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The thermodynamics of the noncommutative Schwarzschild black hole is reformulated within the context of the recently developed
formalism of geometrothermodynamics (GTD). Using a thermodynamic metric which is invariant with respect to Legendre
transformations, we determine the geometry of the space of equilibrium states and show that phase transitions, which correspond
to divergencies of the heat capacity, are represented geometrically as singularities of the curvature scalar.This further indicates that
the curvature of the thermodynamic metric is a measure of thermodynamic interaction.

1. Introduction

Thework ofHawking [1] gives rise to an extensive study of the
thermodynamics of black holes. One of the most interesting
aspects of such study is the notion of critical behaviour
that has arisen in several contexts, for example, Hawking
and Page’s [2] phase transition in AdS space and the idea
that the extremal limit of different black hole families might
themselves be regarded as genuine critical points [3–6]. A
complete explanation for the final state of the black hole after
the evaporation is important, but it has not been achieved,
presumably because there is not yet a full quantum gravity
theory. Today, one of the strongest candidates for quantum
gravity is string theory, in which coordinates of the target
spacetime become noncommuting operators on a D-brane as

[𝑥𝜇, 𝑥]] = 𝑖𝜃𝜇], (1)

where 𝜃𝜇] is an antisymmetric matrix which determines the
fundamental cell discretization of spacetime in the same way
as the Planck constant discretizes the phase space. It has
also been shown that Lorentz invariance and unitary can be
achieved by assuming 𝜃𝜇] = 𝜃 diag(𝜖1, . . . , 𝜖𝑛/2), where 𝑛 is the
dimension of spacetime, and √𝜃 is a constant that provides
a minimum scale. A noncommutative static and spherically
symmetric black hole solution whose commutative limit is

the Schwarzschild metric has been found in [7–11]. The
thermodynamics and evaporation process of this black hole
have been studied in [12], while the entropy issue is discussed
in [13, 14] and its Hawking radiation in [15].

On the other hand, the use of geometry in statisti-
cal mechanics was pioneered by Ruppeiner [16, 17] and
Weinhold [18, 19], who suggested that the curvature of a
metric defined on the space of parameters of a statistical
mechanical theory could provide information about the
phase structure. However, when these methods are applied
to the study of black hole thermodynamics, some puzzling
anomalies appear. A possible solution to these issues was
suggested by Quevedo’s geometrothermodynamics (GTD),
whose starting point [20] was the observation that standard
thermodynamics was invariant with respect to Legendre
transformations, and an interesting aspect in this formalism
is that it indicates that phase transitions occur at those points
where the thermodynamic curvature is singular.

In this paper, we apply the GTD formalism to the
noncommutative Schwarzschild black hole to investigate the
behaviour of the thermodynamical curvature in the search
of phase transitions. This noncommutative black hole has
two horizons and an evaporation process that ends up in
a extremal zero-temperature configuration. Thus, similar
evaporation process and thermodynamical properties when
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compared with the behaviour of Reissner-Nordström black
hole are expected as stressed in [21, 22]. Since the non-
commutative Schwarzschild black hole is described by the
thermodynamical variables mass, temperature, and entropy,
the space of equilibrium thermodynamic states has just
two dimensions, making it impossible to analyse the phase
transitions structure from the curvature scalar. Therefore,
we need to treat the noncommutative parameter 𝜃 as a
thermodynamical variable, playing a similar role to that
of the electric charge in Reissner-Nordström solution. This
consideration can be justified from the point of view of
the quantum fluctuations of geometry which are naturally
expected to arise from the noncommutativity of spacetime.

2. Geometrothermodynamics in Brief

Let T be the (2𝑛 + 1)-dimensional thermodynamic phase
spacewith coordinates given by the thermodynamic potential
Φ, the extensive variables 𝐸𝑎, and the intensive variables
𝐼𝑎. These coordinates will be noted as 𝑍𝐴 = {Φ, 𝐸𝑎, 𝐼𝑎}
with 𝑎 = 1, . . . , 𝑛. We define on T a nondegenerate metric
𝐺 = 𝐺(𝑍𝐴) and Gibbs 1-form Θ = 𝑑Φ − 𝛿𝑎𝑏𝐼

𝑎𝑑𝐸𝑏. If the
conditionΘ∧(𝑑Θ)𝑛 ̸= 0 is satisfied, the set (T, Θ, 𝐺) is called a
contact Riemannian manifold. Gibbs 1-form is invariant with
respect to Legendre transformations, while the metric 𝐺 is
Legendre invariant if its functional dependence on 𝑍𝐴 does
not change under a Legendre transformation. Following the
GTD formalism, we will impose this invariance in order to
guarantee that the geometric properties of 𝐺 do not depend
on the thermodynamic potential used for its construction.We
introduce the 𝑛-dimensional subspaceE ⊂ T called the space
of equilibrium thermodynamic states through the following
smooth mapping:

