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Abstract

The scientific requirements for Radio Frequency (RF) receivers especially for Radio As-
tronomy have become more demanding, requiring: compact, low-profile, multi and wide-
band antennas and more sensitive receivers. Integration of the antenna into the receiver
system is often critical to meet these demands.

Noise theory to model these more complex systems is well developed but is not imple-
mented in commercial solvers, given the niche market of the receivers it is only available
using specialised software. If the system is closely coupled, it becomes necessary for design
to incorporate Electromagnetic (EM) and Microwave (MW) modelling into the multi port
noise modelling. CAESAR, a combined noise and EM/MW modelling code is available, but
to use it requires the exclusive use of the CAESAR software, which is impractical given the
utility and wide use of commercial solvers.

Mathematical methods are developed to incorporate commercial solvers into the more
specialised CAESAR, validated using a folded dipole and applied to a wideband Eleven an-
tenna system, a compact form of a log periodic dipole array. The Eleven antenna consist
of eight single ended or four differential ports, with a closely coupled feeding arrange-
ment. Cryogenic measurements are done to verify the modelling, the measured sensitivity
matches with the model closely in amplitude and shape, giving confidence to the approach,
and allowing modelling but not system optimisation.

Optimising the antenna based on receiver design and still being able to use commercial
code requires the external scripting of a commercial solver. The EDITFEKO (card based)
module of FEKO (a powerful and versatile solver) is used along with the meshing software
GMSH and GNU Octave. Optimisation of system sensitivity is demonstrated on a choke
horn fed reflector system at 1420 MHz.

This optimisation method is applied to a practical application, an octave band system
(4.5 GHz to 9 GHz) for the Hartebeesthoek Radio Observatory. The design is split into
smaller simulations using waveguide modes and the associated S–parameters, the tech-
niques are presented and checked on a truncated system. Initial design and optimisation
are given.

The combining of specialised multiport noise modelling design and optimisation within
commercial EM/MW solvers allows more sensitive and specialised receivers to be built.

Index terms— noise modelling, wideband, multiport, corrugated horn, octave band re-
ceiver, EM/MW optimisation

ii



Acknowledgements

The degree of Doctor of Philosophy is long and not always direct, it requires much assis-
tance and collaboration. In retrospect it would have been impossible without the help of
many individuals, too many to thank individually, but it would not be complete without
thanking a few specific persons.

First thanks to my supervisor, Alan Clark, for overseeing this work and giving me time
and guidance. Renier Dreyer, for the use of his cluster. The Wits electrical engineering
department for being such a warm and stimulating place to work.

The Chalmer’s Antenna group, overseen by the now late Per Simon Kildal, for intro-
ducing me to wideband antennas and systems. Jian Yang, for discussions on beam pat-
terns and port definitions. Rob Maaskant, for his help with his software, and adapting it
for commercial solvers. Marianna Ivashina, for help with noise modelling, and definitions.

At the Onsala observatory, Leif Helldner for technical expertise. Miroslav Pantaleev, for
help with measurements and the use of his laboratory. Roy Booth, for introducing me to
the observatory and Sweden.

The Wits physics department, for work on their prototype, specifically Andreas Fal-
tenbacher for overseeing the project and Siobhan Reddy for her work in measuring the
antenna patterns.

At the Hartebeesthoek observatory, the late Mike Gaylard for his suggestion of a wide-
band receiver. The workshop staff for helping with the technical design, specifically Keith
Jones and Pieter Stronkhorst. George Nicolson, for keeping in touch and the many discus-
sions on receivers.

Finally to my family, friends and girlfriend, for all your love and support.

iv



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Noise Theory 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Single channel receiver noise modelling . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Atmospheric contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Multiport modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Parametric model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Deriving the characteristic noise matrix . . . . . . . . . . . . . . . . . . 11
2.4.3 Two Port noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.4 Three port differential amplifier model . . . . . . . . . . . . . . . . . . 17
2.4.5 Maximum and minimum LNA noise temperature envelopes . . . . . . 20
2.4.6 Noise wave modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Noise modelling, applied to a wideband complex feed 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Noise modelling the Eleven antenna . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Brightness temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Ohmic and aperture efficiencies . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 LNA modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 Complete system temperature . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 System sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Integration of Noise Modelling into EM design 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 A general multiport antenna model . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



4.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Beam pattern conversion due to different loading and excitation . . . 39
4.2.3 De–normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Testing and verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Modelling of multi-port antenna patterns . . . . . . . . . . . . . . . . . . . . . 43
4.4.1 Description of the Eleven antenna system . . . . . . . . . . . . . . . . . 43
4.4.2 Exploiting the rotation/translation symmetry . . . . . . . . . . . . . . 45

4.5 System noise analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.1 Simpler Noise characterization models . . . . . . . . . . . . . . . . . . 48
4.5.2 Numerical and experimental results . . . . . . . . . . . . . . . . . . . . 48

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Scripting of FEKO 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Code outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Incorporating meshing into Octave . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Running EM code from Octave . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.3 Smooth walled horn example . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.4 Corrugated horn example . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.5 Exporting GMSH geometries into FEKO . . . . . . . . . . . . . . . . . . . 62

5.3 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.1 Simple system test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 System wide optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 System Design 72
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Approach and verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Practical wideband system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 System specifications and chosen design . . . . . . . . . . . . . . . . . 77
6.3.2 Orthomode transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.3 TE2HE transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.4 Corrugated horn design . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Conclusion 96

Appendices 98

A Antenna efficiencies 99

B Testing port combinations 100
B.1 Testing of mirroring function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.2 Testing of computing full beam from single port measurements . . . . . . . . 108

C Class function definitions 121

vi



C.1 @gmsh class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
C.2 @gmshSurf class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
C.3 @WritepreFeko class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

D Mode matching theory 125
D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
D.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
D.3 Rectangular modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
D.4 Solving the cross products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

E Phase Centre Calculations 134
E.1 Optimised over the whole beam . . . . . . . . . . . . . . . . . . . . . . . . . . 134
E.2 Optimised over the main beam . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

vii



List of Figures

2.1 Single channel noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Single channel referenced model . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Equivalent receiver reference model . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Brightness Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Beam forming network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Noise equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Linear noisy n-port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Embedded Linear noisy n-port . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Noisy two port network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Equivalent circuits with external noise sources . . . . . . . . . . . . . . . . . . 15
2.11 Equivalent circuit with ABCD matrix removed . . . . . . . . . . . . . . . . . . 16
2.12 Equivalent circuit with uncorrelated sources . . . . . . . . . . . . . . . . . . . 16
2.13 Three port ABCD network, with external noise sources . . . . . . . . . . . . . 18
2.14 Equivelent circuit of three port differential amplifier noise model . . . . . . . 18
2.15 Maximum and minimum points at 4 GHz for a 66 K UWB LNA. . . . . . . . . 21
2.16 Multiple arbitrary phased LNA ηmiss curves, with maximum and minimum

envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.17 Maximum LNA temperature, and minimum LNA efficiency curves . . . . . . 23
2.18 Maximum LNA ripple curves calculated for a various |Γact| . . . . . . . . . . 24
2.19 Equivalent noisy S network using noise wave sources . . . . . . . . . . . . . . 24

3.1 The Eleven Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Descrambling solution using single-ended amplifiers and hybrids . . . . . . . 28
3.3 Descrambling solution using four active baluns . . . . . . . . . . . . . . . . . . 29
3.4 Equivalent single channel noise model. . . . . . . . . . . . . . . . . . . . . . . 29
3.5 System model with associated noise contributions . . . . . . . . . . . . . . . . 29
3.6 Integrated beam brightness temperatures . . . . . . . . . . . . . . . . . . . . . 30
3.7 Aperture efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 Ohmic and radiation efficiencies of the Eleven antenna . . . . . . . . . . . . . 31
3.9 Optimum noise input impedances of Chalmers and Caltech LNAs . . . . . . 32
3.10 Measured input impedances of the Eleven Antenna . . . . . . . . . . . . . . . 32
3.11 Simulated TLNA curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.12 Cryogenically cooled Eleven antenna . . . . . . . . . . . . . . . . . . . . . . . . 34
3.13 Measured vs. Simulated Noise Temperature for a cryogenic system . . . . . . 35
3.14 Maximum achievable A/T per m2 physical aperture . . . . . . . . . . . . . . . 36

4.1 Equivalent single port antenna representation of a multiport antenna system. 38

viii



4.2 Network and equivalent circuit representations. . . . . . . . . . . . . . . . . . 40
4.3 Equivalent voltage excitation cases . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Simple folded dipole geometries, for both CST and CAESAR . . . . . . . . . . 42
4.5 Originally computed far field beam patterns for CAESAR and CST. . . . . . . . 43
4.6 Comparison between original CAESAR and converted CST beam patterns. . . 44
4.7 Photos of the Eleven antenna, and the overall system model . . . . . . . . . . 45
4.8 Comparisons between mirrored and directly computed beam pattern . . . . . 46
4.9 Comparisons between mirrored and directly computed beam pattern . . . . . 47
4.10 Comparisons between mirrored and directly computed beam pattern cuts . . 47
4.11 Eleven antenna pattern cuts, as obtained by simulating the entire antenna,

and reconstructing the patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.12 Noise temperature contributions due to the LNAs and antenna impedance . . 49
4.13 Predicted and measured system noise temperatures of the Eleven antenna

receiver for one polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Basic software loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Simple meshed square example using @gmshSurf and GMSH . . . . . . . . . . 54
5.3 Simple meshed curved example using @gmshSurf and GMSH. . . . . . . . . . 55
5.4 Simple meshed combined square example using @gmsh and GMSH. . . . . . . 56
5.5 GNU Octave class structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Simple horn created by GNU Octave and EDITFEKO. . . . . . . . . . . . . . . 60
5.7 Cross section of a simple linear horn. . . . . . . . . . . . . . . . . . . . . . . . . 61
5.8 Cross section of generated dual mode horn . . . . . . . . . . . . . . . . . . . . 61
5.9 Cross section of generated logarithmic horn. . . . . . . . . . . . . . . . . . . . 62
5.10 Logarithmic corrugated horn, side and front views. . . . . . . . . . . . . . . . 63
5.11 Imported curved surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.12 Design and optimisation code structure. . . . . . . . . . . . . . . . . . . . . . . 64
5.13 Cross section of standard choke horn design. . . . . . . . . . . . . . . . . . . . 65
5.14 Selection of iterated simple choke horn sections. . . . . . . . . . . . . . . . . . 66
5.15 Convergence of fminsearch() function for a simple choke horn. . . . . . . 67
5.16 Components of the used fminsearch() cost function. . . . . . . . . . . . . . 67
5.17 Final optimised corrugated horn. . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.18 Theta cuts of the original choke horn, final design and measured horn (φ = 0◦). 68
5.19 Theta cuts of initial and final designs (φ = 45◦). . . . . . . . . . . . . . . . . . . 69
5.20 Complex system design and optimisation code structure. . . . . . . . . . . . . 70

