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We find the index of ˜∇-quasiconformally symmetric and ˜∇-concircularly symmetric semi-
Riemannian manifolds, where ˜∇ is metric connection.

1. Introduction

In 1923, Eisenhart [1] gave the condition for the existence of a second-order parallel symmet-
ric tensor in a Riemannian manifold. In 1925, Levy [2] proved that a second-order parallel
symmetric nonsingular tensor in a real-space form is always proportional to the Riemannian
metric. As an improvement of the result of Levy, Sharma [3] proved that any second-order
parallel tensor (not necessarily symmetric) in a real-space form of dimension greater than 2 is
proportional to the Riemannian metric. In 1939, Thomas [4] defined and studied the index of
a Riemannian manifold. A set of metric tensors (a metric tensor on a differentiable manifold
is a symmetric nondegenerate parallel (0, 2) tensor field on the differentiable manifold)
{H1, . . . ,H�} is said to be linearly independent if

c1H1 + · · · + c�H� = 0, c1, . . . , c� ∈ R, (1.1)

implies that

c1 = · · · = c� = 0. (1.2)
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The set {H1, . . . ,H�} is said to be a complete set if any metric tensorH can be written as

H = c1H1 + · · · + c�H�, c1, . . . , c� ∈ R. (1.3)

More precisely, the number of linearly independent metric tensors in a complete set of metric
tensors of a Riemannian manifold is called the index of the Riemannian manifold [4, page
413]. Thus, the problem of existence of a second-order parallel symmetric tensor is closely re-
lated with the index of Riemannian manifolds. Later, in 1968, Levine and Katzin [5] studied
the index of conformally flat Riemannian manifolds. They proved that the index of an n-
dimensional conformally flat manifold is n(n + 1)/2 or 1 according as it is a flat manifold
or a manifold of nonzero constant curvature. In 1981, Stavre [6] proved that if the index
of an n-dimensional conformally symmetric Riemannian manifold (except the four cases of
being conformally flat, of constant curvature, an Einstein manifold or with covariant constant
Einstein tensor) is greater than one, then it must be between 2 and n + 1. In 1982, Starve
and Smaranda [7] found the index of a conformally symmetric Riemannian manifolds with
respect to a semisymmetric metric connection of Yano [8]. More precisely, they proved the
following result: ”Let a Riemannian manifold be conformally symmetric with respect to a
semisymmetric metric connection∇. Then (a) the index i∇ is 1 if there is a vector fieldU such
that∇UE = 0 and∇Ur /= 0, where E and r are the Einstein tensor field and the scalar curvature
with respect to the connection ∇, respectively; and (b) the index i∇ satisfies 1 < i∇ ≤ n + 1 if
∇ E/= 0.”

A real-space form is always conformally flat, and a conformally flat manifold is always
conformally symmetric. But the converse is not true in both the cases. On the other hand,
the quasiconformal curvature tensor [9] is a generalization of the Weyl conformal curvature
tensor and the concircular curvature tensor. The Levi-Civita connection and semisymmetric
metric connection are the particular cases of a metric connection. Also, a metric connection
is Levi-Civita connection when its torsion is zero and it becomes the Hayden connection
[10] when it has nonzero torsion. Thus, metric connections include both the Levi-Civita
connections and the Hayden connections (in particular, semisymmetric metric connections).

Motivated by these circumstances, it becomes necessary to study the index of quasi-
conformally symmetric semi-Riemannian manifolds with respect to any metric connection.
The paper is organized as follows. In Section 2, we give the definition of the index of a semi-
Riemannian manifold and give the definition and some examples of the Ricci symmetric
metric connections ˜∇. In Section 3, we give the definition of the quasiconformal curvature
tensor with respect to a metric connection ˜∇. We also obtain a complete classification of
˜∇-quasiconformally flat (and in particular, quasiconformally flat) manifolds. In Section 4,
we find out the index of ˜∇-quasiconformally symmetric manifolds and ˜∇-concircularly
symmetric manifolds. In the last section, we discuss some of applications in theory of
relativity.

