, S12] = 0, (6.60)

as well as unitarity condition and Yang-Baxter equations (which are automatically
satisfied).74 In this way, the matrix elements are univocally determined [94] up to an overall
abelian phase which we have indicated with S0(a, b) and which will be discussed later in
Section 6.4.2:

A12 = S0(1, 2)
x+
2 − x

−
1

x−2 − x+
1
, D12 = −S0(1, 2),

B12 = S0(1, 2)
x+
2 − x

−
1

x−2 − x+
1

(
1 − 2

1 −
(
1/x+

1x
−
2

)
1 −
(
1/x+

1x
+
2

) x
−
2 − x

−
1

x+
2 − x

−
1

)
,

C12 = S0(1, 2)
2γ1γ2
x+
1x

+
2

1
1 −
(
1/x+

1x
+
2

) x
−
2 − x

−
1

x−2 − x+
1
,

E12 = −S0(1, 2)

(
1 − 2

1 −
(
1/x−1x

+
2

)
1 −
(
1/x−1x

−
2

) x
+
2 − x+

1

x−2 − x+
1

)
,

F12 = −S0(1, 2)
2

γ1γ2x
−
1x
−
2

(
x+
1 − x

−
1

)(
x+
2 − x+

1

)
1 −
(
1/x−1x

−
2

) x+
2 − x+

1

x−2 − x+
1
,

G12 = S0(1, 2)
x+
2 − x+

1

x−2 − x+
1
, H12 = S0(1, 2)

γ1
γ2

x+
2 − x

−
1

x−2 − x+
1
,

K12 = S0(1, 2)
γ2
γ1

x+
1 − x

−
1

x−2 − x+
1
, L12 = S0(1, 2)

x−2 − x
−
1

x−2 − x+
1
,

(6.61)
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where γp = |x−p − x+
p |1/2 and

x±p =
π√
λ

e±ip/2

sin p/2

⎛
⎝1 +

√
1 +

λ

π2
sin2 p

2

⎞
⎠. (6.62)

On the String Theory Side

What about the string theory side? Does everything translate automatically in a string
language? From the previous Section 6.2, we have learned that in order to construct the
world-sheet S-matrix we need to decompactify the world-sheet.

However, in order to study the scattering between string excitations that we can
interpret as particles for a two-dimensional theory, we actually need to relax the level-
matching condition. The “particles” can travel along the world-sheet and collide with an
arbitrary momentum. In this way it makes sense to compute the scattering amplitude, and
thus the S-matrix elements for such particles.

In the paper [101], Arutyunov et al. showed that the actual world-sheet symmetry
algebra for the AdS5 × S5 light-cone string not level-matched (and decompactified) is psu(2 |
2) ⊕ psu(2 | 2) � R

3 (off-shell algebra). Relaxing the level-matching condition is equivalent on
the gauge theory side to opening the spin chain, because the string level-matching condition
is equivalent to the cyclicity of the trace. This is another way of saying that the operators
are no longer gauge invariant, namely, that two extra unphysical central charges can appear
(K,P). In the same paper, the unphysical central charges P and K have been computed in
terms of string fields, and they turn out to be proportional to the world-sheet momentum
which should vanish for physical (i.e., level-matched) states.

In [100], the world-sheet S-matrix has been rewritten in a string basis. This essentially
means that the scattering matrix elements have been deduced by requiring the fulfillment
of the Zamolodchikov-Faddeev (ZF) algebra. This is the algebra that we have briefly
presented in Section 3. Such an algebra takes into account the effects of the interactions in
the commutation relation for the free oscillators (i.e., creation and annihilation operators).
The symbols Aa(θ) introduced in Section 3.3 are not the creation and annihilation operators,
since now we have an interacting field theory and we cannot use the free field picture for
the oscillators. The interactions affect the free oscillators algebra, but on the other hand for
integrable field theories the structure of the Hilbert space is preserved (this is really the job of
integrability!). Hence, there must be a nontrivial operator which modifies and takes care of
the algebra such that the Hilbert space is preserved. This operator is nothing but the S-matrix
and the corresponding algebra is the ZF one, as we discussed in Section 3.3.

Concretely, one needs to impose for the scattering matrix elements the invariance
under the off-shell symmetry and physical constraints such as

(i) unitarity condition,

(ii) CPT invariance,

(iii) crossing symmetry,75

(iv) Yang-Baxter equations.

The basis for the two-particle states in which the S-matrix elements satisfy all the
properties listed above as well as the ZF algebra (by construction) is what is called the
canonical string basis.76
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In [99], Klose et al. derived the perturbative tree-level S-matrix by considering a
slightly different perspective. The key-point is requiring the invariance of the two-body S-
matrix with respect to the Hopf algebra. The action of the psu(2 | 2) symmetry generator is
nonlocal. The charges generated indeed are nonlocal expressions and they are not additive, cf.
Section 3. Thus, when they act onmultiparticles states they do not follow the standard Leibniz
rule, but rather the so-called coproduct, which characterizes the Hopf algebra. This simply
means that when one rearranges the order of the fields on the world-sheet the nonlocality of
the symmetry generators creates a “disturbance” which is reflected in a nontrivial coproduct
from an algebraic point of view. For the study of the Hopf algebra underlying the world-sheet
S-matrix we refer the reader to [137–139].

The Three-Body S-Matrix

The three-body S-matrix acts on the triple tensor product of single-particle states and it is
defined by the relation

S :Va ⊗ Vb ⊗ Vc −→ Va ⊗ Vb ⊗ Vc

S|ΦAȦ(a)ΦBḂ(b)ΦCĊ(c)〉 = |ΦDḊ(a)ΦEĖ(b)ΦFḞ(c)〉SDḊEĖFḞAȦBḂCĊ
(a, b, c).

(6.63)

The Yang-Baxter equations now read

S̃DḊEĖFḞ
AȦBḂCĊ

(a, b, c) =
∑

XẊ,Y Ẏ ,ZŻ

S̃DḊEĖ
XẊYẎ

(a, b)S̃XẊFḞ
AȦZŻ

(a, c)S̃Y ẎZŻ
BḂCĊ

(b, c),

=
∑

XẊ,Y Ẏ ,ZŻ

S̃EĖFḞ
Y ẎZŻ

(b, c)S̃DḊZŻ
XẊCĊ

(a, c)S̃XẊYẎ
AȦBḂ

(a, b),
(6.64)

where the graded matrix elements are

S̃CĊDḊ
AȦBḂ

= (−)|A||Ȧ||B||Ḃ|SCĊDḊ
AȦBḂ

,

S̃CĊDḊEĖ
AȦBḂFḞ

= (−)|A||Ȧ||B||Ḃ|+|B||Ḃ||F||Ḟ|+|F||Ḟ||A||Ȧ|SCĊDḊEĖ
AȦBḂFḞ

.

(6.65)

Notice that each element SCĊDḊ
AȦBḂ

decomposes according to the group factorization (6.56).
What we are really interested in is the number of degrees of freedom of the three-

body S-matrix. Each field is in the fundamental representation 4 of psu(2 | 2) � R
3, that is, �.

The three body S-matrix is an invariant unitary operator on their triple tensor product which
decomposes in two irreducible representations, each with dimension 32 [5]. In terms of the
super-Young tableau77 this means

=


(6.66)
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Taking also the other psu(2 | 2) factor into account, then the three-particle S-matrix is a sum
of four projectors [5]

S = C1P( , ) + C2P( , ) + C3P( , )+ C4P( , ) (6.67)

This means that the three particle S-matrix is constrained by the symmetries up to four scalar
functions Ci, which depend on the incoming momenta and which are the eigenvalues of the
corresponding projectors Pi. In order to determine them, one needs to compute the scattering
amplitudes for the four eigenstates, namely, for the highest weight states. These are [5]:

S |Y11̇(a)Y11̇(b)Y11̇(c)〉 = C1(a, b, c)|Y11̇(a)Y11̇(b)Y11̇(c)〉,

S |Ψ13̇(a)Ψ13̇(b)Ψ13̇(c)〉 = C2(a, b, c)|Ψ13̇(a)Ψ13̇(b)Ψ13̇(c)〉,

S |Υ31̇(a)Υ31̇(b)Υ31̇(c)〉 = C3(a, b, c)|Υ31̇(a)Υ31̇(b)Υ31̇(c)〉,

S |Z33̇(a)Z33̇(b)Z33̇(c)〉 = C4(a, b, c)|Z33̇(a)Z33̇(b)Z33̇(c)〉.

(6.68)

I will come back on the highest weight states (6.68) in Section 6.5.

6.4.2. The Dressing Phase

The three-loop disagreement, discussed at the end of Section 6.2.3, pushed the research in the
direction of the so called dressing phase.

Searching for Bethe equations that fulfill the BMN scaling (6.41) to all orders leads
Beisert et al. [134] to modify the rapidity and the dispersion relation, as mentioned in
Section 6.4.78 Indeed, the specific functional form for the energy, and in general for the higher
conserved charges, as well as for the rapidity depends on the model we are considering. The
BDS proposal for the rapidity, which turned out to be correct, is

u
(
p
)
=

1
2
cot
(p
2

)√
1 + 8g2sin2

(p
2

)
, (6.69)

where the coupling constant g is related to the ’t Hooft coupling by g2 = λ/8π2. The
dispersion relation is only one of the infinite tower of higher charges that an integrable model
possesses, and they are modified according to

qr+1
(
p
)
= g−r

2 sin
(
(1/2)rp

)
r

⎛
⎜⎝
√
1 + 8g2sin2(p/2) − 1

2g sin(p/2)

⎞
⎟⎠

r

. (6.70)
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Notice that the first charge q1(p) is the momentum p, while the second one is the single

magnon energy, that is, q2(p) = (1/g2)(
√
1 + 8g2sin2(p/2)− 1). The total charge is defined by

Qr =
K∑
k=1

qr
(
pk
)
, (6.71)

whereK is the total number of magnons.79 The BMN limit result can be found by considering
the string energy δE = g2Q2.

We have discussed until now the Bethe equations in the spin chain context, let us move
back to the string theory side. Kazakov et al. (KMMZ) proposed the string Bethe equations (a
set of non linear integral equations) in order to describe the classical string σ-model [71]. One
would like to generalize (and discretize) such equations in order to capture also quantum
string effects. Since the elementary excitations are the same on both sides of the duality,
it seemed reasonable to introduce a phase in the S-matrix and thus in the Bethe equations
withoutmodifying the BDS dispersion relation [96]. This phase shift is part of the scalar factor
(the dressing phase) that cannot be determined by the symmetry algebra, but rather it can be
obtained by using the crossing relation.80 The initial step in the direction of determining the
phase factor and the quantum string Bethe equations has been done in [96] by Arutyunov et
al. for the su(2) subsector. The AFS phase has been deduced in such a way that it reproduces
the thermodynamic or continuum limit of the string KMMZ Bethe equations. Explicitly, for
K impurities and for the su(2) subsector, the Bethe equations formally are still

eiLpk =
K∏

j=1, j /= k

S
(
uj, uk

)
, (6.72)

but now the S-matrix acquires an extra phase:

S
(
uj, uk

)
=
uk − uj + i
uk − uj − i

exp

(
2i
∞∑
r=2

(
g2

2

)r(
qr
(
pk
)
qr+1
(
pj
)
− qr+1

(
pk
)
qr
(
pj
)))

, (6.73)

where the charges are the ones in (6.70).
This is not the end of the story for the dressing phase, but rather the beginning: The

AFS represents the leading quantum correction to the Bethe equations and to the S-matrix.
The phase in (6.73) can be generalized by shifting the S-matrix according to

exp 2iθ
(
pk, pj

)
= exp 2i

∞∑
r=2

∞∑
s=1+r

s+r=odd

cr,s
(
g
)(
qr
(
pk
)
qs
(
pj
)
− qs

(
pk
)
qr
(
pj
))
. (6.74)

The coefficients cr,s(g) are expanded in the strong coupling limit according to

cr,s
(
g
)
=

(
g2

2

)r ∞∑
n=0

c
(n)
r,s g

−n. (6.75)
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We see that the AFS phase is obtained by substituting c
(0)
r,s = δs,r+1. The first quantum

coefficient c(1)r,s has been deduced by Hernández and López (HL) [140], cf. also [133], the
all-loop strong coupling limit was discovered by Beisert et al. [141], that is, c(n)r,s for all n ≥ 0,
and finally, the full series at strong and weak coupling has been found by Beisert, Eden, and
Staudacher (BES) in [142]. Nowadays, there have been numerous tests for the BES proposal:
From the world-sheet point of view up to two-loops [143] and in the near-flat-space limit
[103]; at weak coupling by direct gauge theory computations [144] and up to four loop in the
SU(2) sector [145]. Other important tests which confirm the BES result have been given in
the works [146–148]. Finally, in [149], it has been shown that the HL dressing phase satisfies
Janik’s equation [150].

6.4.3. The S-Matrix in the NFS Limit

We want now to consider the world-sheet S-matrix in the NFS limit. One might wonder
whether the NFS truncation is consistent or not, namely, if the S-matrix computed directly
from the action (6.48) is the same matrix obtained taking the NFS limit from the original
world-sheet S-matrix. This was investigated by Klose and Zarembo for the one-loop order
[102] and then to two loops by Klose et al. in [103]. Indeed, even if we truncate and decouple
the right and the left moving sectors, saying that the right modes are faster, it might be that
the left-moving particles can reappear in the interactions, if we have enough time to wait.
Then they might give contributions in loop diagrams at quantum level.