6.1 Verification of the approach of breaking up the designed receiver . . . . . . . 73
6.2 Comparisons between simulated and calculated directivity patterns, for a

scaled mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 Comparisons between simulated and calculated directivity patterns for a

simple truncated horn for scaled modes . . . . . . . . . . . . . . . . . . . . . . 76
6.4 HartRAO geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5 Upper cross section of half an OMT . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6 OMT designs based on varying single design parameters . . . . . . . . . . . . 79
6.7 Quadridge orthomode transducer modelled in FEKO . . . . . . . . . . . . . . 80

ix



6.8 Individual cost functions for initial optimisation for matching criteria . . . . . 81
6.9 Varied S–parameters, initial optimisation for matching criteria . . . . . . . . . 82
6.10 Initial OMT design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.11 Ten ring loaded slot TE2HE converter . . . . . . . . . . . . . . . . . . . . . . . 83
6.12 Widths required for discretization of TE2HE transition . . . . . . . . . . . . . 84
6.13 Ten ring loaded slots TE2HE converter . . . . . . . . . . . . . . . . . . . . . . . 85
6.14 TE2HE transition modeled in FEKO. . . . . . . . . . . . . . . . . . . . . . . . . 85
6.15 Reflection coefficient of the input TE11 mode for (a) ideal and (b) discrete

cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.16 Transmission coefficients for convertor modes . . . . . . . . . . . . . . . . . . 87
6.17 Possible apeture and flare controlled horns . . . . . . . . . . . . . . . . . . . . 88
6.18 Required Directivity, for various beam tapering. . . . . . . . . . . . . . . . . . 89
6.19 Phase variation for corrugated horns. . . . . . . . . . . . . . . . . . . . . . . . 90
6.20 Final corrugated horn design beam patterns . . . . . . . . . . . . . . . . . . . . 92
6.21 Combined final corrugated horn design beam patterns . . . . . . . . . . . . . 93
6.22 Optimal phase centre for corrugated horn. . . . . . . . . . . . . . . . . . . . . . 94

B.1 CST ports definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.2 Comparisons between mirrored and directly computed beam pattern (port 2) 101
B.3 Comparisons between mirrored and directly computed beam pattern (port 3) 102
B.4 Comparisons between mirrored and directly computed beam pattern (port 4) 103
B.5 Comparisons between mirrored and directly computed beam pattern (port 5) 104
B.6 Comparisons between mirrored and directly computed beam pattern (port 6) 105
B.7 Comparisons between mirrored and directly computed beam pattern (port 7) 106
B.8 Comparisons between mirrored and directly computed beam pattern (port 8) 107
B.9 Comparisons between mirrored patterns at 2 GHz and directly computed

beam pattern cuts at 2 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.10 Comparisons between mirrored patterns at 3.1 GHz and directly computed

beam pattern cuts at 3.08 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.11 Comparisons between mirrored patterns at 4 GHz and directly computed

beam pattern cuts at 4.01 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.12 Comparisons between mirrored patterns at 5 GHz and directly computed

beam pattern cuts at 5.2 GHz (simulated in frequency domain). . . . . . . . . 112
B.13 Comparisons between mirrored patterns at 5.2 GHz and directly computed

beam pattern cuts at 5.2 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.14 Comparisons between mirrored patterns at 6.2 GHz and directly computed

beam pattern cuts at 6.2 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.15 Comparisons between mirrored patterns at 7.4 GHz and directly computed

beam pattern cuts at 7.370 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.16 Comparisons between mirrored patterns at 8 GHz and directly computed

beam pattern cuts at 8.040 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.17 Comparisons between mirrored patterns at 9.6 GHz and directly computed

beam pattern cuts at 9.570 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.18 Comparisons between mirrored patterns at 10.4 GHz and directly computed

beam pattern cuts at 10.430 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . 118

x



B.19 Comparisons between mirrored patterns at 11.4 GHz and directly computed
beam pattern cuts at 10.390 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.20 Comparisons between mirrored patterns at 12 GHz and directly computed
beam pattern cuts at 12.420 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

D.1 General waveguide discontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . 126
D.2 Rectangual waveguide discontinuity . . . . . . . . . . . . . . . . . . . . . . . . 130

E.1 Phase plots from 4.5 GHz to 6 GHz for the designed corrugated horn . . . . . 135
E.2 Phase plots from 6.5 GHz to 8 GHz for the designed corrugated horn . . . . . 136
E.3 Phase plots from 8.5 GHz to 9 GHz for the designed corrugated horn . . . . . 137
E.4 Phase plots from 4.5 GHz to 6 GHz for the designed corrugated horn . . . . . 138
E.5 Phase plots from 6.5 GHz to 8 GHz for the designed corrugated horn . . . . . 139
E.6 Phase plots from 8.5 GHz to 9 GHz for the designed corrugated horn . . . . . 140

xi



List of Tables

3.1 Available wideband LNAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Dimensions in mm of precise TE2HE converter . . . . . . . . . . . . . . . . . . 80
6.2 Al thickness’s required for transition prototype . . . . . . . . . . . . . . . . . . 84
6.3 Dimensions in mm of the discretised TE2HE . . . . . . . . . . . . . . . . . . . 84

xii



Acronyms

ANT Antenna.

BOR1 Body of Revolution–Type 1.

Caltech The California Institute of Technology.

Chalmers Chalmers University of Technology.

DL Descriptive Language.

DTU Technical University of Denmark.

EM Electromagnetic.

FDTD Finite Difference Time Domain.

FEM Finite Element Method.

GaAs Gallium Arsenide.

HartRAO Hartebeesthoek Radio Astronomy Observatory.

HE Hybrid, with a dominate Electrical mode.

HEMT A High-electron-mobility Transistor.

HM Hybrid, with a dominate Magnetic mode.

LNA Low Noise Amplifier.

MMIC A Monolithic Microwave Integrated Circuit.

MOM Method of Moments.

MW Microwave.

OMT Orthomode Transducer.

TE Transverse Electrical.

TM Transverse Magnetic.

UWB Ultra–Wideband.

VLA Very Large Array.

VSWR Standing Wave Ratio.

xiii



List of Symbols

A Aperture.

Aphy Physical aperture.

B Bandwidth.

E electric field strength in [V/m].

eap Aperture efficiency.

emis Mismatch efficiency.

eohmic Aperture efficiency.

eπ/2 spillover efficiency, over π/2.

erad Radiation efficiency.

Es,n Ergodic noise source present at the nth port.

F Noise figure.

fn embedded element pattern of the nth port.

Γact,n Active input impedance of nth LNA.

Gco Co antenna gain pattern.

GLNA LNA gain.

Γopt,n Optimium noise match for the nth LNA.

Gxp Cross antenna gain pattern.

H magnetic field strength in [A/m].

k Boltzman’s constant.

Nz Characteristic noise matrix.

Pex,n Exchangable power at the nth port.

φr Illumination angle for feed.

φv Illumination angle for the main reflector.

PL Power delivered to the load.

PN Noise power.

S Scattering matrix.

xiv



T Noise temperature.

TAP Antenna temperature, due to Tp.

α Loss factor.

Ta Antenna temperature, as seen by the receiver.

TA Antenna temperature, as seen by the terminal.

Tbg Brightness temperature.

TLNA LNA noise temperature.

Tp Physical temperature.

Tr Receiver temperature.

W ∗m Beam former weighting.

Ycor Correlation admittance.

Yopt Optimium input admittance.

Ys Source input admittance.

ZFeed Feed input impedance.

ZLNA LNA input impedance.

ZL Load input impedance.

Zs Source input impedance.

xv



Chapter 1

Introduction

1.1 Background

Traditional antenna design has focused purely on the antenna: the radiation pattern, band-
width, beam angle and radiation efficiencies. Aperture antennas have aperture and illu-
mination efficiencies, and arrays of antennas the concept of array patterns and feeding
phase [1]. In this approach the impedance of the antenna as seen by the source or receiver
is looked at in general as a matching criteria and characterised as a matching efficiency.
For maximum power transfer and to minimise standing waves this is as in classical circuit
theory conjugate matched to the receiving circuitry [2]. There exists a classic separation
between the microwave circuitry and the antenna as can be seen in the standard texts of
Pozar [3] which focuses almost completely on the circuitry and Balanis [4] on antennas.
This separation is sensible the abstraction of modelling an antenna or microwave receiver
as a transmission line and load simplifies design significantly. This allows antennas to be
classically modelled either using a mathematical approach, for example taken by Elliot [5]
or more intuitively by Kraus [1]. In the last fifty years microwave and antenna design has
increasingly relied on full Electro Magnetic (EM) computer modelling and optimisation [6].

The most popular modelling methods are: Method of Moments (MOM), Finite Ele-
ment Method (FEM) and Finite Difference Time Domain(FDTD). These methods have been
developed with many implementations and commercial packages, for example FEKO [7]
(now under Altair), CST [8] and ANSYS HFSS [9]. This has allowed the modelling of
more complex specialised antennas and systems. In addition to the commercial solvers
many free and open source solvers have been built, one of the most well know being NEC,
which was first available in 1965 [10]. The latest version is NEC4 but many spin-offs and
alternative versions have been developed, for example SuperNEC [11] and more recently
NEC2++ [12]. In order to survive in the long run code requires support, maintenance and,
particularly in the case of free software, an active community of dedicated users to trou-
bleshoot and contribute. SuperNEC is no longer available partially because it didn’t get
this support.

Most free EM software has been discontinued for two principle reasons: given the wide
range of available solvers and methods and the relatively small community, no single code
base has been given enough support. Secondly EM is complex and many of the authors
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who understand the physics have not had the experience in writing code for large commu-
nities.

In recent years these problems have diminished somewhat. Managing large software
has become easier, for example NEC2++, which uses the collaborative Github structure for
developing code [13]. The development of general solvers has also widened communi-
ties and helped with getting broader support and funding. The FENICS project [14–16] a
general partial differential equations (PDE) solver, is well supported and funded and has
because of its a wide applicability, a large community. The barrier to using it easily for
EM is still high however, as can be seen in the example of application to a rectangular
waveguide problem by Davidson et al. [17]. A slightly different approach to this problem
is the very powerful multi physics code GetDP developed by Patrick Dular and Christophe
Geuzaine [18–20], which does not require a large software community to maintain, as the
core code is minimal. GetDP uses the meshing program GMSH [21] as the interface and
the user is required to write (or copy from examples) the modules of the solver, including
the Galerkin [22]. The learning curve is very steep especially as the solver is written in its
own custom programming language. The great advantage is that the code is very simple
to maintain and because the interface is so close to the solver the user has almost complete
control. A similar rectangular waveguide example to that cited for FENICS, developed by
the author and Geuzaine is available [23].

This leaves the current state of EM modelling dominated by commercial software which
has the funds and expertise to produce and maintain well documented packages. For spe-
cialised problems and academics these are often limiting hence the existence of so many
custom solvers. Commercial code is written primarily for industry so flexibility in describ-
ing the structure, simulating and optimisation is restricted to what is has been allowed
within the program and the desires of the general community. Radio Astronomy in partic-
ular and specialised research in general, does not have the user base to justify large time
being invested in adapting software for these problems. One particular limitation is the
input CAD software of most commercial solvers; complex structures can be tricky to de-
scribe. Most solvers have some scripting ability, for example the LUA language [24] for
FEKO, however it requires the user to be familiar with the language and is only available
to run in the post processing stages. CST has some very limited Visual Basic scripting.
ANSYS HFSS allows scripting via Microsoft Visual Basic Scripting (Vbscript) natively.
There is an open source (BSD licensed) Python wrapper [25] which looks more promising
but is not available for GNU Linux and is not currently being maintained.

At the same time that antenna design has been moving to more commercial simulations
requirements have become more demanding. This is due to the demands for compact, low-
profile, multiband and wideband antennas for industrial and scientific uses. For example
fractal [26] and self–complementary antennas [27]. The field of Radio Astronomy is a typi-
cal example of this change.