𝜑 : E 󳨀→ T,

(𝐸𝑎) 󳨀→ (Φ, 𝐸𝑎, 𝐼𝑎) ,
(2)

with Φ = Φ(𝐸𝑎) and subject to the condition 𝜑∗(Θ) = 0
which gives the following relations:

𝑑Φ = 𝛿𝑎𝑏𝐼
𝑎𝑑𝐸𝑏, (3)

𝜕Φ

𝜕𝐸𝑎
= 𝛿𝑎𝑏𝐼

𝑏. (4)

Equation (3) corresponds to the first law of thermody-
namics, whereas (4) is usually known as the condition for
thermodynamic equilibrium, that is, the intensive thermody-
namic variables are dual to the extensive ones.The second law
of thermodynamics is equivalent to the convexity condition
on the thermodynamic potential,

𝜕2Φ

𝜕𝐸𝑎𝜕𝐸𝑏
≥ 0. (5)

The mapping 𝜑 implies that the equation Φ = Φ(𝐸𝑎),
known as the fundamental equation, must be explicitly given
and from this relation all the thermodynamical information

can be derived. The potential satisfies the homogeneity con-
ditionΦ(𝜆𝐸𝑎) = 𝜆𝛽Φ(𝐸𝑎), with 𝜆 and 𝛽 constant parameters,
so it also satisfies Euler’s identity as follows:

𝛽Φ (𝐸𝑎) = 𝛿𝑎b𝐼
𝑏𝐸𝑎. (6)

Using the first law of thermodynamics, this equation
becomes Gibbs-Duhem relation:

(1 − 𝛽) 𝛿𝑎𝑏𝐼
𝑎𝑑𝐸𝑏 + 𝛿𝑎𝑏𝐸

𝑎𝑑𝐼𝑏 = 0. (7)

A thermodynamic system is described by a thermo-
dynamic metric 𝐺 if it is invariant with respect to trans-
formations which do not modify the contact structure of
T. In particular, 𝐺 must be invariant with respect to
Legendre transformations in order for GTD to describe
thermodynamic properties in terms of geometric concepts.
A Legendre invariant metric 𝐺 induces a Legendre invariant,
nondegenerate metric structure 𝑔 onE through the pullback
𝜑∗ as 𝑔 = 𝜑∗(𝐺) [20].

The results of Quevedo et al. [23–25] showed that if the
curvature of the thermodynamic metric is to be considered
as a measure of the thermodynamic interaction, this metric
should be flat only for systems with no thermodynamic
interaction. Hence, phase transitions must occur at those
points where the thermodynamic curvature is singular.There
is a vast number of metrics on T that satisfy the Legendre
invariance condition, and some results seem to show that the
metric structure of the phasemanifold determines the type of
systems that can be described by a specific thermodynamic
metric. For instance, a pseudo-Euclidean structure of the
form

𝐺 = Θ2 + (𝛿𝑎𝑏𝐸
𝑎𝐼𝑏) (𝜂𝑐𝑑𝑑𝐸

𝑐𝑑𝐼𝑑) (8)

with 𝜂𝑐𝑑 = diag(−1, 1, 1, . . . , 1) is Legendre invariant and
induces the following metric:

𝑔 = (𝐸𝑓
𝜕Φ

𝜕𝐸𝑓
)(𝜂𝑎𝑏𝛿

𝑏𝑐 𝜕2Φ

𝜕𝐸𝑐𝜕𝐸𝑑
𝑑𝐸𝑎𝑑𝐸𝑑) , (9)

which appears to describe thermodynamical systems charac-
terized with second-order phase transitions.

