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Abstract
Here we present the results of a taphonomic study of the faunal assemblage associated

with the hominin fossils (Australopithecus sediba) from the Malapa site. Results include es-

timation of body part representation, mortality profiles, type of fragmentation, identification

of breakage patterns, and microscopic analysis of bone surfaces. The diversity of the faunal

spectrum, presence of animals with climbing proclivities, abundance of complete and/or ar-

ticulated specimens, occurrence of antimeric sets of elements, and lack of carnivore-modi-

fied bones, indicate that animals accumulated via a natural death trap leading to an area of

the cave system with no access to mammalian scavengers. The co-occurrence of well pre-

served fossils, carnivore coprolites, deciduous teeth of brown hyaena, and some highly

fragmented and poorly preserved remains supports the hypothesis of a mixing of sediments

coming from distinct chambers, which collected at the bottom of the cave system through

the action of periodic water flow. This combination of taphonomic features explains the re-

markable state of preservation of the hominin fossils as well as some of the associated

faunal material.

Introduction
The dolomitic caves in the Cradle of Humankind, South Africa, have yielded extremely rich
late Pliocene to early Pleistocene palaeontological assemblages, which comprise fossils of

PLOSONE | DOI:10.1371/journal.pone.0126904 June 10, 2015 1 / 16

OPEN ACCESS

Citation: Val A, Dirks PHGM, Backwell LR, d’Errico
F, Berger LR (2015) Taphonomic Analysis of the
Faunal Assemblage Associated with the Hominins
(Australopithecus sediba) from the Early Pleistocene
Cave Deposits of Malapa, South Africa. PLoS ONE
10(6): e0126904. doi:10.1371/journal.pone.0126904

Academic Editor: Michael D. Petraglia, University of
Oxford, UNITED KINGDOM

Received: November 11, 2014

Accepted: March 24, 2015

Published: June 10, 2015

Copyright: © 2015 Val et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
available via Figshare at the following URLs:(http://
figshare.com/articles/Excel_database_of_the_PhD_
thesis/1360019), (http://figshare.com/articles/PhD_
manuscript/1360017), (http://figshare.com/articles/
Appendices_of_the_PhD_thesis/1360018), (http://
figshare.com/articles/Declaration_
Acknowledgements_Abstract_Contents_of_the_
PhD_thesis/1360016), (http://figshare.com/articles/
Title_page_PhD_thesis/1360015).

Funding: This paper was funded by the National
Geographic Society, Gauteng Provincial Government,

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0126904&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://figshare.com/articles/Excel_database_of_the_PhD_thesis/1360019
http://figshare.com/articles/Excel_database_of_the_PhD_thesis/1360019
http://figshare.com/articles/Excel_database_of_the_PhD_thesis/1360019
http://figshare.com/articles/PhD_manuscript/1360017
http://figshare.com/articles/PhD_manuscript/1360017
http://figshare.com/articles/Appendices_of_the_PhD_thesis/1360018
http://figshare.com/articles/Appendices_of_the_PhD_thesis/1360018
http://figshare.com/articles/Declaration_Acknowledgements_Abstract_Contents_of_the_PhD_thesis/1360016
http://figshare.com/articles/Declaration_Acknowledgements_Abstract_Contents_of_the_PhD_thesis/1360016
http://figshare.com/articles/Declaration_Acknowledgements_Abstract_Contents_of_the_PhD_thesis/1360016
http://figshare.com/articles/Declaration_Acknowledgements_Abstract_Contents_of_the_PhD_thesis/1360016
http://figshare.com/articles/Title_page_PhD_thesis/1360015
http://figshare.com/articles/Title_page_PhD_thesis/1360015


various hominin taxa (Australopithecus africanus, Australopithecus prometheus, Paranthropus
robustus, early Homo and Homo ergaster) and associated mammals, reptiles, and birds (see for
instance [1–13]). These faunal assemblages are usually composed of isolated and fragmentary
skeletal remains, and include few, if any, hominin fossils, with the notable exceptions of Sterk-
fontein and Swartkrans [1–3, 6, 7, 13–15]. Modes of bone accumulation into the cave systems
[1, 8, 16–20] lead to a generally poor state of preservation of the fossils. Hence, accumulation
by carnivores, including extinct and extant felids and hyaenids, and birds of prey, as well as
post-depositional damage induced by various biotic (e.g. porcupines) and abiotic agents (e.g.
calcification/decalcification cycles, sub-aerial weathering, sediment reworking and sediment
pressure) contribute to a high degree of fragmentation of skeletal elements, damaged bone sur-
faces, compaction and deformation of the bones, and absence of articulated remains.