2. Index of a Semi-Riemannian Manifold

LetM be an n-dimensional differentiable manifold. Let ˜∇ be a linear connection inM. Then
torsion tensor ˜T and curvature tensor ˜R of ˜∇ are given by
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˜T(X,Y ) = ˜∇XY − ˜∇YX − [X,Y ],

˜R(X,Y )Z = ˜∇X
˜∇YZ − ˜∇Y

˜∇XZ − ˜∇[X,Y ]Z
(2.1)

for all X,Y,Z ∈ X(M), where X(M) is the Lie algebra of vector fields in M. By a semi-
Riemannian metric [11] onM, we understand a nondegenerate symmetric (0, 2) tensor field
g. In [4], a semi-Riemannian metric is called simply a metric tensor. A positive definite
symmetric (0, 2) tensor field is well known as a Riemannian metric, which, in [4], is called
a fundamental metric tensor. A symmetric (0, 2) tensor field g of rank less than n is called a
degenerate metric tensor [4].

Let (M,g) be an n-dimensional semi-Riemannian manifold. A linear connection ˜∇ in
M is called a metric connection with respect to the semi-Riemannian metric g if ˜∇g = 0. If
the torsion tensor of the metric connection ˜∇ is zero, then it becomes Levi-Civita connection
∇, which is unique by the fundamental theorem of Riemannian geometry. If the torsion
tensor of the metric connection ˜∇ is not zero, then it is called a Hayden connection [10, 12].
Semisymmetric metric connections [8] and quarter symmetric metric connections [13] are
some well-known examples of Hayden connections.

Let (M,g) be an n-dimensional semi-Riemannian manifold. For a metric connection ˜∇
inM, the curvature tensor ˜Rwith respect to the ˜∇ satisfies the following condition:

˜R(X,Y,Z, V ) + ˜R(Y,X,Z, V ) = 0,

˜R(X,Y,Z, V ) + ˜R(X,Y, V,Z) = 0
(2.2)

for all X,Y,Z, V ∈ X(M), where

˜R(X,Y,Z, V ) = g
(

˜R(X,Y )Z,V
)

. (2.3)

The Ricci tensor ˜S and the scalar curvature r̃ of the semi-Riemannian manifold with respect
to the metric connection ˜∇ is defined by

˜S(X,Y ) =
n
∑

i=1

εi ˜R(ei, X, Y, ei),

r̃ =
n
∑

i=1

εi ˜S(ei, ei),

(2.4)

where {e1, . . . , en} is any orthonormal basis of vector fields in the manifold M and εi =
g(ei, ei). The Ricci operator ˜Q with respect to the metric connection ˜∇ is defined by

˜S(X,Y ) = g
(

˜QX,Y
)

, X, Y ∈ X(M). (2.5)
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Define

ẽX = ˜QX − r̃

n
X, X ∈ X(M),

˜E(X,Y ) = g(ẽ X, Y ), X, Y ∈ X(M).

(2.6)

Then, consider

˜E = ˜S − r̃

n
g. (2.7)

The (0, 2) tensor ˜E is called tensor of Einstein [14] with respect to the metric connection ˜∇. If
˜S is symmetric, then ˜E is also symmetric.

Definition 2.1. A metric connection ˜∇ with symmetric Ricci tensor ˜S will be called a “Ricci-
symmetric metric connection.”

Example 2.2. In a semi-Riemannian manifold (M,g), a semisymmetric metric connection∇ of
Yano [8] is given by

∇XY = ∇XY + u(Y )X − g(X,Y )U, X, Y ∈ X(M), (2.8)

where ∇ is Levi-Civita connection, U is a vector field, and u is its associated 1 form given by
u(X) = g(X,U). The Ricci tensor S with respect to ∇ is given by

S = S − (n − 2)α − trace(α)g, (2.9)

where S is the Ricci tensor, and α is a (0, 2) tensor field defined by

α(X,Y ) = (∇Xu)(Y ) − u(X)u(Y ) +
1
2
u(U)g(X,Y ), X, Y ∈ X(M). (2.10)

The Ricci tensor S is symmetric if 1 form, u is closed.

Example 2.3. An (ε)-almost para contact metric manifold (M,ϕ, ξ, η, g, ε) is given by

ϕ2 = I − η ⊗ ξ, η(ξ) = 1, g
(

ϕX, ϕY
)

= g(X,Y ) − εη(X)η(Y ), (2.11)

where ϕ is a tensor field of type (1, 1), η is 1 form, ξ is a vector field and ε = ±1. An (ε)-almost
para contact metric manifold satisfying

(∇Xϕ
)

Y = − g
(

ϕX, ϕY
)

ξ − εη(Y )ϕ2X (2.12)
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is called an (ε)-para Sasakian manifold [15]. In an (ε)-para Sasakian manifold, the semisym-
metric metric connection ∇ given by

∇XY = ∇XY + η(Y )X − g(X,Y )ξ (2.13)

is a Ricci symmetric metric connection.