In the near-flat-space limit the S-matrix elements are given by

SCĊDḊ
AȦBḂ

(a, b) = (−)|Ȧ||B|+|Ċ||D|S0(a, b)SCDAB (a, b)S
ĊḊ
ȦḂ

(a, b). (6.76)

The arguments a ≡ pa− and b ≡ pb− are the minus components of the particle light-cone
momenta. Up to order O(γ4) corrections, the prefactor S0 can be written as

S0(a, b) =
e(8i/π)γ

2( (a3b3)/(b2−a2))((1−(b2+a2)/(b2−a2)) ln(b/a))

1 + γ2 a2b2((b + a)/(b − a))2
. (6.77)

The matrix part is usually parametrized as follows:

Scdab = Aδ
c
aδ

d
b + Bδ

d
aδ

c
b, Sγδ

ab
= Cεabεγδ, Scδaβ = Gδ

c
aδ

δ
β , Sγd

aβ
= Hδdaδ

γ

β
,

Sγδ
αβ

= Dδγαδδβ + Eδ
δ
αδ

γ

β
, Scdαβ = Fεαβε

cd, Sγd
αb

= Lδγαδdb , Scδαb = Kδ
δ
αδ

c
b,

(6.78)
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where the exact coefficient functions are given by

A(a, b) = 1 + iγab
b − a
b + a

, B(a, b) = −E(a, b) = 4iγ
a2 b2

b2 − a2
,

D(a, b) = 1 − iγab b − a
b + a

, C(a, b) = F(a, b) = 2iγ
a3/2 b3/2

b + a
,

G(a, b) = 1 + iγab, H(a, b) = K(a, b) = 2iγ
a3/2 b3/2

b − a ,

L(a, b) = 1 − iγab.

(6.79)

Notice that the S-matrix elements (6.79) are exact in the NFS limit, apart from the dressing
phase S0 (6.77) which is expanded up to order γ3. Moreover it turns out that the two-
dimensional Lorentz invariance is restored in the NFS model, since they depend on the
difference of momenta.

6.5. The World-Sheet S-Matrix Factorization

We have already stressed that, from the beginning of the section up to now, we are assuming
to deal with a quantum integrable system. Surely this is a suitable hypothesis, which have
lead to immense progresses and there have been a vast quantity of indirect checks about the
validity of this hypothesis. But notice that on the string theory side perturbative computations
beyond the leading order are still extremely difficult to perform. Remarkable in this sense the
two-loop computations of the world-sheet scattering amplitudes in the NFS limit [103].

Can we give a proof that the AdS5×S5 superstring is quantum integrable at least in the
planar limit? The word “proof” might discourage. However, the NFS model offers us a good
region where we can test many of the assumed working hypotheses, among them quantum
integrability. The NFS Lagrangian (6.48) is not so terrible and the S-matrix is not trivial in
this region. This is an incredible good window in the strong coupling limit where we can
directly face the important and nontrivial issue of quantum integrability. Hence the goal of [5]
is to check for the first time in a very explicit and direct way that the NFS model is quantum
integrable at one-loop. This strongly supports the hypothesis of a quantum integrable field
theory describing the AdS superstring.

The strategy adopted in [5] is to verify the presence (or the absence) of the dynamical
constraints which define an integrable two-dimensional field theory: absence of particle
production, elastic scatterings, S-matrix factorization. We have focused on a 3 → 3
scattering. Concretely, we have compared two sets of data. On the first set (the “experimental
data”), we compute the 3 → 3 scattering amplitudes which follow from the Feynman
diagrams of the corresponding NSF action (6.48). On the second set (the “theoretical
data”), we have computed the three-particle S-matrix which would follow assuming the
quantum integrability of the model, namely, the three-particle S-matrix which is given by
the Yang-Baxter equations as a product of two-particle S-matrix elements, that is, (6.64). The
computations are done perturbatively up to one-loop. The scattering amplitude is defined by

A
(
a, b, c, d, e, f

)
=
〈
Ab3(f)Ab2(e)Ab1(d) | Aa1(a)Aa2(b)Aa3(c)

〉
connected (6.80)
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and the process considered is the generic 3 → 3 scattering81

Aa1(a)Aa2(b)Aa3(c) −→ Ab1

(
f
)
Ab2(e)Ab3(d). (6.81)

Notice that we are dealing with connected diagrams, since the disconnected diagrams trivially
factorize. The S-matrix elements and the scattering amplitudes are related by

A
(
a, b, c, d, e, f

)
=
∑

σ(d,e,f)

Sσ(a, b, c)δadδbeδcf , (6.82)

where σ(d, e, f) are all the permutations of the outgoing momenta. An explicit example
among the highest-weight state (6.68) is illustrated in Appendix D.

The results of [5] show that the two sets of data agree completely: The tree-level
and one-loop scattering amplitudes indeed factorize as in (6.82) and the S-matrix elements
Sσ(a, b, c) precisely match the three-body S-matrix computed by the Yang-Baxter equations
(6.64). The formula (6.82) means that the amplitudes give rise to the phase space showed in
Figure 5 in Section 3.

Since the three-body S-matrix is constrained by the symmetries up to four scalar
functions Ci, cf. (6.68), it is sufficient to compute the scattering amplitudes for the four
processes which correspond to the highest weight states (6.68), namely, which correspond to
the eigenstates of the three-body S-matrix. Showing the factorization for these four scattering
amplitudes means proving the factorization of the entire three-particle S-matrix to one-loop
order. A proof in a “mathematical sense” would require to re-sum all the perturbative series
and to show the factorization of any n → n scattering amplitudes. Not trivial at all.

Notice that here in the 3 → 3 scattering

(i) tree-level order means γ2 ∼ 1/λ1/2

(ii) one-loop order means γ3 ∼ 1/λ3/2.

Actually, we have computed further scattering amplitudes involving mixed states
between fermions and bosons, in order to confirm the supersymmetries of the NFS model.

According to Section 3, this means that there must exist a higher conserved charge.
How does such charge manifest itself? How do the selection rules and the factorization come
from Feynman diagram computations? First, recall that each Feynman graph contains already
the energy and momentum conservation. In computing the scattering amplitudes one can
realize that in the phase space points, where the set of incoming momenta is equal to the
set of outgoing momenta, the internal propagators go on-shell and diverge. Namely, for a
3 → 3 scattering, the internal propagators may go on-shell (since in the internal diagrams
they might run two incoming momenta and one outgoing momentum which have different
signs, thus in the point where the incoming momenta are equal to the outgoing one this
clearly diverges). They must be regularized and this is done by using the iε prescription,
namely, each mass is shifted by ±iε in order to move the singularities on the complex plane.
The residues are then computed with [56, 151]

1
p2 −m2 ± iε

= P 1
p2 −m2

∓ iπδ
(
p2 −m2

)
, (6.83)
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where P stands for the principal value prescription. The term with the principal value
takes care of the singularities, namely, skipping such delicate points in the integration we
can brutally apply the energy-momentum conservation which makes the corresponding
amplitudes vanish, after summing over all the equivalent diagrams. What is left is only the
term in (6.83) with the extra δ function, “extra” since the Feynman diagrams already come
with two-delta functions from the energy-momentum conservation. These three δ-functions
combine together and force the outgoing momenta to be equal to one of the incoming
momenta, cf. (6.82). The resulting phase space is as in Figure 5 in Section 3.

What about the 2 → 4 amplitudes? The crucial point is that now the internal
propagators will never be on-shell, since all the momenta flowing there have the same sign.
Thenwe can forget the iε regularization and proceedwith standard brute force computations.
Summing all the amplitudes the result turns out to vanish. This indeed corresponds to the fact
that we are not in the “famous six points” of the phase space. More details can be found in
Appendix D.

7. The AdS4/CFT3 Duality

We now leave the AdS5/CFT4 duality. But we do not leave the gauge/string duality. In 2008,
Aharony et al. (ABJM) proposed a new conjecture where the world-volume theory of a stack
of M2-branes probing a C

4/Zk singularity is a three-dimensional conformal field theory [2].82

I will refer to this as the ABJM or the AdS4/CFT3 conjecture, in the next section it will be
clear why. The work has opened a huge amount of possibilities. Indeed, considering the
impressing results due to the integrability properties of the planar AdS5/CFT4 duality, it
is natural to try to export the same techniques (and hopefully the same progresses) in the
new correspondence. There are numerous features that are shared by the two gauge/string
dualities, but there are also important aspects which are different and which make things
quite intriguing and far from being obvious.

7.1. Introduction

The AdS4/CFT3 states a duality between a three-dimensional conformal field theory and an
M-theory on eleven dimensions. Let us start from the gauge theory side. It is constructed
by two Chern-Simons (CS) theories, each one with a U(N) gauge group, coupled with
bifundamental matter. However, the level of the gauge group is different in the two cases: we
have indeed U(N)k × U(N)−k. The theory is conformally invariant at classical and quantum
level and it possessesN = 6 supersymmetries. It contains two parameters:83 the gauge group
rank, N, and the level of the algebra k. Both parameters assume integer values. However, it
is possible to form a continuous parameter λ = N/k, that will play the role of the ’t Hooft
coupling, and that will interpolate between the string and the gauge theory side. In the large
N and k limits, λ is continuous. In particular, the large N limit corresponds to the planar
limit of the CS-matter theory. Essentially, for the CS-matter theory 1/k plays the same role as
it was for g2

YM in SYM theory, cf. Section 7.2.
The gravity dual describes a stack of (Nk) M2-branes on a flat space. In particular,

the M-branes probes the orbifold84
R

8/Zk. The near-horizon geometry is given by M-theory
on AdS4 × S7/Zk. Notice that it is an eleven-dimensional space. Due to the Zk action, it is
natural to write the sphere S7 as an S1 fibration over CP 3: roughly speaking we can say that
S7/Zk

∼= CP 3 × S1/Zk. The radius of the circle S1 depends on k and the effect of the orbifold is
to reduce the volume by a factor k. In particular, when k is very large, effectively the space is
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Table 2: Summarized comparison between the two gauge/string dualities.

AdS5/CFT4 AdS4/CFT3

IIB on AdS5 × S5 AdS side IIA on AdS4 ×CP 3

N = 4 SYM in 4d CFT side N = 6 CS-matter in
3d

λ = g2
YMN

’t Hooft coupling λ =N/k

T = R2/2πα′ =
√
λ/2π String tension T = R2/2πα′ =

25/2π
√
λ

gs = g2
YM/4π

String coupling gs =
(32π2(N/k5))1/4

SU(N) gauge group U(N)k ×U(N)−k

PSU(2, 2 | 4) global symmetry OSp(6 | 4)

AdS5 × S5 =
(SO(4, 2)/SO(4, 1)) ×
(SO(6)/SO(5))

bosonic subgroup
AdS4 ×CP 3 =

(SO(3, 2)/SO(3, 1))×
(SU(4)/U(3))

ten-dimensional, that is, AdS4×CP 3. Explicitly, the circle radius is given byRS1 ∼ ((Nk)1/6/k).
Thus, when such radius is very large, namely, when N � k5, then the theory is strongly
coupled and the proper description is in terms of the M-theory. Vice versa, when the radius
is very small, that is, N � k5, then it can be effectively used a description in terms of IIA
superstrings living on AdS4 × CP 3 with RR fluxes. More details are given in Appendix E.

The two parametersN and k, which describe the number of M2-branes and the order
of the orbifold group, are contained in the effective string tension and in the string coupling.
They are given by

T =
R2

2πα′
= 25/2π

(
N

k

)1/2

, gs =
(
32π2N

k5

)1/4

. (7.1)

The specific relations and the ugly numerical factors in (7.1) are obtained analyzing the
supergravity regime, cf. Appendix E. Again, from the behavior of the string coupling, we
can see that for N � k5, that is, gs � 1 the string description fails, we need to use
the full M-theory formulation, while for N � k5 (gs � 1) the “weak coupling” string
limit is a good approximation. Notice that again the effective tension goes like the square
root of the ’t Hooft coupling, namely, T ∼

√
λ. The string coupling in terms of λ reads as

gs = (32π2(λ/k4))1/4 = (32π2(λ5/N4))1/4, cf. Table 2.
From now on, we are going to consider only a specific region for the gravity side of

the correspondence: the string regime. This means that for usN and k are very large and in
particular are such thatN � k5 or 1� λ� k4.

Also the AdS4/CFT3 is a weak-coupling duality.
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7.2. The ABJMN = 6 Chern-Simons Theory

The N = 6 Chern-Simons theory in three dimensions is described by the following
Lagrangian:

L =
k

4π
Tr
{
εμνλ
(
Aμ∂νAλ +

2
3
AμAνAλ − Âμ∂νÂλ −

2
3
ÂμÂνÂλ

)

+DμY
†
AD

μYA +
1
12
YAY †AY

BY †BY
CY †C +

1
12
YAY †BY

BY †CY
CY †A

− 1
2
YAY †AY

BY †CY
CY †B +

1
3
YAY †BY

CY †AY
BY †C −

1
2
Y †AY

AψBψB

+ Y †AY
BψAψB +

1
2
ψAYBY †BψA − ψ

AYBY †AψB + iψAγμDμψA

+
1
2
εABCDY †AψcBY

†
CψD −

1
2
εABCDY

AψBYCCψDc

}
.

(7.2)

The gauge group is U(N)k × U(N)−k, where the subscripts denote the level of the algebra.
The relative sign is reflected in the two Chern-Simons contributions in (7.2), which describe
the two gauge fields Aμ and Âμ. The Lorentz index μ runs between 0 and 2, that is,
μ = 0, 1, 2, since the theory is three-dimensional. The gauge field A transforms in the adjoint
representation of U(N)k and it is a singlet with respect to the second U(N)−k. Vice versa, the
field Âμ is a singlet for U(N)k and transforms in the adjoint of U(N)−k.

The fields YA and Y †A are eight scalars, the index A is an SU(4) index, namely, A =
1, 2, 3, 4. This is not the original form of [2], but rather we use the formulation given in [152,
153], such that the scalars grouped into SU(4) multiplet make R-symmetry manifest. They
transform in the fundamental representation of SU(4), that is, 4 and 4, respectively. Moreover,
they transform in the bifundamental representation of the gauge group: (N,N) and (N,N),
respectively. The explicit components of the scalars are85

YA =
(
A1, A2, B

†
1̇
, B†

2̇

)
, Y †A =

(
A†1, A

†
2, B1̇, B2̇

)
. (7.3)

Furthermore, the fields Aa transform as an SU(2) doublet and the same is true for the
Bȧ’s, as the notation indicates. Hence, there is an SU(2) × SU(2) ∈ SU(4) subsector, which is
indeed closed and which is given by Y 1, Y 2 and Y †3 , Y

†
4 .