In the context of the Plio-Pleistocene faunal assemblages from the Cradle of Humankind,
the recently discovered deposits at Malapa (Fig 1) constitute a unique case. Not only have they
yielded a very high number of hominin specimens (belonging to the recently named new spe-
cies, Australopithecus sediba), the material is also extremely well preserved [21, 23]. This indi-
cates a suite of taphonomic events different from those observed in other South African cave
sites. As a preliminary hypothesis [22] it was proposed that the hominins entered the cave via a
vertical shaft leading to a cave chamber offering no access to scavengers. The combination of a
natural death trap scenario followed by a debris flow was suggested to explain the remarkable
state of preservation of the hominins [22]. This hypothesis is now supported by a comparative
taphonomic analysis of hominin and non-hominin remains provided here.

Background to the Site
The Malapa fossil site is located 15 km northeast of the Sterkfontein Caves, within the Cradle
of Humankind (World Heritage Site), at 25°53’42’S, 27°48’05’E. Faunal remains studied here,
found associated with two Au. sediba skeletons (MH1, Malapa Hominin 1, a juvenile male; and
MH2, Malapa Hominin 2, an adult female), were excavated from a pit, 3.3 m by 4.4. m in size
and 4 m deep, which represents the erosional remnants of what was once a deep cave system
[23]. Malapa was mined for flowstone in the early 20th century [20, 24], which resulted in the
removal of fossil-bearing blocks from the pit. These blocks were scattered around the pit and
collected between 2008 and 2009 (Fig 1). Most of the fossils (n.1154) were manually extracted
from ex situ blocks of clastic calcified sediment. Some specimens (n.148) were recovered in situ
during preliminary excavations of the decalcified sediments in Facies D, E and F. The estimated
volume of sediment from which in situ or ex situ fossils were recovered is small (<21.2 cubic
meters). Fossils from other Plio-Pleistocene deposits from the Bloubank Valley in the Cradle of
Humankind are usually recovered from ‘breccias’ or clastic calcified sediments. In this region,
bones and carcasses have generally accumulated in the form of talus cones inside cavities in the
dolomites. These talus cones calcified due to lime-bearing solutions dripping from the roof,
which resulted in consolidated fossil-rich ‘breccias’ or clastic calcified sediments [1]. At
Malapa, erosion of the roof of the cave led to the exposure of such sediments, which locally un-
derwent decalcification due to soil forming processes involving the circulation of slightly
acidic water.

Sedimentary evidence from Facies D, the deposit dated to 1.977 ± 0.002 Ma [25] that has
yielded the bones of MH1 and MH2 [20, 21], indicates that it originated as a debris flow,
whereas the overlying sediments belonging to Facies E and F were deposited as muddy accu-
mulations along the cave floor, with the occasional influx of sandy material as a result of
directional water flow [22, 25]. During much of their depositional history, the sediments in Fa-
cies E and F were water-logged. In terms of composition, the sediments in Facies D, E and F,
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represent a mixture of poorly-sorted, autochthonous (from within the cave), and allochtho-
nous (external to the cave) clastic deposits including interspersed mudstone and muddy sand-
stone units that contain a high proportion of manganese-rich peloidal material, derived from
the reworking of muddy sediment by insects (beetles, termites). These sediments display a gen-
eral fining upward sequence, from coarser sand with breccia blocks at the base of Facies E, to
pure mud at the top of Facies F, with isolated dolomite blocks and fossils embedded in this
muddy facies [22, 25].