Radio Astronomy particularly as applied to geodesy requires wider band receivers [28],
as do software defined radios often requiring Ultra–Wideband (UWB) antennas. Here
wideband is considered octave band and higher 2:1 or a 66% percentage bandwidth, where
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percentage bandwidth is the ratio between the bandwidth and the centre frequency:

BW% =
BW

Fc

Most antennas are optimised for narrow bandwidths, dipoles have a 10% bandwidth for
example. UWB has a definition in communications but for antennas is considered here to
be a bandwidth of 3:1 (133%) or greater, often referred to as frequency independent anten-
nas. Prominent examples of UWB antennas being considered for future radio telescopes are
the Eleven antenna [29] quasi self-complementary antennas [30] and the Quadridge horn
[31]. Correspondingly amplifiers [32, 33] for Radio Astronomy have been developed and
thus wideband systems have become increasingly interesting both for economic reasons
and for wideband observations [28, 34]. In the design of a wideband system compromises
are inevitable and it is important to be able to accurately model and provide comparisons
between existing and possible system sensitivities for different wideband options. This is
particularly important in large arrays when systems require cryogenic cooling and there-
fore where the costs of large wideband systems become significant.

The usefulness of a radio receiver normally expressed as its sensitivity is given by A/T ,
where A is the effective area of the antenna and T is the noise of the receiver expressed as
a temperature (often known as the Johnson–Nyquist noise). The noise is calculated as a
power using P = kTB, where k is Boltzman’s constant and B is the fractional bandwidth,
often normalised to 1Hz. In the past the limiting factor for T was the Low Noise Amplifier
(LNA). Early generations of radio astronomy systems were to a first degree limited by the
noise temperature of the amplifiers and the design of the system was conscious of noise but
not optimised for it. As the technology of LNAs and associated cooling has been improved,
the LNA has become a more equal contributor to the noise of systems. It has become in-
creasingly important to consider the noise contribution of all parts of the system before the
LNA which has led to more complex noise models and techniques. The noise modelling
of multi port closely coupled antenna systems however, are non trivial and at the extreme
requires full EM modelling. Specialised EM code has been written to take this into account,
specifically the CAESAR solver [35] and a PAF–reflector toolbox [36, 37]. These codes are
highly specialised and limited compared to the wide range of available commercial solvers.

For Radio Astronomy receiver design, the incorporating of specialised software and
noise modelling into commercial software is highly desirable given the central usefulness
of the receiver’s sensitivity or A/T , and the wide availability and power of commercial
solvers. There are two principal reasons for this: firstly it allows better noise modelling of
systems with existing antenna designs, better predicting the final sensitivity given reflec-
tor and LNA choices. Secondly it allows the incorporating of noise into optimisation and
design for new antennas. This Ph.D. focuses on the problem: Incorporating multiport noise
modelling into RF receiver design.

1.2 Goals and outline

For specialised highly sensitive systems there is clearly a need to expand the current open
source solvers and to customise available commercial solvers. The first step is to gain an
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understanding and be able to accurately noise model these systems.

Multiport wideband modelling To investigate and apply current noise modelling theory
and techniques to a real world highly sensitive, wideband, multiport system. To verify the
model a wideband highly sensitive system is modelled and measured. The background
theory of noise modelling is presented in chapter 2 using a circuit and network modelling
approach. Both single and multiport noise modelling is presented and the noise models for
LNAs are analysed. The theory is applied to the Eleven antenna connected to cryogenically
cooled LNAs in chapter 3, the noise is measured and compared to the theory.

The second step is to integrate the output from commercial EM code into custom spe-
cialised noise modelling code.

Integration with specialised noise modelling code With the wide use of commercial
solvers it is not practical to remodel all of the available wideband antennas using spe-
cialised noise modelling solvers. Rather the results of the commercial solvers are integrated
into a specialised solver and the noise computed and verified with measurements. The net-
work theory is given along with an example in chapter 4, which is verified by just using
the specialised noise modelling software and using it combined with a commercial solver.

The third step is to modify the existing EM solvers so as to be able to run them as a
component in a design and optimisation loop.

Modifying commercial solvers Commercial EM software contains powerful numerical
solvers. For specialised research and sensitivity optimisation in particular, it would be use-
ful to be able to use these solvers as a component in a wider design. A commercial solver is
investigated and code is written and tested to be able to run it externally. The plausibility
of using this to design a practical receiver is investigated using noise modelling and overall
sensitivity as the goal function. The software approach and code outline is given in chap-
ter 5, along with some examples of how it can be used. Finally a simple example is given.

The fourth and final step is to apply the software to a practical receiver design.

System wide design It is inefficient to run EM modelling on a whole receiver therefore
the simulation needs to be broken up into components. It is necessary to be able to pre-
dict the effects of the antenna on the overall noise however, so simulations are split in the
standard way while demonstrating that it is still possible to calculate the overall system
sensitivity. This is given in chapter 6 along with some preliminary results.

Conclusions are presented in chapter 7.

1.3 Scope

This work is focused on noise modelling and the application of software to receiver design
rather than on a specific receiver, LNA or antenna. The goal of this work is to primarily
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model and verify the accuracy of the model for existing systems and secondly to show how
this can be applied to optimising and designing new receivers. Verification is done using
existing methods and measurements.

The software used to run the commercial solver is written to be as adaptable and cus-
tomizable as possible. It is written to be expandable by a general user rather than as a
complete package. For this reason the focus is not on implementing a particular optimisa-
tion, but on optimisation in general. Various geometries are demonstrated.

The building and full optimisation of the complete receiver is considered future work.
Tools are verified and a simple design is built, a paper design is demonstrated for a larger
receiver system.
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Chapter 2

Noise Theory

2.1 Introduction

The following chapter goes through the noise theory for RF receivers. This establishes a
firm base of noise theory and application which can be incorporated into receiver design.

The fundamentals of thermal noise was first investigated, as it related to circuits and
circuit theory, by N Nyquist [38] and J Johnson [39] in the late 1920s. The formal definition
for a passive network, is given by Friis in the 1944 [40]. Later this was linked to network
theory and generalised, by R Twiss [41] H Rothe, W Dahlke [42] and probably most formally
by H. Haus [43, 44] in the 1950s. A good summary of the early work done can be found in
an IRE review [45].

2.2 Single channel receiver noise modelling

It is convenient to model a single channel radio receiver as a simple circuit. Each compo-
nent is replaced as an equivalent resistor at a physical temperature, where the noise power
PN is converted to an equivalent temperature T by using eq. (2.1), where k is Boltzman’s
constant and ∆BW is the bandwidth, normally normalised to per unit bandwidth of 1 Hz.
In the case of the feed this temperature is the physical temperature of the antenna and the
resistance is the ohmic losses in the feed. Which immediately shows how cooling the feed
or reducing its ohmic losses, translate to a reduced system temperature. The temperature
does not have to be a physical temperature, in general it is not for any other components
in the feed chain. It holds for any component regardless of how the noise is generated,
as long as the noise is white over the time periods the signal is integrated over. A simple
single channel receiver is shown in fig. 2.1.

PN = kTs∆BW (2.1)

where:
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Ta TA + TAP TB

l

Tr

Receiver Transmission Line Antenna

T0

Tp

External
Sources

Figure 2.1: Single channel noise model, adapted from [46, figure 2.35].

Tp = Antenna’s physical temperature
T0 = Line’s physical temperature
l = Line length
Tr = Receiver temperature
TB = Brightness temperature
Ta = Antenna temperature seen by the receiver
TA = Antenna temperature seen at the terminal
TAP = Antenna noise temperature, due to Tp

The simple single channel circuit model of this receiver is shown in fig. 2.2, where the
receiver is modelled as a single low noise amplifier (LNA) and load.

e−2αl, T0

Ta
Zl

LNA TB

Figure 2.2: Referenced noise model, for a simple single channel receiver.

Given that all the noise impedances are matched, all the noise temperatures can be re-
ferred to any plane within the model by considering the losses and gains. For single dish
antennas this model, although simple is normally sufficient to model the noise characteris-
tics. If the amplifier noise dominates the system the brightness and thermal temperatures
can be estimated accurately enough by using the feeds beam and ohmic characteristics. It
is noted that this is at a modelling stage, however if one is designing an antenna and the
first LNA has a comparable low noise temperature, then the brightness and thermal char-
acteristics must be accounted for in the design. It also should be noted that the brightness
temperature is a function of pointing angle of the antenna. The noise temperature as seen
by the receiver is calculated in eq. (2.2) [46, equation 2-14r], where α is the loss per unit
length.

Ta = TAe
−2αl + TAP e

−2αl + T0(1− e−2αl) (2.2)

The receiver noise is calculated by summing up the noise of each component, divided
by the gain preceding the component. Shown in eq. (2.3), a variation of the one given in
[40, equation 16]. If the gain of the first LNAs are high clearly they dominate the receiver’s
noise, which justifies the simple model of the receiver.
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Tr =TLNA1 +
TLNA2

GLNA1
+

Tmixer

GLNA1GLNA2
+ · · · (2.3)

The total system noise temperature is then Ts = Tr + Ta, which is related to the noise
power using eq. (2.1). Incorporating the radiation efficiency and mismatch efficiency is
relatively simple. The radiation efficiency erad is a measure of the feed’s ohmic losses, The
mismatch factor, emis is the mismatch between the antennas input impedance, Zfeed and
LNA input impedance, ZLNA, calculated as:

emis = 1−
∣∣∣∣Zfeed − ZLNAZfeed + ZLNA

∣∣∣∣2 (2.4)

This mismatch represents the power mismatch loss and not the increased noise temper-
ature of the LNA due to the mismatch to the optimum noise impedance. The model is then
modified as shown in fig. 2.3, and described by eq. (2.5).

erad, Tpemis

Ta
Zl

LNA TB

Figure 2.3: Referenced noise model, equivalent receiver model.

Ta = [TBerad + (1− erad)Tp] emis (2.5)

2.3 Atmospheric contribution

The antenna temperature seen at the terminals of the antenna TA is calculated in eq. (2.6)
by integrating the brightness temperature Tbg over the gain pattern of the antenna [2, equa-
tion 2.116], here considering the cross and co gain patterns Gxp and Gco. Mathematically,
Ta is solved as follows [47]:

Ta =

∫∫
4π

Tbg (α (θ, ϕ))
[
|Gco (θf )|2 +

∣∣Gxp (θf )
∣∣2] sin θdθ dϕ∫∫

4π

[
|Gco (θf )|2 +

∣∣Gxp (θf )
∣∣2] sin θdθ dϕ

(2.6)

Where Tbg is the brightness distribution as seen by the feed. The presence of reflectors
are taken into account by the brightness temperature and not the beam pattern. The an-
tenna picks up background radiation from the sky, sky brightness Tb,and ground, ground
noise Tg . This is a general calculation, and sophisticated model for specific sky views and
ground is not useful here. The sky brightness is given by [48, 49]:

Tbg (f) = Tb0 (f) e−τν(s0) +

∫ s

0

ka (f, s)T (s) e−τν(s)ds (2.7)

Where ka is the zenith opacity, Tb0 is the sum of cosmic microwave background and
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galactic emission and τν is:

τν (θ) =

∫ ∞
0

ka (f, s)√
1− [sin θ/ (1 + s/R)]

2
ds (2.8)

The sky brightness temperature for various look angles φ is plotted in figure 2.4, the
results are as expected, and fairly constant across the band.
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Figure 2.4: Brightness Temperature vs Frequency, for various pointing angles.

The system noise contribution of the atmosphere is now calculated by: integrating the
sky brightness across the beam, assuming the ground temperature to be a constant 293 K
from φ > 90◦, using equation 2.6. The result can be verified by calculating the illumination
efficiency of the beam over the sky and ground. This can be considered as the spillover
efficiency over a θ0 = π/2 illumination. Calculated as, (following the form in [46]):

eπ/2 =

∫ π/2
0

Gf (θ′) sin (θ′) dθ′∫ π
0
Gf (θ′) sin (θ′) dθ′

(2.9)

The brightness distributions are estimated assuming averaged ground and sky temper-
atures. Calculated for the sky as TSky(1 − eπ/2) and the ground TGround(1 − eπ/2). The
results are found to be consistent.
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2.4 Multiport modelling

Antennas with more complex feeding networks or arrays cannot simply be represented as
a single channel receiver and present some complications for modelling. There are multiple
approaches to solving this problem, a summary is presented here:

2.4.1 Parametric model

One simple example is thinking of the beam forming network as part of the antenna; if it is
matched to make the contributions of reflections small enough, then this looks to the noise
model as a pure resistive loss, exactly as equivalent to the resistive loss in the antenna. This
then reverts to the single channel case. If however the reflections cannot be discounted
it is still possible to find the equivalent single channel model. A beam forming array is
shown in fig. 2.3, in cases where cross coupling is insignificant it is possible to calculate an
equivalent single channel receiver.

