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With the advent of participatory sensing (sensors integrated with consumer electronics such as cell phones and carried by people),
exciting new opportunities arise. Mobile sensors (e.g., those mounted on cars or carried by people) can provide spatial sampling
diversity not possible with traditional static sensor networks. Recently, participatory sensing has attracted considerable attention
of research community. In this paper, we survey existing participatory sensing deployments and discuss current trends and few

possible future directions.

1. Introduction

As cell phones continue to become more resource-rich
in terms of their processing power, memory, and display,
they can support sophisticated applications ranging from
browsing and messaging to navigation and gaming. The new
generation cell phones have multiple embedded sensors (e.g.,
accelerometer, gyroscope, light, video, microphone, etc.) and
can easily communicate with external sensors via any of
the built-in interfaces including bluetooth, infrared, or WiFi.
Currently there are more than 3 billion cell phone users in
the world, and this number is increasing at an impressive
rate. This makes cell phones an excellent platform for sensing
the environment at unprecedented spatiotemporal granular-
ity. For example, these cell phone users as they carry out
their daily routine can use these sensors (either built-in or
external or their combination) to gather data about their
environment. For example, a sensor mounted on a vehicle
can provide air quality observations from many locations
throughout a day. The GPS information collected from people
as they go about their daily lives gives us insight into public
transportation systems at a level of granularity not possible
before. In addition, personalized sensing provides sampling
of phenomena as experienced by users, which allows us
to track user experiences and support applications such as
personalized medicine. In the last few years, participatory

sensing has attracted a lot of attention of the sensor network
research community [1-9]. There has been a number of
participatory sensing deployments. However, to the best of
our knowledge, there is no comprehensive survey of these
deployments. In addition, details on common steps involved
in building a participatory sensing application would be of
great help to new researchers and focus groups. To that end, in
the remainder of this section we give details on steps involved
in building a participatory sensing application and describe
different categories of these applications.

Goldman et al. [10] classified participatory sensing into
following three categories. We now describe these categories
along with motivating examples. In the later part, we also
describe the steps involved in building these applications [10].

(i) Collective design and investigation: in this case, the
participants are involved in all the phases of the
project lifecycle. Participants collectively define the
research objective(s) and finalize the sensors and their
sampling frequencies, security policies, and data pro-
cessing and management system. These participants
have vested interest in the outcome of the study.
Participants play an active role in the research rather
than serving the role for a data collector. Imagine
a community that believes that particulate matter
released from a local factory is responsible for the
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rise in cases of chronic diseases such as asthma and
lung cancer in their neighborhood. They believe that
although the data gathered by a couple of high-quality
sensors deployed in the county of area 100 sq. miles is
good enough to give a high-level picture, it does not
reflect the quality of air they breathe in. These citizens
are motivated to gather fine-grained data about air
quality. This neighborhood has a wide variety of pro-
fessionals—medical doctors, lawyers, engineers, and
artists. Everyone is willing to contribute, and they
actively participate and design the entire system. The
system is then deployed, and high-frequency data is
gathered for a period of 6 months. This data shows
that the air contains significantly high amount of
particulate matter in factory’s neighborhood, and in
particular it shows that it is directly related to the
factory’s production cycle. Understanding the envi-
ronmental impact at the microlevel was not possible
using just two existing sensors. These citizens can
then use this data in their discussions with local
policy makers and possible action such as improving
manufacturing practices can be taken.

(ii) Public contribution: in this case, the participants are

actively involved in the data collection phase but
are not part of the group that defines the research
objectives and necessary infrastructure (sensors and
data management infrastructure). SETI@home [11]
and Folding@home [12] are examples of very success-
ful public volunteer computing projects where ordi-
nary citizens although not involved in defining the
research questions donated compute cycles of their
personal computers to help the scientific discovery.
One can easily extend this situation to participatory
sensing environment. Consider a not-for-profit group
that wants to document conditions of roads in a city
since its members believe that potholes are primary
causes of road accidents. The group has developed an
open-source application that uses sensors embedded
in cell phones (accelerometer, GPS, and gyroscope) to
assess the road condition. Users can also give their
input in the form of textual comments or pictures.
All data will be anonymized and stored on a publicly
accessible site. Anyone can just download and install
this application on the phone. The participants can
still have a vested interest in the project outcome, but
unlike the first case, they are not involved in defin-
ing the research objectives or the software/hardware
infrastructure, and participants merely act as data
collectors.