3. The Noncommutative Schwarzschild
Black Hole

In a commutative space, the mass density of a point particle
is expressed as a product of its mass with the Dirac delta
function, but in a noncommutative space, it is expected
that such a description of point mass is not possible due
to the fuzziness of space which arises as a consequence of
position-position uncertainty relation. To introduce the non-
commutative correction in the expression of mass density, we
replace the Dirac delta function by a Gaussian distribution of
minimal width√𝜃,

𝜌𝜃 =
𝑀

(4𝜋𝜃)3/2
𝑒−𝑟
2
/4𝜃, (10)
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where the noncommutativity parameter 𝜃, which defines the
minimum scale, is considered to be a small positive number.
Consequently, the mass of the black hole can be determined
by integrating (10) over a volume of radius 𝑟,

𝑚𝜃 (𝑟) = ∫
𝑟

0

4𝜋𝑟󸀠2𝜌𝜃 (𝑟
󸀠) 𝑑𝑟󸀠 =

2𝑀

√𝜋
𝛾(

3

2
,
𝑟2

4𝜃
) , (11)

where 𝛾 (3/2, 𝑟2/4𝜃) is the lower incomplete gamma function,

𝛾 (𝑎, 𝑧) = ∫
𝑧

0

𝑡𝑎−1𝑒−𝑡𝑑𝑡. (12)

In the commutative limit, 𝜃 → 0, 𝛾 (3/2, 𝑟2/4𝜃) becomes
the usual gamma function Γ (3/2) and 𝑚𝜃(𝑟) → 𝑀. Substi-
tuting this result in themass term of the Schwarzschild’s solu-
tion, we obtain the noncommutative Schwarzschild metric,

𝑑𝑠2 = −(1 −
4𝑀

𝑟√𝜋
𝛾(

3

2
,
𝑟2

4𝜃
))𝑑𝑡2

+(1 −
4𝑀

𝑟√𝜋
𝛾(

3

2
,
𝑟2

4𝜃
))
−1

𝑑𝑟2 + 𝑟2𝑑Ω2.

(13)

The classical Schwarzschild’s metric is obtained from (13)
in the limit 𝑟/√𝜃 → ∞, and event horizon(s) can be found at
points where𝑔00(𝑟𝐻) = 0, which corresponds to the following
condition:

𝑟𝐻 =
4𝑀

√𝜋
𝛾(

3

2
,
𝑟2
𝐻

4𝜃
) . (14)

The analysis of (14) determines that, instead of a single-
event horizon, there are three different possibilities depend-
ing on a critical mass𝑀0 = 1.9√𝜃, [9]:

(1) two distinct horizons for𝑀 > 𝑀0,

(2) one degenerate horizon at 𝑟0 = 3.0√𝜃, when𝑀 = 𝑀0
(corresponds to the extremal black hole),

(3) no horizon for𝑀 < 𝑀0.

Equation (14) can be conveniently rewritten in terms of
the gamma function as

𝑟𝐻 = 2𝑀[1 −
2

√𝜋
Γ(

3

2
,
𝑀2

𝜃
)] , (15)

where the first term in the right hand side is the Schwarzschild
radius, while the second term brings in noncommutative
corrections. The area of the event horizon can be written as

𝐴 = 4𝜋𝑟2
𝐻

= 16𝜋𝑀2[1 −
2

√𝜋
Γ(

3

2
,
𝑀2

𝜃
)]
2

(16)

and, hence, the entropy associated with the black hole is
simply

𝑆 =
𝐴

4
= 4𝜋𝑀2[1 −

2

√𝜋
Γ(

3

2
,
𝑀2

𝜃
)]
2

. (17)

The Hawking temperature may be calculated as usual,
giving the temperature of Schwarzschild’s black hole plus a
correction term,

𝑇 =
1

4𝜋

𝑑𝑔00
𝑑𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟
𝐻

=
1

4𝜋𝑟𝐻
[1 −

𝑟3
𝐻

4𝜃3/2
𝑒−𝑟
2

𝐻
/4𝜃

𝛾 (3/2, 𝑟2
𝐻
/4𝜃)

] .

(18)

As is well known, in the commutative case, the tem-
perature diverges, putting a limit on the validity of the
conventional description of Hawking radiation. However,
the temperature obtained in (18) includes noncommutative
effects which are relevant at small distances, making 𝑇 to
deviate from the standard hyperbola and, instead of diverge,
it reaches a maximum value at the radius 𝑟𝑐 ≃ 4.7√𝜃 or
correspondingly at the mass 𝑀𝑐 ≃ 2.4√𝜃 and then quickly
drops to zero temperature for 𝑟𝐻 = 𝑟0, which corresponds
to the radius of the extremal black hole. This behaviour of
the evaporation precession is typical of black holes with two
horizons as, for example, Reissner-Nordström’s solution.