Example 2.4. An almost contact metric manifold (M,ϕ, ξ, η, g) is given by

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, g
(

ϕX, ϕY
)

= g(X,Y ) − η(X)η(Y ), (2.14)

where ϕ is a tensor field of type (1, 1), η is 1-form and ξ is a vector field. An almost contact
metric manifold is a Kenmotsu manifold [16] if

(∇Xϕ
)

Y = g
(

ϕX, Y
)

ξ − η(Y )ϕX, (2.15)

and is a Sasakian manifold [17] if

(∇Xϕ
)

Y = g(X,Y )ξ − η(Y )X. (2.16)

In an almost contact metric manifoldM, the semisymmetric metric connection ∇ given by

∇XY = ∇XY + η(Y )X − g(X,Y )ξ (2.17)

is a Ricci symmetric metric connection ifM is Kenmotsu, but the connection fails to be Ricci
symmetric ifM is Sasakian.

Let (M,g) be an n-dimensional semi-Riemannian manifold equipped with a metric
connection ˜∇. A symmetric (0, 2) tensor field H, which is covariantly constant with respect
to ˜∇, is called a special quadratic first integral (for brevity SQFI) [18] with respect to ˜∇. The
semi-Riemannian metric g is always an SQFI. A set of SQFI tensors {H1, . . . ,H�}with respect
to ˜∇ is said to be linearly independent if

c1H1 + · · · + c�H� = 0, c1, . . . , c� ∈ R (2.18)

implies that

c1 = · · · = c� = 0. (2.19)

The set {H1, . . . ,H�} is said to be a complete set if any SQFI tensor H with respect to ˜∇ can
be written as

H = c1H1 + · · · + c�H�, c1, . . . , c� ∈ R. (2.20)
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The “index” [4] of the manifold M with respect to ˜∇, denoted by i
˜∇, is defined to be the

number � of members in a complete set {H1, . . . ,H�}.
We will need the following Lemma.

Lemma 2.5. Let (M,g) be an n-dimensional semi-Riemannian manifold equipped with a Ricci
symmetric metric connection ˜∇. Then the following statements are true.

(a) If ˜∇X
˜S = 0, then ˜∇X

˜E = 0. Conversely, if r̃ is constant and ˜∇X
˜E = 0 then ˜∇X

˜S = 0.

(b) If ˜∇X
˜S/= 0 and ψ is a nonvanishing differentiable function such that ψ ˜∇X

˜S and g are
linearly dependent, then ˜∇X

˜E = 0.

The proof is similar to Lemmas 1.2 and 1.3 in [7] for a semisymmetric metric connec-
tion and is therefore omitted.

3. Quasiconformal Curvature Tensor

Let (M,g) be an n-dimensional (n > 3) semi-Riemannian manifold equipped with a metric
connection ˜∇. The conformal curvature tensor ˜Cwith respect to the ˜∇ is defined by [19, page
90] as follow:

˜C(X,Y,Z, V ) = ˜R(X,Y,Z, V ) − 1
n − 2

(

˜S(Y,Z)g(X,V ) − ˜S(X,Z)g(Y, V )

+g(Y,Z) ˜S(X,V ) − g(X,Z) ˜S(Y, V )
)

+
r̃

(n − 1)(n − 2)
(

g(Y,Z)g(X,V ) − g(X,Z)g(Y, V )
)

,

(3.1)

and the concircular curvature tensor ˜Zwith respect to ˜∇ is defined by ([20], [21, page 87]) as
follows:

˜Z(X,Y,Z, V ) = ˜R(X,Y,Z, V ) − r̃

n(n − 1)
(

g(Y,Z)g(X,V ) − g(X,Z)g(Y, V )
)

. (3.2)

As a generalization of the notion of conformal curvature tensor and concircular curvature
tensor, the quasiconformal curvature tensor ˜C∗ with respect to ˜∇ is defined by [9] as follows:

˜C∗(X,Y,Z, V ) = a ˜R(X,Y,Z, V ) + b
(

˜S(Y,Z)g(X,V ) − ˜S(X,Z)g(Y, V )

+g(Y,Z) ˜S(X,V ) − g(X,Z) ˜S(Y, V )
)