(iii) Personal use and reflection: these participants are

individuals focused on self-discovery and improve-
ment. For example, imagine a busy businessman
interested in gathering data about his eating, sleeping,
and commute habits hoping to reveal hidden patterns
in private and public behavior. He is also interested
to know if the new medication has any impact on
his eating habits and quantify the impact of his yoga
sessions on his sleep quality. He wants to understand

ISRN Sensor Networks

the relationship between his junk food consumption
and stress level. He shares his walking routes with his
buddies hoping to burn calories and eat more healthy
food by learning new routes and food joints. He is
using multiple sensors embedded in his cell phone
and wears few sensors to gather this data. He shares
this data with his friends and family. He is also sharing
an anonymized version of this data on a public site
hoping to learn from others. He is hoping to learn
patterns that he is currently overlooking and then
make positive changes in his lifestyle.

We now describe the steps involved in building a typical
participatory sensing application.

(1) Recruitment and coordination: in this phase, groups
get formed (either organically or in a top-down man-
ner). Participants are provided necessary hardware
(e.g., external sensors) and guidance for installation
and configuration of the appropriate software. Partic-
ipants are also informed about data access, security,
and privacy policies, and typically their consent is
taken before moving forward.

(2) Sensor data acquisition: participants now equipped
with necessary software, hardware, and knowledge of
the application start gathering data as they conduct
their everyday life.

(3) Data transfer: the gathered data is moved over to
a data center for long-term storage and processing.
During configuration participants can select different
data transfer policies. For example, participants with
unlimited cellular data plan might allow transfer of
data over both cellular and WiFi networks, while par-
ticipants with limited cellular data plan might allow
data transfer only over the WiFi network.

(4) Data management and storage: once the data is
transferred to the data center it is stored (e.g., as files,
or in a relational database management system, or
even in a NoSQL database system). The data center
can be simply a server hosted a university laboratory
or a cluster hosted by a department on premises of a
company or commercial cloud infrastructure such as
Amazon EC2.

(5) Data analysis and visualization: the gathered data
needs to be processed before it can provide any insi-
ght. This involves a myriad of data processing meth-
ods ranging from data cleaning to descriptive statis-
tics to image processing and sophisticated machine
learning algorithms. This step is typically application
specific.

(6) Feedback/control: participants, scientists, or policy
makers finally want actionable information. Action
can be completely automated in the form of adap-
tive sampling (changing sampling rates) or actuation
(turning sensors on/off) or they can be semiau-
tomated (a trigger message asking user to change
route) or manual (asking a plant to change its man-
ufacturing process). Participants are hoping that the
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FIGURE 1: System architecture for a typical current generation
personalized mobile sensing application.

feedback/control would bring about a positive change
anywhere from an individual to societal scale.

2. System Architecture

Participatory sensing applications have two major compo-
nents: (1) sensor network and (2) backend processing/data
center. Figure 1 shows the system architecture for a partici-
patory sensing application that exploits sensor data collected
during cross-country flights by paraglider pilots to study ther-
mal effects in the atmosphere [13]. The back end data center is
aserver where the data analysis and visualization services run
for this particular application. Users then connect to the data
center over the Internet and download/visualize the gathered
data.

3. Survey

Participatory sensing presents an exciting opportunity and is
likely to enable a new generation of applications capable of
bringing about positive changes in lives of ordinary citizens
at the societal scale over the next several years. It has a
broad spectrum of applications including but not limited to
environmental monitoring, intelligent transportation, per-
sonalized medicine, and to epidemiological investigations of
disease vectors. Most of the current participatory sensing
deployments fall in the following four areas (1) health and
fitness, (2) environmental monitoring, (3) transportation
and civil infrastructure monitoring, and (4) urban sensing.
The goal of this paper is to present a survey of current
participatory sensing deployments, and we do not survey
existing system-level research (e.g., infrastructure services
such as tasking, routing, etc.).