∑

b1

a1
SLNA21 W ∗1

bm

am
SLNA21 W ∗m

Z0

bM

aM
SLNA21 W ∗M

bn Z0

bN Z0

Figure 2.5: Beam forming network, adapted from [50].

The technique is presented by M V Ivashina,R Maaskant, and B Woestenburg in [50]. The
method sums up the contributions through the beam forming network into a single equiv-
alent system, as follows:

Gavm =

(
1

M
|SLNA

2,1 |2|wm|
)(

1− |Γact,m|2
)

(2.10)

T LNA
m = Tmin +

4RnT0
Z0

|Γact,m − Γopt|2

|1 + Γopt|2 (1− |Γact,m|2)
(2.11)
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T LNA
out =

M∑
m=1

Gav
mT

LNA
m (2.12)

erad =
W�
(
I−
[
SHact,actSact,act + SHpas,actSpas,act

])
W

W�
(
I− SHact,actSact,act

)
W

(2.13)

emis =
W�
(
I− SHact,actSact,act

)
W

W�W
(2.14)

Where SHact,act and SHpas,act are the hermitian matrices of the active and passive feeds
and eq. (2.11) is the standard amplifier model derived in section 2.4.3. In the simplest case
of multiple identical channels being summed the noise would be equivalent to only one of
the channels. For example two linearly polarised channels X and Y summed through a
hybrid to form a circularly polarised receiver are most often considered a single circularly
polarised channel with the equivalent noise performance of either channel, assuming that
the coupling between the channels is low.

2.4.2 Deriving the characteristic noise matrix

Given the resistor model it is intuitive to approach the noise modelling from a circuit per-
spective. The following theory is based on the approach taken by Haus and Adler in [51]
and the summary of this work found in [44].

Zl

+ Es −

Zs

Figure 2.6: Equivalent circuit of a source attached to a load.

Considering an ergodic noise source Es which when averaged contains the power as
given by a resistor at temperature T so that 〈|Es|2〉 = 4RkTB, where k is Boltzman’s con-
stant and B is the bandwidth. If this source is connected to a load as seen in fig. 2.6 it is
easy to derive that the power delivered to this load is:

PL =
〈|Es|2〉Re(ZL)

|Zs + ZL|2
(2.15)

The maximum amount of power that can be delivered to the load as defined by Haus as
the exchange power Pex to solve problems with negative source impedances, occurs when
ZL = Z∗s which follows from eq. (2.15) to give:

Pex =
〈|Es|2〉

2(Zs + Z∗s )
(2.16)

Expanding this to a N–port impedance matrix Z shown in fig. 2.7, we can apply this per
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channel, so that the exchangeable power from an individual port is:

Pex,i =
〈|EiE∗i |〉

2(Zii + Z∗ii)
(2.17)

This can be expressed in a more convenient matrix form using the column vector a,
where aj = 0 for j 6= i and ai = 1. So that:

Pex,i =
a�〈|EE�|〉a

2a�[Z + Z�]a
(2.18)

Vn

Zn
in

+ En −

Vi

Zi
ii

+ Ei −

V1

Z1
i1

+ E1 −

Z

Figure 2.7: Linear noisy n-port, adapted from [44].

In order to derive the noise matrix first this N–port Z matrix is embedded into a lossless
2N–port impedance matrix ZT , shown in fig. 2.8.

Dividing the ZT into sub matrices we can express the voltages at both ports as:

Va = ZaaIa + ZabIb (2.19)

Vb = ZbaIa + ZbbIb (2.20)

Applying the lossless condition 1 for the embedding network gives:

I�(ZT + Z�
T )I = 0 (2.21)

Implying that (ZT + Z�
T ) = 0, expanding out gives:[

Zaa + Z�
aa Zab + Z�

ba

Zba + Z�
ab Zbb + Z�

bb

]
= 0 (2.22)

The voltage at the input of the Z is given by V = ZI + E, substituting I = −Ia and

1Z version of I2R = 0, and � is the conjugate transpose, or Hermitian operator.

12



Vbn Van
Zn

in

+ En −

Vbi Vai
Zi

ii

+ Ei −

Vb1 Va1
Z1

i1

+ E1 −

ZZT =

[
Zaa Zab
Zba Zbb

]

Figure 2.8: Embedded Linear noisy n-port, adapted from [44].

equating to eq. (2.19):

−ZIa + E = ZaaIa + ZabIb

Ia = −(Z + Zaa)−1ZabIb + (Z + Zaa)−1E (2.23)

Defining the new combined matrix as Z′ with associated noise sources E′. Then the
output voltage is:

Vb = Z′Ib + E′ (2.24)

We can now equate this voltage with eq. (2.20):

Z′Ib + E′ = ZbaIa + ZbbIb

substituting in eq. (2.23) and setting E′,E = 0

Z′Ib = Zba(−(Z + Zaa)−1ZabIb) + ZbbIb

Z′ = −Zba(Z + Zaa)−1Zab + Zbb (2.25)

Setting the input current Ib = 0 we can then solve for the noise matrix E′:

E′ = Zba(Z + Zaa)−1E (2.26)

Considering the denominator and numerator of eq. (2.18) seperably, we can solve for:
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Z′ + Z′
�

=− Zba(Z + Zaa)−1Zab + Zbb

− Z�
ab(Z

� + Z�
aa)−1Z�

ba + Z�
bb

Applying eq. (2.22) conditions, Zaa = −Z�
aa, Zbb = −Z�

bb, Zab = −Z�
ba and Zba = −Z�

ab.

Z′ + Z′
�

= Zba[(Z + Zaa)−1 + (Z� + Z�
aa)−1]Z�

ba

Which can be simplified to:

= D�(Z + Z�)D (2.27)

Where D = Zba(Z + Zaa)−1. Which is the form from eq. (2.26), so that E′ = DE. Which
then can be used to solve for the numerator in eq. (2.18) to give the transform:

〈E′E′�〉 = D�〈EE�〉D (2.28)

We can now rewrite eq. (2.18) as:

P ′ex,i =
a�D�〈|EE�|〉Da

2a�D�[Z + Z�]Da
(2.29)

Given D is a function of the embedding network it can be chosen to diagonalise both
matrices and set the matrix 〈EE�〉 to the identity matrix. The sum simplifies to a singular
value such that:

P ′ex,i = bi (2.30)

Where bi is an eigenvalue of the matrix:

1

2
(Z + Z�)−1〈EE�〉

This represents the extreme of the noise power from the noise sources and the negative
of it is known as the characteristic noise matrix.

Nz = −1

2
(Z + Z�)−1〈EE�〉 (2.31)

For a purely resistive network this becomes:

Nz = −kTBI (2.32)

Where I is the identity matrix.

2.4.3 Two Port noise model

Noisy networks can be represented conveniently as a port model as shown in fig. 2.9. H
Rothe, W Dahlke [42] show how the noise in the network can be modelled using two equiva-
lent correlated noise sources and leaving the port network noiseless. The equivalent circuits

14



are show in fig. 2.10.

I1

Noisy

I2
+

−

V1

+

−

V2

Figure 2.9: Noisy two port network.

+ v1 − − v2 +

Noiseless Z

(a) Equivalent Z network.

Noiseless Yi1 i2

(b) Equivalent Y network.
+ v −

Noiseless ABCDi

(c) Equivalent ABCD network.

Figure 2.10: Equivalent circuits with external noise sources.

The network equations can now be expressed as:

I = YNV + i

V = ZN I + i

V/I = ABCDN
V/I + v/i (2.33)

Where i and v are the noise sources and the correlation between any individual noise
source is given by C; i, j = 〈iiv∗k〉. Ci; i, j = 〈iii∗j 〉, Cv; i, j = 〈viv∗j 〉 and Cm; i, j = 〈iiv∗j 〉. The
matrices Ci,Cv and Cm are the characteristic noise matrices.
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Following the nomenclature and approach presented by S A Maas in [52]. Considering
the two port model in fig. 2.10c because the Z/Y, ABCD is noiseless it can be removed from
the analysis and represented as shown in fig. 2.11. Where the Ys is the input admittance.

Ys

+ v −

i

Figure 2.11: Equivalent circuit with ABCD matrix removed.

We can represent the noise source current i as a sum of correlated and uncorrelated
components as:

i = iu + vYcor (2.34)

Where:

Ycor = Γ

√
〈|i|〉2
〈|v|〉2

=
〈iv∗〉
〈|v|〉2

(2.35)

The circuit perspective is shown in fig. 2.12:

Ys Ycor

+ v −

iu −Ycor

Figure 2.12: Equivalent circuit with uncorrelated sources.

Considering the equivalent circuit in fig. 2.12, we can calculate the mean square short
circuit current 〈|itot|〉, simply by summing the currents as they are now uncorrelated 2:

〈|itot|〉 = 〈|iu|〉2 + 〈|is|〉2 + 〈|v|〉2〈|Ys + Ycor|〉2 (2.36)

All of these currents can be replaced by equivalent sources:

Rn =
〈v〉2

4KT0B
(2.37)

Gn =
〈iu〉2

4KT0B
(2.38)

Gs =
〈is〉2

4KT0B
(2.39)

Where G is the real part of Y
Therefore:

〈itot〉2 = (4KT0B)
(
Gs +Gn +Rn〈Ys + Ycor〉2

)
(2.40)

2|a+ b|2 = |a|2 + |b|2 + |a∗b|+ |ab∗|; if a and b are uncorrelated |a∗b| = |ab∗| = 0
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The noise figure F, defined purely in terms of the current is F = 〈itot〉2/〈is〉2. Where
itot is the total short circuited current at the output and 〈is〉 is the current coming from an
impedance Zs at the input. Intuitively this is the ratio of the total current out given an input
current, equivalent to F = (290+Te)/290 so dividing eq. (2.40) by 〈|is|〉2 (or the equivalent
Gs).

F =
〈itot〉2

〈is〉2
= 1 +

Gn
Gs

+
Rn
Gs
〈|Ys + Ycor|〉2 (2.41)

To find the minimum noise figure Fmin we set Im{Ys} = −Im{Ycor} and solve for
dF (G0)/dGs = 0, where G0 is the optimium input impedance to obtain:

Fmin = 1 +
Gn
Gs

+
Rn
Gs
〈|Gs +Gcor|〉2 (2.42)

By definition Ys,opt = Gs,opt − Im{Ycor} and Ycor = Gcor + Im{Ycor}, so Ycor = Gcor +

Gs,opt − Ys,opt. Substituting this and eq. (2.42) back into eq. (2.41), gives us:

F =1 +
Gn
Gs

+
Rn
Gs
〈|Ys − Ys,opt +Gs +Gcor|〉2 (2.43)

=1 +
Gn
Gs

+
Rn
Gs
〈|Gs +Gcor|〉2 +

Rn
Gs
〈|Ys − Ys,opt|〉2 (2.44)

=Fmin +
Rn
Gs
〈|Ys − Ys,opt|〉2 (2.45)

Which is the familiar form. Even though differential amplifiers are three port devices
if the admittance Ys is considered as the differential impedance, and the common mode
noise is low they can still be modelled using eq. (2.45), however in the case that it is not we
develop the three port model below:

2.4.4 Three port differential amplifier model

J. Randa in [53] derives the form for a general multiport amplifier, with the noise figure at
the ith port is given by:

Fi(Γ,A) = 1 +
1

kBT0

(
([I− SΓ]−1N̂[I− SΓ]−1)�

([I− SΓ]−1SAS�[I− SΓ]−1)�

)
ii

(2.46)

Where Γ is the input matching and A is the input correlation matrix. In order to derive
this form we follow the method of the two port case, consider the three port ABCD model
in fig. 2.13.