− r̃

n

{

a

n − 1
+ 2b

}

(

g(Y,Z)g(X,V ) − g(X,Z)g(Y, V )
)

,

(3.3)

where a and b are constants. In fact, we have

˜C∗(X,Y,Z, V ) = −(n − 2)b ˜C(X,Y,Z, V ) + (a + (n − 2)b) ˜Z(X,Y,Z, V ). (3.4)
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Since there is no restrictions for manifolds if a = 0 and b = 0, therefore it is essential for us to
consider the case of a/= 0 or b /= 0. From (3.4) it is clear that if a = 1 and b = − 1/(n − 2), then
˜C∗ = ˜C; if a = 1 and b = 0, then ˜C∗ = ˜Z.

Now, we need the following.

Definition 3.1. A semi-Riemannian manifold (M,g) equipped with a metric connection ˜∇ is
said to be

(a) ˜∇-quasiconformally flat if ˜C∗ = 0,

(b) ˜∇-conformally flat if ˜C = 0, and

(c) ˜∇-concircularly flat if ˜Z = 0.

In particular, with respect to the Levi-Civita connection ∇, ˜∇-quasiconformally flat, ˜∇
conformally flat, and ˜∇-concircularly flat become simply quasiconformally flat, conformally
flat, and concircularly flat, respectively.

Definition 3.2. A semi-Riemannian manifold (M,g) equipped with a metric connection ˜∇ is
said to be

(a) ˜∇-quasiconformally symmetric if ˜∇ ˜C∗ = 0,

(b) ˜∇-conformally symmetric if ˜∇ ˜C = 0, and

(c) ˜∇-concircularly symmetric if ˜∇ ˜Z = 0.

In particular, with respect to the Levi-Civita connection ∇, ˜∇-quasiconformally symmetric,
˜∇-conformally symmetric, and ˜∇-concircularly symmetric become simply quasiconformally
symmetric, conformally symmetric, and concircularly symmetric, respectively.

Theorem 3.3. Let M be a semi-Riemannian manifold of dimension n > 2. Then M is ˜∇-
quasiconformally flat if and only if one of the following statements is true:

(i) a + (n − 2)b = 0, a/= 0/= b, andM is ˜∇-conformally flat,

(ii) a + (n − 2)b /= 0, a/= 0,M is ˜∇-conformally flat, and ˜∇-concircularly flat,

(iii) a + (n − 2)b /= 0, a = 0 and Ricci tensor ˜S with respect to ˜∇ satisfies

˜S − r̃

n
g = 0, (3.5)

where r̃ is the scalar curvature with respect to ˜∇.

Proof. Using ˜C∗ = 0 in (3.3), we get

0 = a ˜R(X,Y,Z, V ) + b
(

˜S(Y,Z)g(X,V ) − ˜S(X,Z)g(Y, V )

+g(Y,Z) ˜S(X,V ) − g(X,Z) ˜S(Y, V )
)

− r̃

n

(

a

n − 1
+ 2b

)

(

g(Y,Z)g(X,V ) − g(X,Z)g(Y, V )
)

,

(3.6)
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from which we obtain the following:

(a + (n − 2)b)
(

˜S − r̃

n
g

)

= 0. (3.7)

Case 1 (a + (n − 2)b = 0 and a/= 0/= b). Then from (3.3) and (3.1), it follows that (n −
2)b ˜C = 0, which gives ˜C = 0. This gives the statement (i).

Case 2 (a + (n − 2)b /= 0 and a/= 0). Then from (3.7)

˜S(Y,Z) =
r̃

n
g(Y,Z). (3.8)

Using (3.8) in (3.6), we get

a

(

˜R(X,Y,Z, V ) − r̃

n(n − 1)
(

g(Y,Z)g(X,V ) − g(X,Z)g(Y, V )
)

)

= 0. (3.9)

Since a/= 0, then by (3.2) ˜Z = 0 and by using (3.9), (3.8) in (3.1), we get ˜C = 0. This gives the
statement (ii).

Case 3 ( +(n − 2)b /= 0 and a = 0, we get (3.5)). This gives the statement (iii). Converse
is true in all cases.