3.1. Health and Fitness. The potential for personalized and
mobile sensing paradigm to transform healthcare and clinical
intervention in the community is tremendous. It allows users
to continuously and frequently track their health on the go
and receive real-time user assistance when needed to alter
their lifestyles. It enables health-care professionals to have
access to comprehensive real-time patient data at the point
of care. Not surprisingly, there has been a massive increase
in the numbers of consumer smartphone apps (applications)
downloaded over the past few years, with figures going up
from 300 million apps downloaded in 2009 to five billion in

2010 [14], and there are already more than seven thousand
documented cases of smartphone health apps [15].

Boulos et al. [16] give a brief overview of the state-of-
the-art healthcare smartphone apps in the market. The
paper describes apps targeting both laypersons/patients and
healthcare professionals in various scenarios, for example,
health, fitness, and lifestyle education and management apps;
ambient-assisted living apps; continuing professional educa-
tion tools; and apps for public health surveillance. Among
the surveyed apps are those assisting in chronic disease
management. In particular they developed eCAALYX, an
Android smartphone app that receives input from a BAN (a
patient-wearable smart garment with wireless health sensors)
and the Global Positioning System (GPS) location sensor in
the smartphone and communicates over the Internet with a
remote server accessible by healthcare professionals who are
in charge of the remote monitoring and management of the
older patient with multiple chronic conditions.

Lane et al. [17] developed BeWell—a system that uses sen-
sors embedded within a smartphone (gyroscope, accelerom-
eter, microphone, camera, and digital compass) to enable
a new class of personal wellbeing applications to monitor
activities such as sleep, social interactions, and physical
activity which in turn impact physical and mental health of
an individual. Lu et al. [18] developed StressSense, a system
that recognizes stress from human voice using smartphone.
Their system can robustly recognize stress among multiple
individuals in diverse acoustic environments.

Eisenman et al. [19] developed BikeNet, a mobile sensing
system for mapping the cyclist experience. The system col-
lects and stores data about the cycling performance metrics,
including current speed, average speed, distance traveled, and
calories burned over the long term. The gathered data is
archived and analyzed for understanding long-term perfor-
mance trends. For example, a cyclist can monitor his/her
performance improvement or his/her exposure to health
risks like automobile exhaust. The system also provides
information to cyclists about the healthiness of a given route
in terms of pollution levels, allergen levels, noise levels, and
terrain roughness.

Biketastic is a platform that enriches this experimentation
and route sharing process by letting bikers to document and
share routes, ride statistics, sensed information to infer route
roughness and noisiness, and media that documents ride
experience [20]. The application running on a smartphone
records high-frequency GPSdata (latitude, longitude, and
speed) every 1 second. The microphone and the accelerometer
embedded on the phone are sampled to infer route noise
level and roughness. This will allow bikers to know the areas
that have excessive noise levels, which could be indicators
of large vehicles or heavy traffic. The onboard accelerometer
is sampled to measure acceleration variance of the axis
corresponding to the direction pointing towards earth, which
gives an indication of divots and bumps. Authors evaluated
the system based on feedback from expert bicyclists provided
during a two-week trial period.

Ryder et al. [9] developed Ambulation—a mobility mon-
itoring system that employs mobile phones to automati-
cally detect a user’s mobility mode using GPS data. The



gathered information is critical for patients suffering from
mobility-affecting chronic diseases such as MS, Parkinson’s,
and Muscular Dystrophy. For energy efficiency, the system
uses accelerometer as the means for detecting motion and
triggering GPS.

AndWellness is a personal data collection system that
uses mobile phones to collect and analyze data from onboard
sensors and triggered user experience samples [21]. They
have conducted a two week in-lab deployment of this system
using the same campaign settings from a planned future
deployment. They plan to deploy these systems for the
following two applications: (1) to measure the behaviors and
emotions of young breast cancer survivors and (2) to assess at
risk HIV+ participants.