As before we can separate out the currents into correlated and uncorrelated terms:

i1 =iu1 + i2 + C12 + v1Ycor11 + v2Ycor12 (2.47)

i2 =iu2 + i1 + C21 + v1Ycor21 + v2Ycor22 (2.48)

Given that this is a three port model the correlation matrix should be 3× 3 so eq. (2.48)
has a redundant term. We can consequently set C12 = C21 = 0, this correlation term can be
easily accounted for later. The equivalent circuit model is then shown in fig. 2.14.
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+ v2 −

+ v1 −

ABCD

i1

i2

Figure 2.13: Three port ABCD network, with external noise sources.

Ys1 Ycor11

Ys2 Ycor22

Ycor21

Ycor12

+ v1 −

+ v2 −

iu1 + i2C12 −Ycor21

iu2 + i1C21 −Ycor12

−Ycor11

−Ycor22

Figure 2.14: Equivalent circuit of three port differential amplifier noise model.

As before:

|istot|2 =|is1 + is2|2 + |iu1 + iu2|2

+ |v1|2|Ys1 + Ycor11 + Ycor21|2

+ |v2|2|Ys2 + Ycor22 + Ycor12|2 (2.49)

Defining:

Rn1 =
|V1|2

4kBT0∆f
Rn2 =

|V2|2

4kBT0∆f

Gs1 =
|is1|2

4kBT0∆f
Gs2 =

|is2|2

4kBT0∆f
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Ycor1 = Ycor11 + Ycor21

Ycor2 = Ycor22 + Ycor12

Substituting these terms into eq. (2.49):

|istot|2

4kBT0∆f
= Gs +Gn +Rn1|Ys1 + Ycor1|2 +Rn2|Ys2 + Ycor2|2 (2.50)

We solve for the noise figure, by considering the total power at the input, which is
proportional to |is1 + is2|2 and includes any uncorrelated currents. So using the standard
definition of noise figure for a two port devices (there is no strict IEEE definition for three
port devices):

F =
|istot|2

|is1 + is2|2
(2.51)

Applying this definition to eq. (2.50),

F = 1 +
Gn
Gs

+
Rn1
Gs
|Ys1 + Ycor1|2 +

Rn2
Gs
|Ys2 + Ycor2|2 (2.52)

This is now in the form of eq. (2.46). Theoretically differential amplifiers models require
nine noise parameters [53], eq. (2.52) contains only seven. The missing terms are contained
in the Gs term representing the correlation between the current sources.

In order to solve the differential, dF/dYs . We assume that the noise sources at the input
are uncorrelated, ie Gs = Gs1 + Gs2 as |is1 + is2|2 = |is1|2 + |is2|2. Also Im{Yopt, s1} =

−Im{Ycor1} and Im{Yopt, s2} = −Im{Ycor2}. As before:

Yopt,s1 = Gopt,s1 − Im{Ycor1} (2.53)

Ycor1 = Gcor1 + Im{Ycor1} (2.54)

Which allows us to solve for Ycor1:

Ycor1 = Gcor1 +Gopt,s1 − Yopt,s1 (2.55)

Similarly,

Ycor2 = Gcor2 +Gopt,s2 − Yopt,s2 (2.56)

Substituting back into eq. (2.52) gives us

F =1 +
Gn

Gs1 +Gs2
+

Rn1
Gs1 +Gs2

|Ys1 − Yopt,s1 +Gcor1 +Gopt,s1 |2

+
Rn2

Gs1 +Gs2
|Ys2 − Yopt,s2 +Gcor2 +Gopt,s2 |2 (2.57)

As before because the terms here are now uncorrelated we can simplify:
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F =1 +
Gn

Gs1 +Gs2
+

Rn1
Gs1 +Gs2

|Gcor1 +Gopt,s1 |2

+
Rn2

Gs1 +Gs2
|Gcor2 +Gopt,s2 |2

+
Rn1

Gs1 +Gs2
|Ys1 − Yopt,s1 |2

+
Rn2

Gs1 +Gs2
|Ys2 − Yopt,s2 |2 (2.58)

Which gives us the final form:

F = Fmin +
Rn1

Gs1 +Gs2
|Ys1 − Yopt,s1 |2 +

Rn2
Gs1 +Gs2

|Ys2 − Yopt,s2 |2 (2.59)

If we set Ys1 = Ys2 = 1/2Ys this does not reduce back to the two port case, which
suggests a slight error in modelling differential amplifiers in the standard way.

2.4.5 Maximum and minimum LNA noise temperature envelopes for
wideband antenna design

LNA noise temperatures are modelled as the sum of a minimum temperature Tmin, and
a matching term, in terms of the input impedance (either Zact or Γact). For some applica-
tions a variable line length or ultra wide band (UWB) applications, the phase of the input
impedance is either unknown or cannot be matched across the whole of the band, which
leads to an uncertainty in the LNA noise contribution. Formulas for the best and worst case
are developed for any phase, and thus can be used to calculate a more general matching
criteria, which might be more useful for these applications. General and specific examples
are given, along with the impact to the system noise temperature.3

Maximum and minimum Cases The noise of a LNA, given a particular input impedance
Γact, is modelled as [54]:

TLNA = Tmin + 4NTo
|Γact − Γopt|2

(1− |Γact|2) (1− |Γopt|2)
(2.60)

If the amplifier parameters are fixed (generally the case for an antenna designer) and
the phase of Γact is not tunable (often the case for wide bandwidth applications), then the
maximum and minimum TLNA contribution is calculated for a particular Γopt, by consid-
ering only the numerator in the matching term, |Γact − Γopt|. The rest of the expression
is independent of the phase of Γact and acts only as a constant scaling factor. It is then
easy to see that the maximum and minimum occur when |Γact − Γopt| = |Γact|+ |Γopt| and
|Γact| − |Γopt| respectively. Giving two new equations:

TLNA max = Tmin + 4NTo
(|Γact|+ |Γopt|)2

(1− |Γact|2) (1− |Γopt|2)
(2.61)

3The author is indebted to the late Per S Kildal for his supervision in developing the idea of LNA envelope
curves.

20



0.2 0.5 1 2 5
0

0.2

0.5

1

2

5

−0.2

−0.5

−1

−2

−5

|Γact|+ |Γopt|

|Γact| − |Γopt|

|Γact| = −8 dB
Γopt (3–15 GHz)

Γopt (4 GHz)

Γact min (4 GHz)

Γact max (4 GHz)

Figure 2.15: Maximum and minimum points at 4 GHz for a 66 K UWB LNA.

TLNA min = Tmin + 4NTo
(|Γact| − |Γopt|)2

(1− |Γact|2) (1− |Γopt|2)
(2.62)

Using the standard impedance form of eq. (2.60):

TLNA = Tmin + NTo
|Zact − Zopt|2

RactRopt
(2.63)

The impedance forms of eqs. (2.61) and (2.62) are:

TLNA max = Tmin + NTo
(Ract +Ropt)

2

RactRopt
(2.64)

TLNA min = Tmin + NTo
(Ract −Ropt)2

RactRopt
(2.65)

It is easily shown that Γact is in and out of phase with Γopt at the two limits, for |Γact −
Γopt|

= ||Γact|ejθact − |Γopt|ejθopt |

= |(|Γact| − |Γopt|)ejθopt | for θact = θopt

= |Γact| − |Γopt| (min) and for θact = π + θopt

= |Γact|+ |Γopt| (max)

Visually shown in fig. 2.15 where a 66 K UWB LNA has been used to illustrate the
principle, with |Γact| = −8 dB.

This is similarly expressible in terms of the LNA matching efficiency ηmiss (defined in
[55] and given by eq. (2.66) where TLNA used here, is equivalent to Trec). These efficien-
cies are plotted in fig. 2.16 (note that as this is an efficiency, and a maximum temperature
corresponds with a minimum matching efficiency).
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ηmiss =
Tmin
TLNA

ηmiss min|max =
Tmin

TLNA max|min
(2.66)
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Figure 2.16: Multiple arbitrary phased LNA ηmiss curves, with maximum and minimum
envelopes, calculated for a |Γact| = −8 dB matching criteria and a UWB 66 K LNA.

From an antenna or system designer’s perspective the worst case is normally of most
interest, which can now easily be calculated for a general matching criteria. Plotted in
fig. 2.17 are maximum LNA temperature contributions, and minimum LNA efficiencies
for different |Γact|. The maximum ripple in the noise temperature (TLNA max − TLNA min) is
plotted in fig. 2.18 which, along with the maximum curve characterise the LNA envelopes
fully.
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Figure 2.17: Maximum LNA temperature, and minimum LNA efficiency curves for differ-
ent |Γact| and a UWB 66 K LNA.
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Figure 2.18: Maximum LNA ripple curves calculated for a various |Γact| and a UWB 66 K
LNA.

2.4.6 Noise wave modelling

Noise wave modelling was first introduced by Bauer and Rothe [56] (German), and called
attention to by Penfield [57]. The method differs in that the noise sources are replaced by
equivalent waves emanating from the ports shown in fig. 2.19. This theory has been applied
extensively with the aid of computers by Kanaglekar, McIntosh and Bryant [58]. Wedge and
Rutledge present this using the already known concept of a characteristic noise matrix [59].
Wave modelling relies on knowing the scattering parameters of the components, often only
S21 is given for amplifiers, this can be measured or assumptions can be made (S11 = 0).
The assumptions are already inherent in taking a simpler approach so does not degrade
the simulated model.

a1

b1

b2

a2

c1 c2

S

Figure 2.19: Equivalent S network, using noise wave sources, adapted from [59].

The noise contribution is then modelled by modifying the standard S–parameter model
as follows:

b = Sa + c (2.67)
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Where the characteristic noise matrix is:

Cs = cc� (2.68)

Which is related to eq. (2.33) by [59, fig. 2]:

Cs =
1

4
(I + S)ii�(I + S)� (2.69)

Cs =
1

4
(I− S)vv�(I− S)� (2.70)

and to the noise temperature by [60, chp. 7].

|ci| = kTi (2.71)

cic∗j = k
√
TiTjρij (2.72)

The reader is referred to [59–61] for the full multiport theory for scattering matrices, and
noise waves.
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Chapter 3

Noise modelling, applied to a
wideband complex feed

3.1 Introduction

The theory in chapter 2 is applied to a wideband multiport feed with close coupling el-
ements, the Eleven antenna. Demonstrating the theory and giving us confidence in the
prediction critical to applying it to design and optimisation. Sections of this chapter are
extracted from [62].

3.2 Noise modelling the Eleven antenna

The Eleven antenna (shown in fig. 3.1) is a compact form of a log periodic dipole array.
It consists of eight single ended or four differential ports connected to two sets of two
linearly polarised petals, the ports can be combined in multiple configurations. Y–factor
measurements [3, chp. 10] have been carried out using two arrangements, eight single
ended amplifiers, as illustrated in fig. 3.2, and using differential amplifiers illustrated in
fig. 3.3. The modelling becomes complex because as can be seen the inter-element spacing
is small, there is strong mutual coupling in the receiver which contributes to the system
noise, referred to as noise coupling. In closely coupled antennas this contribution can be up
to 30 %, a combined effect of changing the active impedance Γact, the noise properties of
the LNAs and the beam forming weights.

