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We study and obtain results on Ricci solitons in Kenmotsu manifolds satisfying 𝑅(𝜉,𝑋) ⋅ 𝐵 = 0, 𝐵(𝜉, 𝑋) ⋅ 𝑆 = 0, 𝑆(𝜉, 𝑋) ⋅ 𝑅 = 0,
𝑅(𝜉,𝑋) ⋅ 𝑃 = 0, and 𝑃(𝜉, 𝑋) ⋅ 𝑆 = 0, where 𝐵 and 𝑃 are C-Bochner and pseudo-projective curvature tensor.

1. Introduction

A Ricci soliton is a natural generalization of an Einstein
metric and is defined on a Riemannian manifold (𝑀, 𝑔). A
Ricci soliton is a triple (𝑔, 𝑉, 𝜆) with 𝑔 a Riemannian metric,
𝑉 a vector field, and 𝜆 a real scalar such that

L
𝑉
𝑔 + 2𝑆 + 2𝜆𝑔 = 0, (1)

where 𝑆 is a Ricci tensor of 𝑀 and L
𝑉
denotes the Lie

derivative operator along the vector field𝑉. The Ricci soliton
is said to be shrinking, steady, and expanding accordingly as
𝜆 is negative, zero, and positive, respectively [1]. In this paper,
we prove conditions for Ricci solitons inKenmotsumanifolds
to be shrinking, steady, and expanding.

In 1972, Kenmotsu [2] studied a class of contact Rie-
mannian manifolds satisfying some special conditions and
this manifold is known as Kenmotsu manifolds. Kenmotsu
proved that a locally Kenmotsumanifold is a warped product
𝐼 ×
𝑓
𝑁 of an interval 𝐼 and aKaehlermanifold𝑁withwarping

function 𝑓(𝑡) = 𝑠𝑒
𝑡, where 𝑠 is a nonzero constant. Kenmotsu

proved that if in a Kenmotsumanifold the condition𝑅(𝑋, 𝑌)⋅

𝑅 = 0 holds, then the manifold is of negative curvature −1,
where 𝑅 is the curvature tensor of type (1, 3) and 𝑅(𝑋, 𝑌)

denotes the derivation of the tensor algebra at each point of
the tangent space.

The authors in [3–7] have studied Ricci solitons in contact
and Lorentzian manifolds. The authors in [8] have obtained
some results on Ricci solitons satisfying 𝑅(𝜉,𝑋) ⋅ 𝐶̃ = 0,
𝑃(𝜉, 𝑋) ⋅ 𝐶̃ = 0, 𝐻(𝜉,𝑋) ⋅ 𝑆 = 0 and 𝐶̃(𝜉, 𝑋) ⋅ 𝑆 = 0 and
now we extend the work to 𝑅(𝜉,𝑋) ⋅ 𝐵 = 0, 𝐵(𝜉, 𝑋) ⋅ 𝑆 = 0,
𝑆(𝜉, 𝑋) ⋅ 𝑅 = 0, 𝑅(𝜉,𝑋) ⋅ 𝑃 = 0 and 𝑃(𝜉, 𝑋) ⋅ 𝑆 = 0.

2. Preliminaries

An 𝑛-dimensional differential manifold 𝑀 is said to be an
almost contact metric manifold [9] if it admits an almost
contact metric structure (𝜙, 𝜉, 𝜂, 𝑔) consisting of a tensor field
𝜙 of type (1, 1), a vector field 𝜉, a 1-form 𝜂, and a Riemannian
metric 𝑔 compatible with (𝜙, 𝜉, 𝜂, 𝑔) satisfying

𝜙
2
= −𝐼 + 𝜂 ⊗ 𝜉, 𝜂 (𝜉) = 1,

𝜂 ∘ 𝜙 = 0, 𝜙𝜉 = 0,

𝑔 (𝜙𝑋, 𝜙𝑌) = 𝑔 (𝑋, 𝑌) − 𝜂 (𝑋) 𝜂 (𝑌) , 𝑔 (𝑋, 𝜉) = 𝜂 (𝑋) ,

(2)

for all vector fields𝑋, 𝑌 on𝑀.
An almost contact metric manifold𝑀(𝜙, 𝜉, 𝜂, 𝑔) is said to

be Kenmotsu manifold [2] if

(∇
𝑋
𝜙)𝑌 = 𝑔 (𝜙𝑋, 𝑌) 𝜉 − 𝜂 (𝑌) 𝜙𝑋. (3)

From (3), we have

∇
𝑋
𝜉 = 𝑋 − 𝜂 (𝑋) 𝜉, (4)

where ∇ denotes the Riemannian connection of 𝑔.
In an 𝑛-dimensional Kenmotsu manifold, we have

𝜂 (𝑅 (𝑋, 𝑌)𝑍) = 𝑔 (𝑋, 𝑍) 𝜂 (𝑌) − 𝑔 (𝑌, 𝑍) 𝜂 (𝑋) , (5)

𝑅 (𝑋, 𝑌) 𝜉 = 𝜂 (𝑋)𝑌 − 𝜂 (𝑌)𝑋, (6)
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𝑅 (𝜉,𝑋) 𝑌 = 𝜂 (𝑌)𝑋 − 𝑔 (𝑋, 𝑌) 𝜉, (7)