Corollary 3.4 (see [22], Theorem 5.1). LetM be a semi-Riemannian manifold of dimension n > 2.
ThenM is quasiconformally flat if and only if one of the following statements is true:

(i) a + (n − 2)b = 0, a/= 0/= b, andM is conformally flat,

(ii) a + (n − 2)b /= 0, a/= 0,andM is of constant curvature, and

(iii) a + (n − 2)b /= 0, a = 0, andM is Einstein manifold.

Remark 3.5. In [23], the following three results are known.

(a) [23, Proposition 1.1]. A quasiconformally flat manifold is either conformally flat or
Einstein.

(b) [23, Corollary 1.1]. A quasiconformally flat manifold is conformally flat if the con-
stant a/= 0.

(c) [23, Corollary 1.2]. A quasiconformally flat manifold is Einstein if the constants
a = 0 and b /= 0.

However, the converses need not be true in these three results. But, in Corollary 3.4 we
get a complete classification of quasiconformally flat manifolds.

4. ˜∇-Quasiconformally Symmetric Manifolds

Let (M,g) be an n-dimensional semi-Riemannian manifold equipped with the metric
connection ˜∇. Let ˜R be the curvature tensor of M with respect to the metric connection ˜∇.
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If H is a parallel symmetric (0, 2) tensor with respect to the metric connection ˜∇, then we
easily obtain that

H
((

˜∇U
˜R
)

(X,Y )Z,V
)

+H
(

Z,
(

˜∇U
˜R
)

(X,Y )V
)

= 0, X, Y, Z, V,U ∈ X(M). (4.1)

The solutions H of (4.1) is closely related to the index of quasiconformally symmetric and
concircularly symmetric manifold with respect to the ˜∇.

Lemma 4.1. Let (M,g) be an n-dimensional semi-Riemannian ˜∇-quasiconformally symmetric
manifold, n > 2 and b /= 0. Then

trace
(

˜∇U
˜E
)

= 0. (4.2)

Proof. Using (2.7) in (3.3), we get the following:

˜C∗(X,Y,Z, V ) = a ˜R(X,Y,Z, V ) + b
(

˜E(Y,Z)g(X,V ) − ˜E(X,Z)g(Y, V )

+g(Y,Z) ˜E(X,V ) − g(X,Z) ˜E(Y, V )
)

− a r̃

n(n − 1)
(

g(Y,Z)g(X,V ) − g(X,Z)g(Y, V )
)

.

(4.3)

Taking covariant derivative of (4.3) and using ˜∇U
˜C∗ = 0, we get

a
(

˜∇U
˜R
)

(X,Y,Z, V ) = b
((

˜∇U
˜E
)

(X,Z)g(Y, V ) −
(

˜∇U
˜E
)

(Y,Z)g(X,V )

−g(Y,Z)
(

˜∇U
˜E
)

(X,V ) + g(X,Z)
(

˜∇U
˜E
)

(Y, V )
)

+
a
(

˜∇Ur̃
)

n(n − 1)
(

g(Y,Z)g(X,V ) − g(X,Z)g(Y, V )
)

.

(4.4)

Contracting (4.4) with respect to Y and Z and using (2.2), we get

a
(

˜∇U
˜S
)

(X,V ) = − b trace
(

˜∇U
˜E
)

g(X,V )

− (n − 2)b
(

˜∇U
˜E
)

(X,V ) +
a
(

˜∇Ur̃
)

n
g(X,V ).

(4.5)

Using (4.5), we get (4.2).
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Theorem 4.2. If (M,g) is an n-dimensional semi-Riemannian ˜∇-quasiconformally symmetric man-
ifold, n > 2 and b /= 0, then (4.1) takes the form

det

⎛

⎝

H(X,Z) − 1
n
trace(H)g(X,Z) H(Y, V ) − 1

n
trace(H)g(Y, V )

(

˜∇U
˜E
)

(X,Z)
(

˜∇U
˜E
)

(Y, V )

⎞

⎠ = 0. (4.6)

If ˜∇U
˜E/= 0, then (4.6) has the general solution

HU(X,Y ) = f
(

˜∇U
˜S
)

(X,Y ) +
1
n

(

trace(HU) − f
(

˜∇Ur̃
))

g(X,Y ), (4.7)

where f is an arbitrary nonvanishing differentiable function.