The covariant derivatives are

DμΦ = ∂μΦ +AμΦ −ΦÂμ, DμΦ† = ∂μΦ† + ÂμΦ† −Φ†Aμ. (7.4)

The scaling dimension of the scalars Y is Δ0 = 1/2, while for the derivatives is Δ0 = 1.
Furthermore the scalars transform in the trivial representation of SO(3), while the covariant
derivatives transform in spin 1 representation of SO(3) and in the trivial one of SU(4).

Finally, the fermions Ψ†A and ΨA are the 4 and 4 multiplets in the spinorial
representation of SO(6), and they also transform in the U(N)k × U(N)−k bifundamental
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representation. The fermions ψAc are the charge conjugated fields and they are given by
ψAc = Cγ0ψ

�
A in terms of the charge conjugation matrix C and γμ are the Dirac matrices in

three dimensions. They transform in the spin 1/2 representation of SO(3).
The action corresponding to (7.2) is invariant under a CP transformation: the parity

changes the sign of the Chern-Simons action which is compensated by the exchange of the
gauge fields Aμ and Âμ.

Symmetries and Algebra

The theory is conformal and supersymmetric. In particular it possesses N = 6 supersym-
metries, which is not the maximal number of supersymmetries that one can have in three
dimensions.We already see the first difference with the AdS5/CFT4 duality. The supercharges
transform in the vector representation of SO(6) ∼= SU(4). I will write the 24 odd generators as
QαI and SIα where the spinorial index is α = 1, 2 and the SO(6) label is I = 1, . . . , 6. Actually,
for k = 1, 2 the supersymmetries are enhanced toN = 8, and thus the R-symmetry is lifted to
SO(8) [153]. We will not consider these two cases, since as already mentioned, for us k takes
very large values.

The conformal group in three dimensions is SO(3, 2). The generators are the Lorentz
generators Lμν, which are in total three, that is, μ = 0, 1, 2, the three translation generators Pμ,
the dilatation generator D and the three special conformal transformations Kμ.

The R-symmetry group is SO(6) ∼= SU(4) with 15 generators, RIJ , I, J = 1, . . . , 6, as we
discussed in theN = 4 SYM case in Section 2.

The direct product SO(3, 2)×SU(4) corresponds to the bosonic subgroup of OSp(6 | 4).
Thus the full global symmetry group of the CS-matter theory is OSp(6 | 4).

The string states and the gauge theory primary operators will organize themselves as
osp(6 | 4) multiplets and they will be characterized by the quantum numbers labeling the
bosonic subsectors. In particular, these are

(Δ = E, S, J1, J2, J3). (7.5)

The first two charges, that is, Δ(E) and S, are the Cartan generators of the SO(2) × SO(3)
maximally compact subsector86 of the full conformal group. Notice that in the first entry of
(7.5) we have summarized the content of the gauge/gravity correspondence. The scaling
dimension Δ and the string energy E are the only charges which depend on the coupling
constant λ: Δ(λ,N) = E(λ,N). The last three charges J1, J2, J3 are the eigenvalues
corresponding to the SU(4) Cartan generators. I have indicated with J1 and J2 the two
generators of the SU(2) × SU(2) subsector mentioned before.

The Symmetries on the String Theory Side

Let us see how the global symmetries are realized on the string scenario. The IIA superstring
lives on AdS4 × CP 3. The isometry group of AdS4 is indeed SO(3, 2). As for the previous
case, E is the charge corresponding to global time translation and S is the spin in the AdS
space. In other words, according to the splitting of SO(3, 2) → SO(2) × SO(3) and to the
isomorphisms SO(2) ∼= U(1), SO(3) ∼= SU(2), E is the eigenvalue for the U(1) charge, while
S is the spin generator of SU(2). Thus once more, the conformal group enters on the string
theory side as a symmetry of the background. The same is true also for the projective space
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CP 3: the corresponding isometry group is SU(4). Notice that in CP 3 there are two 2-spheres
S2 embedded. They correspond to the SU(2)×SU(2) subsector on the gauge theory side. Thus,
J1 and J2 represent the total angular momenta in each sphere S2.

7.3. Spin Chains and Anomalous Dimension

We want to study the correlation functions of primary operators in the ABJM theory. This
means that we want to compute the anomalous dimension for such operators, cf. Section 2.4.
Can we use the spin chain picture also in this case?

We can repeat the arguments for the AdS5/CFT4 duality and represent a local
gauge invariant single trace operator via spin chain and study the corresponding quantum
mechanical model. In particular, the spin chain Hamiltonian will be the mixing matrix, and
its eigenvalues will be the anomalous dimensions. Once more this was done for the first time
by Minahan and Zarembo in [152].

Let us consider the SU(4) scalar sector. A prototype of the operator that we want to
study is

O = CB1B2···BL
A1A2···AL

Tr
(
YA1Y †B1

YA2Y †B2
· · ·YALY †BL

)
, (7.6)

where CB1B2...BL
A1A2...AL

is a generic tensor. We have to insert a field transforming in the 4
representation in one site of the spin chain, and the next neighbor has to be a field in
the 4 representation, since we want a gauge invariant operator and the matter is in the
bifundamental representation, as we discussed in the previous section. In this way, the gauge
group indices are correctly multiplied. Hence, the operator O (7.6) can be represented as an
alternating spin chain. This also implies that now the leading order spin chain Hamiltonian
involves the next-nearest neighbors, in other words it starts with two-loop interactions (∼ λ2).
Notice that the length of the chain corresponding to the local operator O (7.6) is 2L.

When the tensor CB1B2···BL
A1A2···AL

gives a symmetric and traceless combination of the scalars
in (7.6), then the operator O is a chiral primary, and its scaling dimension is protected.

The SU(4) 2-loop spin chain Hamiltonian is [152]

Γ(2) =
λ2

2

2L∑
l=1

Hl,l+1,l+2 =
λ2

2

2L∑
l=1

(2 − 2Pl,l+2 + Pl,l+2Kl,l+1 +Kl,l+1Pl,l+2), (7.7)

where Pl,l+2 is the permutation operator and Kl,l+1 is the trace operator.
In [152], the scalar SU(4) sector was shown to be integrable at leading order (two-

loops). The result was also found in [154, 155]. In [156, 157], the two-loop spin chain
Hamiltonian for the entire OSp(6 | 4) group has been constructed and showed that it is
integrable. The result was also found in [154, 155].

As before, we can exploit integrability by applying the techniques learned in Section 2
in order to compute the anomalous dimensions for single trace local gauge invariant
operators. The leading order Bethe Ansatz (ABE) where constructed for the scalar sector in
[152] and for the full OSp(6 | 4) group in [156]. Afterwards, Gromov and Vieira proposed the
Bethe Ansatz equations for the entire OSp(6 | 4) group and at all loop order [158].

There are already important data available from the string world-sheet computations,
in particular, for the spinning and rotating strings at one-loop [159–162]. From these
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computations it emerges an apparent disagreement with the Bethe Ansatz predictions at the
next-leading order of the strong coupling limit for the function h(λ), cf. (7.13). In particular,
the stringworld-sheet computations suggest a one-loop correction entering in h(λ). However,
this is (partially) understood as due to the employment of different regulation schemes
among the string theory computations and the Bethe Ansatz computations [162, 163].

7.3.1. The SU(2) × SU(2) Spin Chain

Let us focus on the SU(2) × SU(2) bosonic sector. This is a nice testing ground since it is a
closed subsector and probably the simplest one. Recall that it is generated by the scalars A1,2

and B1̇,2̇, that is, Y 1,2 and Y †3,4.
We want to calculate the anomalous dimension γ for operators such as

O = Ca1a2···aL
b1b2···bL Tr(Aa1Bb1Aa2Bb2 · · ·AaLBbL). (7.8)

The choice of the vacuum

Tr
(
Y 1Y †3

)J
≡ Tr(A1B1̇)

J (7.9)

breaks the initial global symmetry. In particular what is left is an SU(2 | 2) ×U(1) symmetry.
Looking at the Hamiltonian (7.7), one can see that in this subsector the trace operator Kl,l+1

does not contribute, thus the Hamiltonian reduces to

Γ(2)|SU(2) =
λ2

2

2L∑
l=1

Hl,l+1,l+2 =
λ2

2

2L∑
l=1

(2 − 2Pl,l+2). (7.10)

If one remembers Section 2.4, one will recognize that the Hamiltonian (7.10) is nothing but
(two times) the Heisenberg Hamiltonian of Section 2.4. Thus, we have two separate XXX1/2

spin chains, one corresponding to the odd sites and the other to the even ones [152]. However,
they are not completely decoupled since we have a unique cyclicity condition, which will
couple the momenta for the two spin chains. Notice that each spin chain has L sites.

Recalling the Bethe Ansatz equations for the Heisenberg spin chain in Section 2.4.1, it
is straightforward to write down the su(2) × su(2) Bethe Ansatz equations, essentially they
are the same:

E = 4λ2
[
K1∑
i=1

sin2 p
(1)
i

2
+

K2∑
i=1

sin2 p
(2)
i

2

]
,

eip
(a)
k
L =

Ka∏
j=1, j /= k

S
(
p
(a)
j , p

(a)
k

)
,

K1∑
i=1

p
(1)
i +

K2∑
i=1

p
(2)
i = 0.

(7.11)
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K1 and K2 are the magnon numbers in the odd and even sites of the chain, respectively;
the superscript a = 1, 2 selects the odd or the even sites. The S-matrix is the same as in
Section 2.4.1, namely, S(pj , pk) = −(1 + ei(pk+pj ) − 2eipk)/(1 + ei(pk+pj ) − 2eipj ).

Symmetries and S-Matrix

The choice of the vacuum (7.9) breaks the initial global OSp(6 | 4) symmetry to the SU(2 | 2)
symmetry. Once more, the algebra that realizes the integrable structure of the model is the
centrally extended su(2 | 2) algebra. Although now, we have only one copy. Analyzing the
bosonic sector, we see that the initial symmetries are broken into

SO(3, 2) × SU(4) −→ SO(2) × SO(3) × SU(2)R × SU(2)R. (7.12)

SO(3) ∼= SU(2) is the group of the space-time rotations; one of the two SU(2)R groups
is broken by the vacuum choice. Thus the direct group SU(2) × SU(2)R gives the bosonic
subgroup of SU(2 | 2) (with U(1) central extension).

The full S-matrix has been constructed in [164]. It has been deduced through the ZF
algebra, cf. Section 6.4. It has already passed some consistency checks, at two loops at weak
coupling [165] and at tree-level at strong coupling [166]. It reproduces the all-loop Bethe
Ansatz equations conjectured in [158].

The one particle state forms a (2 | 2) fundamental representation of the centrally
extended su(2 | 2) algebra. The dispersion relation obtained by the BPS condition (or
shortening condition), cf. Section 6.4, is

C =

√
1
4
+ h(λ)sin2 p

2
. (7.13)

In AdS5/CFT4 the dispersion relation (6.52) is the same (with h(λ) ∼ λ) at strong and weak
coupling limit, as we saw, for example, by studying the BMN limit in Section 6.2.3. However,
now things are different. Recall that the shortening condition and, more in general, symmetry
arguments fix the form of the dispersion relation only up to a scalar function h(λ). The specific
behavior of such a function in the UV or IR regime enters as an input and, for example, it can
be fixed by a comparison with the BMN limit. There is no reason why this should be the same
at strong and weak coupling limit. For the AdS5/CFT4 duality it happens. But this is not true
now in the ABJM conjecture. At the weak coupling (λ� 1) the authors of [152, 155, 167] have
found that h(λ) ∼ 4λ2:

C =

√
1
4
+ 4λ2sin2 p

2
when λ� 1. (7.14)

However, at the strong coupling (λ� 1) the results of [155, 167, 168] give a different behavior:
h(λ) ∼ 2λ, cf. Section 7.4.1:

C =

√
1
4
+ 2λsin2 p

2
when λ� 1. (7.15)
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The violation of the BMN scaling already at the leading order might be due to a lack of
supersymmetries.

7.4. Integrability on the String Theory Side

Let us move to the string theory side: the type IIA superstring leaving on AdS4 × CP 3. The
background can be written as a bosonic quotient space, namely,

AdS4 =
SO(3, 2)
SO(3, 1)

, CP 3 =
SU(4)
U(3)

, (7.16)

which is the bosonic subgroup of OSp(6 | 4). Hence the supercoset approach á la GSMT,
cf. Section 4.2, can be employed in this case for the formulation of the type IIA string action
[169, 170]. There are certain subtleties. In the initial GS superstring action there are in total 32
fermionic degrees of freedom, while now they are 24. Thus part of the κ-symmetries must be
fixed in order to adjust the number of fermions, in particular half (8) of such local fermionic
symmetries are gauged away [169].

Arutyunov and Frolov have proved the classical integrability of the type IIA string σ
model on OSp(6 | 4)/SO(3, 1) ×U(3) in [169] by constructing the Lax pair as it was done for
the AdS5 × S5 case [46], cf. Section 4.3. However, the fact that the superspace AdS4 × CP 3 is
not a supercoset implies that the classical integrability has been rigorously showed only for a
subsector of the full complete AdS4 × CP 3 background [171].

7.4.1. The BMN Limit

Recalling what we have learned about the BMN limit (especially on the string theory side) in
Section 6.2.3, we will analyze the IIA string on the projective space in an analogous manner.
Let us consider a string with a very large angular momentum87 J in CP 3. As we discussed in
Section 6.2.3, this limit is equivalent to consider the stringmoving in the background obtained
by taking the Penrose limit (R → ∞) of the original geometry, which is now AdS4 × CP 3.
Remember that, by dimensional analysis, the very large R2 limit is the same as the very large
J limit. The string is excited along the global time direction t in AdS4 and it is rotating very
fast in CP 3. Thus we proceed by computing a perturbative expansion around the classical
trajectory (the point-like string configuration).