Fig 1. General presentation of Malapa. Top: location of Malapa in South Africa (A) and in the Cradle of Humankind (B). Bottom: pictures taken at the site
during collect of ex situ blocks (C) and preliminary excavations of the in situ deposits (D), between 2008 and 2009.

doi:10.1371/journal.pone.0126904.g001
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Methods
The vertebrate assemblage was analyzed to determine the composition of the faunal spectrum,
survival of skeletal elements, mortality profiles, and agents responsible for bone breakage and
surface modifications. The NISP represents the total Number of Identified Specimens [26],
with “specimen” referring to any bone or tooth fragment identified to the anatomical level [27]
and/or the taxonomic level [28, 29]. In most cases, bones attributed to a family or a species
have also been assigned to a specific skeletal element since taxonomic identification cannot be
conducted without anatomical identification [30]. The MNE (Minimum Number of Elements)
[31] is used to estimate the frequency of each skeletal element [30]. In our estimation of the
MNE, the method chosen follows a manual overlap method as advocated by some [32], which
takes into account criteria such as size and morphology. The criterion of age (infant, juvenile,
adult, old) is also considered. The MNI, or “Minimum Number of Individuals necessary to ac-
count for all the kinds of skeletal elements found in the skeleton of a taxon” [30], is calculated
in order to estimate the abundance of different taxa within the assemblage [33]. The MNI is es-
timated using the highest MNE value for each taxon and combines different criteria, such as
age, size and morphology. The percentage survival is used to calculate the degree of bone pres-
ervation in the faunal assemblage and to obtain information about body part frequencies. We
refer to Brain’s definition: the percentage survival is the “observed proportion of each anatomi-
cal part that survived attritional processes” [34, 35, 36] and is calculated as follows: (100 x
MNEe) / (MNI x number of times ‘e’ occurs in one skeleton, where ‘e’ represents a given skeletal
element).

For the description of breakage patterns, we use the criteria proposed by Villa and Mahieu
[37] for human long bones to differentiate between green and dry bone breakage patterns.
Since these criteria have been established on long bones, no breakage pattern is attributed to
any other bone category. The fracture angle, outline and edge are considered, as well as the in-
tensity of the fragmentation (i.e. shaft circumference, shaft fragmentation, lengths of the shaft
fragments and breadth/length ratio). Fractures on dry bones are typically characterised by a
right angle, a transverse outline and a jagged edge, whereas green bone fractures are associated
with an oblique angle, curved outline and smooth edge [37].

Two levels of articulation for the Malapa fossils were defined. A “true articulation” refers to
bones that are still directly associated with one another (direct contact, with no sediment be-
tween the bones), in their original anatomical position. The term “anatomical proximity” refers
to bones that are preserved close to one another in the calcified sediment, but are no longer
fully articulated, and have some sedimentary infiltrate between them. Microscopic analysis of
the faunal assemblage was conducted for the identification and description of bone surface
modifications, using an Olympus SZX 16 Multifocus microscope at magnifications between 7
and 115 times.

We thank the South African Heritage Resource agency for the research permits; the Nash
family and John Nash Nature reserve for granting access and continued support of research at
Malapa.

Material
The faunal assemblage to date, including hominin remains, comprises 1302 fossil specimens
(bones, bone fragments, teeth, tooth fragments, horn cores, and carapace fragments; S1 Data-
set). Abundant faunal remains are likely to be present inside in situ deposits that have still to be
excavated, as well as in ex situ blocks awaiting preparation. It is therefore important to bear in
mind that the faunal remains analyzed here represent a small sample of a much larger faunal
assemblage at the site. Of the 1302 remains studied, 971 have been identified to family level,
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while 331 have been classified as unidentifiable mammal remains. The assemblage comprises
18 species of ungulates, carnivores, primates, rodents and birds (Fig 2) [22, 38, 39, 40]. In terms
of body size, taxa range from microvertebrates (Elephantulus sp.) [39] to large ungulates (class
size V) [22]. Non-hominin primates are represented only by a partial skull assigned to a cerco-
pithecoid (Papio angusticeps) [40]. Carnivores (MNI: 14, MNE: 171, and NISP: 173), ungulates
(MNI: 13, MNE: 306, and NISP: 434) and hominins (MNI: 6; MNE: 160, and NISP: 242) domi-
nate the assemblage, with bovids representing the highest of number of identified specimens
(Fig 2).