The Eleven antenna although not an array, can be considered as an array of receiv-
ing ports and simplified to a single receiver chain using methods in [47] and presented in
[62]. The methodology is analogous (when the coupling between unconnected elements
are negligible and the amplifiers and channels identical) to methods presented in [64], a
simple and useful method of modelling antenna receiver systems with multiple receiving
chains and amplifiers. This reduces the system to a single receiver chain shown in fig. 3.4
below.
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Figure 3.1: The Eleven Antenna, an ultra wideband, dual polarized antenna operating over
a decade bandwidth from 1 GHz to 10 GHz, with a near constant gain of 11 dB.

3.2.1 Brightness temperature

When modelling system sensitivity it is important to understand the reflector used and
feed illumination. The considered system and associated noise contributions, at zenith, are
modelled as shown in fig. 3.5. The noise contribution of the atmosphere is calculated by
integrating the sky brightness temperature across the antenna beam, modelling the ground
as a constant 293 K visible from θ > π/2, and the sky temperature distributed as shown in
chapter 2 using eq. (2.6). Various calculated system brightness temperature, of an Eleven
antenna pointing upwards, for different illumination tapers, is given in fig. 3.6. Where the
antenna is assumed to be pointing at Zenith, the average and most commonly used case.
For large reflector antennas where the feed sees the dish (θ < θ0 in fig. 3.5) can be consider
as pointing at zenith. For angles between this and the horizon the sky, as calculated from
eq. (2.7), and θ > π/2 the ground. Clearly from fig. 3.6, the greater the illumination angle
the more the feed is shielded from ground noise. Increasing the illumination angle reduces
the aperture efficiency as can be seen from fig. 3.7, resulting in a trade-off between noise
and gain. The optimal point to place the feed depends on the total system temperature, if
the overall system has a very low noise temperature it is better to reduce ground pick up,
while if it is high, better to get more gain.

3.2.2 Ohmic and aperture efficiencies

The Eleven antenna is designed to illuminate a prime focused reflector, the aperture ef-
ficiencies are calculated from the measured beam patterns. The reader is referred to Ap-
pendix A for the calculations. The physical losses in the feed are given as an ohmic ef-
ficiency eohmic. The beam efficiencies and ohmic are plotted in fig. 3.8 where erad is the
combined efficiencies of the radiation and ohmic efficiency.

3.2.3 LNA modelling

Various wideband LNAs are available and given in table 3.1, the choice of amplifier is crit-
ical to the noise matching. The optimal impedance Γopt of two possible amplifiers are plot-
ted in fig. 3.9 and the impedance of the Eleven antenna in fig. 3.10. Clearly due to the wide

27



T T T T
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Wideband
π Hybrid

Wideband
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Wideband
Power

Combiner

Polarization X Polarization Y

Single ended LNA

T 200 Ω to 50 Ω Transition

Figure 3.2: Descrambling solution using 8 single-ended amplifiers and 4 commercial wide-
band 180° hybrids and two 3 dB power combiners. The 200 to 50 Ω transition T, transforms
a balanced twin-lead line to single-ended line, adapted from fig 11. [63].

frequency band of the system it is practically impossible to match the feed’s impedance to
the optimum amplifiers impedance. Instead a general matching criteria is developed that
looks at the worst case. The envelope curves for the Chalmer’s LNA (shown in fig. 3.9) are
plotted in fig. 3.11. The Caltech differential amplifier is used in the cryogenic measurements
and its noise temperature is plotted in section 3.2.4.
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Differential LNA

Figure 3.3: Descrambling solution using four active baluns, i.e. differential LNAs with
single-ended outputs, adapted from fig 13. [63].

erad emis LNA

Zl

Ta

Figure 3.4: Equivalent single channel noise model.

Antenna

Power
Combiner

θ0

TGND

TBrightness

Primary Reflector

Cryostat
TLNA

TANT

Figure 3.5: System model with associated noise contributions (right). There are assumed to
be 4 LNAs with differential 200 Ω ports connected to the 8 Eleven antenna ports shown on
the rear side of the feed.
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Figure 3.6: Integrated beam brightness temperatures vs Frequency, simulated for various
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Figure 3.7: Aperture efficiency vs Frequency, simulated for various illumination angles.
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Figure 3.8: Ohmic and radiation efficiencies of the Eleven antenna, calculated on the beam
patterns for an optimal illumination angle.

Table 3.1: Available wideband LNAs.

Techn. Input Type Physical
Tempera-
ture

Source Impedance Frequency Gain
(11 GHz)

Noise Tem-
perature
(11 GHz)

lnp HEMT
MMIC

single
ended

20 K Caltech 50 Ω 0.5 GHz to
11 GHz

40 dB 5 K

lnp HEMT
MMIC

differential 20 K Caltech 200 Ω 0.5 GHz to
11 GHz

37 dB 5 K

GaAS
mHEMT
MMIC

single
ended

70 K Low Noise
Factory

50 Ω 1 GHz to
11 GHz

32 dB 16 K

GaAS
mHEMT
MMIC

single
ended

298 K Low Noise
Factory

50 Ω 1 GHz to
11 GHz

31 dB 60 K

GaAS
mHEMT
MMIC

single
ended

70 K MC2 50 Ω 1 GHz to
11 GHz

32 dB 16 K

GaAS
mHEMT
MMIC

differential 298 K MC2 150 Ω 1 GHz to
15 GHz

25 dB 75 K

discrete
GaAS

single
ended

20 K GARD 50 Ω 4 GHz to
8 GHz

33 dB 5 K
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Figure 3.9: Optimum noise input impedances of Chalmers (ambient) and Caltech (cryo-
genic) LNAs as given by the manufactures, all charts matched to 200 Ω.
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200 Ω.
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matching criteria and a UWB 66 K LNA.
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3.2.4 Complete system temperature

Hot cold Y–factor measurements using the sky and Ecosorb for the loads were done at the
Onsala space observatory. The Eleven antenna is placed inside a Dewar which is cryo-
genically cooled under vacuum, pictures of the measurements are given in fig. 3.12 and
details are presented in [65]. The final predicted system noise temperature is plotted in
fig. 3.13, the amplitude agreement is good with the average noise temperature within 0.3 K

of the model. The model however does not capture the dynamics of the noise as should be
expected with a simpler single channel model.

Figure 3.12: Cryogenically cooled Eleven antenna in Dewar, and measurement setup. Liq-
uid Helium is used for the cooling, and the system is given several hours to stabilise. The
amplifier voltages where monitored to control for gain fluctuations using a precision power
supply.
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not to lose the low temperature points, measurements where done at the MIT Haystack
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3.3 System sensitivity

Combining environmental and receiver noise contributions, with the effective aperture cal-
culations above (A/T =

eaperadAphy
Ta

) the final A/T curve is plotted in fig. 3.14. This is the
final desired goal function that represents the total system sensitivity and should be the
goal of a final system optimisation function.
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Figure 3.14: Maximum achievable A/T perm2 physical aperture vs. Frequency f for cooled
and uncooled systems(F/D = 0.433), when the Eleven antenna feeds a reflector with half
subtended angle θ0 = 60◦.

3.4 Conclusion

The application of equivalent single channel noise modelling theory to a complex feed
gives a good prediction of the system noise, even if it does not capture all the dynamics as
is expected. The modelling presented is sufficient to give Radio Astronomers a good ex-
pectation to the receiver’s sensitivity and that the system is working correctly. For simpler
systems the calculation of the overall system sensitivity gives us a goal function to compare
and contrast possible systems, however for more complex and sensitive systems multiport
modelling is required. The next chapter goes through the motivation and approach of more
complex noise modelling calculations.
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Chapter 4

Integration of Noise Modelling
into EM design

4.1 Introduction

Next generation radio astronomy systems and Earth observation science rely largely on
innovative antenna technologies (such as wideband dense arrays and multiport feeds for
reflector antennas) and low noise receivers. Examples of on going developments are the
SKA radio telescope and VLBI2012 network [28, 34]. Design and optimization of such high
sensitivity wideband systems is challenging, due to the computationally intensive nature
of the antenna simulations (over wide frequency and scan angle ranges) and strong interac-
tion between antenna element mutual coupling, receiver noise and beam forming scenarios
[66]. To tackle these problems a number of computationally efficient numerical approaches,
combined antenna receiver characterization techniques and dedicated software tools have
recently been developed [35, 37, 64]. One example is the CAESAR software, an advanced
EM/MW solver for the analysis of large antenna array systems [35], and a newly developed
phased array feed toolbox for the analysis of reflector antennas [37]. This software is tai-
lored to solve for the noise response of receiver/antenna systems to external (ground and
sky) and internal (LNAs, ohmic losses) noise sources. The necessary input parameters for
the system noise performance calculation are: (i) antenna radiation patterns and radiation
efficiencies and the antenna input impedance matrix; (ii) noise and S–parameters of LNAs
and beam forming network; (iii) the external noise temperature distribution. Currently the
software is not widely available, and the author should be directly contacted to obtain it.

Most antennas are designed using commercial software and it is not practical, nor effi-
cient to resolve them using these specialised solvers. It is more useful to be able to use this
specialised software in conjunction with the commercial solvers. The specific commercial
solver considered here is CST, but it applies generally to any commercial solver.

The Problem is formulated as follows: The radiation patterns, efficiency and impedance
of an antenna are simulated in CST and can be exported to CAESAR to construct the overall
system model. The excitation conditions for antenna ports and formats of the simulation
data of the radiated field as implemented in CST and CAESAR are however different. Our
objective is therefore to develop a general procedure for calculating the necessary data for
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noise evaluation, from CST (or similar EM software) into the format required for modelling
the system noise temperature in CAESAR.

The model is tested using a simple folded dipole. The dipole can be simulated com-
pletely in CAESAR and then compared to the hybrid CST/CAESAR solution. The solution
is then applied to develop a detailed system model of the multiport Eleven antenna for a
reflector antenna [67], and to perform the system noise analysis.

Sections of this chapter have been experted and adapted from [68].

4.2 A general multiport antenna model

4.2.1 Definitions

For convenience we compact the representation of a multiport antenna into a matrix vector
formulation, shown in fig. 4.1.

Z

f(θ, φ)

∼
v1

i1

zL1

∼
v2

i2

zL2

. . .
∼

vN

iN

zLN

≡

Z

f(θ, φ)

∼
v

i

ZL

Figure 4.1: Equivalent single port antenna representation of a multiport antenna system.

In fig. 4.1 v = [v1,v2 . . . vN ]T a column vector of the port voltages (where T is the
transpose operator), i, similarly defined, is the port currents, f is the total beam pattern
defined as

f(θ, φ) = Eθ(θ, φ) + Eφ(θ, φ)

Z is the antenna Z–matrix, and

ZL =

[
zL1 ··· 0

...
. . .

...
0 ··· zLN

]
is a diagonal matrix of the load impedances. To completely characterise a N–port antenna
device we needM linearly independent voltage vectors corresponding toM antenna beam
patterns, where M ≥ N . Compactly expressed as:

V = [v1 ¦ v2 ¦ . . . ¦ vM ] (4.1)

f = [f1,f2 . . . fM ]T (4.2)
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Where V is a square N ×M matrix and f is a M × 1 column vector. For the case where
each port is excited sequentially with 1 V , V is the identity matrix i.e. V = V0 = I. The
corresponding f vector is defined as f0 = [f0,1,f0,2 . . . f0,N ]T, where f0,n is the embedded
element pattern of the nth element when it is excited with 1 V and the remaining elements
are unexcited (there source voltages are equal to zero, but they are still loaded). Using the
principles of superposition and that the antenna beam pattern contribution from a single
port is directly scalable by the voltage at the same port, we can rewrite the general case as:

f1 = v1,1f0,1 + v1,2f0,2 + . . .v1,Nf0,N

f2 = v2,1f0,1 + v2,2f0,2 + . . .v2,Nf0,N

...

fM = vM,1f0,1 + vM,2f0,2 + . . .vM,Nf0,N

Where:

fm =
N∑
n=1

vm,nf0,n

Or in matrix form:

f = VTf0 (4.3)

If V is linearly independent f0 = V−Tf. Note, when M > N it is assumed that the pseudo–
inverse is computed.