3.2. Environmental Monitoring. von Kaenel et al. [13] dev-
eloped Ikarus, a participatory sensing application that
exploits sensor data collected during cross-country flights by
paraglider pilots to study thermal effects in the atmosphere.
During their deployment, they collected data from 2,331
users with total raw data amounting to several Gb from
240,000 flights. Pilots record their GPS locations, barometric
altitude, and timestamps during the flight. Flight tracks are
uploaded to a central database of the community website
and are stored in a format specified by the International
Gliding Commission (IGC). These GPS tracks are then
processed to generate probability maps of thermal columns.
In addition, the coordinates of thermal hotspots can then be
exported to the GPS devoice and be used during a flight.
Their experience points three main challenges for the success
of a participatory sensing application, namely, providing
incentives for participants, ability to deal with faulty data, and
concise data representation.

Paxton and Benford [22] conducted two participatory
sensing deployments in the wild. The participants were
groups of young people, who volunteered to collect and
visualize environmental data in conjunction with contex-
tual information, such as pictures, videos, GPS locations,
and annotations. The focus of these deployments was to
understand how participants interact with the sensors, how
they carry out their tasks, their ability to collaborate with each
other, and the implications the aforementioned factors had on
the gathered data.

Mendez et al. [23] developed a system for air pollu-
tion monitoring and control. Their system includes sensors
that measure CO,, CO, temperate, relative humidity, and
combustible gases in the atmosphere. Their backend system
includes a server that hosts the gathered data and provides a
platform for data analysis and visualization. They note that a
participatory sensing application must provide a method to
verify the validity of the data. For example, in the context of
their application, users may fake the readings of the sensors
(e.g., to avoid contamination fines). They point out that even
though a lot of work has been done around the problem of
multivariate statistical analysis and diagnosis of air pollution
monitoring systems, most of this work does not consider the
localization correlation of the measurements that a system
with massive users would have. They also argue that the
nonstationary characteristics of the air quality measurements
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imply sophisticated algorithms to infer and detect doubtful
measurements, and further research is needed in this area.

Hasenfratz et al. [24] developed GasMobile, a small and
portable measurement system using smartphones and off-
the-shelf ozone sensor for air quality monitoring in urban
environments. They used GasMobile to create good-quality
air pollution maps with a high spatial resolution. They analyze
the impact of mobility on data quality and also exploit
the predeployed static sensor for calibrating the mobile
Sensors.

3.3. Transportation and Civil Infrastructure Monitoring.
Mathur et al. [25] developed ParkNet, a mobile system com-
prising vehicles that collect parking space occupancy infor-
mation while driving by. Each ParkNet vehicle is equipped
with a GPS receiver and a passenger-side-facing ultrasonic
range finder to determine parking spot occupancy. The data
is sent to and aggregated at a central server, which builds
a real-time map of parking availability and can provide
this information to clients that query the system in search
of parking. Using extensive GPS traces from over 500 San
Francisco taxicabs, they show that if ParkNet was deployed
in city taxicabs, the resulting mobile sensors would provide
adequate coverage and be more cost-effective by an estimated
factor of roughly 10-15 when compared to a sensor network
with a dedicated sensor at every parking space.

Eriksson et al. [26] developed Pothole Patrol, a mobile
sensor network for detecting and reporting the surface
conditions of roads. The system was deployed on seven
taxis running in the Boston area. Using a simple machine-
learning approach, they show that the system was able to
identify potholes and other severe road surface anomalies
from accelerometer data. Thiagarajan et al. [27] developed
VTrack, a system for travel time estimation using sensors
onboard a smartphone. VTrack system uses the data gathered
by CarTel system [4]. Mohan et al. [28] developed Nericell, a
system for monitoring road and traffic conditions (to detect
potholes, bumps, braking, and honking) in a city using
accelerometer, microphone, GSM radio, and/or GPS sensors
embedded in a smartphone. These existing deployments have
generated considerable attention among domain experts and
everyday citizens.

3.4. Urban Sensing. Miluzzo et al. [29] developed VibN, a
mobile sensing application to determine what is going on
around the user by exploiting multiple sensor feeds. Live
sensor-feed allows the users to get an idea about live points of
interest or hotspots of the city. Each hotspot is characterized
by a demographics breakdown of inhabitants and a list of
short audio clips. Additionally, the application automatically
determines a user’s personal points of interest based on
historical data. This application is available for download in
Apple App Store and the Android Market.