Results
The Malapa fossil assemblage is characterized by a relatively high faunal diversity, with a total
of 18 taxa identified. Animals with good climbing proclivities, namely carnivores and primates
(mostly hominins) are well represented (Fig 2). Mortality profiles for the hominins, ungulates
and carnivores (S5 Fig) closely resemble mass mortality patterns, normally associated with
non-selective, catastrophic events [41].

The majority of the faunal remains show a good state of preservation. Body part representa-
tions for ungulates and primates do not reflect any particular selection pattern (no significant
over-representation of specific skeletal elements, or under-representation or absence of others)
and are therefore inconsistent with an assemblage accumulated by carnivores [42, 43] (S1 Fig).
Instead, cranial and post-cranial elements are represented in the assemblage, including teeth,
elements of the axial skeleton, limbs and extremities (phalanges, tarsals, carpals and caudal
vertebrae) (S1 Dataset; S1 Fig; S1 Table). Skeletal profiles generally follow a density-mediated
pattern [44–47], whereby denser and more compact bones (e.g. long bone shafts, tarsals, man-
dibles and metapodials) show percentages of survival greater than those of lighter and more

Fig 2. Composition of the fauna fromMalapa. Values in brackets represent the minimum number of individuals.

doi:10.1371/journal.pone.0126904.g002
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fragile elements (e.g. ribs, vertebrae and scapula blades) (S1 Fig; S1 Table). Articulated and
near-articulated remains of bovids, large and small carnivores, hominins and rodents have
been recovered in abundance, and all types of joints, including persistent, intermediate and un-
stable joints (ankles, hands, feet, partial vertebral columns, knee and limbs) are represented
(S2–S3 Tables; S2–S4 Figs; Fig 3). Apart from the skeletons of MH1 and MH2, 12 antimeric
sets of bones belonging to small and large carnivores, bovids and leporids have been identified
(S4 Table).

Despite the significant number of carnivore remains in the assemblage, and the presence of
extant taxa known to accumulate bones inside caves (the leopard Panthera pardus [1, 48] and
brown hyaena Parahyaena brunnea [49], as well as extinct false saber-tooth cat, Dinofelis bar-
lowi, considered a potential bone accumulating agent [1, 50]), microscopic analysis of the bone
surfaces revealed no carnivore tooth or gastric acid damage. Bone breakage patterns are consis-
tent with fracture due to a fall, or naturally occurring on dry bones, rather than breakage by
carnivores.

Similarly, porcupines are represented by two quills in the faunal assemblage, but marks pro-
duced by their teeth are absent from the faunal collection so far. There is no indication of hom-
inin accumulation or modification of bone, and no evidence of damage by birds of prey. The
principal biotic agents responsible for bone surface modification are invertebrates and mi-
crobes, detailed descriptions of which are in progress. The majority of the assemblage (65%) is
only slightly weathered and falls within stages 1 and 2, sensu Behrensmeyer [51]: remains char-
acterized by superficial or deeper cracking; cortical surface of the bones still preserved.

A few components of the faunal assemblage indicate the introduction of some material
from a source area that presents a different taphonomic signature. Apart from well preserved
faunal material, fragmentary and poorly preserved bone remains were also recovered (Fig 4).
Representing 39.8% of the assemblage (in NISP), these remains are highly weathered (stages 3
to 5; S8 Fig) and have a very invasive manganese coating (Fig 4; S6–S7 Figs). Decalcification ap-
pears to have played an important role in the preservation of these fossils; the majority (86.6%)
of poorly preserved specimens were recovered from decalcified sediments, while well preserved
fossils come from calcified clastic sediments (S6–S7 Figs; S5–S6 Tables).