4.2.2 Beam pattern conversion due to different loading and excitation

The original known case is defined as “a”, and the antenna beam patterns to be calculated,
given a new loading and excitation defined as case “b”. The port and circuit equivalents
are given in fig. 4.2. To calculate the required beam patterns the scaling voltage is required.
That is to calculate the excitation which would be required in order to produce the desired
port voltage excitation in b. This is easily done using the equivalent circuits. The required
port voltages to produce the required current is defined as v′a, shown in fig. 4.3.

Using the equivalent circuit for case “b”,

vb = (Zb + Z) ib

Solving for the desired current ib gives:

ib = (Zb + Z)
−1 vb (4.4)

Similarly (from fig. 4.3) the corresponding voltage, which causes current ib in circuit
“a”, v′a is:

v′a = (Za + Z) ib (4.5)
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fb

∼
vb
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Zb

Z

(b) New solution

Figure 4.2: Network and equivalent circuit representations.

∼v′a

ib

Za

Z

Figure 4.3: Equivalent voltage excitation for case “a” to realise current ib in situation “b”.

Substituting eq. (4.4) into eq. (4.5) gives:

v′a = (Za + Z) (Zb + Z)
−1 vb (4.6)

For N linearly independent excitations this in matrix form is:

V′a = (Za + Z) (Zb + Z)
−1 Vb (4.7)

For the case where Vb = V0,

V′a0 = (Za + Z) (Zb + Z)
−1 V0 = (Za + Z) (Zb + Z)

−1 (4.8)

In this case the beam patterns transformation is a simple scaling:

fb
0 = V′a0f

a
0 (4.9)
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The relations of the f0 beam patterns to the required beam patterns f are calculated using
eq. (4.3):

fb = VT
b f

b
0 (4.10)

fa
0 = V−T

a fa (4.11)

Substituting eqs. (4.8), (4.9) and (4.11) into eq. (4.10) the required conversion equation
can be formulated:

fb = VT
bV
′
a0f

a
0

= VT
bV
′
a0V
−T
a fa

= VT
b (Za + Z) (Zb + Z)

−1 V−T
a fa (4.12)

Alternatively expressed for a single beam pattern as:

fb
m =

N∑
n=1

(Za + Z) (Zb + Z)
−1 vb

m,n

va
m,n

f a
n (4.13)

Where fb
m is the beam pattern when the array is exited with voltages vm, and loaded

with Zb. As expected the equations reduce to unity, (i.e fb = fa) when Zb = Za, and Vb = Va,
as required.

eq. (4.12) can now be used to scale the beam patterns, however CAESAR also normalises
the patterns (to an equivalent 1 W source) so this needs to be de–normalised so as to be
re–normalised later.

4.2.3 De–normalisation

G =
Pr

Pin/4π

where:

Pr =
1

2

|f |2

120π

G =
|f |2

2 120πPin/4π

G =
|f |2

60Pin

rearranging:

|f | =
√

60Pin
√
G (4.14)

From eq. (4.14),
√

60Pin is the de–normalisation factor. Where the power, for CST, for

41



the mth port is:

Pin,m =
1

2
Re{v0i

∗
0}

=
1

2
Re{iH0 v0}

=
1

2
Re{

(
Z−1v0

)H
v0}

=
1

2
Re{vH0

(
Z−1

)H
v0} (4.15)

Where:

va = (Za + Z) (0 + Z)
−1 v0

v0 = (Za + Z)
−1

(Z) va

|fm| =
√

60Pin,m
√
Gm

Where V can be calculated from the equivalent CAESAR excitation (see eq. (4.6)). The Gain
Normalisation factor required for CAESAR is then finally

√
60VPin. Where V is typically the

identity matrix.

4.3 Testing and verification

To test the conversion a folded dipole with two ports simulated at a single frequency is
used. Both CST and CAESAR models are produced and a comparison made between the
converted CST pattern and actual CAESAR pattern. It is expected to vary slightly due to the
different simulation methods and meshing. The modelled geometries are given in fig. 4.4.

(a) CST model (b) CAESAR model

Figure 4.4: Simple folded dipole geometries, for both CST and CAESAR, the ground plane
for CAESAR is not shown.
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The difference in the calculated Z matrices (as they are used directly in the translation)
estimate the variations expected in the beam pattern. For CAESAR this is:

Re{ZCAE} ≈

(
180 161

161 181

)
and for CST, Re{ZCST} ≈

(
165 140

140 164

)
So the two beams patterns are expected to conform within 85%–95% of each other,

which they do as shown in the original and converted beams plotted in fig. 4.5. The com-
parison, which is within the required accuracy, is given in fig. 4.6. The beams are symmetric
and only port 1 is needed to be compared.

4.3.1 Conclusion

The converted beam patterns are within 2 % of the desired pattern, variations in the nulls
are relatively to the total radiated power very small and so differences here are not problem-
atic. This is considered within in the expected variation between the solvers. It is possible
using this method to use CAESAR with CST and given the general approach to use it with
any other commercial solver, as long as the form of the port excitations are known.
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Figure 4.5: Originally computed far field beam patterns for CAESAR and CST.

4.4 Modelling of multi-port antenna patterns

4.4.1 Description of the Eleven antenna system

The Eleven antenna is a decade-bandwidth log-periodic dual-dipole array developed at
Chalmers University of Technology [67], consisting of eight single-ended ports connected
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Figure 4.6: Comparison between original CAESAR and converted CST beam patterns.

to LNAs and a combining network as show in fig. 4.7. The noise performance of this re-
ceiver has previously been analysed with an approximate model (based on the equivalent
system representation [64, 67]) and assuming identical LNAs (with no reflections at their
ports) and an ideal combiner. The CAESAR model, presented here, is a full numerical ap-
proach which can be applied to perform a detailed study of the Eleven antenna perfor-
mance and uses (where available) the measured noise and scattering parameters of LNAs
and combiner components. The numerical results are compared to measurements carried
out with the practical system.

The Eleven antenna is a symmetric structure and thus knowing the required combi-
nation network for the desired antenna beam pattern, means the simulation is typically
done for only one eighth of the antenna using appropriate symmetry planes and associ-
ated boundary conditions for the fields [69]. Receiver noise however is coupled through
all pattern correlations and so the CAESAR model requires the feed beam pattern to be
modelled. From the inversion requirement in eq. (4.12), eight ports require eight unique
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(a) Photos of the Eleven antenna consisting of four log-periodic dipole arrays and the descrambling
board, realizing a transition to eight single-ended coaxial ports (on the rear side of the ground plane.

S

f(θ, φ)

1 2 3 4

Sπ Sπ

+

(b) The Eleven antenna receiver model, for one polarization, including two oppositely located dipole
arrays, four single ended LNAs connected to the coaxial ports, two hybrids and combiner. The output
ports of the other four LNAs are matched terminated.

Figure 4.7: Photos of the Eleven antenna, and the overall system model

excitation cases to be able to produce the case for any arbitrary excitation and port termi-
nation. This is impractical over the wide bandwidth of the Eleven antenna and so a single
port is simulated instead, with all other ports terminated and then the simulated beam pat-
tern is mathematically mirrored to produce the beam patterns for the equivalent single port
excitations. This requires the full antenna to be simulated but only for one excitation. It is
pointed out that it is computationally faster to simulate multiple smaller problems with
varying E and H plane symmetries, as the number of mesh cells grows faster with a larger
geometry than with the number of cases however, the single port pattern is chosen in this
case as it is easier to verify the implemented code with a simple test cases, as discussed
below.

4.4.2 Exploiting the rotation/translation symmetry

The mirroring is done using X,Y plane symmetries, and is tested using four simple folded
dipoles configured to match the port configuration of the Eleven antenna, but simulated
at one frequency (so all ports and combinations can be quickly simulated and compared
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Figure 4.8: Comparisons between mirrored and directly computed beam pattern cuts for
port 2 of four folded dipoles arranged in an identical port layout as shown in fig. 4.7, sim-
ulated at 5 GHz, (the phase has been wrapped for compactness).

to the mirrored patterns), shown in figs. 4.8, 4.10 and 4.10. The mirroring function shows
only small variations (5–10o) in the φ = 90o plane. This accounts for similar variations in the
summed patterns of the Eleven antenna case shown in fig. 4.11. Further verification is done
by comparing the appropriately summed single port beam patterns with the previously
simulated total antenna beam pattern used to characterise the feed. The comparison is
plotted (at a single frequency for brevity) in fig. 4.11. The patterns are normalised and agree
well with full port simulation (patterns within the simulated band, 1–12 GHz, show similar
agreement given in Appendix B). The small differences between the results are primarily
due to the fact that the two simulations are performed in CST; one for the entire Eleven
antenna exciting a single port only, and another one for for one eighth of the antenna using
symmetry planes for the fields.

4.5 System noise analysis

The beam patterns are transformed through eq. (4.12), and used directly in the CAESAR

software. The method used is to compute the system gain using a 1 K sky noise temperature
distribution and an otherwise noiseless system. The noise temperature of the noisy system
is then modelled and normalised by dividing out the system available noise gain. Before
doing so an ideal system (matched, lossless and reflection less beam former) was modelled
in CAESAR, and compared to simpler modelling predictions.
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Figure 4.9: Comparisons between mirrored and directly computed beam pattern cuts for
port 3 of four dipoles arranged in an identical port layout as shown in fig. 4.7, simulated at
5 GHz, (the phase has been wrapped for compactness).
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Figure 4.10: Comparisons between mirrored and directly computed beam pattern cuts for
port 4 of four folded dipoles arranged in an identical port layout as shown in fig. 4.7, sim-
ulated at 5 GHz, (the phase has been wrapped for compactness).
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Figure 4.11: The Eleven antenna pattern cuts at 6 GHz, as obtained by simulating the entire
antenna structure including the four folded dipoles, descrambling board and the power
combining network (shown in fig. 4.7), and by simulating the eight part of the antenna with
the following-up procedure for reconstructing the patterns of the other ports (see figs. 4.8
to 4.10).

4.5.1 Simpler Noise characterization models

An ideal hybrid and combiner network, with cryogenic wideband Caltech LNAs with an
Eleven antenna can be modelled using a simple model assuming a perfect beam former
that can be approximated as a single channel with only one amplifier modelled using the
standard Pospieszalski model [70] or more accurately using an equivalent system represen-
tation [64]. The equivalent model assumes no isolation and reflection losses in the LNAs,
hybrids and combiner. The comparison is plotted below in fig. 4.12. The variations between
the CAESAR and the ideal model are due to approximation of the beam pattern which in-
troduce small errors in the normalisation.