𝑅 (𝜉,𝑋) 𝜉 = 𝑋 − 𝜂 (𝑋) 𝜉, (8)

where 𝑅 is the Riemannian curvature tensor.
Let (𝑔, 𝑉, 𝜆) be a Ricci soliton in an 𝑛-dimensional

Kenmotsu manifold𝑀. From (4) we have

(L
𝜉
𝑔) (𝑋, 𝑌) = 2 [𝑔 (𝑋, 𝑌) − 𝜂 (𝑋) 𝜂 (𝑌)] . (9)

From (1) and (9) we get

𝑆 (𝑋, 𝑌) = − (𝜆 + 1) 𝑔 (𝑋, 𝑌) + 𝜂 (𝑋) 𝜂 (𝑌) . (10)

The above equation yields that

𝑄𝑋 = − (𝜆 + 1)𝑋 + 𝜂 (𝑋) 𝜉, (11)

𝑆 (𝑋, 𝜉) = − 𝜆𝜂 (𝑋) , (12)

𝑟 = − 𝜆𝑛 − (𝑛 − 1) , (13)

where 𝑆 is the Ricci tensor,𝑄 is the Ricci operator, and 𝑟 is the
scalar curvature on𝑀.

2.1. Example for 3-Dimensional Kenmotsu Manifolds. We
consider 3-dimensional manifold𝑀 = {(𝑥, 𝑦, 𝑧) ∈ 𝑅

3
; 𝑧 ̸= 0},

where (𝑥, 𝑦, 𝑧) are the standard coordinates in𝑅
3. Let {𝐸

1
, 𝐸
2
,

𝐸
3
} be linearly independent given by

𝐸
1
= 𝑧

𝜕

𝜕𝑥
, 𝐸

2
= 𝑧

𝜕

𝜕𝑦
, 𝐸

3
= −𝑧

𝜕

𝜕𝑧
. (14)

Let 𝑔 be the Riemannian metric defined by 𝑔(𝐸
1
, 𝐸
2
) = 𝑔(𝐸

2
,

𝐸
3
) = 𝑔(𝐸

1
, 𝐸
3
) = 0, 𝑔(𝐸

1
, 𝐸
1
) = 𝑔(𝐸

2
, 𝐸
2
) = 𝑔(𝐸

3
, 𝐸
3
) = 1,

where 𝑔 is given by

𝑔 =
1

𝑧2
(𝑑𝑥 ⊗ 𝑑𝑥 + 𝑑𝑦 ⊗ 𝑑𝑦 + 𝑑𝑧 ⊗ 𝑑𝑧) . (15)

The (𝜙, 𝜉, 𝜂) structure is given by

𝜂 = −
1

𝑧
𝑑𝑧, 𝜉 = 𝐸

3
= −𝑧

𝜕

𝜕𝑧
,

𝜙𝐸
1
= −𝐸
2
, 𝜙𝐸

2
= 𝐸
1
, 𝜙𝐸

3
= 0.

(16)

The linearity property of 𝜙 and 𝑔 yields that 𝜂(𝐸
3
) = 1, 𝜙2𝑈 =

−𝑈 + 𝜂(𝑈)𝐸
3
, 𝑔(𝜙𝑈, 𝜙𝑊) = 𝑔(𝑈,𝑊) − 𝜂(𝑈)𝜂(𝑊), for any

vector fields𝑈,𝑊 on𝑀. By definition of Lie bracket, we have

[𝐸
1
, 𝐸
2
] = 0, [𝐸

1
, 𝐸
3
] = 𝐸
1
, [𝐸

2
, 𝐸
3
] = 𝐸
2
. (17)

Let ∇ be the Levi-Civita connection; with respect to above
metric 𝑔 is given by Koszula formula

2𝑔 (∇
𝑋
𝑌,𝑍) = 𝑋 (𝑔 (𝑌, 𝑍)) + 𝑌 (𝑔 (𝑍,𝑋))

− 𝑍 (𝑔 (𝑋, 𝑌)) − 𝑔 (𝑋, [𝑌, 𝑍])

− 𝑔 (𝑌, [𝑋, 𝑍]) + 𝑔 (𝑍, [𝑋, 𝑌]) ,

(18)

and by virtue of it we have

∇
𝐸
1

𝐸
3
= 𝐸
1
, ∇

𝐸
2

𝐸
3
= 𝐸
2
, ∇

𝐸
3

𝐸
3
= 0,

∇
𝐸
1

𝐸
2
= 0, ∇

𝐸
2

𝐸
2
= −𝐸
3
, ∇

𝐸
3

𝐸
2
= 0,

∇
𝐸
1

𝐸
1
= −𝐸
3
, ∇

𝐸
2

𝐸
1
= 0, ∇

𝐸
3

𝐸
1
= 0.

(19)

Clearly (19) shows that (𝜙, 𝜉, 𝜂, 𝑔) satisfies (2), (3), and (4).
Thus𝑀 is a Kenmotsu manifold.