Discussion
The results of the analysis of the Malapa faunal assemblage have several implications, which
are discussed here. Firstly, based on the taphonomic characteristics of the faunal remains, we
propose a hypothetical scenario explaining the modes of accumulation of animal remains in-
side the cave and subsequent diagenetic processes, namely a natural death trap scenario fol-
lowed by the action of a debris flow. Hypotheses regarding the possible origin of the unusual
abundance of carnivores in the assemblage are also presented, based on comparisons with
other fossil death traps from South Africa and elsewhere. Finally, we discuss the significance of
the taphonomic specificities observed at Malapa, in the context of Plio-Pleistocene fossil assem-
blages from the Cradle of Humankind.

A natural death trap scenario
The abundance of articulated remains, antimeric sets of bones, complete and near complete
bones indicates that most of the animals entered the cave system as whole individuals. Several
lines of evidence point towards the absence of carnivore contribution to the faunal assemblage.
Hence, carnivores known to accumulate bones inside caves (felids and hyaenids) produce pre-
dictable skeletal patterns, consistent either with refuse or scat assemblages [1, 42, 43, 52] and
associated with the way they consume their prey (e.g. hyaenid preference for spongy epiphyses
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Fig 3. Examples of articulated faunal remains. A) Dinofelis sp. articulated right ankle (UW88-747). B) Parahyaena brunnea articulated ankle (UW88-739).
C) Bovid articulated foot (UW88-650). D) Lepus sp. pelvis articulated with the sacrum and last lumbar vertebrae (UW88-769). E) Bovid articulated
intermediate and distal phalanges and one sesamoid (UW88-528). F) Bovid intermediate and distal phalanges (no specimen number). G) Bovid metatarsal,
first phalanx and sesamoids specimens (UW88-751-756).

doi:10.1371/journal.pone.0126904.g003
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over hard cortical long bones shafts; or tendency of carnivores to swallow whole small ele-
ments, which are consequently found in the form of digested bones inside scat assemblages).
On the contrary, the body part representation observed for the fauna at Malapa follows a densi-
ty-mediated pattern, suggesting that decomposition of carcasses of animals having fallen inside
the cave took place without disruption by carnivores. Hyenids are very destructive and tend to
produce assemblages with high percentages of broken bones, digested elements and gnawed
bones (e.g. bones showing crenulated edges, pits, punctures and furrows) [1, 18, 19, 52]. While
being less destructive, leopards also leave gnaw marks and break bones during consumption [1,
18, 19, 48, 52]. At Malapa, the lack of carnivore chewing marks on the faunal remains, together

Fig 4. Heterogeneous preservation of fossils in the Malapa faunal assemblage. A) Highly weathered and decalcified bovid femur. B) Unweathered, well-
preserved bovid sacrum. C) Articulated bovid ribs and thoracic vertebrae. D) Extremely fragmentary unidentifiable bone fragments recovered from
decalcified sediments. E) and F) Superior and inferior views of a complete, articulated, upper skeleton of a small carnivore (Genetta sp.).

doi:10.1371/journal.pone.0126904.g004
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with the abundance of complete and near complete elements and the recovery of elements still
in articulation confirm that (1) carnivores did not accumulate carcasses inside the cave; and (2)
they did not have access to the cave chamber where carcasses where decomposing. Damage
caused by rodents, and especially porcupines (Hystrix africaeaustralis), is documented for the
majority of Plio-Pleistocene South African fossil assemblages [1, 10, 16]. The absence of rodent
damage at Malapa confirms that the cave chamber where animals were decomposing did most
likely not offer any other access than the vertical shaft leading to it. Insects and microbes seem
to have been the only animals able to reach the carcasses.

The prominence of animals with good climbing proclivities, as is the case at Malapa, is a
common feature among faunal assemblages accumulated via natural death traps [17;53–59]. In
the Cradle of Humankind, large carnivores and primates dominate the faunal assemblages of
Sterkfontein Member 2 (deposit associated with the well preserved australopithecine skeleton
StW 573, “Little Foot”) and Peabody’s Pit 23 at Bolt’s Farm, two sites that have yielded fossil as-
semblages accumulated via a pitfall, and without the contribution of biotic agents [17;53]. In
the Holocene assemblage recovered from the pitfall of McEachern’s Deathtrap Cave in Austra-
lia, the bones of several arboreal species have been recovered in abundance [56], especially ko-
alas (Phascolarctos cinereus) and possums (brush-tailed possum, Trichosurus vulpecula; pygmy
possum, Cercatetus nanu; and ring-tailed possum, Pseudocheirus peregrinus), which are con-
sidered to be excellent climbers. The presence of leporid remains (Lepus sp.) in the Malapa as-
semblage is interesting because studies of European fossil assemblages accumulated via natural
pitfalls have shown the occurrence of hare and rabbit bones to be a constant in such assem-
blages. In karstic regions, these animals can easily fall inside natural openings while running
away from predators [57; 59].