The Penrose limit has been computed in [155, 167–169], expanding the motion in very
similar null geodesics. However, I will mostly refer to the decoupling limit used by Grignani
et al. [168], which is based on the work [172] for the SU(2) sector of AdS5 × S5.

The AdS4 × CP 3 space is described by

ds2 =
R2

4
ds2AdS4

+ R2ds2
CP 3 , (7.17)

with the unit metric written as

ds2AdS4
=
(
−cosh2ρdt2 + dρ2 + sinh2ρdΩ̂2

2

)

ds2
CP 3 =

1
4
dψ2 +

1 − sinψ
8

dΩ2
2 +

1 + sinψ
8

dΩ′2
2 + cos2ψ(dδ +ω)2.

(7.18)
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The one-form ω in (7.18) is given by

ω =
1
4
sin θ1dϕ1 +

1
4
sin θ2dϕ2, (7.19)

and dΩ2
2 and dΩ

′
2
2 parameterize the two spheres S2 embedded in CP 3, in particular we have

that

dΩ2
2 = dθ

2
1 + cos2θ1dφ2

1, dΩ′2
2 = dθ22 + cos2θ2dφ2

2. (7.20)

Thus, the ten embedding coordinates on AdS4 × CP 3 are

t, ρ, Ω̂2︸ ︷︷ ︸
AdS4

, ψ, δ, θ1, φ1, θ2, φ2︸ ︷︷ ︸
CP 3

(7.21)

We want to make two operations at this point:

(i) We want to select the SU(2) × SU(2) sector;

(ii) We want to take the Penrose limit, cf. (6.29).

This implies that we have to choose a null geodesic such that the only excited coordinates lie
in the projective space (a part the time direction), that is, Rt×S2×S2. Secondly, the coordinates
should be rescaled in order to take the infinite radius limit.

The coordinates which are suitable in order to select the SU(2)×SU(2) sector [168], are

t′ = t, χ = δ − 1
2
t. (7.22)

This gives the following metric for AdS4 × CP 3

ds2 = −R
2

4
dt

′2
(
sin2ψ + sinh2ρ

)
+
R2

4

(
dρ2 + sinh2ρdΩ̂2

2

)

+ R2

[
dψ2

4
+
1 − sinψ

8
dΩ2

2 +
1 + sinψ

8
dΩ′2

2

+cos2ψ
(
dt′ + dχ +ω

)(
dχ +ω

)]
.

(7.23)

In Section 6, we have introduced the U(1) charges in (6.8), analogously here we have88

Δ = i∂t, J = − i
2
∂δ. (7.24)

After the change of coordinates (7.22), by the chain rule89 the charges become

E ≡ Δ − J = i∂t′ , 2J = −i∂χ. (7.25)
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Let us rescale the coordinates according to

v = R2χ, x1 = Rϕ1, y1 = Rθ1, x2 = Rϕ2, y2 = Rθ2, u4 =
R

2
ψ, (7.26)

and transform the transverse coordinates in AdS4 with u1, u2, and u3 defined by the relations

R

2
sinh ρ =

u

1 − (u2/R2)
,

R2

4

(
dρ2 + sinh2ρdΩ̂2

2

)
=

∑3
i=1 du

2
i

(1 − (u2/R2))2
, u2 =

3∑
i=1

u2i . (7.27)

Explicitly, the metric (7.23) in the new coordinates (7.26) and (7.27), becomes

ds2 = −dt′2
(
R2

4
sin2 2u4

R
+

u2

(1 − (u2/R2))2

)
+

∑3
i=1 du

2
i

(1 − (u2/R2))2
+ du24

+
1
8

(
cos

u4
R
− sin u4

R

)2(
dy2

1 + cos2
y1
R
dx2

1

)

+
1
8

(
cos

u4
R

+ sin
u4
R

)2(
dy2

2 + cos2
y2
R
dx2

2

)

+ R2cos2
2u4
R

[
dt′ +

dv

R2
+
1
4

(
sin

y1
R

dx1
R

+ sin
y2
R

dx2
R

)]

×
[
dv

R2
+
1
4

(
sin

y1
R

dx1
R

+ sin
y2
R

dx2
R

)]
.

(7.28)

At the leading order, the R → ∞ limit of the metric (7.28) leads to the plane-wave
metric given by

ds2 = dvdt′ +
4∑
i=1

(
du2i − u

2
i dt

′2
)
+
1
8

2∑
i=1

(
dx2

i + dy
2
i + 2dt′yidxi

)
. (7.29)

The light-cone coordinates in this metric are t′ and v: one should read

t′ −→ X+, v −→ X− (7.30)

in order to use the results of Section 6. In essence, this is equivalent to consider the following
classical configuration for the string

ρ = 0, θ =
π

4
. (7.31)

After the rescaling (7.26), also the U(1) charge J in (7.24) gets rescaled according to

2J
R2

= −i∂v. (7.32)

This is equivalent to P− in (6.32) in the case a = 0.
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The Light-Cone Gauge

We need to fix the light-cone gauge if we want to quantize the string Hamiltonian, since there
are Ramond-Ramond fluxes and they survive the Penrose limit, cf. (6.6) and (6.31). Explicitly:

t′ = cτ, pv = constant, (7.33)

where the constant is fixed by the computation90 of the canonical momentum pv = δL/δv̇
and gives

c =
4J
R2
. (7.34)

This will be used as our expansion parameter and it corresponds to P− of Section 6.2.3, cf.
(6.32).

After solving the Virasoro constraints (6.16), the bosonic light-cone Hamiltonian
computed according to (6.18) in the background (7.29) gives

cHB,pp =
2∑
a=1

(
pxaẋa + pyaẏa

)
+

4∑
i=1

pui u̇i − LB,pp

=
2∑
a=1

[
4p2xa + 4p2ya +

1
16
x
′2
a +

1
16
y
′2
a − cpxaya +

c2

16
y2
a

]
+
1
2

4∑
i=1

[
p2ui + u

′2
i + c2u2i

]
.

(7.35)

The quantization of the coordinates91 leads to the following free92 bosonic Hamiltonian

cHfree =
4∑
i=1

∑
n∈Z

Ωn N̂
i
n +

2∑
a=1

∑
n∈Z

(
ωn −

c

2

)
Ma

n +
2∑
a=1

∑
n∈Z

(
ωn +

c

2

)
Na

n, (7.36)

with the number operators N̂i
n = (âin)

†âin, M
a
n = (aa)†na

a
n and Na

n = (ãa)†nã
a
n, and with the

level-matching condition

∑
n∈Z

n

[
4∑
i=1

N̂i
n +

2∑
a=1

(Ma
n +N

a
n)

]
= 0. (7.37)

The dispersion relations are

Ωn =
√
n2 + c2, ωn =

√
c2

4
+ n2. (7.38)

This plane-wave Hamiltonian (7.36) describes 8 bosonic (and 8 fermionic) degrees of
freedom. But there are some surprises.

The dispersion relations (7.38) of the plane-wave Hamiltonian show that, firstly, we
have two different sets of excitations, and secondly, that in both cases the dispersion relations
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do not match the gauge theory result. As it is clear from (7.36) and (F), the masses, which
appear there, are different. We have obtained four bosons with massm = 1/2, the light-modes
and four with mass m = 1, the heavy-modes. The same is true for the fermions. The (4 | 4)
light multiplet corresponds to the transverse coordinates of CP 3, (x1, y1, x2, y2), namely, to
the two spheres S2, (7.20), after the rescaling (7.26). These elementary excitations correspond
to those seen on the gauge theory side. In particular for the light-modes, after using (7.34),
the energies are

1
c
ωn =

√
n2

c2
+
1
4
=

√
1
4
+
2π2λ

J2
n2. (7.39)

This is consistent with the dispersion relation discussed in the previous section:

√
1
4
+ 2λsin2 p

2
. (7.40)

The bosonic heavy modes correspond to the transverse directions (u1, u2, u3, u4) and they are
not observed on the gauge theory side. Actually their role is distinct, this fact is not visible in
the BMN limit. Indeed, the coordinate u4 plays a special role. The other coordinates (u1, u2, u3)
are rotated by the group SO(3) and they correspond to the derivatives on the gauge theory
side.

Hence, there is an apparent mismatch on the number of the elementary impurities
which appear on gauge and string theory side. This was resolved by Zarembo in [166]where
he showed the fate of the heavy world-sheet modes. They are not elementary world-sheet
excitations. They disappear from the spectrum: Once the leading quantum corrections in the
propagator are taken into account, it is possible to see that the pole corresponding to heavy
modes is indeed above the threshold for the light-mode pair productions. They are absorbed
in the continuum and thus “invisible” from the gauge theory point of view.

7.5. The Near-BMN Corrections

Let us take a step forward in the study of the BMN regime on the string theory side: We want
to compute the leading (1/J) quantum corrections to the string energies, for a certain class of
string configurations, following [6]. This method was proposed by Callan et al. in [106, 131]
for the AdS5 × S5 superstring. For other methods used to compute the 1/J corrections in the
AdS5/CFT4 context we refer the reader to the papers [107, 109, 173].

Summarizing what we have seen in the previous section, our starting point is a light-
cone gauged string moving on t ∈ AdS4 and S2 × S2 ∈ CP 3 with a very large angular
momentum J in the projective space. We are at strong coupling limit λ � 1 and also J (or R)
is very large, however the ratio λ′ = λ/J2 is kept fixed. This λ′ becomes an effective parameter
to explore the spectrum beyond the Penrose limit.

In particular, we want to make a joint expansion in large J and in small λ′, cf. what we
have discussed in Section 6.2.3 about the BMN-scaling. In a certain sense, we are saying that
the angular momentum is very large but yet finite.93
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Since by dimensional analysis, the 1/J corrections are equivalent to the 1/R2

corrections, the finite-size corrections can be computed by including higher order terms in
the inverse of the curvature radius, that is, up to 1/R2.

Let us focus on the bosonic sector of the type IIA AdS4 × CP 3 superstring. Thus,
the discussion of Section 6.2.1 applies directly here. All the relevant formulas are written in
Section 6.2.1, let me just recall the main expressions. The starting point is the bosonic action

S =
1

2πα′

∫
dσ2L with L = −1

2
γμνGMN∂μX

M∂νX
N, (7.41)

and the two Virasoro constraints (6.16). Solving the second one of (6.16) in favor of X−′ (v′ in
[6]) gives the light-cone Hamiltonian density

Hlc = −pt′ . (7.42)

Notice that p+ of Section 6 is pt′ in the notation of [6].
The crucial step is that everything is consistently expanded up to order 1/R2 ∼ 1/J .

In the curvature radius expansion, the leading term in (7.42), that is, the term of order O(1),
is the BMN limit (Hfree); the next-leading terms are the new contributions that, once they are
quantized, will give us the quantum corrections to the string BMN spectrum, that is,Hint:

Hlc =Hfree +Hint. (7.43)

Notice thatHfree reduces to (7.35) in the bosonic sector, which is the sector we are interested
in.

With respect to the AdS5 case, one of the surprising properties of the interacting
Hamiltonian Hint is that it contains also three-leg vertices. It is indeed built of two
contributions:

Hint =H(1)
int +H

(2)
int , (7.44)

(i) at order 1/R it is cubic and it contains three fields (the heavy mode corresponding
to u4 and two light-modes corresponding to two of the four S2 ∈ CP 3 coordinates),
that is,H(1)

int ;

(ii) at order 1/R2 it is quartic (the relevant terms for us are the ones with all the
transverse SU(2) × SU(2) coordinates),H(2)

int .

Explicitly, we have:

H(1)
int =

u4
8Rc

[
(ẋ1)2 − (ẋ2)2 +

(
ẏ1
)2 − (ẏ2)2 − (x′1)2 + (x′2)2 − (y′1)2 + (y′2)2

]
,

H(2)
int =

1
128R2c3

[
4
(
ẋax

′
a + ẏay

′
a

)2 − ((x′a)2 + (y′a)2 + (ẋa)2 +
(
ẏa
)2)2]

+
1

48R2c

[
3
((

(ẋ1)2 −
(
x′1
)2)

y2
1 +
(
(ẋ2)2 −

(
x′2
)2)

y2
2

)
+ c
(
ẋ1y

3
1 + ẋ2y

3
2

)]
+ · · · ,

(7.45)
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where the dots are for terms that are irrelevant in the computation of the spectrum of string
states belonging to the SU(2) × SU(2) sector, c is the constant defined in (7.34), the index
a = 1, 2 labels the two copies of SU(2) and with ẋ and x′ we mean the derivative with respect
to the world-sheet coordinate τ and σ, respectively.

The classical interacting HamiltonianHint must be quantized,94 cf. Appendix E.2, and
used to compute the energy corrections via standard perturbation theory, namely,

E
(2)
s,t =

〈
s, t
∣∣∣H(2)

int

∣∣∣s, t〉 +
∑
|i〉

∣∣∣〈i
∣∣∣H(1)

int

∣∣∣s, t〉∣∣∣2

E
(0)
|s〉,|t〉 − E

(0)
|i〉

, (7.46)

where |i〉 is a suitable intermediate state. Notice that E(0) is the pp-wave energy, E(1) vanishes,
and H

(1)
int is the integral of Hint over σ. In concrete terms, in (7.46) we need to insert some

specific state: We investigate two specific string configurations with two impurities in both
cases. One state contains two world-sheet excitations sitting on the same sphere S2 ∈ CP 3

(the state |s〉):

|s〉 =
(
a1n

)†(
a1−n

)†
|0〉. (7.47)

The second case we consider, is when the two world-sheet excitations are on the two different
2-spheres SU(2) (the state |t〉):

|t〉 =
(
a1n

)†(
a2−n

)†
|0〉. (7.48)

Both termsH(1)
int andH

(2)
int contribute at order 1/J , in particular, for example, for the state |t〉,

one has [6]

〈t
∣∣∣H(2)

int

∣∣∣ t〉 = −
[
n2 + (ωn − (c/2))2

]2
+ 4n2(ωn − (c/2))2

R2c3ω2
n

� −4n
4π4λ

′2

J
+
16n6π6λ

′3

J
+O
(
λ
′4
)
,

(7.49)

∑
|i〉

∣∣∣〈i
∣∣∣H(1)

int

∣∣∣t〉
∣∣∣2

E
(0)
|t〉 − E

(0)
|i〉

=
1
R2c

∑
p

[(
ωp+n − (c/2)

)
(ωn − (c/2)) −

(
p + n

)
n
]2

ωp+nωnΩp

(
ωp+n −ωn −Ωp

) +

[
(ωn − (c/2))2 − n2

]2
R2c3ω2

n

.