It is known that

𝑅 (𝑋, 𝑌)𝑍 = ∇
𝑋
∇
𝑌
𝑍 − ∇

𝑌
∇
𝑋
𝑍 − ∇

[𝑋,𝑌]
𝑍. (20)

With the help of (19) and (20), it can be easily verified that

𝑅 (𝐸
1
, 𝐸
2
) 𝐸
2
= −𝐸
1
, 𝑅 (𝐸

1
, 𝐸
3
) 𝐸
3
= −𝐸
1
,

𝑅 (𝐸
1
, 𝐸
1
) 𝐸
1
= 0, 𝑅 (𝐸

2
, 𝐸
1
) 𝐸
1
= −𝐸
2
,

𝑅 (𝐸
2
, 𝐸
3
) 𝐸
3
= −𝐸
2
, 𝑅 (𝐸

2
, 𝐸
2
) 𝐸
2
= 0,

𝑅 (𝐸
3
, 𝐸
1
) 𝐸
1
= −𝐸
3
, 𝑅 (𝐸

3
, 𝐸
2
) 𝐸
2
= −𝐸
3
,

𝑅 (𝐸
3
, 𝐸
3
) 𝐸
3
= 0.

(21)

From the above expression of the curvature tensor we obtain

𝑆 (𝐸
1
, 𝐸
1
) = 𝑔 (𝑅 (𝐸

1
, 𝐸
2
) 𝐸
2
, 𝐸
1
)

+ 𝑔 (𝑅 (𝐸
1
, 𝐸
3
) 𝐸
3
, 𝐸
1
) = −2.

(22)

Similarly we have

𝑆 (𝐸
2
, 𝐸
2
) = 𝑆 (𝐸

3
, 𝐸
3
) = −2,

(L
𝜉
𝑔) (𝐸
𝑖
, 𝐸
𝑖
) = 2 [𝑔 (𝐸

𝑖
, 𝐸
𝑖
) − 𝜂 (𝐸

𝑖
) 𝜂 (𝐸
𝑖
)] .

(23)

Now by 𝑋 = 𝑌 = 𝐸
𝑖
, in (1), where 𝑖 = 1, 2, 3 and by virtue of

above equations we get the value of 𝜆 which is strictly greater
than 0. Thus this is an example of expanding Ricci solitons in
Kenmotsu manifolds.

3. Ricci Soliton in a Kenmotsu
Manifold Satisfying 𝑅(𝜉,𝑋) ⋅𝐵=0

Bochner introduced aKähler analogue of theWeyl conformal
curvature tensor by purely formal considerations, which is
now well known as the Bochner curvature tensor [10]. A
geometric meaning of the Bochner curvature tensor is given
by Blair in [11] by using the Boothby-Wang’s fibration. In 1969,
Matsumoto and Chūman [12] constructed the notion of C-
Bochner curvature tensor in a Sasakianmanifold and studied
its several properties.
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TheC-Bochner curvature tensor [13] 𝐵 in𝑀 is defined by

𝐵 (𝑋, 𝑌)𝑍 = 𝑅 (𝑋, 𝑌)𝑍 +
1

𝑛 + 3

× [𝑔 (𝑋, 𝑍)𝑄𝑌 − 𝑆 (𝑌, 𝑍)𝑋

− 𝑔 (𝑌, 𝑍)𝑄𝑋 + 𝑆 (𝑋, 𝑍) 𝑌

+ 𝑔 (𝜙𝑋,𝑍)𝑄𝜙𝑌 − 𝑆 (𝜙𝑌, 𝑍) 𝜙𝑋

− 𝑔 (𝜙𝑌, 𝑍)𝑄𝜙𝑋 + 𝑆 (𝜙𝑋,𝑍) 𝜙𝑌

+ 2𝑆 (𝜙𝑋, 𝑌) 𝜙𝑍 + 2𝑔 (𝜙𝑋, 𝑌)𝑄𝜙𝑍

+ 𝜂 (𝑌) 𝜂 (𝑍)𝑄𝑋 − 𝜂 (𝑌) 𝑆 (𝑋, 𝑍) 𝜉

+𝜂 (𝑋) 𝑆 (𝑌, 𝑍) 𝜉 − 𝜂 (𝑋) 𝜂 (𝑍)𝑄𝑌]

−
𝐷 + 𝑛 − 1

𝑛 + 3
[𝑔 (𝜙𝑋, 𝑍) 𝜙𝑌 − 𝑔 (𝜙𝑌, 𝑍) 𝜙𝑋

+ 2𝑔 (𝜙𝑋, 𝑌) 𝜙𝑍]

+
𝐷

𝑛 + 3
[𝜂 (𝑌) 𝑔 (𝑋, 𝑍) 𝜉 − 𝜂 (𝑌) 𝜂 (𝑍)𝑋

+ 𝜂 (𝑋) 𝜂 (𝑍) 𝑌 − 𝜂 (𝑋) 𝑔 (𝑌, 𝑍) 𝜉]

−
𝐷 − 4

𝑛 + 3
[𝑔 (𝑋, 𝑍) 𝑌 − 𝑔 (𝑌, 𝑍)𝑋] ,

(24)

where𝐷 = (𝑟 + 𝑛 − 1)/(𝑛 + 1).
Taking 𝑍 = 𝜉 in (24) and using (6), (10), (11), we get

𝐵 (𝑋, 𝑌) 𝜉 = [1 −
𝜆

𝑛 + 3
+

4

𝑛 + 3
] [𝜂 (𝑋)𝑌 − 𝜂 (𝑌)𝑋] .