Therefore, based on the composition of the faunal spectrum, body part representations,
mortality profiles, breakage patterns, presence of antimeric sets of bones, articulated remains,
and lack of gnaw marks on the bones, the contribution of rodents, birds of prey and mammali-
an predators as major taphonomic agents can be discarded. Rather, the general characteristics
of the fossil assemblage point towards a natural death trap scenario [17; 54–59].

In a recent study of landscape dynamics in the Cradle of Humankind [23], the rate of ero-
sion of the African Plateau in the past 4 Millions years was estimated and it was proposed that
at the time of the accumulation of the faunal assemblage (ca. 2 Ma BP), the Malapa cave system
may have been as deep as 30 m. The presence of articulated remains of large bovids in the as-
semblage recovered from the pit indicates that the cave entrance must have been large enough
to permit animals of this size to enter.

We propose a natural death trap scenario in its wider sense, as defined by Pickering et al.
[17]. Animals running away from predators or not detecting the opening hidden by vegetation
would have fallen directly via a vertical shaft towards a deep part of the cave system offering no
access to scavengers—the Malapa site as we know it today. Some animals could have been at-
tracted by water or the smell of decomposing carcasses. Finally, some bones and carcasses
could have been directly collected from the surface by gravity or heavy summer rains. Based on
the articulated specimens and antimeric sets of bones, we propose that at least seven complete
individuals, including the two hominins MH1 and MH2 (Table 1), accumulated inside a cave
chamber where they decomposed and mummified.

The water-laid sediments comprising Facies D are associated with a debris flow event. The
occurrence of elements still in articulation or preserved as anatomical proximities consistent
with unstable joints (i.e. joints that disarticulate first during the decomposition process) could
indicate that some of the decomposing carcasses were either in a relatively fresh state or mum-
mified when the debris flow took place. Conditions inside the dolomitic cave chamber at
Malapa (stable temperature and degree of humidity, as well as absence of disturbance by
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scavengers) were conducive to bone preservation. The occurrence of a few poorly preserved
bones mixed with the otherwise very well preserved fossils, is in accordance with the action of a
debris flow that mixed bones from various parts of the cave system, most of which accumulated
via a natural death trap, and from the surface. All skeletal elements caught in the debris flow
would have been transported and buried to a deeper part of the cave system, where they fossil-
ized. Burial by the debris flow created an anaerobic environment allowing for the excellent
preservation of the hominin fossils and some of the associated fauna for the next 2 million
years.

Abundance of carnivores in the assemblage
Within extant and extinct faunal communities, respective percentages of carnivores and ungu-
lates are generally disproportionate in favour of ungulates, which are much more abundant in
a given ecosystem than their predators. Therefore, a high carnivore/ungulate ratio inside a fos-
sil assemblage, as is the case at Malapa, is likely to be the consequence of some taphonomic
bias. In cave contexts, two distinct scenarios can lead to an overrepresentation of carnivore re-
mains within a faunal assemblage: (1) when the cave is used by bone-collecting carnivores such
as leopards and hyaenas, and especially by the brown hyaena P. brunnea, a taxon that includes
a high percentage of carnivores in its diet [49]; or (2) when carcasses are naturally accumulated
via a pitfall. In the second scenario, carnivores are attracted by the smell of decomposing ani-
mals. Endowed with good climbing skills, they might venture inside the cave system and find
themselves trapped.