CenceMe combines the inferences of the presence of indi-
viduals using off-the-shelf, sensor-enabled mobile phones
with sharing this information through social networking
applications such as Facebook and MySpace [30]. In particu-
lar the system can automatically infer the user’s presence (e.g.,
lunch at a Thai restaurant in downtown) and then shares this
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presence through social networks. CenceMe was evaluated by
22 participants for over a three-week period.

Deng and Cox [31] developed LiveCompare, a system
that leverages video cameras in smartphones for grocery
bargain hunting. The system takes pictures of barcodes on
grocery items and decodes the two-dimensional barcode to
automatically identify grocery products and uses localization
techniques to automatically pinpoint store locations. Their
results show that an incentive scheme is inherently ingrained
into the query/response protocol, and they suggest self-
regulating mechanisms for preserving data integrity. They
demonstrated that money-saving price comparisons can be
conducted among brick and mortar grocery stores without
the explicit cooperation of the stores.

Peebles et al. [32] developed Community-Guided Learn-
ing (CGL), a novel framework for learning models of human
behavior from crowd-sourced sensor data. They argue that
simply accepting freeform user-provided labels can be con-
fusing and misleading. For example, users might use identical
labels to different activities (e.g., labeling both dinner and
lunch as “meal”) or different labels to the same context
(“driving” and “commute”). To that end, CGL provides a
framework to build classifiers using inconsistently labeled
sensor traces. They evaluated its performance using five
participants and gathered a 33-hour audio dataset of high-
level activities and their associated contexts. Participants
provided freeform labels of their activities. Their results
show that unlike existing techniques, CGL can cope with
inconsistent labels which are norm in the real world.

Ahn etal. [33] developed MetroTrack—a system that uses
mobile phones (with embedded sensors) for urban sensing
and tracking. MetroTrack is responsive to the changing
density of mobile phones and sensor network coverage.
It tasks mobile sensors around a target event of interest
and recovers lost targets by predicting the future location
of the target and then tasking other mobile sensors in its
close proximity. Their testbed comprised two N95 phones
and nine N80 phones connected to nine Bluetooth GPS
dongles. Their experimental results show that the system can
effectively track a mobile noise source in an outdoor urban
environment.

Table 1 summarizes the aforementioned deployments in
terms of their hardware and software platform sensors used
(both the embedded and the external sensors if any). Table 1
denotes the absence of the corresponding entity and NA
denotes details not available in the literature. Table 1 shows
that in 2007-2008 timeframe, Symbian OS was prominent in
deployments, whereas in recent years Android has become
more common. We conjecture that this is because Android
is an open-source platform that is low-power and runs on
a wide range of devices (phones, tablets, and embedded
computers such as GumStix, Pandaboard). In addition, since
Android applications are written in Java, developers find
it easy to program. We also observe that most of the
deployments use only the sensors embedded in the phone. In
particular, only 5 out of 17 deployments use external sensors.
This could be because the adding of external sensors increases
overall energy consumption, cost, and form factor, thereby
raising the deployment barrier. In addition, the cell phone is

prepackaged with the software needed to acquire data from
internal sensors. On the other hand, the development effort
needed to integrate the external sensors could be nontrivial.

4. Future Directions

At present participatory sensing deployments are mainly
small-scale research prototypes. However, their success will
give rise to large-scale deployments involving hundreds of
thousands to millions of users. These large-scale deployments
will present unanticipated challenges in terms of scalability,
reliability, management, and performance for both the sensor
network component and the data center component. In
particular, the current generation of participatory sensing
applications has back-end infrastructure that is application
specific and designed for and exposed only to a limited set
of users [13, 23, 25, 27, 28, 31]. As an example, As shown
in Figure 1, existing participatory sensing applications are
primarily designed as standalone applications. Neither the
hardware infrastructure nor the services are designed to
scale out. The next generation of these applications will
demand a scalable and elastic infrastructure that can scale
out dynamically to hundreds of thousands to millions of
users. For such large-scale participatory sensing applications,
the computational, storage, and networking requirements
of this back-end could be substantial. To that end, we
argue to leverage cloud computing to provide a highly scal-
able, high-performance, pay-as-you-go, and grow-as-you-go
environment that also reduces the infrastructure cost and
development effort. Recent advances in cloud computing
[34] make it an excellent choice for providing scalability and
robustness while easing the development and IT overhead
involved in the data center. In addition, basing the back-end
on cloud computing will enable one to share the data more
naturally and support application mashups that can draw on
multiple data sources.