(25)

Similarly using (5), (10), (11), (12) in (24), we get

𝜂 (𝐵 (𝑋, 𝑌)𝑍) = [1 −
𝜆

𝑛 + 3
+

4

𝑛 + 3
]

× [𝑔 (𝑋, 𝑍) 𝜂 (𝑌) − 𝑔 (𝑌, 𝑍) 𝜂 (𝑋)] .

(26)

We assume that the condition 𝑅(𝜉,𝑋) ⋅ 𝐵 = 0, then we have

𝑅 (𝜉,𝑋) 𝐵 (𝑌, 𝑍)𝑊 − 𝐵 (𝑅 (𝜉, 𝑋) 𝑌, 𝑍)𝑊

− 𝐵 (𝑌, 𝑅 (𝜉, 𝑋)𝑍)𝑊 − 𝐵 (𝑌, 𝑍) 𝑅 (𝜉, 𝑋)𝑊 = 0.

(27)

Using (7) in (27), we get

𝜂 (𝐵 (𝑌, 𝑍)𝑊)𝑋 − 𝑔 (𝐵 (𝑌, 𝑍)𝑊,𝑋) 𝜉 + 𝑔 (𝑋, 𝑌) 𝐵 (𝜉, 𝑍)𝑊

− 𝜂 (𝑌) 𝐵 (𝑋, 𝑍)𝑊 + 𝑔 (𝑋, 𝑍) 𝐵 (𝑌, 𝜉)𝑊

− 𝜂 (𝑍) 𝐵 (𝑌,𝑋)𝑊 + 𝑔 (𝑋,𝑊)𝐵 (𝑌, 𝑍) 𝜉

− 𝜂 (𝑊)𝐵 (𝑌, 𝑍)𝑋 = 0.

(28)

By taking an inner product with 𝜉, we have

𝜂 (𝐵 (𝑌, 𝑍)𝑊) 𝜂 (𝑋) − 𝑔 (𝐵 (𝑌, 𝑍)𝑊,𝑋)

+ 𝑔 (𝑋, 𝑌) 𝜂 (𝐵 (𝜉, 𝑍)𝑊) − 𝜂 (𝑌) 𝜂 (𝐵 (𝑋, 𝑍)𝑊)

+ 𝑔 (𝑋, 𝑍) 𝜂 (𝐵 (𝑌, 𝜉)𝑊) − 𝜂 (𝑍) 𝜂 (𝐵 (𝑌,𝑋)𝑊)

+ 𝑔 (𝑋,𝑊) 𝜂 (𝐵 (𝑌, 𝑍) 𝜉) − 𝜂 (𝑊) 𝜂 (𝐵 (𝑌, 𝑍)𝑋) = 0.

(29)

By using (25), (26) in (29), we have

[1 −
𝜆

𝑛 + 3
+

4

𝑛 + 3
] [𝑔 (𝑌,𝑊) 𝑔 (𝑍,𝑋) − 𝑔 (𝑍,𝑊) 𝑔 (𝑌,𝑋)]

− 𝑔 (𝐵 (𝑌, 𝑍)𝑊,𝑋) = 0.

(30)

In view of (24) in (30), then we have

[1 −
𝜆

𝑛 + 3
+

4

𝑛 + 3
] [𝑔 (𝑌,𝑊) 𝑔 (𝑍,𝑋) − 𝑔 (𝑍,𝑊) 𝑔 (𝑌,𝑋)]

− 𝑔 (𝑅 (𝑌, 𝑍)𝑊,𝑋)

−
1

𝑛 + 3
[𝑔 (𝑌,𝑊) 𝑆 (𝑍,𝑋) − 𝑆 (𝑍,𝑊) 𝑔 (𝑌,𝑋)

− 𝑔 (𝑍,𝑊) 𝑆 (𝑌,𝑋) + 𝑆 (𝑌,𝑊) 𝑔 (𝑍,𝑋)

+ 𝑔 (𝜙𝑌,𝑊) 𝑆 (𝜙𝑍,𝑋) − 𝑆 (𝜙𝑍,𝑊) 𝑔 (𝜙𝑌,𝑋)

− 𝑔 (𝜙𝑍,𝑊) 𝑆 (𝜙𝑌,𝑋) + 𝑆 (𝜙𝑌,𝑊) 𝑔 (𝜙𝑍,𝑋)

+ 2𝑆 (𝜙𝑌, 𝑍) 𝑔 (𝑋, 𝜙𝑊) + 2𝑔 (𝜙𝑌, 𝑍) 𝑆 (𝑋, 𝜙𝑊)

+ 𝜂 (𝑊) 𝜂 (𝑍) 𝑆 (𝑌,𝑋) − 𝜂 (𝑋) 𝜂 (𝑍) 𝑆 (𝑌,𝑊)

+ 𝜂 (𝑌) 𝜂 (𝑋) 𝑆 (𝑍,𝑊) − 𝜂 (𝑊) 𝜂 (𝑌) 𝑆 (𝑍,𝑋)]