Several examples of fossil natural death trap assemblages characterised by an unusually high
percentage of carnivores are documented in the literature. In South Africa, two fossil Plio-Pleis-
tocene deposits in the Cradle of Humankind have also yielded a significant percentage of carni-
vore remains: Member 2 at Sterkfontein, associated with Stw 573; and Peabody’s Pit 23 at
Bolt’s Farm. In both cases, the fauna is dominated by felids and cercopithecoids. At Sterkfon-
tein Member 2, felids are represented by the leopard Panthera pardus (MNI: 2), the lion P. leo
(MNI: 1) and the caracal Felis caracal (MNI: 4) [17]. As in the case of Malapa, the fauna is char-
acterised by the presence of antimeric sets of bones, articulated elements, partial skeletons and
rare indications of carnivore gnawing. The faunal assemblage from Peabody’s Pit 23 in Bolt’s
Farm contains well preserved cranial associated with post-cranial material preserving some
limb elements in partial articulation, belonging to three Dinofelis barlowi individuals (two
adults and one juvenile), considered to be part of the same family [53]. For both assemblages,
the hypothesis of the use of the cave by the carnivores as a den has been ruled out, based, for
Sterkfontein Member 2, on the low degree of carnivore damage on the bones, the absence of di-
gested bones, coprolites and juvenile carnivore remains [17]; and for Peabody’s Pit 23, on the

Table 1. Minimum number of individuals represented by complete and near complete skeletons.

Species Description of the specimens/individuals MNI

Au. sediba MH1 and MH2 (nearly complete individuals) 2

Bovid class II Various elements in articulation, partial skeleton, 3 antimeric sets of
bones; one near complete foetus in articulation

2

Bovid class III
(Tragelaphus sp.)

Various elements in articulation, partial skeleton, 5 antimeric sets of
bones

1

Small carnivore (Genetta
sp.)

Complete upper body in articulation and near-articulation 1

Lagomorph (Lepus sp.) Articulated bones, 3 antimeric sets of bones 1

TOTAL - 7

doi:10.1371/journal.pone.0126904.t001
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absence of ungulate remains in the assemblage [53]. Rather, the authors suggested that the car-
nivores intentionally entered the cave, which was probably difficult to access, attracted by
water or decomposing animals, and were unable to get out. Other examples of unusually high
percentages of carnivores inside fossil assemblages are also documented outside of Africa.
Hence, at Natural Trap Cave (Wyoming, USA) and at l’Igue du Gral (Lot, France), gray wolves
(Canis lupus) are remarkably abundant [54; 59]. At Coudoulous, remains of canids and hyae-
nids, namely gray wolves and European cave hyaenas (Crocuta spelaea), have also been collect-
ed in significant quantities [55]. In these three cases, it has been suggested that the carnivores,
attracted by animals decomposing inside the cave system, tried to climb down and died, either
as a direct consequence of the fall, or due to thirst and starvation.

Malapa: a unique case in the Cradle of Humankind
The results of this study confirm the complexity of the interactions between the taphonomic
processes, which have contributed to the accumulation and modification of bones in the differ-
ent caves from the Cradle of Humankind. As pointed out by Adams [10], each South African
fossil assemblage has a unique taphonomic and ecological history that influenced the composi-
tion of the assemblage [10]. The fauna fromMalapa constitutes no exception to the rule. The
assemblage is the result of a unique combination of taphonomic processes, which include the
capture of animals via a vertical shaft in a part of the cave system offering limited, if any, access
to mammalian scavengers, surface modification of bone by invertebrates, and the action of a
debris flow, which led to the remarkable state of preservation of the hominins and some of the
associated fauna.