(7.50)

Notice that the cubic Hamiltonian contribution contains divergent terms which we regularize
with the ζ-function. Thus, summing the two contributions (7.49) and (7.50), one obtains

E
(2)
t = −

[
n2 + (ωn − (c/2))2

]2
+ 4n2(ωn − (c/2))2

R2c3ω2
n

+

[
(ωn − (c/2))2 − n2

]2
R2c3ω2

n

� −64n
6π6λ

′3

J
+O
(
λ
′4
)
.

(7.51)
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It is interesting that for the state |t〉 the first finite-size correction appears at the order λ
′3.

Notice also that there is no AdS5 analogous for the state |t〉. Analogously, it can be done for
the state |s〉 [6]:

E
(2)
s = −2

[
(ωn − c)

(
4n2 − c2

)
− c2ωn

]
R2c3ωn

−

[
(ωn − (c/2))2 + n2

]2
R2c ω2

nΩ2
2n

−

[
(ωn − (c/2))2 − n2

]2
R2c3ω2

n

� 8n2π2λ′

J
− 64n4π4λ

′2

J
+
448n6π6λ

′3

J
+O
(
λ
′4
)

(7.52)

Comparing with the Bethe Ansatz Equations and with the Landau-Lifshitz Model

From a spin chain picture, the SU(2) × SU(2) light excitations correspond to the insertions of
two fundamental magnons such as A1B2, A1, B

†
2̇
, A2, B1, and B†2 , B1 in the spin chain. We

can pictorially think to the case |s〉 as two down spins in the same XXX1/2 chain and to the
case |t〉 as each spin down for each chain.95 In this way it has been possible to see that, in the
case |t〉, the dressing phase contribution is responsible for the interactions between the two
spin chains since the S-matrix contribution is trivial in this case. The results of [6] have been
confirmed in [174].

The energies up to order 1/R2 obtained with the above finite-size procedure are
compared with the strong coupling limit of the Bethe equations proposed in [158]. The
SU(2)×SU(2) Bethe Ansatz equations are written in [6] by following the AdS5/CFT4 example,
and here are reported in (7.11). In particular, at this order, the dressing phase is a direct
generalization of the AFS phase (6.73) with the substitution g2 → h(λ), cf. Section 6.4.2.
Furthermore, in the concrete computation it has been used the strong coupling leading order
value for the function h(λ), namely, h(λ) = 2λ.

We have also used another approach in order to compute the energy corrections to
the string configurations considered: the so called Landau-Lifshitz (LL)model. This is a low-
energy effective model that was initially developed in the AdS5/CFT4 case by Kruczenski
[115]. It has the advantage to be free from divergences and to be well defined at leading
quantum level. For a nice review we refer the reader to the paper [175] and for examples in
the AdS5 × S5 context we refer to the works [176–179].

The final result contained in [6] is the complete matching between the energy
corrections computed with these three different techniques.

8. Summary and Conclusions

The work is devoted to review the study of the string integrability in the context of the
AdS/CFT dualities. The integrable structures which emerge on both sides of the AdS5/CFT4

correspondence, manifest themselves with an infinite set of conserved charges. These infinite
“hidden” symmetries solve, at least in principle, the model and provide us with a formidable
tool for exploring the string/gauge correspondence.

The exposition starts with the AdS5/CFT4 correspondence. Its gravity side, namely,
the type IIB superstring action in AdS5 × S5, can be formulated in two approaches: the Green-
Schwarz-Metsaev-Tseytlin (GSMT) formalism and the Berkovits (pure spinor) formalism.
The latter allows one to proceed perturbatively to a manifestly covariant quantization of the
string action. Using the pure spinor approach we could analyze the operator algebra of the
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left-invariant currents which are the main ingredient in the construction of the string action.
This has been done by computing the operator product expansion (OPE) of the left-invariant
currents at the leading order in perturbation theory (i.e., (1/R2) ∼ (1/

√
λ)) and up to terms

of conformal dimension 2. This confirms the Z4-grading of the full psu(2, 2 | 4) algebra,
which is the AdS/CFT global symmetry, as well as the nonholomorphicity of the currents.
We have then investigated the quantum integrability of the type IIB AdS5 × S5 superstring.
Its proven classical integrability does not automatically imply that such a property survives
at quantum level, as the example of the CPn model teaches us. In the first order formalism,
the integrability is related to the existence of a Lax pair, namely, a flat connection, which
guarantees the independence of the contour for the monodromy matrix (the functional
generating the infinite tower of conserved charges) and thus the conservation of the charges.
We have studied the variation of the monodromy matrix under a small path deformation at
the leading order in perturbation theory and in the pure spinor approach. We could give a
direct and explicit check that indeed its path-independence holds at quantum level and that
it remains free from UV logarithmic divergences. A crucial ingredient in this computation are
the OPE’s mentioned above.

Employing the GSMT light-cone gauged type IIB superstring action, one can interpret
the world-sheet elementary excitations as two-dimensional particles and construct the
corresponding S-matrix by assuming that the model is quantum integrable. We have
explicitly verified that such a scattering matrix factorizes as it should be for a two-
dimensional integrable quantum field theory. For this computation, we have exploited the
near-flat space truncation of the full string σ-model up to one-loop, which means ∼ 1/λ3/2

for the three-particle scatterings considered.
Finally, we have turned our attention to the AdS4/CFT3 correspondence. We have

considered the gravity dual given by the type IIA superstring in AdS4 × CP 3. In the
GS formalism we have examined near-BMN string configurations with a large angular
momentum J in CP 3. For the bosonic SU(2)×SU(2) closed sector, we have then calculated the
first quantum correction, namely, (1/J) ∼ (1/R2), to the corresponding string energies. The
obtained values have been positively checked against the conjectured all-loop Bethe Ansatz
predictions.

Appendices

A. Notation

Complex Coordinates

The conventions are the same as used by Polchinski in chapter 2 of [180]. The z, z coordinates
are defined according to

z = σ1 + iσ2, z = σ1 − iσ2. (A.1)

The derivatives are

∂z =
1
2
(∂1 − i∂2), ∂z =

1
2
(∂1 + i∂2). (A.2)
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Notice that for the Maurer-Cartan forms I use J ≡ Jz and J ≡ Jz. In [7] they are also indicated
with J+ and J−, respectively. The two-dimensional metric is

ηzz = ηzz =
1
2
, ηzz = ηzz = 2, (A.3)

where all the other components are zero. The Levi-Civita tensor is defined by ε12 = −ε21 = +1.
In the Minkowski world-sheet the ε tensor is defined as ε01 = −ε10 = +1. In particular, we use
the prescription σ2 = iσ0 for Wick-rotating the coordinates. Finally, the measure in the z, z
coordinate is d2z = 2dσ1dσ2.

B. The AdS5/CFT4 Duality: The Full Planar ABE

For completeness, here we report the Asymptotic Bethe equations for the planar AdS5/CFT4

[28]:

1 = ei(p1+···+pK4 ) =
K4∏
j=1

x+
4j

x−4j
,

1 =
K2∏u1k − u2j + i/2

u1k − u2j − i/2

K4∏
j=1

2 − g2/x1kx
+
4j

2 − g2/x1kx
−
4j
,

1 =
K2∏

j=1, j /= k

u2k − u2j − i
u2k − u2j + i

K3∏
j=1

u2k − u3j + i/2
u2k − u3j − i/2

K1∏
j=1

u2k − u1j + i/2
u2k − u1j − i/2

,

1 =
K2∏u3k − u2j + i/2

u3k − u2j − i/2

K4∏
j=1

x3k − x+
4j

x3k − x−4j
,

1 =

(
x−4k
x+
4k

)L K4∏
j=1, j /= k

(
x+
4k − x

−
4j

x−4k − x
+
4j

2 − g2/x+
4kx

−
4j

2 − g2/x−4kx
+
4j
e2iθ(x4k,x4j )

)

×
K1∏2 − g2/x−4kg1j

2 − g2/x+
4kx1j

K3∏
j=1

x−4k − x3j
x+
4k − x3j

K5∏
j=1

x−4k − x5j
x+
4k − x5j

K7∏
j=1

2 − g2/x−4kx
−
7j

2 − g2/x+
4kx7j

,

1 =
K6∏
j=1

u5k − u6j + i/2
u5k − u6j − i/2

K4∏
j=1

x5k − x+
4j

x5k − x−4j
,

1 =
K6∏

j=1, j /= k

u6k − u6j − i
u6k − u6j + i

K5∏
j=1

u6k − u5j + i/2
u6k − u5j − i/2

K7∏
j=1

u6k − u7j + i/2
u6k − u7j − i/2

,

1 =
K6∏
j=1

u7k − u6j + i/2
u7k − u6j − i/2

K4∏
j=1

2 − g2/x7kx
+
4j

2 − g2/x7kx
−
4j
.

(B.1)
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The Bethe roots are (u1k, u2k, u3k, u4k, u5k, u6k, u7k) corresponding to the excitation numbers
(K1, K2, K3, K4, K5, K6, K7) and the rapidity map is defined by

x(u) =
1
2
u

⎛
⎝1 +

√
1 −

2g2

u2

⎞
⎠, g2 =

λ

8π2
(B.2)

with x±(u) ≡ x(u ± i/2). The dressing phase is

θ
(
uk, uj

)
=
∞∑
r=2

∞∑
s=1+r,
s+r=odd

cr,s
(
g
)(
qr(uk)qs

(
uj
)
− qr
(
uj
)
qs(uk)

)
, (B.3)

where the coefficients are [142]

c
(n)
r,s =

(−1)nζ(n)
2πnΓ(n − 1) (r − 1)(s − 1)

Γ((1/2)(s + r + n − 3)) Γ((1/2)(s − r + n − 1))
Γ((1/2)(s + r − n + 1))Γ((1/2)(s − r − n + 3))

. (B.4)

In particular, at strong coupling they have been discussed in Section 6.4.2.

C. Pure Spinor Formalism

C.1. The psu(2, 2 | 4) Structure Constants

The nonvanishing structure constants for the psu(2, 2 | 4) superalgebra are the following:

f
[ab]

αβ̂
=

1
2

(
γab
)
α

γ
δγβ̂, f

[a′b′]

αβ̂
= −1

2

(
γa
′b′
)
α

γ
δγβ̂

fα[cd]β = −f
α
β[cd] =

1
2
(
γcd
)
β

α
, f α̂

[cd]β̂
= −fα̂

β̂[cd]
=

1
2
(
γcd
)
β̂

α̂

faαβ = f
a
βα = γaαβ, f

β̂

aβ = −f
β̂

βa = −
(
γa
)
βγδ

γβ̂

fa
α̂β̂

= fa
α̂β̂

= γa
α̂β̂
, fαaα̂ = −fαα̂a =

(
γa
)
α̂β̂δ

αβ̂

f
[ef]

ab
= −f

[ef]

ba
= δ[ea δ

f]

b
, f

[e′f ′]

a′b′
= −f

[e′f ′ ]

b′a′
= −δ[e

′

a′ δ
f ′]

b′

fe[cd]b = −f
e
b[cd] = ηb[cδ

e
d]

f
[gh]
[cd][ef] = ηceδ

[g
d
δ
h]
f
− ηcfδ

[g
d
δ
h]
e + ηdfδ

[g
c δ

h]
e − ηdeδ

[g
c δ

h]
f
.

(C.1)

The bosonic indices are a = 0, . . . , 9 labeling g2, with a = (a, a′), where a = 0, . . . , 4 labels the
AdS5 directions and a′ = 5, . . . , 9 labels the S5 directions, and [ab] labeling g0. The fermionic
indices are α and α̂ for g1 and g3, respectively.



106 Advances in High Energy Physics

C.2. OPE Results

The results listed here are from [7]. Notice the different notation: here g1(3) corresponds to
g3(1) of [7]. The symbol ˜ is omitted, however all the currents in the R.H.S. are classical
and there is an overall factor 1/R2 also omitted. It is convenient to perform the OPE’s in the
symmetric point σ ≡ (x + y)/2, that is, J(x)J(y) =

∑
C(x − y)O(σ). v and v are defined as

v ≡ x − y and v ≡ x − y, respectively.