−
𝐷

𝑛 + 3
[𝜂 (𝑋) 𝜂 (𝑍) 𝑔 (𝑌,𝑊) − 𝜂 (𝑊) 𝜂 (𝑍) 𝑔 (𝑌,𝑋)

+ 𝜂 (𝑊) 𝜂 (𝑌) 𝑔 (𝑍,𝑋) − 𝜂 (𝑌) 𝜂 (𝑋) 𝑔 (𝑍,𝑊)]

+
𝐷 + 𝑛 − 1

𝑛 + 3
[𝑔 (𝜙𝑌,𝑊) 𝑔 (𝜙𝑍,𝑋)

− 𝑔 (𝜙𝑍,𝑊) 𝑔 (𝜙𝑌,𝑋)

+ 2𝑔 (𝜙𝑌, 𝑍) 𝑔 (𝑋, 𝜙𝑊)]

+
𝐷 − 4

𝑛 + 3
[𝑔 (𝑌,𝑊) 𝑔 (𝑍,𝑋) − 𝑔 (𝑍,𝑊) 𝑔 (𝑌,𝑋)] = 0.

(31)
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Taking 𝑋 = 𝑌 = 𝑒
𝑖
in (31) and summing over 𝑖 = 1, 2, . . . , 𝑛.

By virtue of (10), (11), (12), and on simplification, we get

𝑆 (𝑍,𝑊)

= [
− (𝑛 + 4) 𝜆 − 2𝑛 − 3

𝑛 + 3
+

−𝑛
2
− 6𝑛 + 8

𝑛 + 3
−

𝑟

𝑛 + 3
]𝑔 (𝑊,𝑍)

+ [
(𝜆 + 1) (𝑛 + 4) − 2 + 𝑛

𝑛 + 3
+

𝑟 + 4 (𝑛 − 1)

𝑛 + 3
] 𝜂 (𝑊) 𝜂 (𝑍) .

(32)

Putting 𝑍 = 𝑊 = 𝜉 in (32) and by virtue of (10) and (13), we
have

𝜆 = (𝑛 − 1) . (33)
Therefore, 𝜆 positive that is, the Ricci soliton in Kenmotsu
manifold is expanding.

Hence we state the following theorem:

Theorem 1. A Ricci soliton in a Kenmotsu manifold satisfying
𝑅(𝜉,𝑋) ⋅ 𝐵 = 0 is expanding.

4. Ricci Soliton in a Kenmotsu Manifolds
Satisfying 𝐵(𝜉, 𝑋) ⋅ 𝑆=0

The condition 𝐵(𝜉, 𝑋) ⋅ 𝑆 = 0 implies that
𝑆 (𝐵 (𝜉, 𝑋) 𝑌, 𝑍) + 𝑆 (𝑌, 𝐵 (𝜉, 𝑋)𝑍) = 0. (34)

By using (10) in (34), we have

𝜂 (𝑍) 𝜂 (𝐵 (𝜉, 𝑋) 𝑌) − (𝜆 + 1) 𝑔 (𝐵 (𝜉, 𝑋) 𝑌, 𝑍)

− (𝜆 + 1) 𝑔 (𝑌, 𝐵 (𝜉, 𝑋)𝑍) + 𝜂 (𝑌) 𝜂 (𝐵 (𝜉, 𝑋)𝑍) = 0,

(35)

the above equation implies that
[𝜂 (𝑍) 𝜂 (𝐵 (𝜉, 𝑋) 𝑌) + 𝜂 (𝑌) 𝜂 (𝐵 (𝜉, 𝑋)𝑍)]

= (𝜆 + 1) [𝑔 (𝐵 (𝜉, 𝑋) 𝑌, 𝑍) + 𝑔 (𝑌, 𝐵 (𝜉, 𝑋)𝑍)] .

(36)

By using (24) and (26) in (36), we have

2𝜂 (𝑋) 𝜂 (𝑌) 𝜂 (𝑍) [1 −
𝜆

(𝑛 + 3)
+

4

(𝑛 + 3)
]

− [1 −
𝜆

(𝑛 + 3)
+

4

(𝑛 + 3)
]

× [𝑔 (𝑋, 𝑍) 𝜂 (𝑌) + 𝑔 (𝑋, 𝑌) 𝜂 (𝑍)] = 0.

(37)

Put𝑋 = 𝑌 = 𝜉 in (37) then the equation is identically satisfied
and we do not get the value for 𝜆. So, we proceed as follows:
Taking 𝑋 = 𝑌 = 𝑒

𝑖
in (37) and summing over 𝑖 = 1, 2, . . . , 𝑛

and by virtue of (13) and 𝜂(𝑍) ̸= 0 conditions, we obtain
𝜆 = 𝑛 + 7. (38)

Therefore, 𝜆 is positive that is Ricci soliton in Kenmotsu
manifolds satisfying 𝐵(𝜉, 𝑋) ⋅ 𝑆 = 0 is expanding.

Hence we can state the following theorem.

Theorem 2. A Ricci soliton in a Kenmotsu manifold satisfying
𝐵(𝜉, 𝑋) ⋅ 𝑆 = 0 is expanding.