From (14), we may write

𝑀 =
√𝑆

4𝛾 (3/2, 𝑆/4𝜋𝜃)
, (19)

which may be considered as the fundamental thermody-
namical equation 𝑀 = 𝑀(𝑆, 𝜃) which relates the total
energy of the black hole, 𝑀, with the extensive variables,
entropy, and noncommutativity parameter, and from which
all the thermodynamical information can be derived. The
inclusion of the parameter 𝜃 as a thermodynamical variable
is justified from the analogy between the noncommuta-
tive Schwarzschild’s black hole and the Reissner-Nordström
solution which has been commented in [21] and studied
extensively in [22], where the authors showed that the
noncommutativity parameter plays a similar role with the
electric charge. Even more, the authors showed that the
thermodynamical properties and the evaporation process are
similar in both solutions.

In the geometric formulation of thermodynamics, we
will choose the extensive variables as 𝐸𝑎 = {𝑆, 𝜃} and the
corresponding intensive variables as 𝐼𝑎 = {𝑇,Ψ}, where 𝑇 is
the temperature, and Ψ is the generalised variable conjugate
to the state parameter 𝜃. Therefore, the coordinates that we
will use in the 5-dimensional thermodynamical space T are
𝑍𝐴 = {𝑀, 𝑆, 𝜃, 𝑇, Ψ}. The contact structure ofT is generated
by the 1-form,

Θ = 𝑑𝑀 − 𝑇𝑑𝑆 − Ψ𝑑𝜃. (20)

To obtain the induced metric in the space of equilibrium
states E, we will introduce the following smooth mapping:

𝜑 : {𝑆, 𝜃} 󳨃󳨀→ {𝑀 (𝑆, 𝜃) , 𝑆, 𝜃, 𝑇 (𝑆, 𝜃) , Ψ (𝑆, 𝜃)} (21)
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along with the condition 𝜑∗(Θ) = 0 that corresponds to the
first law 𝑑𝑀 = 𝑇𝑑𝑆 + Ψ𝑑𝜃. The conjugate variables to 𝑆 and
𝜃 are evaluated as

𝑇 =
𝜕𝑀

𝜕𝑆

=
1

8√𝑆𝛾 (3/2, 𝑆/4𝜋𝜃)
[

[

1−
1

4
√(

𝑆

𝜋𝜃
)
3 𝑒−𝑆/4𝜋𝜃

𝛾 (3/2, 𝑆/4𝜋𝜃)
]

]

,

Ψ =
𝜕𝑀

𝜕𝜃
=

𝑆2

32√𝜋3𝜃5
𝑒−𝑆/4𝜋𝜃

𝛾2 (3/2, 𝑆/4𝜋𝜃)
.

(22)

Using (8),T becomes aRiemannianmanifold by defining

𝐺 = (𝑑𝑀 − 𝑇𝑑𝑆 − Ψ𝑑𝜃)2 + (𝑆𝑇 + Ψ𝜃) (−𝑑𝑆𝑑𝑇 + 𝑑Λ𝑑𝜃) .
(23)

This metric has nonzero curvature, and its determinant is
det[𝐺] = (𝑆𝑇 + Ψ𝜃)4/16. To obtain the induced metric in the
space of equilibrium states E, we use (9), obtaining

𝑔 = (𝑆𝑀𝑆 + 𝜃𝑀𝜃) (
−𝑀𝑆𝑆 0

0 𝑀𝜃𝜃
) , (24)

where subscripts represent partial derivative with respect to
the corresponding coordinate. Clearly, the determinant of
this metric is

det [𝑔] = −𝑀𝑆𝑆𝑀𝜃𝜃 (𝑆𝑀𝑆 + 𝜃𝑀𝜃) . (25)

4. Phase Transitions and the Curvature Scalar

Phase transitions are an interesting subject in the study of
black holes thermodynamics because there is no unanimity in
their definition. As is well known, ordinary thermodynamics
defines phase transitions by looking for singular points in
the behaviour of thermodynamical variables. For example,
Davies [26, 27] showed that divergences in the heat capacity

𝐶 = 𝑇
𝜕𝑆

𝜕𝑇
=

𝑀𝑆
𝑀𝑆𝑆

(26)

indicate phase transitions. From these arguments one can
expect that phase transitions occur at 𝑀𝑆𝑆 = 0. In geomet-
rothermodynamics, the apparition of phase transitions is
related with the divergences of the curvature scalar 𝑅 in the
space of equilibrium states E. This can be understood by
remembering that 𝑅 always contains the determinant of the
metric 𝑔 in the denominator, so that zeros of det[𝑔] could
lead to curvature singularities if those zeros are not canceled
by the zeros of the numerator.