C.2.1. JJ

J0J2

J[ab](x)J
a(
y
)

= fa[ab]
b

(
Jb

v
+
v

2v
∂Jb +

1
2
∂Jb
)

+ f [ab]
αα̂

f α̂aβ

(
JαJβ

v

v
− JαJ

β
log γ |v|2

)

+ f [ab]
bc

fac[cd]J
b

(
N[cd]v

v
+N

[cd]
log γ |v|2

)

J
[ab]

(x)Ja
(
y
)

= fa[ab]b

⎛
⎝J

b

v
+
1
2
∂J

b
+
v

2v
∂J

b

⎞
⎠ + f [ab]

αα̂
fαa
β̂

(
J
α̂
J
β̂ v

v
− J

α̂
Jβ̂ log γ |v|2

)

− f [ab]
bc

fca[cd]J
b
(
N[cd] log γ |v|2 +N

[cd]v

v

)

(C.2)

J0J1

J[ab](x)J
α(
y
)

= fα[ab]β

(
Jβ

v
+
v

2v
∂Jβ +

1
2
∂Jβ
)

+ fα̂α[cd]f
[ab]
βα̂

Jβ
(
N

[cd]
log γ |v|2 +N[cd]v

v

)

Jα(x)J
[ab](

y
)

= f [ab]α
β

⎛
⎝J

β

v
− 1
2
∂J

β
− v

2v
∂J

β

⎞
⎠

+ f [ab]
ab fbα

β̂

(
Ja−J

β̂ v

v
− Jβ̂J

a
log γ |v|2

)
+ f [ab]

β̂γ
f
γα
a

(
JaJ

β̂
log γ |v|2 − J

β̂
J
a v

v

)

+ f [ab]
βγ̂

f
γ̂α

[λρ]J
β
(
N[λρ] log γ |v|2 +N

[λρ]v

v

)

(C.3)
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J0J3

J
[ab]

(x)Jα̂
(
y
)

= fα̂[ab]
β̂

(
J
β̂ 1
v
+
1
2
∂J

β̂
+
v

2v
∂J

β̂
)
+ f [ab]

αβ̂
fαα̂[λρ]

(
J
β̂
N[λρ] log γ |v|2 + J

β̂
N

[λρ]v

v

)

J[ab](x)J
α̂(
y
)

= fα̂[ab]
β̂

(
Jβ̂

v
+
v

2v
∂Jβ̂ +

1
2
∂Jβ̂
)

+ f [ab]
ab

fbα̂β

(
JaJβ

v

v
− JaJ

β
log γ |v|2

)

+ f [ab]
βγ̂

f
α̂γ̂
a

(
−JaJβ v

v
+ JβJ

a
log γ |v|2

)
+ f [ab]

αβ̂
fαα̂[λρ]J

β̂

(
N[λρ]v

v
+N

[λρ]
log γ |v|2

)

(C.4)

J0J0

J[a1b1](x)J
[a2b2](

y
)
=
(
f
[a1b1]λ
a f

[a2b2]
bλ JaJ

b
+ fβ[a1b1]α f

[a2b2]

ββ̂
JαJ

β̂
+ fβ̂[a1b1]

α̂
f
[a2b2]

ββ̂
Jα̂J

β
)
log γ |v|2

(C.5)

J1J1

Jα(x)J
β(
y
)

= fαβa
Ja

v
+ fαβa

(
v

2v
∂Ja +

1
2
∂Ja − 1

2
∂J

a
log γ |v|2

)

− 1
2
log γ |v|2

(
f
β

[ab]δf
α[ab]
γ − fα[ab]δf

β[ab]
γ

)
J
γ
Jδ

+
1
2
log γ |v|2

(
f
αγ
a f

β

γ[ab] − f
βγ
a fαγ[ab]

)(
N[ab]J

a
+N

[ab]
Ja
)

− fβγa fαγ[ab]J
a
(
N[ab] log γ |v|2 +N

[ab]v

v

)
+ fαaα̂f

α̂β

[ab]J
a

(
N[ab]v

v
+N

[ab]
log γ |v|2

)

(C.6)
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J3J3

J
α̂
(x)Jβ̂

(
y
)

= fα̂β̂a
(
1
v
J
a
+
1
2
∂J

a
− 1
2
∂Ja log γ |v|2 + v

2v
∂J

a
)

+
1
2
log γ |v|2

(
fα̂
[ab]δ̂

f
β̂[ab]
γ̂

− fβ̂
[ab]δ̂

f
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γ̂

)
J
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Jδ̂

+
1
2
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(
f
α̂γ̂
a f

β̂
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)(
N
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+ J
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+N
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Ja
)

+ fα̂aαf
αβ̂

[ab]J
a
(
N

[ab]v

v
+N[ab] log γ |v|2

)
− fα̂aαf

αβ̂

[ab]J
a

(
N
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log γ |v|2 +N[ab]v

v
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Jα̂(x)J
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)

= fα̂β̂a
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J
a

v
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2
∂J

a
+
1
2
∂Ja log γ |v|2 − v

2v
∂J

a

)

= +
1
2
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(
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f
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+
1
2
log γ |v|2

(
f
α̂γ̂
a f

β̂
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a f α̂γ̂[ab]
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[ab]
Ja
)
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(
N
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v
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(C.7)

J2J1

Ja(x)J
α(
y
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= fαaα̂

(
Jα̂

v
+
v

2v
∂Jα̂ +

1
2
∂Jα̂ − 1

2
∂J
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log γ |v|2

)

+ faγ
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fαγ[ab]J
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(
N[ab] log γ |v|2 +N

[ab]v

v

)
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(
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v
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[ab]
log γ |v|2
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+− log γ |v|2
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Jα(x)J
a(
y
)

= faαα̂

(
Jα̂

v
+
v

2v
∂Jα̂ +

1
2
∂Jα̂ − 1

2
∂J
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log γ |v|2

)

+ fαγb faγβ

(
J
b
Jβ log γ |v|2 − JbJβ v
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− J

b
J
β v
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+ JbJ
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log γ |v|2
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+ fαbα̂ fab[ab]J
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(
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v
+N
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log γ |v|2

)
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+− log γ |v|2.

(C.8)

The tensor Raα
+− is a symmetric tensor and it contains all the terms coming from the

diagram computed from the vertices (5.98) and (5.95). They diverge logarithmically however
these type of insertions being symmetric are just cancelled when we take the sum of the
commutator between Ja+(x)J

α
−(y) and Jα+(x)J

a
−(y).

J3J2

The same structure as before for the case J2J1 appears here

Jα̂(x)J
a(
y
)

= fα̂aβ

⎛
⎝−J

β

v
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2
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v
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2
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⎠
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⎛
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⎠
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+− log γ |v|2.

(C.9)

Again, Rα̂a
+− is the same kind of tensor as before, it comes from the same vertices (5.98) and

(5.95), with the replacement α → α̂.
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J2J2
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β̂
fbγα

(
J
β̂
Jα + Jβ̂J

α
)
log γ |v|2 + fa

α̂β̂
f
β̂b

β
Jα̂Jβ

v

v
+ fbαβf

βa

α̂
J
α
J
α̂ v

v

− 1
2

(
f
a[ab]
λ

fb[ab]ρ + f
b[ab]
λ

fa[ab]ρ

)
J
λ
Jρ log γ |v|2

− 1
2

(
f
aγ̂
α fb

γ̂β̂
+ fbγ̂α fa

γ̂β̂

)
J
α
Jβ̂ log γ |v|2 + 1

2

(
f
aγ

β̂
fbγα + f

bγ

β̂
faγα

)
J
β̂
Jα log γ |v|2

(C.10)

J3J1

Jα̂(x)J
β(
y
)

= fα̂β[ab]

⎛
⎝N[ab]

v
+
N

[ab]

v

⎞
⎠

+
1
2
f
α̂β

[ab]

(
v

v
∂N[ab] + ∂N[ab]

(
1 − log γ |v|2

)
− v
v
∂N

[ab]
− ∂N

[ab](
1 − log γ |v|2

))

+ fα̂γ[a1b1]f
β

γ[a2b2]

(
N[a1b1]N[a2b2]v

v
+N

[a1b1]
N

[a2b2]v

v

)

+ fα̂γ[a1b1]f
β

γ[a2b2]

(
N[a1b1]N

[a2b2]
log γ |v|2 +N

[a1b1]
N[a2b2] log γ |v|2

)

+
1
4

(
3fα̂

[ab]β̂
f
β[ab]
α − fβ

aβ̂
f α̂aα

)
J
α
Jβ̂ log γ |v|2 + 1

4
f
[ab]

αβ̂
f
α̂β

[ab]J
β̂
Jα log γ |v|2

+
1
4
f
α̂β

[ab]f
[ab]
ab J

a
Jb log γ |v|2

(C.11)
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J1J3

Jβ(x)J
α̂(
y
)

= fα̂β[ab]

⎛
⎝N[ab]

v
+
N

[ab]

v

⎞
⎠

+
1
2
f
α̂β

[ab]
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v

v
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(
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)
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[ab](
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v
+N
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N
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v
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βγ
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aγf
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b
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JaJb

v

v
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J
a
J
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faα̂α Jβ̂Jα

v

v
+ fα̂αaf

βa

β̂
J
α
J
β̂ v

v
+ fα̂αaf

βa

β̂
Jβ̂J

α
log γ |v|2

+
1
4

(
3fα̂

[ab]β̂
f
[ab]β
α − fβ

aβ̂
faα̂[ab]

)
J
α
Jβ̂ log γ |v|2

− 1
4
f
α̂β

[ab]f
[ab]
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J
a
Jb log γ |v|2 − 1

4
f
[ab]

αβ̂
f
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(C.12)

C.2.2. JN

Ja(x)N
[ab](

y
)
= fab[a1b1]f

[ab][a1b1]
[a2b2]

N
[a2b2]

Jb log γ |v|2

J
a
(x)N[ab](y) = fab[a1b1]f [ab][a1b1]

[a2b2]
N[a2b2]J

b
log γ |v|2

Jα(x)N
[ab]

(x) = fα[a1b1]βf
[a1b1][ab]
[a2b2]

JβN
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log γ |v|2

J
α
(x)N[ab](y) = fα[a1b1]βf [a1b1][ab]

[a2b2]
J
β
N[a2b2] log γ |v|2

J
α̂
(x)N[ab](y) = f [ab][a1b1]

[a2b2]
fα̂
β̂[a1b1]

J
β̂
N[a2b2] log γ |v|2

Jα̂(x)N
[ab](

y
)
= f [ab][a1b1]

[a2b2]
fα̂
β̂[a1b1]

Jβ̂N
[a2b2] log γ |v|2.

(C.13)

C.2.3.NN

N
[ab]

(x)N[cd](y) = f [ab]
[a1b1][a2b2]

f
[cd][a2b2]
[a3b3]

N[a3b3]N
[a1b2]

log γ |v|2. (C.14)
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D. The S-Matrix Factorization in the NFS Limit: An Example

The results in this section are from [5]. In order to show how the factorization of the three-
body S-matrix works in the near-flat-space limit at the leading order, among the highest
weight states (6.68) we consider the following scattering process

Y11̇(a)Y11̇(b)Y11̇(c) −→ Y11̇(d)Y11̇(e)Y11̇
(
f
)
. (D.1)

In particular, the S-matrix element C1 in (6.68) can be extracted from

C1(a, b, c)
∑

σ(d,e,f)
δadδbeδcf =

〈
Y11̇
(
f
)
Y11̇(e)Y11̇(d)|S|Y11̇(a)Y11̇(b)Y11̇(c)

〉
. (D.2)

Recalling the NFS action (6.48) and the relation (6.23) which allows one to write the fields Yi
with i = 1, . . . , 4 as bispinors, in the so(4)2 notation, the amplitude (D.2) reads

〈Y11̇ Y11̇ Y11̇|S|Y11̇ Y11̇ Y11̇〉 = 〈Y1 Y1 Y1|S|Y1 Y1 Y1〉 − 〈Y1 Y1 Y1|S|Y1 Y4 Y4〉

− 〈Y1 Y1 Y1|S|Y4 Y1 Y4〉 − 〈Y1 Y1 Y1|S|Y4 Y4 Y1〉,
(D.3)

where the momentum arguments are as in (D.2).

D.1. Feynman Diagram Computation

For practical purposes, the amplitudes from Feynman diagrams are more easily computed in
the so(4)2 notation. In order to show how the factorization emerges from Feynman graphs,
we will illustrate the computation only for the process

Y1(a)Y1(b)Y1(c) −→ Y1(d)Y1(e)Y1
(
f
)
, (D.4)

which is contained in (D.3). The remaining scattering amplitudes are completely analogous.
Recalling (6.80), the amplitude is defined as

A
(
η
)
≡ A

(
a, b, c, d, e, f

)
=
〈
Y1(f)Y1(e)Y1(d) | Y1(a)Y1(b)Y1(c)

〉
connected. (D.5)

Tree-Level

At tree-level the amplitude (D.5) is computed from diagrams of the kind drawn in Figure 7.
For the process (D.5)we find

Atree(η) = −iγ2 1√
64abcdef

1

2! 3!2
∑
σ(η)

F
(
η
)
I0
(
η
)
, (D.6)

where

F
(
η
)
= 16

(
a2 + b2 + c2 + ab + bc + ca

)(
d2 + e2 + f2 + de + ef + fd

)
. (D.7)
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b
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f

d

e

Figure 7: Tree-level diagram. The label r counts the derivatives acting onto the internal propagator.

and I0 is the tree-diagram propagator

I0
(
η
)
=

δ2(η)

(a + b + c)2 −m2 + iε
. (D.8)

The sum in (D.6) is taken over all permutations of η ≡ (a, b, c,−d,−e,−f). Since the summand
is symmetric in (a, b, c) and in (d, e, f) and under the exchange (a, b, c) ↔ (d, e, f), one can
restrict the sum to permutations under which the summand is not symmetric (there are 10
such permutations) and drop the factor 1/2!3!2. The first fraction in (D.6) originates from the
wave-function normalization of the external particles.After performing the sum in (D.6), one
can use energy-momentum conservation to show that the amplitude indeed vanishes if the
sets of in- and out-momenta are different:

Atree(η) = 0, for {a, b, c}/=
{
d, e, f

}
. (D.9)

At the points where {a, b, c} = {d, e, f} the amplitude becomes divergent when ε → 0 in
(D.8). The divergences originate from terms where the momentum of the internal propagator
I0 is equal to one of the external momenta and therefore goes on-shell. The divergence is of δ-
function-type and its residue can be extracted by means of the principal value formula (6.83).
In the sum (D.6) the principal value terms cancel because of energy-momentum conservation
and we are left with an additional δ(p2 −m2)-function which sets the internal momentum p
of the corresponding diagram on-shell. The factorized form (6.82) arises from combining this
δ-function with the overall energy-momentum conservation δ(2)(η) contained in (D.8). For
the case at hand we obtain

Atree(η) = − γ2

4m4

abc G(a, b, c)
(a + c)(c − b)(b − a)

∑
σ(d,e,f)

δadδbeδcf (D.10)

with

G(a, b, c) = 16
[
2abc(a − b + c) + a3(b − c) + b3(a + c) + c3(b − a)

]
. (D.11)
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This result is a special case of (6.82), where the coefficients are actually independent of the
permutation σ which is due to the fact that all involved fields are of the same flavor.