5. Ricci Soliton in a Kenmotsu Manifold
Satisfying 𝑆(𝜉, 𝑋) ⋅ 𝑅 = 0

Using the following equations:

𝑆 ((𝑋, 𝜉) ⋅ 𝑅) (𝑈, 𝑉)𝑊

= ((𝑋∧
𝑆
𝜉) ⋅ 𝑅) (𝑈, 𝑉)𝑊 = (𝑋∧

𝑆
𝜉) 𝑅 (𝑈,𝑉)𝑊

+ 𝑅 ((𝑋∧
𝑆
𝜉)𝑈, 𝑉)𝑊 + 𝑅 (𝑈, (𝑋∧

𝑆
𝜉)𝑉)𝑊

+ 𝑅 (𝑈,𝑉) (𝑋∧
𝑆
𝜉)𝑊,

(39)

where the endomorphism𝑋∧
𝑆
𝑌 is defined by

(𝑋∧
𝑆
𝑌)𝑍 = 𝑆 (𝑌, 𝑍)𝑋 − 𝑆 (𝑋, 𝑍) 𝑌, (40)

we have

𝑆 ((𝑋, 𝜉) ⋅ 𝑅) (𝑈, 𝑉)𝑊

= 𝑆 (𝜉, 𝑅 (𝑈, 𝑉)𝑊)𝑋 − 𝑆 (𝑋, 𝑅 (𝑈,𝑉)𝑊) 𝜉

+ 𝑆 (𝜉, 𝑈) 𝑅 (𝑋,𝑉)𝑊 − 𝑆 (𝑋,𝑈) 𝑅 (𝜉, 𝑉)𝑊

+ 𝑆 (𝜉, 𝑉) 𝑅 (𝑈,𝑋)𝑊 − 𝑆 (𝑋,𝑉) 𝑅 (𝑈, 𝜉)𝑊

+ 𝑆 (𝜉,𝑊)𝑅 (𝑈,𝑉)𝑋 − 𝑆 (𝑋,𝑊)𝑅 (𝑈,𝑉) 𝜉.

(41)

By using the condition 𝑆(𝜉, 𝑋) ⋅ 𝑅 = 0, and by virtue of (10),
(12), we have

− 𝜆𝜂 (𝑅 (𝑈, 𝑉)𝑊)𝑋

− [− (𝜆 + 1) 𝑔 (𝑋, 𝑅 (𝑈, 𝑉)𝑊) + 𝜂 (𝑋) 𝜂 (𝑅 (𝑈,𝑉)𝑊)] 𝜉

− 𝜆𝜂 (𝑈) 𝑅 (𝑋,𝑉)𝑊

− [− (𝜆 + 1) 𝑔 (𝑋,𝑈) + 𝜂 (𝑋) 𝜂 (𝑈)] 𝑅 (𝜉, 𝑉)𝑊

− 𝜆𝜂 (𝑉) 𝑅 (𝑈,𝑋)𝑊

− [− (𝜆 + 1) 𝑔 (𝑋,𝑉) + 𝜂 (𝑋) 𝜂 (𝑉)] 𝑅 (𝑈, 𝜉)𝑊

− 𝜆𝜂 (𝑊)𝑅 (𝑈,𝑉)𝑋

− [− (𝜆 + 1) 𝑔 (𝑋,𝑊) + 𝜂 (𝑋) 𝜂 (𝑊)] 𝑅 (𝑈, 𝑉) 𝜉 = 0.

(42)

By taking an inner product with 𝜉 and by virtue of (5), (6),
(7), and (8), we have

− (𝜆 + 1) 𝜂 (𝑋) [𝑔 (𝑈,𝑊) 𝜂 (𝑉) − 𝑔 (𝑉,𝑊) 𝜂 (𝑈)]

+ 𝜆 [𝑔 (𝑉,𝑊) 𝜂 (𝑋) 𝜂 (𝑈) − 𝑔 (𝑈,𝑊) 𝜂 (𝑋) 𝜂 (𝑉)

− 𝑔 (𝑈,𝑋) 𝜂 (𝑉) 𝜂 (𝑊) + 𝑔 (𝑉,𝑋) 𝜂 (𝑈) 𝜂 (𝑊)]

+ (𝜆 + 1) 𝑔 (𝑋, 𝑅 (𝑈, 𝑉)𝑊)

+ (𝜆 + 1) 𝑔 (𝑋,𝑈) [𝜂 (𝑊) 𝜂 (𝑉) − 𝑔 (𝑉,𝑊)]

+ (𝜆 + 1) 𝑔 (𝑋,𝑉) [𝑔 (𝑈,𝑊) − 𝜂 (𝑊) 𝜂 (𝑈)]

+ 𝑔 (𝑉,𝑊) 𝜂 (𝑋) 𝜂 (𝑈) − 𝑔 (𝑈,𝑊) 𝜂 (𝑋) 𝜂 (𝑉) = 0.

(43)



ISRN Geometry 5

Taking 𝑋 = 𝑈 = 𝑒
𝑖
and summing over 𝑖 = 1, 2, . . . , 𝑛, we

obtain
2 (𝜆 + 1) [𝑔 (𝑉,𝑊) − 𝜂 (𝑊) 𝜂 (𝑉)]

+ (𝜆 + 1) 𝑆 (𝑉,𝑊) − (𝜆 + 1) (𝑛 − 1) 𝑔 (𝑉,𝑊)

+ (𝑛 − 1) 𝜂 (𝑉) 𝜂 (𝑊) = 0.