The metric given by (24) has the determinant (25) which
is proportional to 𝑆𝑀𝑀 and 𝑆𝜃𝜃. This fact makes clear the
coincidence with the divergence of the heat capacity. Even
more, the curvature scalar 𝑅 for the metric 𝑔 has the
denominator

𝐷 = (𝑆𝑀𝑆 + 𝜃𝑀𝜃)
3
𝑀2
𝑆𝑆
𝑀2
𝜃𝜃
, (27)

which makes 𝑅 diverge when 𝑆𝑀𝑀 = 0 or 𝑆𝜃𝜃 = 0, whereas
the numerator is a rather cumbersome expression that cannot
be written in a compact form. From (19), we have

𝑀𝑆𝑆 = −
1

16√𝑆3𝛾 (3/2, 𝑆/4𝜋𝜃)

× [

[

1 +
1

6
√(

𝑆

𝜋𝜃
)
3 𝑒−𝑆/4𝜋𝜃

𝛾 (3/2, 𝑆/4𝜋𝜃)

−
1

8
√(

𝑆

𝜋𝜃
)
5 𝑒−𝑆/4𝜋𝜃

𝛾 (3/2, 𝑆/4𝜋𝜃)

−
1

8
(

𝑆

𝜋𝜃
)
3 𝑒−𝑆/2𝜋𝜃

𝛾2 (3/2, 𝑆/4𝜋𝜃)
]

]

,

𝑀𝜃𝜃 =
5𝑆2

64√𝜋3𝜃7
[1 −

𝑆

10√𝜋2𝜃
−

𝑆√𝑆

10√𝜋3𝜃3
𝑒−𝑆/4𝜋𝜃

𝛾 (3/2, 𝑆/4𝜋𝜃)
]

×
𝑒−𝑆/4𝜋𝜃

𝛾2 (3/2, 𝑆/4𝜋𝜃)
.

(28)

A numerical analysis shows that singularities in the
curvature scalar 𝑅 appear exactly at the same points where
the behaviour of the heat capacity indicates the presence of
phase transitions (see Figure 1). In Figure 2, we show the
particular phase transition for 𝜃 = 0.5 and located at the
approximate value 𝑆 = 57. For all analysed values of the
noncommutativity parameter 𝜃, it was obtained a similar
behaviour, showing that, in fact, the points where phase
transitions occur are characterised by curvature singularities
of the thermodynamic metric.

5. Conclusion

Geometrothermodynamics is a differential geometry formal-
ism whose objective is to describe in an invariant manner
the properties of thermodynamic systems using geometric
concepts. In this work, we reformulated the thermodynamics
of the noncommutative Schwarzschild’s black hole under
the GTD formalism and considered the noncommutativity
parameter 𝜃 as a new thermodynamical state variable. The
total mass of the black hole is interpreted as its total energy,
and the formalism gives a curvature scalar that diverges
exactly at the point at which the heat capacity indicates
the presence of a phase transition. Thus, we conclude that
the curvature of the space of thermodynamic equilibrium
states can be interpreted as a measure of the thermodynamic
interaction.

These results clearly confirm that the phasemanifold con-
tains information about thermodynamic systems; however,
a further exploration is necessary in order to understand
how the thermodynamic information is encoded in the
geometrical properties. For example, it is really interesting
to address the problem of describing the black hole in
an isolated cavity which is bigger than its Schwarzschild
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Figure 1: (a) Characteristic behaviour of the heat capacity as a function of 𝑆 and 𝜃. (b) Characteristic behaviour of the thermodynamic
curvature scalar 𝑅 as a function of 𝑆 and 𝜃. Note that the singularities follow the same pattern in both functions, indicating the presence of
phase transitions.
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Figure 2: (a) Characteristic behaviour of the heat capacity as a function of the entropy 𝑆. The divergence indicates the point of a phase
transition. (b) Behaviour of the thermodynamic curvature scalar 𝑅 as a function of the entropy 𝑆. The singularity is located at the point of the
phase transition. In both figures, the noncommutativity parameter is set to 𝜃 = 0.5.

radius. As is known, the asymptotically flat solution has an
unstable behaviour, because of the negative heat capacity;
but when introducing the cavity, the temperature is fixed
at a finite spatial boundary, and it is expected that the
black hole reaches the thermodynamical equilibriumwith the
surrounding radiation if the total energy 𝐸 of the system is
greater than some critical value 𝐸𝑐, depending on the volume
of the cavity and the number of fields in the radiation [28].

It is well known that asymptotic flatness is not satisfied in
reality and therefore, it is important to consider this situation
in the specific case of the noncommutative black hole for
which the heat capacity becomes positive for certain ranges
of the horizon radius, making stable small and large black
holes [22]. In a forthcoming paper, we will analyse how the
GTD formalism describes this kind of system and how to
implement the cavity in the geometric model.
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