One-Loop

The one-loop amplitude is given by two sets of diagrams, the “dogs” (Figure 8(b)) and the
“suns” (Figure 8(c)),

A1−loop(η) = Adog(η) +Asun(η). (D.12)

As before, the explicit results are for the sample process (D.4).
In the case of sun diagrams (Figure 8(c)), it has been possible to reduce the diagrams

as a linear combination of tree-level diagrams Ir multiplied by bubbles Brs (see Figure 8(a))
by means of certain cutting rules [181].96 All bubbles are finite, but—exactly as at the tree-
level—the propagators in Ir become divergent when its momentum goes on-shell. It is clear
that there is a potentially divergent propagator also in the dog diagrams (Figure 8(b)). The
poles can again be extracted using the principal value formula (6.83). The partial one-loop
amplitudes for (D.4) are

Adog(η) = +R
(
η
)
−
∑

σ(a,b,c)

4iγ3a3b2c
|a2 − c2|

a2 + b2

a2 − b2

×
[
a4 + 2a3b + 10a2b2 + 2ab3 + b4

a2 − b2
− 4i
π

ab

|a2 − b2|

(
a2 − b2 +

(
a2 + b2

)
ln
b

a

)]

×
∑

σ(d,e,f)

δadδbeδcf ,

Asun(η) = −R(η) − 8iγ3a2b2c2

(a2 − b2)(b2 − c2)(c2 − a2)

×
[
24a2b2c2 + a4b2 + a2b4 + a4c2 + a2c4 + b4c2 + c2b4

−a3b2c + a2b3c + a3bc2 + ab3c2 + a2bc3 − ab2c3
]
×
∑

σ(d,e,f)

δadδbeδcf .

(D.13)

In these expressions, R(η) = Rdog(η) δ(2)(η) = Rsun(η) δ(2)(η) is a function with support
on the phase space which drops out in the final one-loop amplitude (D.12). Rdog(η) and
Rsun(η) are rational functions multiplied by logarithms of various ratios of the momenta.
They are nonsingular for a/= b /= c /=a and the cancelation happens upon energy-momentum
conservation between terms with the same momentum flowing through the bubble.
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Figure 8: One-loop diagrams. The labels r, s, and t count the derivatives acting onto the corresponding
internal propagator.

Summary of the Results

Thus for the scattering process (D.1) the total connected amplitudes (D.3) are

Atree(η) = −4 γ2abc
[
a
(a + b)(a + c)
(a − b)(a − c) + b

(a + b)(b + c)
(a − b)(b − c) + c

(a + c)(b + c)
(a − c)(b − c)

]
×
∑

σ(d,e,f)

δadδbeδcf ,

Adog(η) = +R
(
η
)
−
∑

σ(a,b,c)

4iγ3a3b2c
a2 − b2

∣∣∣∣a + c
a − c

∣∣∣∣

×
[
(a + b)3

a − b − 4i
π

ab

|a2 − b2|

(
a2 − b2 +

(
a2 + b2

)
ln
b

a

)]
×
∑

σ(d,e,f)

δadδbeδcf ,

Asun(η) = −R(η) + 8iγ3a2b2c2
(a + b)(a + c)(b + c)
(a − b)(a − c)(b − c) ×

∑
σ(d,e,f)

δadδbeδcf .

(D.14)

D.2. S-Matrix Computation

We turn now to the S-matrix elements. Specifically, we verify the factorization by calculating
the triple product of two-particle S-matrices according to (6.64) and showing that this product
agrees with the computed three-particle amplitudes. To this end we split the tree-level and
one-loop S-matrix elements as follows

S(0) = S11γ2 + S1γγ ,

S(1) = S11γ3 + S1γγ2 + Sγγγ ,
(D.15)
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where the superscripts indicate the perturbative order of the three factors in (6.64). For
instance, S1γγ2 refers to all terms in the triple product that originate from taking the zeroth
order in γ from one of the three two-particle S-matrices, the first order from one of the
remaining S-matrices and the second order from the final S-matrix.

The first terms in (D.15) describe processes where one of the particles does not take
part in the interaction. These are precisely the terms that correspond to disconnected Feynman
diagrams. Since we omitted them in the computation in (6.80), we have to discard these
terms here, too. We were allowed to disregard these contributions because their factorization
is trivial.

Using the near-flat-space S-matrix from Section 6.4.3 in the factorization equation
(6.64), we find for the three-particle S-matrix element governing this process:

Sfull
11̇ (a, b, c) = S0(A + B)2

∣∣∣
(a,b)

S0(A + B)2
∣∣∣
(a,c)

S0(A + B)2
∣∣∣
(b,c)

, (D.16)

where the relevant coefficients from (6.79) are

(A + B)|(a,b) = 1 + iγab
b + a
b − a. (D.17)

This sum corresponds to those terms in the two-particle S-matrix which symmetrize two
bosonic indices. Expanding the matrix element (D.16) in γ , one finds the prediction for the
connected tree-level amplitude

S
1γγ
11̇

= −4γ2abc
[
a
(a + b)(a + c)
(a − b)(a − c) + b

(a + b)(b + c)
(a − b)(b − c) + c

(a + c)(b + c)
(a − c)(b − c)

]
(D.18)

and the two pieces of the one-loop amplitude

S
1γγ2

11̇
= −

∑
σ(a,b,c)

4iγ3a3b2c
a2 − b2

∣∣∣∣a + c
a − c

∣∣∣∣
[
(a + b)3

a − b − 4i
π

ab

|a2 − b2|

(
a2 − b2 +

(
a2 + b2

)
ln
b

a

)]
,

S
γγγ

11̇
= 8iγ3 a2b2c2

(a + b)(a + c)(b + c)
(a − b)(a − c)(b − c) .

(D.19)

These results match those from the Feynman diagrams.

E. The AdS4/CFT3 Duality: Preliminaries

E.1. Reducing the M-Theory Background to AdS4 × (S7/k)

The near-horizon limit of the M2-brane solution is AdS4 × S7, namely,

ds2 =
L2

4
ds2AdS4

+ L2ds2
S7
, (E.1)

where L is curvature radius for the eleven-dimensional target-space.
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We choose four complex coordinates to parameterize S7 such that
∑4

i=1 |Xi|2 = 1 [167],
that is,

X1 = cos θ cos
θ1
2
eι(χ1+ϕ1)/2, X2 = cos θ sin

θ1
2
eι(χ1−ϕ1)/2,

X3 = sin θ cos
θ2
2
eι(χ2+ϕ2)/2, X4 = sin θ sin

θ2
2
eι(χ2−ϕ2)/2,

(E.2)

with 0 ≤ θ ≤ π/2, 0 ≤ χi ≤ 4π, 0 ≤ ϕi ≤ 2π and 0 ≤ θi ≤ π for i = 1, 2. Then, the metric on the
sphere S7 is

ds2
S7
=

4∑
i=1

dXidXi = dθ2 +
1
4
cos2θ

{(
dχ1 + cos θ1dϕ1

)2 + dθ21 + sin2θ1dϕ
2
1

}

+
1
4
sin2θ

{(
dχ2 + cos θ2dϕ2

)2 + dθ22 + sin2θ2dϕ
2
2

}
.

(E.3)

With the change of coordinates χ1 = 2y + 2δ, χ2 = 2y − 2δ and implementing the orbifold
condition according to y ∼ y + (2π/k), the metric (E.3) becomes

ds2
S7 = ds2CP3 +

(
A + dy

)2 = dθ2 + 1
4
cos2θdΩ2

1 +
1
4
sin2θdΩ2

2

+
(
A + dy

)2 + 4cos2θsin2θ

(
dδ +

1
4
cos θ1dϕ1 −

1
4
cos θ2dϕ2

)2

,

(E.4)

with

dΩ2
1 = dθ

2
1 + sin2θ1dϕ

2
1, dΩ2

2 = dθ2 + sin2θ2dϕ
2
2,

A =
(
cos2θ − sin2θ

)
dδ +

1
2
cos2θ cos θ1dϕ1 +

1
2
sin2θ cos θ2dϕ2.

(E.5)

Thus the total eleven-dimensional metric is

ds211 =
L2

4
ds2AdS4

+ L2ds2
S7
= L2

(
1
4
ds2AdS4

+ ds2
CP3

)
+
(
A + dy

)2
. (E.6)

In order to find the dilaton in terms of the other parameters k, L, we can compare (E.6) with
the standard eleven-dimensional supergravity metric [2]

ds211 = e
−2φ/3ds2IIA + e4φ/3

(
dỹ + Ã

)2
(E.7)
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with ỹ ∼ ỹ + 2π . Thus, comparing (E.6) and (E.7) (in unit where α′ = 1), one finds

e2φ =
L3

k3
,

ds2IIA =
L3

k

(
1
4
ds2AdS4

+ ds2
CP3

)
≡ R2

(
1
4
ds2AdS4

+ ds2
CP3

)
.

(E.8)

Hence, summarizing the results, we have that

R2 ≡ L
3

k
= k2e2φ, eφ =

R

k
. (E.9)

In order to make contact with what we have found in this appendix and with the
results in [6], we shift the variables as

θ1 −→ θ1 −
π

2
, θ2 −→ θ2 +

π

2
. (E.10)

With this change of coordinates we obtain the same metrics used in the main text of this
review and in [6].

The Fluxes

The type IIA superstring on AdS4 × CP 3 is supported by two Ramond-Ramond fluxes F(2)

and F(4). They are given by

eφF(2) = RdA, eφF(4) =
3R3

8
εAdS4 . (E.11)

E.2. Mode Expansion for the Bosonic Fields

The mode expansion for the bosonic fields can be written as

ui(τ, σ) = i
1√
2

∑
n∈Z

1√
Ωn

[
âine

−i(Ωnτ−nσ) −
(
âin

)†
ei(Ωnτ−nσ)

]
,

za(τ, σ) = 2
√
2 ei(cτ/2)

∑
n∈Z

1
√
ωn

[
aane

−i(ωnτ−nσ) − (ãa)†nei(ωnτ−nσ)
]
,

(E.12)

where Ωn =
√
c2 + n2, ωn =

√
(c2/4) + n2, and we defined za(τ, σ) = xa(τ, σ) + iya(τ, σ). The

canonical commutation relations [xa(τ, σ), pxb(τ, σ
′)] = iδabδ(σ − σ ′), [ya(τ, σ), pyb(τ, σ ′)] =

iδabδ(σ − σ ′), and [ui(τ, σ), pj(τ, σ ′)] = iδijδ(σ − σ ′) follow from

[
aam,
(
abn

)†]
= δmnδab,

[
ãam,
(
ãbn

)†]
= δmnδab,

[
âim,
(
â
j
n

)†]
= δmnδij . (E.13)
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Endnotes

1. For a very recent analysis on lower-dimensional examples of AdS/CFT dualities we refer
the reader to [182].

2. Actually, this is also true for the scattering amplitudes as it turns out in recent
developments, but we will not focus on these aspects of the conformal field theories.

3. In conformal field theories, there are special classes of operators, the chiral primary
operators, whose scaling dimension does not receive quantum corrections.

4. It is correct to say that on the gauge theory side the quantum integrability relies on more
robust basis, cf. Section 2.

5. It might seem that also N is an independent parameter in the string theory context.
Actually, it is related to the target space radius R by R4 = 4πgsNα′2. This relation follows
from supergravity arguments. In particular, R is the radius of the D3-brane solutions
and α′ the Planck length and the equality gives the threshold for the validity of the
supergravity approximation gsN � 1.

6. This is the conjecture statement in its strongest version. However, there are weaker
versions: for example, it might be considered to hold only in the largeN limit (N → ∞)
and for finite values of λ, namely, without considering gs corrections to the string theory,
or even weaker, without α′ corrections (i.e., large N and λ limits). In this work, we will
always assume the strongest version, namely, that the AdS/CFT correspondence is valid
for any value of the string coupling constant gs and of the color numberN.

7. The symbol ∼= means that the two groups are locally isomorphic.

8. For any supermatrix

M =

(
A X

Y B

)
, (A)

where the block-diagonal are even matrices and off-block elements are odd, the
supertrace is defined as STrM = TrA − TrB.
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9. The appearance of integrable spin chains in QCD at high-energy was already discussed
by Lipatov in [183] and by Faddeev and Korchemsky in [184]. See also [15] and
references therein.

10. In condensed matter physics they are usually called Bethe-Yang equations.

11. This is equivalent to impose Ψ(x) = Ψ(x + 1), which gives eip = 1.

12. For the case with x > y it is sufficient to exchange the role of x and y.

13. The wave function is symmetric with respect to x, y.

14. In Section 3, the rapidity is denoted with the Greek letter θ. Although the notation might
seem confusing, it is the standard one used in literature.

15. There are indeed further assumptions about integrability. We are indeed assuming
that the only kind of scattering is elastic, that there is no magnon produced in such
scatterings and that the initial and final momenta are the same. We have already used
these hypothesizes in (2.33) for the two-magnon sector.

16. I will come back on the wrapping effects in Section 6.

17. For generalizations and applications of Lüscher formulas for the computations of finite-
size effects we refer the reader to the papers [185–187]. The four loop anomalous
dimension for the Konishi operator computed in [186] has been positively checked
against the gauge theory perturbative computation of [188].

18. The wording “finite-size effect” should not be confused with what we will illustrate in
Section 7, cf. the discussion therein.

19. There is, indeed, another way of constructing such nonlocal charges by an iterative
procedure, for more details we refer the reader to the original paper [42].

20. The spectral parameter is usually complex in theories with Euclidean signature.

21. Closed strings require a closed loop and the trace in the definition of U. Moreover one
needs to assume a proper behavior for the currents at the boundary σ −→ ±∞.

22. As explained in [46], if k is a subalgebra, then the commutator [Kμ,Kν] sits only in the
∂k terms.

23. The rapidity can also be introduced for massless theory, but we are indeed interested in
massive field theories.

24. The light-cone momenta are defined according to p± = (1/2)(p0 ± p1).
25. The argument that we are following is from [56], rigorously we should here use

the operator e−icqs as it has been done in [53]. However, since it does not spoil the
effectiveness of the argument and it makes a bit “digestive” from a technical point of
view, we adopt the same technique as in Dorey’s paper [56].