(44)

Taking 𝑉 = 𝑊 = 𝜉 in (44) and by virtue of (12), (13), we
obtain

−𝜆 (𝜆 + 𝑛) = 0. (45)

This implies either

𝜆 = 0 or 𝜆 = −𝑛. (46)

Therefore for any 𝜆 = 0 or 𝜆 = −𝑛 the Ricci soliton in
Kenmotsu manifolds satisfying 𝑆(𝜉, 𝑋) ⋅𝑅 = 0 is either steady
or shrinking.

Hence we can state the following theorem.

Theorem 3. A Ricci soliton in a Kenmotsu manifold satisfying
𝑆(𝜉, 𝑋) ⋅ 𝑅 = 0 is either steady or shrinking.

6. Ricci Soliton in a Kenmotsu Manifolds
Satisfying 𝑅(𝜉, 𝑋) ⋅ 𝑃 = 0

The Pseudo-projective curvature tensor 𝑃 is defined by

𝑃 (𝑋, 𝑌)𝑍 = 𝑎𝑅 (𝑋, 𝑌)𝑍 + 𝑏 [𝑆 (𝑌, 𝑍)𝑋 − 𝑆 (𝑋, 𝑍) 𝑌]

−
𝑟

𝑛
(

𝑎

𝑛 − 1
+ 𝑏) [𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋,𝑍) 𝑌] ,

(47)

where 𝑎, 𝑏 ̸= 0 are constants. Taking 𝑍 = 𝜉 in (47) and using
(6), (10), (11), we get

𝑃 (𝑋, 𝑌) 𝜉 = [𝑎 + 𝑏𝜆 +
𝑟

𝑛
(

𝑎

𝑛 − 1
+ 𝑏)] [𝜂 (𝑋)𝑌 − 𝜂 (𝑌)𝑋] .

(48)

Similarly using (5), (10), (11), (12) in (47), we get

𝜂 (𝑃 (𝑋, 𝑌)𝑍) = [𝑎 + 𝑏 (𝜆 + 1) +
𝑟

𝑛
(

𝑎

𝑛 − 1
+ 𝑏)]

× [𝑔 (𝑋, 𝑍) 𝜂 (𝑌) − 𝑔 (𝑌, 𝑍) 𝜂 (𝑋)] .

(49)

We assume that the condition 𝑅(𝜉,𝑋) ⋅ 𝑃 = 0, then we have

𝑅 (𝜉, 𝑋) 𝑃 (𝑈, 𝑉)𝑊 − 𝑃 (𝑅 (𝜉, 𝑋)𝑈,𝑉)𝑊

− 𝑃 (𝑈, 𝑅 (𝜉, 𝑋)𝑉)𝑊 − 𝑃 (𝑈,𝑉) 𝑅 (𝜉, 𝑋)𝑊 = 0.

(50)

Using (7) in (50), we find

𝜂 (𝑃 (𝑈, 𝑉)𝑊)𝑋 − 𝑔 (𝑋, 𝑃 (𝑈, 𝑉)𝑊) 𝜉

− 𝜂 (𝑈) 𝑃 (𝑋,𝑉)𝑊 + 𝑔 (𝑋,𝑈) 𝑃 (𝜉, 𝑉)𝑊

− 𝜂 (𝑉) 𝑃 (𝑈,𝑋)𝑊 + 𝑔 (𝑋,𝑉) 𝑃 (𝑈, 𝜉)𝑊

− 𝜂 (𝑊)𝑃 (𝑈,𝑉)𝑋 + 𝑔 (𝑋,𝑊)𝑃 (𝑈,𝑉) 𝜉 = 0.

(51)

By taking an inner product with 𝜉 then we get

𝜂 (𝑃 (𝑈, 𝑉)𝑊) 𝜂 (𝑋) − 𝑔 (𝑋, 𝑃 (𝑈, 𝑉)𝑊)

− 𝜂 (𝑈) 𝜂 (𝑃 (𝑋,𝑉)𝑊) + 𝑔 (𝑋,𝑈) 𝜂 (𝑃 (𝜉, 𝑉)𝑊)

− 𝜂 (𝑉) 𝜂 (𝑃 (𝑈,𝑋)𝑊) + 𝑔 (𝑋,𝑉) 𝜂 (𝑃 (𝑈, 𝜉)𝑊)

− 𝜂 (𝑊) 𝜂 (𝑃 (𝑈,𝑉)𝑋) + 𝑔 (𝑋,𝑊) 𝜂 (𝑃 (𝑈,𝑉) 𝜉) = 0.

(52)

By using (48), (49) in (52), we have

− 𝑔 (𝑋, 𝑃 (𝑈, 𝑉)𝑊) + [𝑎 + 𝑏 (𝜆 + 1) +
𝑟

𝑛
[

𝑎

𝑛 + 1
+ 𝑏]]

× [𝑔 (𝑋,𝑉) 𝑔 (𝑈,𝑊) − 𝑔 (𝑋,𝑈) 𝑔 (𝑉,𝑊)] = 0.