The success and increasing deployment of participatory
sensor networks will drive towards a new generation that
envisions a single user participating in multiple applications.
Imagine a user participating in three applications: indoor air
quality monitoring, road condition monitoring, and a smart
health application that monitors impact of activities such as
sleep, social interactions, and exercise on physical and mental
health. Expecting users to manually enter the context (at
home versus on the road) and start and stop applications is
neither feasible nor scalable. The next generation applications
demand an underlying infrastructure that will automatically
infer the context and run applications appropriately. For
example, ideally when the user is at home, only the indoor
quality monitoring and smart health monitoring application
should be run. When the user gets into his/her car, the indoor
quality monitoring application needs to be stopped and the
road monitoring application needs to be started to save the
valuable resources such as memory and power.

Gamification stands for game thinking and game mec-
hanics in nongame contexts in order to engage users and solve
problems typically by giving reward points, achievement
badges, or virtual currency [35]. Badgeville’s Platform-as-a-
Service (PaaS) allows web and mobile sites to measure and
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TABLE 1: Summary of participatory sensing deployments.

Application Domain Year Hardware Software Built-in sensors External sensors

platform platform
BikeNet 31 2007 Nokia N80 Symbian Camera and microphone Sensor n terfaced with the

Moteiv Tmote Invent
Accelerometer,
CenceMe 34 2008 Nokia N95 Symbian microphone, camera, and X
GPS

Pothole patrol 3.3 2008 Soekris 4801 Linux Accelerometer, GPS X

HP iPAQ . .
Nericell 33 2008 hw6965, HTC Windows Microphone, camera, GPS, X

Mobile and accelerometer

Typhoon
VTrack 33 2009 Soekris 4801 Linux GPS X
LiveCompare 34 2009 Nokia N95 Symbian Camera, GPS X

. Android phone, Android,

Ambulation 3.1 2009 Nokia N95 Symbian GPS
MetroTrack 3.4 2010 NOkle}\II\;io and Symbian Microphone, camera, GPS X
CGL 34 2010 iPhone Audio X
ParkNet 33 2010 Embedded X Ultrasonic range finder,

computer GPS
AndWellness 3.1 2010 Google G1 Android GPS and the accelerometer X
Tkarus 32 2011 Flight reFordlng GPS, barometric X

device
Biketastic 3.1 2011 Google G1 Android GPS, microphone, and X
accelerometer
Gyroscope, accelerometer,
BeWell 3.1 2011 Nexus One Android microphone, camera, and X
digital compass
. Smart garment (no details
eCAALYX 3.1 2011 Nexus One Android GPS
on Sensors)
GasMobile 32 2012 HTC Hero Android X Ozone
Samsung Nexus
StressSense 3.1 2012 S, Samsung Android Microphone GSR sensor
Galaxy Nexus

influence user behavior using techniques including gamifica-
tion and game mechanics, social mechanics, and reputation
mechanics [36]. Recently launched Fitocracy is a social
network that uses gamification to help users improve their
fitness [37]. The current generation participatory sensing
deployments are small, and face-to-face meetings and per-
sonal connections can keep the participants motivated for the
project duration. However, for the next generation deploy-
ments involving hundreds of thousands participants to keep
them engaged throughout the deployment duration, face-to-
face meetings or personal phone calls will not scale. We argue
that the next generation participatory sensing deployments
for their sustainability need to make gamification technique
an integral part of their design and implementation.

5. Conclusion

Participatory sensing paradigm by actively involving ordi-
nary citizens to gather high-resolution spatiotemporal data
about the natural and the built environment has a potential
to bring about positive changes at the societal scale. In this

paper, we surveyed existing participatory sensing deploy-
ments in four domains, namely, healthcare, transportation
and civil infrastructure monitoring, environmental moni-
toring, and urban sensing. Although these deployments are
still primarily limited to small-scale research prototypes, they
show that their results are quite promising. We observed
in the last couple of years that deployments are migrating
toward Android platform. We also discussed few possible
future directions that would allow us to truly harness the
potential of participatory sensing paradigm.
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