26. This argument can also be used to show that processes of the type 2 → n are zero in
integrable two-dimensional field theory, since it should always be true that t12 ≤ t23,
where 1 and 2 are the incoming particles, and t12 is the time that occurs for the scattering
between 1 and 2, while 3 is the fastest particle among the outgoing ones.

27. Parke has proved that the existence of only two higher conserved charges q±s with s > 1
is sufficient for the arguments presented above [53].

28. For a more detailed and complete explanation one should say that for Riemannian
symmetric coset space the anomaly is forbidden when the subalgebra h is simple, and



Advances in High Energy Physics 121

vice versa it is originated when the subalgebra contains nontrivial ideals. Roughly
speaking, we can say that the decomposition of the subalgebra h corresponds to the
possible operators Oab

k
which are the basis in the current OPE (3.52).

29. The RNS formalism is another formulation to describe supersymmetric strings. In this
case the supersymmetries are implemented into the theory by means of fields which are
spinors on the world-sheet and vectors on the target space. However, this approach is
not suitable for describing superstrings supported by Ramond-Ramond fluxes, as it is
our favorite AdS5 × S5 superstring.

30. I have dropped the spinorial index α.

31. The equations of motion, for example, in the light-cone gauge, remove again half of the
spinorial components, namely, the real independent components left are 8.

32. Such a feature is indeed true for the general algebra psu(n, n | 2n) [86], cf. also [189].

33. This Z4-grading works the same for the SU(2, 2 | 4) supergroup, thus one might wonder
where the difference is. The point is that the projection P removes the identity matrix in
the algebra, namely, the central charge term. Such a factor is sitting in the bosonic subset
g2, hence, it is equivalent to consider traceless matrices within this subspace.

34. This is indeed an expansion, for example, by choosing a specific parameterization on the
supercoset the full action can be expanded in the number of fermions, cf. [49, 190]. Here
it is meant to illustrate the geometrical meaning of the currents, cf. Section 6.2.1, (6.11).

35. The closure of the WZW term comes from the Maurer-Cartan identity for the left-
invariant currents, while from the fact that the third cohomology group of the
superconformal group is trivial follows the exactness for the WZW term [69, 86].

36. I will use the same normalization and convention as in [180].

37. I refer the reader to Zarembo’s review [68] for more detail on this topic.

38. For closed strings, the path in the world-sheet is a closed loop.

39. Indeed, rescaling the WZW term the higher symmetries and the κ-invariance are broken,
(not for the special value σ → −σ which corresponds to the world-sheet parity).

40. This is true for the GS formalism in general, namely, for the GS superstring action in a
flat and curved space, cf. [64, 65].

41. There is actually another alternative approach based on the so-called Pohlmeyer
reduction. The idea is to reduce the string world-sheet action to an equivalent action
containing only the physical degrees of freedom, with equivalent integrable structures
and with a manifest two-dimensional Lorentz invariance. We refer the reader to the
original paper by Grigoriev and Tseytlin [191] and to the work byMikhailov and Schafer-
Nameki [192] and references therein for more detail.

42. In order to decompose the constraints (5.3), some useful identities are

u+γ
1γ2γ3γ4γ5u+ = 1, u+γ

aγbγcu+ = u+γau+ = 0. (B)

43. We should introduce a normal order constant in ω, cf., for example, [79, 85]. However,
the issues about the normal ordering can be ignored here, because we are only interested
in the OPE’s involving the ghost Lorentz currentsN.
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44. The fermions are Majorana-Weyl spinors in ten dimensions, thus one can directly use the
16 × 16 Dirac matrices γ̂ a a instead of the 32 × 32Γa matrices.

45. The name BRST means Becchi-Rouet-Stora-Tyutin [193–195].

46. The BRST cohomology of the nilpotent operator Q (5.25) is the space of all equivalent
states |v〉 which are closed and exact, namely, which satisfy Q|v〉 = 0 and which differ
by a null state |v〉 = |v′〉 +Q|u〉 for some state |u〉.

47. Here, the world “conformal” is referred only to the matter sector or to the AdS2 ×S2 case.

48. In the conformal gauge the world-sheet metric is flat, cf. Appendix A.

49. The ghost current BRST transformations can be computed recalling the OPE’s reported
at the beginning of the section, cf. (5.18).

50. We have used the pure spinors constraints (5.40) as well as the Jacobi identity

{[
J, λ1(3)

]
, λ1(3)

}
−
{[
λ1(3), J

]
, λ1(3)

}
+
[{
λ1(3), λ1(3)

}
, J
]
= 0 (C)

which implies that {[λ1(3), J], λ1(3)} vanishes.

51. In this reasoning there is indeed some caveat. I will try to explain briefly remanding
the reader to [82] for more detailed explanations. The argument works if there are no
conserved currents of ghost number 2. Such currents indeed can spoil the nilpotency of
Q, since Q has ghost number 1, thus Q2 has ghost number 2 and the existence of some
charges of ghost number 2 would in principle generate an anomaly in the nilpotency of
the quantum operator Q. However, such currents are not present [82], implying that Q
remains nilpotent at quantum level.

52. The quantum conformal invariance of the pure spinor superstring has been showed also
for generic curved backgrounds and for the heterotic string [91, 92].

53. Note that, in Vallilo’s notation, J is given by J + A. Here, we use a slightly different
parameterization for the one-parameter family of flat connections with respect to the one
presented in [83], cf. (5.71).

54. The OPE’s of the matter current at leading order 1/R2 and up to linear term in the
currents have been computed in [4]. Such tree-level results were then confirmed in
[84]. A very similar problem was faced in [196] by using a Hamiltonian approach.
Successively, the OPE’s for matter and ghost currents, still at the leading order in
perturbation theory, that is, 1/R2, but containing up to contributions quadratic in the
currents (up to V2-like insertion or the “square” of V1-vertices), have been computed in
[7].

55. The contribution to the effective action denoted with the letter β denotes the ones
computed also by Vallilo [89] for the β-function, while all the other ones have been
computed in [7].

56. In principle the effective one-loop action can have terms such as

SGM;4 =
1
π

∫
d2zStr

(
N

(2)
0 J̃0 +N

(2)
0 J̃0

)
, (D)
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or

SG;4 = −
1
π
d2zStr

(
N

(2)
0 Ñ0 +N

(2)
0 Ñ0

)
, (E)

which could correct the propagators for the ghost fields. However, since at this order such
corrections are not required, we do not enter in the details for the ghost propagators.

57. Actually, this is true only for the currents in g2. The currents in fermionic subalgebras
cannot contribute just because one would have a fermionic and bosonic index contracted
together.

58. Note that names for the different gauge choices are not globally valid.

59. This is rigorously true only if the winding number is zero, the number of times that the
closed string winds along the one-sphere parameterized by the angle φ. In our case, we
are always discussing closed strings with vanishing winding number.

60. Recall the relation T = R2/2πα′ =
√
λ/2π , namely, R2α′ =

√
λ, cf. Section 1. In the

previous section, we set R = 1 while now we set α′ = 1.

61. Since the 8 modes have the same dispersion relation and they are not really
distinguished, we have recollected all together. If one includes the fermions then it is
a free (8 | 8) harmonic oscillator systems.

62. One level-matched oscillator, for example, (aI−n)
†|0〉, implies n = 0 and thus zero energy.

63. We should really match the I directions of the oscillators (aIn)
† with the operators of

(6.38), namely, we should match the other quantum numbers to identify operators and
oscillators.

64. In Section 7.5, in the context of AdS4/CFT3, I will come back on the BMN scaling and
on the near-BMN strings, namely, on those string configurations close to the plane-wave
(BMN) limit, where 1/J corrections are taken into account.

65. A partial list of the fundamental works on spinning strings at classical and one-loop level
is [110, 113, 197–204]. These are different configurations with respect to those considered
in this work, we will only consider expansions around the BMN geodesic. For more
detailed references we refer the reader to Tseytlin’s review [114].

66. Notice that now p is the conjugate momentum to the world-sheet coordinates, since it is
the momentum carried by the magnons. This p should not be confused with the space-
time light-cone momenta of the previous Section 6.2.

67. See Section 6.4.

68. At the leading order the velocity is just the speed of light, namely, v ∼
√
2g, with g → ∞.

69. The momentum in the giant magnon regime takes values between 0 and 2π , since it is
interpreted as the angle where the open string endpoints sit in the S5 equator.

70. We have shown that on the string theory side the fields form a (2 | 2)2 supermultiplet of
the psu(2 | 2) ⊕ psu(2 | 2) � R superalgebra. Obviously, the same happens on the gauge
theory side, even though we did not show it explicitly.

71. Such centrally extended algebra is indeed unique [94].

72. Cf. the interesting paper [205] by the same author on dynamical spin chain for the
subsector su(2 | 3).
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73. The definition of g2 is not uniform: in literature it is possible to find also g2 = λ/16π2.

74. The central charges are computed by acting with the algebra generators on single particle
states in the fundamental representation, cf. [94, 100].

75. The crossing symmetry is usually present in relativistic quantum field theories and
it relates the exchange between particles and antiparticles. Here we are dealing with
a nonrelativistic theory, however since the two-dimensional Lorentz invariance is
spontaneously broken, it might hold also in this case. This has been proposed by Janik
[150]. Such a symmetry constraints the phase factor S0, cf. Section 6.4.2.

76. It is not exactly the same basis in which the spin-chain S-matrix (6.59), (6.61) has been
written. Local transformations which change the two-body basis can change the matrix
elements without leading to any actual change in the physical information. However,
in the new basis the S-matrix might not respect the standard ZF algebra, but rather a
“twisted” ZF algebra. Namely, the standard ZF relation is multiplied by a local operator
which does not modify the vacuum. This is what happens to the spin chain S-matrix
derived by Beisert. For a more precise relation between the two basis (spin chain and
string) we refer the reader to the paper [100].

77. For a more technical and comprehensive discussion, the reader can consult [95] and
references therein.

78. Let us focus on the su(2) sector and on the gauge theory side. Beyond the one-loop order,
the model describing the su(2) sector is not anymore the Heisenberg spin chain discussed
in Section 2.4.1. Serban and Staudacher proposed to incorporate such a subsector into the
Inozemtsev spin chain [132]. However, it breaks the BMN scaling beyond the three loops.
The Inozemtsev model is formulated in terms of rapidity and charges which are not the
same of the Heisenberg model, obviously.

79. For the su(2) Heisenberg model the higher charges are given by qr(p) = 2r/(r −
1) sin((1/2)(r − 1)p)sinr−1(p/2) and the rapidity is given by the formula (2.39). For the
r = 2 case, one finds the single magnon energy (2.28) discussed in Section 2.4.1.

80. Recall the footnote about the crossing symmetry in Section 6.4.

81. Recall the ordering and the ZF algebra introduced in Section 3.

82. The ABJM paper comes after plenty of works on multiple M2-branes. I will not go into
detail and leave the curious reader to consult the work [2] and references therein.

83. There is also a generalization, known as ABJ theory [206], where the gauge group is
U(N)k×U(M)−k. It seems that, also in this case, the theorymanifests integrable structures
in the planner limit [207].

84. An orbifold is a coset G/H whereH is a group of discrete symmetries [180].

85. The fields Aa, Bḃ, and their Hermitian conjugates A†a, B
†
ḃ
are components of the

superpotential

W =
2π
k

Trεabεȧḃ(AaBȧAbBḃ) with a, b = 1, 2, ȧ, ḃ = 1̇, 2̇. (F)

Writing in terms of the superpotentialW (E) makes the flavor SU(2) × SU(2) symmetry
manifest (but not the R-symmetry).

86. Actually we are splitting the group SO(3, 2) according to an Euclidean signature.
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87. On the gauge theory side this corresponds to primary local operators with a very large
R-charge (or alternatively very long spin chain with a finite number of impurities), cf.
Section 6.2.3.

88. The symbol = should be properly read as a prescription here.

89. The inverse transformations of (7.22) are t = t′ and δ = (1/2)t′ + χ.

90. The constant is fixed through the relation 2J = (1/2πα′)
∫2π
0 dσpχ = (1/2πα′)

∫2π
0 dσ

(δL/δχ̇).

91. The details about the normalization and the explicit expression for the bosonic modes are
in Appendix E.2.

92. The same is obtained for the plane-wave fermionic spectrum [208]:

HF,pp =
1
c

∑
n∈Z

4∑
b=1

ωnF
(b)
n +

1
c

{∑
n∈Z

2∑
b=1

(
Ωn +

c

2

)
F̃
(b)
n +

∑
n∈Z

2∑
b=1

(
Ωn −

c

2

)
F̃
(b)
n

}
(G)

with dispersion relations ωn =
√
n2 + (c2/4), Ωn =

√
n2 + c2 and the number operators

Fn = d†ndn and F̃n = b†nbn. We avoid to write the spinorial indices.

93. From this, it follows the name finite-size corrections. They should not be confused with
the finite size corrections which enter by considering the strings in a finite volume and
which are exponentially small. This kind of corrections are not captured by the ABE, thus
we will not deal with them, cf. the discussion in Section 2.4.1. The finite-size corrections
which are discussed here are near-BMN corrections, and indeed, I will use the two
expressions as synonyms.

94. However, since Hint is derived classically, there is a normal ordering ambiguity. We
choose to fix the constant of normal ordering to zero, by consistency with the zero
vacuum energy.

95. This picture should not be taken too much seriously: the chains are the same just
involving odd and even sites, indeed there is one trace condition.

96. The tree-level diagram Ir is given by

Ir
(
η
)
=

(a + b + c)r(2π)2δ2(η)

(a + b + c)2 −m2 + iε
= (a + b + c)rI0

(
η
)
. (H)

The bubble diagram in Figure 8(a) is defined by

Brs(a, b) =
∫

d2k

(2π)2
kr(a + b − k)s

[k2 −m2 + iε]
[
(a + b − k)2 −m2 + iε

] . (I)

For more details cf. [5].
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