(53)

In view of (47) in (53), we have

− 𝑎𝑔 (𝑋, 𝑅 (𝑈, 𝑉)𝑊)

− 𝑏 [(𝜆 + 1) {𝑔 (𝑉,𝑋) 𝑔 (𝑈,𝑊) −𝑔 (𝑉,𝑊) 𝑔 (𝑈,𝑋)}

+ 𝜂 (𝑉) 𝜂 (𝑊) 𝑔 (𝑈,𝑋)

− 𝑔 (𝑉,𝑋) 𝜂 (𝑈) 𝜂 (𝑊)]

+ [𝑎 + 𝑏 (𝜆 + 1)]

× [𝑔 (𝑋,𝑉) 𝑔 (𝑈,𝑊) − 𝑔 (𝑋,𝑈) 𝑔 (𝑉,𝑊)] = 0.

(54)

Taking 𝑋 = 𝑈 = 𝑒
𝑖
in (54) and summing over 𝑖 = 1, 2, . . . , 𝑛,

and on simplification, we get

𝑎𝑆 (𝑉,𝑊) = −𝑎 (𝑛 − 1) 𝑔 (𝑉,𝑊) − 𝑏 (𝑛 − 1) 𝜂 (𝑉) 𝜂 (𝑊) .

(55)

Putting 𝑉 = 𝑊 = 𝜉 in (55) and by virtue of (12), (13), we get
the following equation:

𝜆 =
(𝑛 − 1) (𝑎 + 𝑏)

𝑎
. (56)

Since (𝑎+ 𝑏)/𝑎 ̸= 0 implies that 𝜆 > 0, that is, the Ricci soliton
in Kenmotsumanifold satisfying𝑅(𝜉,𝑋)⋅𝑃 = 0 is expanding,

hence we state the following theorem.

Theorem 4. A Ricci soliton in a Kenmotsu manifold satisfying
𝑅(𝜉, 𝑋) ⋅ 𝑃 = 0 is expanding.

7. Ricci Soliton in a Kenmotsu
Manifolds Satisfying 𝑃(𝜉,𝑋) ⋅ 𝑆 = 0

The condition 𝑃(𝜉, 𝑋) ⋅ 𝑆 = 0 implies that

𝑆 (𝑃 (𝜉, 𝑋) 𝑌, 𝑍) + 𝑆 (𝑌, 𝑃 (𝜉, 𝑋)𝑍) = 0. (57)
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By using (10) in (57), we have

𝜂 (𝑍) 𝜂 (𝑃 (𝜉, 𝑋) 𝑌) − (𝜆 + 1) 𝑔 (𝑃 (𝜉, 𝑋) 𝑌, 𝑍)

− (𝜆 + 1) 𝑔 (𝑌, 𝑃 (𝜉, 𝑋)𝑍) + 𝜂 (𝑌) 𝜂 (𝑃 (𝜉, 𝑋)𝑍) = 0,

(58)

that is,

[𝜂 (𝑍) 𝜂 (𝑃 (𝜉, 𝑋) 𝑌) + 𝜂 (𝑌) 𝜂 (𝑃 (𝜉, 𝑋)𝑍)]

= (𝜆 + 1) [𝑔 (𝑃 (𝜉, 𝑋) 𝑌, 𝑍) + 𝑔 (𝑌, 𝑃 (𝜉, 𝑋)𝑍)] .

(59)

By using (47) and (48) in (59), we have

[𝑎 +
𝑟

𝑛
[

𝑎

𝑛 − 1
+ 𝑏]]

× [2𝜂 (𝑋) 𝜂 (𝑌) 𝜂 (𝑍)

− 𝑔 (𝑋, 𝑍) 𝜂 (𝑌) − 𝑔 (𝑋, 𝑌) 𝜂 (𝑍)] = 0.

(60)

Put 𝑋 = 𝑌 = 𝜉 in (60); then the equation is identically
satisfied and we do not get the value for 𝜆. So, we proceed as
follows: taking𝑋 = 𝑌 = 𝑒

𝑖
, summing over 𝑖 = 1, 2, . . . , 𝑛, and

by virtue of (13) and 𝜂(𝑍) ̸= 0 conditions we obtain

𝜆 =
(𝑛 − 1)

2
(𝑎 − 𝑏)

𝑛 [𝑎 + 𝑏 (𝑛 − 1)]
. (61)

Therefore, if 𝑎 = 𝑏 in (61) then 𝜆 = 0; that is, Ricci soliton
in Kenmotsu manifolds satisfying 𝑃(𝜉, 𝑋) ⋅ 𝑆 = 0 is steady. If
𝑎 ̸= 𝑏 then either 𝜆 > 0 for 𝑎 > 𝑏 or 𝜆 < 0 for 𝑎 < 𝑏, that is, the
Ricci soliton in Kenmotsu manifold satisfying 𝑃(𝜉, 𝑋) ⋅ 𝑆 = 0

is expanding or shrinking.
Hence we can state the following theorem.

Theorem5. ARicci soliton in aKenmotsumanifolds satisfying
𝑃(𝜉, 𝑋) ⋅ 𝑆 = 0 is steady for 𝑎 = 𝑏, expanding for 𝑎 > 𝑏 and
shrinking for 𝑎 < 𝑏.
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