Fossil remains recovered from cave deposits in the Cradle of Humankind are usually isolat-
ed, fragmentary and poorly preserved (e.g. weathered, having suffered from decalcification,
covered with manganese). This is especially true of hominin remains, which are normally not
only poorly preserved, but also very rare. Together with StW 573 and the fauna associated with
it in Sterkfontein Member 2 [14, 15, 17], Malapa constitutes, in terms of preservation, a unique
case in the context of Plio-Pleistocene cave deposits in the Bloubank Valley. Besides the
exceptional degree of bone preservation, another remarkable feature of the assemblage is the
significant number of hominin remains; a quarter of the faunal assemblage. Another notable
difference between Malapa and the other South African sites considered to have accumulated
via a natural death trap is the almost complete absence of non-hominin primates. Cercopithe-
coids at Malapa are represented by a single skull attributed to Papio sp. [40], while remains of
Papio, Parapapio and Cercopithecoides williamsi are abundant at Peabody Pit 23 in Bolt’s Farm
and Sterkfontein Member 2. The recovery of more material during future excavations should
enable us to test whether this is due to sampling bias, or is the reflection of a genuine rarity of
cercopithecoids in the Malapa assemblage, possibly related to territorial behaviour [60].

Conclusion
A natural death trap scenario combined with debris flow is the most parsimonious explanation
for the accumulation and fossilization of the faunal material recovered in association with the
two nearly complete Au. sediba skeletons (MH1 and MH2) from Malapa. A thorough tapho-
nomic analysis confirmed the introduction of a large proportion of the animals in the deposit
via a vertical shaft leading to a part of the cave that offered no access to mammalian carnivores,
birds of prey or rodents. A debris flow incorporated skeletons in that part of the cave, which,
based on their state of articulation and completeness, were likely mummified. This debris flow
collected elements from other parts of the karstic system, and probably from the surface, before
settling in a lower part of the cave system and lithifying to form breccia. This combination of
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taphonomic events is apparently unique in the context of cave sites in the Cradle of Human-
kind, and contributes to explaining the remarkable state of preservation of the hominins and
some of the associated fauna.

Supporting Information
S1 Dataset. Complete excel database about the faunal assemblage fromMalapa, including
taxonomic, anatomical and taphonomic descriptions.
(XLSX)

S1 Fig. Skeletal body part survival percentages for ungulates and carnivores.
(TIF)

S2 Fig. Examples of articulated non-hominin faunal remains in blocks. A) One bovid
femur, two tibiae, and one talus in block UW88-B848. B) Bovid thoracic vertebrae associated
with bovid ribs, one humerus and an ungulate mandible with teeth, in block UW88-B375. C)
Bovid humerus articulated with a radio-ulna, in block UW88-B051.
(TIF)

S3 Fig. Examples of non-hominin faunal remains in near articulation, still embedded in
calcified sediment. A) Mammal ribs in block UW88-B1043. B) Bovid humerus and associated
scapula in block UW88-B243. C) Bovid ribs in block UW88-B152.
(TIF)

S4 Fig. Examples of non-hominin faunal remains in anatomical proximity. A) Bovid left
ankle (UW88-1156 to 1160). B) Large bovid carpals (UW88-1259a to 1259c). C) Bovid atlas,
axis and third cervical vertebra (UW88-720-722). D) Hyaenid phalanges (UW88-782 and
783). E) Bovid ribs articulated with a thoracic vertebra (no specimen number). F) Rodent skull
and associated mandible (UW88-781).
(TIF)

S5 Fig. Mortality profile observed at Malapa, combining age estimates for the hominins,
carnivores and ungulates.
(TIF)

S6 Fig. Different degrees of manganese coating observed on the bones. From left to right:
slight, slight to moderate, moderate, moderate to heavy, heavy.
(TIF)

S7 Fig. Comparison of degree of manganese dioxide perimineralization according to the
provenance of the remains (decalcified sediment, in orange, versus calcified sediment, in
light pink).
(TIF)

S8 Fig. Comparison of degree of weathering according to the provenance of the remains
(decalcified sediment, in dark green, versus calcified sediment, in light green).
(TIF)

S1 Table. Quantitative data for the bovid and carnivore remains used to calculate the per-
centage of survival for each anatomical element for both groups.
(DOCX)

S2 Table. List of non-hominin faunal remains recovered in articulation.
(DOCX)
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S3 Table. List of non-hominin faunal specimens recovered as anatomical proximities.
(DOCX)

S4 Table. List of antimeric sets of bones present in the Malapa non-hominin faunal assem-
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S5 Table. Comparison of degree of manganese dioxide coating according to the provenance
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