Proof. Using (4.4) in (4.1), we get

0 = b
((

˜∇U
˜E
)

(X,Z)H(Y, V ) −
(

˜∇U
˜E
)

(Y,Z)H(X,V )

− g(Y,Z)H
((

˜∇Uẽ
)

X,V
)

+ g(X,Z)H
((

˜∇Uẽ
)

Y, V
)

+
(

˜∇U
˜E
)

(X,V )H(Y,Z) −
(

˜∇U
˜E
)

(Y, V )H(X,Z)

−g(Y, V )H
((

˜∇Uẽ
)

X,Z
)

+ g(X,V )H
((

˜∇Uẽ
)

Y,Z
))

+
a
(

˜∇Ur̃
)

n(n − 1)
(

g(Y,Z)H(X,V ) − g(X,Z)H(Y, V )

+g(Y, V )H(X,Z) − g(X,V )H(Y,Z)
)

.

(4.8)

Let {e1, . . . , en} be an orthonormal basis of vector fields inM. Taking X = Z = ei in (4.8) and
summing up to n terms, then, using (4.2), we have

0 = b

(

(n − 1)H
((

˜∇Uẽ
)

Y, V
)

+H
((

˜∇Uẽ
)

V, Y
)

−trace(H)
(

˜∇U
˜E
)

(Y, V ) − g(Y, V )
n
∑

i=1

H
((

˜∇Uẽ
)

ei, ei
)

)

+
a
(

˜∇Ur̃
)

n(n − 1)
(

trace(H)g(Y, V ) − nH(Y, V )
)

.

(4.9)

Interchanging Y and V in (4.9) and subtracting the so-obtained formula from (4.9), we
deduce that

H
((

˜∇Uẽ
)

Y, V
)

= H
((

˜∇Uẽ
)

V, Y
)

. (4.10)
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Now, interchanging X and Z, Y , and V in (4.8) and taking the sum of the resulting equation
and (4.8) and using (4.9) and (4.10), we get (4.6). If ˜∇U

˜E/= 0, then using (2.7) leads to (4.7).

Theorem 4.3. If (M,g) is an n-dimensional semi-Riemannian ˜∇-quasiconformally symmetric man-
ifold, n > 2 and b /= 0, and if there is a vector fieldU so that

˜∇U
˜E = 0 , ˜∇Ur̃ /= 0, (4.11)

then the solution of (4.1) isH = f g, where f is a differentiable nonvanishing function.

Proof. Using (4.11), (4.8) becomes

g(Y,Z)H(X,V ) − g(X,Z)H(Y, V ) + g(Y, V )H(X,Z) − g(X,V )H(Y,Z) = 0, (4.12)

Interchanging X and Z, Y and V in (4.12) and taking the sum of the resulting equation and
(4.12), we get

g(X,Z)H(Y, V ) − g(Y, V )H(X,Z) = 0. (4.13)

Therefore, the tensor fieldsH and g are proportional.

Theorem 4.4. Let (M,g) be an n-dimensional semi-Riemannian ˜∇-quasiconformally symmetric
manifold, n > 2 and b /= 0. If there is a vector fieldU satisfying the condition (4.11), then i

˜∇ = 1.

Proof. By Theorem 4.3 and from the fact that ˜∇Ug = 0 and ˜∇UH = 0, it follows that f is
constant. Thus, i

˜∇ = 1.

Theorem 4.5. Let (M,g) be an n-dimensional semi-Riemannian ˜∇-quasiconformally symmetric
manifold, n > 2 and b /= 0, for which the tensor field ˜E is not covariantly constant with respect to
the Ricci symmetric metric connection ˜∇. If i

˜∇ > 1, then there is a vector fieldU, so that the equation

˜∇UH = 0 (4.14)

has the fundamental solutions

H1 = g, H2 = ψ ˜∇U
˜S, (4.15)

where ψ is a differentiable nonvanishing function.

Proof. Given that ˜∇UE/= 0, there isU so that the tensorial equation (4.1) has general solution
which depends on U. g is obviously a solution of (4.14) because ˜∇Ug = 0, g also satisfies the
tensorial equation (4.1), and HU given by (4.7) is also a solution of (4.14). Equation (4.14)
has at least two solution as i

˜∇ > 1. These two solutions are independent. By Lemma 2.5(b)
ψ ˜∇U

˜S and g are independent and we get two fundamental solution of ˜∇U
˜H = 0 which is

H1 = g,H2 = ψ ˜∇U
˜S, where ψ is a differentiable nonvanishing function.
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Theorem 4.6. Let (M,g) be an n-dimensional semi-Riemannian ˜∇-quasiconformally symmetric
manifold, n > 2 and b /= 0, for which the tensor field ˜E is not covariantly constant with respect to
the metric connection ˜∇. Then 1 ≤ i

˜∇ ≤ n + 1.

Proof. LetUi, i = 1, . . . , p be independent vector fields, for which

˜∇Ui
˜E/= 0, (4.16)

and let ψi ˜∇Ui
˜S and g be the fundamental solutions of ˜∇Ui

˜H = 0. Obviously p < n, as Ui are
independent. Therefore, we have p + 1 solutions. This completes the proof.

Remark 4.7. The previous results of this section will be true for ˜∇-conformally symmetric
semi-Riemannian manifold, where ˜∇ is any Ricci symmetric metric connection.

Theorem 4.8. If (M,g) be an n-dimensional semi-Riemannian ˜∇-concircularly symmetric manifold,
then the (4.1) takes the form

det
(

H(X,Z) H(Y, V )
g(X,Z) g(Y, V )

)

= 0. (4.17)

Proof. Taking covariant derivative of (3.2) and using ˜∇U
˜Z = 0, we get

(

˜∇U
˜R
)

(X,Y,Z, V ) =
˜∇Ur̃

n(n − 1)
(

g(Y,Z)g(X,V ) − g(X,Z)g(Y, V )
)

, (4.18)

which, when used in (4.1), yields

0 =
˜∇Ur̃

n(n − 1)
(

g(Y,Z)H(X,V ) − g(X,Z)H(Y, V )

+ g(Y, V )H(X,Z) − g(X,V )H(Y,Z)
)

.

(4.19)

Now, we interchange X with Z and Y with V in (4.19) and take the sum of the resulting
equation and (4.19), and we get (4.17).

Theorem 4.9. Let (M,g) be an n-dimensional semi-Riemannian ˜∇-concircularly symmetric mani-
fold. Then i

˜∇ = 1.

Proof. By Theorem 4.8 and from the fact that ˜∇Ug = 0 and ˜∇UH = 0, we get i
˜∇ = 1.
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5. Discussion

A semi-Riemannian manifold is said to be decomposable [4] (or locally reducible) if there
always exists a local coordinate system (xi) so that its metric takes the form

ds2 =
r
∑

a,b=1

gabdx
adxb +

n
∑

α,β=r+1

gαβdx
αdxβ, (5.1)

where gab are functions of x1, . . . , xr and gαβ are functions of xr+1, . . . , xn. A semi-Riemannian
manifold is said to be reducible if it is isometric to the product of two or more semi-
Riemannian manifolds; otherwise, it is said to be irreducible [4]. A reducible semi-Riemannian
manifold is always decomposable but the converse needs not to be true.

The concept of the index of a (semi-)Riemannian manifold gives a striking tool to
decide the reducibility and decomposability of (semi-)Riemannian manifolds. For example,
a Riemannian manifold is decomposable if and only if its index is greater than one [4].
Moreover, a complete Riemannian manifold is reducible if and only if its index is greater than
one [4]. A second-order (0, 2)-symmetric parallel tensor is also known as a special Killing
tensor of order two. Thus, a Riemannian manifold admits a special Killing tensor other than
the Riemannian metric g if and only if the manifold is reducible [1], that is the index of the
manifold is greater than 1. In 1951, Patterson [24] found a similar result for semi-Riemannian
manifolds. In fact, he proved that a semi-Riemannian manifold (M,g) admitting a special
Killing tensor Kij , other than g, is reducible if the matrix (Kij) has at least two distinct
characteristic roots at every point of the manifold. In this case, the index of the manifold
is again greater than 1.

By Theorem 4.6, we conclude that a ˜∇-quasiconformally symmetric Riemannian man-
ifold (where ˜∇ is any Ricci symmetric metric connection, not necessarily Levi-Civita connec-
tion) is decomposable, and it is reducible if the manifold is complete.

It is known that the maximum number of linearly independent Killing tensors of order
2 in a semi-Riemannianmanifold (Mn, g) is (1/12)n(n+1)2(n+2), which is attained if and only
ifM is of constant curvature. The maximum number of linearly independent Killing tensors
in a four-dimensional spacetime is 50, and this number is attained if and only if the spacetime
is of constant curvature [25]. But, from Theorem 4.6, we also conclude that the maximum
number of linearly independent special Killing tensors in a 4-dimensional Robertson-Walker
spacetime [11, page 341] is 5.
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