4.5.2 Numerical and experimental results

A single polarization of the Eleven antenna is modelled assuming a 7 K atmospheric contri-
bution and 300 K ground contribution with and a 15o tree line. The model accounts for; ex-
ternal sky and ground noise sources, ohmic losses in the feed, LNA noise sources, coupling
between the dipole elements, reflections between all the beam forming elements including
the LNAs. The predicted and measured system noise temperatures are plotted in fig. 4.13.
All the measurements were taken at Onsala Space Observatory with the feed placed look-
ing skyward and without a reflector. This setup increases the measured noise as it increases
the measured noise temperature compared to a set including the reflector antenna, due to
the additional ground noise pick-up component in the directions θ = 90–180o. Both the
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Figure 4.12: Noise temperature contributions due to the LNAs and antenna impedance
noise mismatch, as obtained with the complete Eleven antenna receiver model (see fig. 4.7)
and two simpler models: equivalent model assuming no isolation and reflection losses in
the LNAs, hybrids and combiner and simple model assuming, additional to the equivalent
model’s assumptions, identical beam former channels and LNAs.

measured and simulated data are smoothed using a moving average over 200 MHz in or-
der to reduce random measurement noise. The model shows good correlation of ripples
within the noise temperature especially at higher frequencies and is clearly closer than the
single port model seen in fig. 3.13. The model underestimates the measured noise by 7.3 K
averaged across the band, this underestimate is mainly due to using a uniform sky bright-
ness temperature distribution where in reality it increases at the higher end of the band, as
can be seen in fig. 4.13. This can be accounted for using a better atmospheric model but
here a standard model is preferred. The estimated thermal noise component of the antenna
due to the radiation efficiency loss (ηrad) is added onto to the CAESAR prediction based on
measurements done of the Eleven antenna in the spherical near-field test range at DTU
(Technical University of Denmark) [67]. Adding ηrad post modelling increases the predic-
tion fractionally, ηrad is simulated close to 0.9 so the effect is small. The differences seen are
considered accounted for or within the noise of the measurement.

4.6 Conclusion

The characterization of low-noise multi-port wideband receiving systems is a challenging
problem requiring advanced modelling methods and measurement techniques. A system
model has been developed in CAESAR incorporating data from CST by developing a math-
ematically general procedure to transform the antenna radiation and impedance character-
istics between the CST and CAESAR software. This method and model has been validated
for a simple system of folded dipoles and used with the Eleven antenna. The resonance
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Figure 4.13: Predicted and measured system noise temperatures of the Eleven antenna
receiver for one polarization, due to both the external and internal noise sources, including
the sky background noise (7 K for θ = 0–75o), thermal ground noise (300 K for θ = 75–180o),
antenna ohmic loss (at physical temperature of 25 K), noisy LNAs and power combining
network.

structure of the system noise temperature reproduces well the measurements performed
with the actual UWB LNAs, with differences between the simulations and measurements
of 7 K on average over the frequency band. The model works well for predicting the res-
onance behaviour of the system. Future work on the model is focused on using a more
accurate sky temperature distribution and beam patterns, which include the effect of the
cooling cryostat’s ring (which might produce ground reflections) and radome’s window
(which adds loss). The problem now is to incorporate this modelling into design and opti-
misation using commercial solvers, this is tackled in the next two chapters.
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Chapter 5

Scripting of FEKO

5.1 Introduction

The integration of noise modelling goals into receiver design is typically tricky given that
EM code focuses on antenna fundamentals, typical for industrial applications. Almost all
software packages integrate analysis and optimisation for antenna design. This is conve-
nient but limiting, it requires the optimisation variable to be a field within a geometric
parameter of the CAD software and using the output parameters as a goal function. For
instance aiming for a particular beamwidth, or Γ11 matching criteria based on antenna
length. For designers the trade off is not always obvious and rules of thumb are typically
used. Optimising for a VSWR of better than 2 : 1 or an edge taper of −20 dB are typical
examples. Noise analysis removes this uncertainty by designing for the exact system sensi-
tivity or performance, allowing greater flexibility in antenna design and ease in setting an
optimisation goal. For this we develop software to perform the following:

a) a low level interface with an EM solver, b) build and modify geometries based on a
general mathematical description, c) run simulations and optimise based on noise criteria.

The latest version of the code used in this chapter is available here [71].

5.2 Code outline

EM solvers are for the most part carefully designed and relatively simple to use however,
no matter how well written they are limited to the functions thought useful by the software
engineers who wrote them. In general this is sufficient. The use of an EM’s solvers low
level interface requires the writing and coding of all the desired user functions, this is time
consuming but does allow complete customisation. If done well it does allow reuse and
the option to use multiple EM solvers.

The simplest way to use a Descriptive Language (DL) to code the design parameters
then create wrapping code, which outputs this description to a readable format for the EM
code run the code and then have reading functions to read in the basic files. The process is
shown in fig. 5.1.

The chosen descriptive language is GNU Octave [72] an open source mathematical and
scientific programming language written to be compatible with MATLAB code. It is cross

51



DL

doc

out

EM

a b

cd

Figure 5.1: Basic software loop, where a) mathematical descriptive language, b) geometrical
cards, c) source and field results, d) calculated noise and efficiencies.

platform and allows anyone to run it conveniently.

5.2.1 Incorporating meshing into Octave

Octave easily describes complex objects but it does not have built in meshing functionality
critical for EM simulation. This has to be done by the chosen EM code after importing the
geometry. Alternatively it can by performed by an external program. GMSH is an excellent
option, focused purely on meshing 2 and 3D geometries [21]. It is open source and widely
available.

The wrapping tool is written using an object orientated approach. Individual surfaces
are described by @gmshSurf objects which can then be combined into a larger @gmsh
object, allowing complex objects to be built up using simple ones. The individual triangles
are easily available from GMSH and can be used directly in simulating software.

The @gmshSurf class definition @gmshSurf creates a file for the open source meshing
program GMSH, the following assumes some knowledge of GMSH.

The @gmshSurf class creates an object with the following fields:

gms . dpath=dpath ; % f u l l pa th and f i l e n a m e / home / u s e r / t e s t . geo
gms . pnts = [ ] ;
gms . pntsC ={} ;
gms .pN=0;
gms .pNC=0;
gms . l i n e s = [ ] ;
gms . l i n e l o o p s = [ ] ;
gms . s u r f a c e s = [ ] ;
gms . sur face loops = [ ] ;
gms . volume = [ ] ;
gms . p h y s i c a l l i n e ={} ;
gms . p h y s i c a l s u r f a c e ={} ;
gms . physicalvolume ={} ;
gms . comments = [ ] ;
gms . point INsurfaces = [ ] ;
gms . p e r i o d i c p o i n t s = [ ] ;
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With associated functions:
addlineloops.m, addpntsC.m, addsurfaceloops.m, addsurfC.m,

addvolume.m, display.m, gmshSurf.m, rungmshSurf.m,

translateSurf.m, writeComp.m, addlines.m, addpnts.m,

addsurfaces.m, addsurf.m, createsurface.m, get.m, readmsh.m,

set.m, writeC.m and write.m.
It is simplest to demonstrate the usage through example.

Creating a @gmshSurf object

Creating the object:
$dpath=[pwd ’’́basicobject.geo’]; %linux path stucture

$A=gmshSurf(dpath);

$mshv=0.5; % Set the general mesh resolution for all points

$mshvd=0.25; % Set the mesh resolution for point d

$sqz=2;

$a=[-sqz -sqz 0 mshv];

$b=[-sqz sqz 0 mshv];

$c=[ sqz sqz 0 mshv];

$d=[ sqz -sqz 0 mshvd];

$A=addpnts(A, [a]); % adds 1 point

$A=addpnts(A, [b; c; d]); % add multiple points

$write(A);% write out the object to the .geo file

This writes out the following to the basicobject.geo file:

// Var iab les
Point (1)={ −2 ,−2 ,0 ,0 .5} ;
Point ( 2 ) ={ −2 , 2 , 0 , 0 . 5} ;
Point ( 3 ) = { 2 , 2 , 0 , 0 . 5 } ;
Point ( 4 ) ={2 , −2 , 0 , 0 . 2 5} ;

Finishing off creating the square: % We now can add some lines

% Available linetypes: Line, Spline, BSpline, Circle and Ellipse

$ltype=’Line’;

$[A lna]=addlines(A,[1 2],ltype); % line 1

$[A lnb]=addlines(A,[2 3],ltype); % line 2

$[A lnc]=addlines(A,[3 4],ltype); % line 3

$[A lnd]=addlines(A,[4 1],ltype); % line 4

% Now we can create a lineloop out of the lines

$[A lnloopa]=addlineloops(A,[lna lnb lnc lnd]); % lineloop 1

% and a surface from the lineloop

% Available surfacetypes: Plane, Ruled, Compound and Physical

$stype=’Plane’;

$[A surfa]=addsurfaces(A,lnloopa,stype);

$write(A);

The additional code in the basicobject.geo file is:
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// Lines , Spl ines , BSplines , C i r c l e s and E l l i p s e s
Line ( 1 ) ={1 , 2} ;
Line ( 2 ) ={2 , 3} ;
Line ( 3 ) ={3 , 4} ;
Line ( 4 ) ={4 , 1} ;

// Line Loops
Line Loop (1)={1 ,2 ,3 , 4 } ;

// Sur faces
Plane Surface ( 1 ) ={1} ;

If desired GMSH can be run directly, creating the .msh file and returning a meshout

object with fields: meshout.v (Vertices) meshout.ed (Edges) and meshout.tr (Triangles),
as described in the GMSH documentation.
$meshout=rungmshSurf(A);

The final outputed mesh is given in fig. 5.2.

Figure 5.2: Simple meshed square example using @gmshSurf and GMSH, showing variable
meshing for point d.

Creating a curved surface This allows complex shapes to be easily created:
$A=gmshSurf(dpath);

% Let’s create a curved surface y=y0*sin2̂(x/x0) x: 0 -> x0*pi/2

$mshv=0.5; % Set the general mesh resolution for all points

$N=20;

$y0=4;

$x0=5;

$x=linspace(0,x0*pi/2,N);

$y=y0*sin(x/x0).2̂;

$pnts=[x’ y’ zeros(length(x),1) mshv*ones(length(x),1)];

$A=addpnts(A, pnts);

$endpnt=[x(end) y(1) 0 mshv];

$[A pN]=addpnts(A, endpnt);

$ltype=’lines’;

$lnum=1;
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$for n=2:pN, A=set(A,ltype,lnum,[n-1 n],’l’);lnum=lnum+1; end;

$A=set(A,’lines’,lnum,[n 1],’l’);lnum=lnum+1; % put in last point

$A=set(A,’lineloops’,1:(lnum-1));

$snum=1;

$A=set(A,’surfaces’,0,1,’p’);snum=snum+1;

$write(A);

$meshout=rungmshSurf(A);

Figure 5.3: Simple meshed curved example using @gmshSurf and GMSH.

The @gmsh class definition The @gmsh class allows us combine several @gmshSurf ob-
jects, the class contains the following fields:

Gms. name = name ;
Gms. gmsurfs = [ ] ;

With associated functions:
addgmsh.m, addsurface.m, addsurfaceSimp.m, display.m, get.m,

set.m, displaygmsh.m, getgmsh.m, getlineloops.m, getlines.m,

getpnts.m, getsurfaces.m, gmsh.m, readmsh.m, rungmsh.m, setgmsh.m,

translateGmsh.m, writeComp.m and write.m.

Combining @gmshSurf objects A simple example combining two gmsh surfaces:
$G=gmsh(dpath);

$A=gmshSurf;

$mshv=0.5; % Set the general mesh resolution for all points

$mshvd=0.25; % Set the mesh resolution for point d

$sqz=2;

$a=[-sqz -sqz 0 mshv];

$b=[-sqz sqz 0 mshv];

$c=[ sqz sqz 0 mshv];

$d=[ sqz -sqz 0 mshvd];

$A=addpnts(A, [a; b; c; d]); % add multiple points

$ltype=’Line’;

$[A lna]=addlines(A,[1 2],ltype); % line 1

$[A lnb]=addlines(A,[2 3],ltype); % line 2

$[A lnc]=addlines(A,[3 4],ltype); % line 3
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$[A lnd]=addlines(A,[4 1],ltype); % line 4

$[A lnloopa]=addlineloops(A,[lna lnb lnc lnd]); % lineloop 1

$stype=’Plane’;

$[A surfa]=addsurfaces(A,lnloopa,stype);

% Add surfaces A to the larger object

$G=addsurface(G,A);

$B=gmshSurf;

$a=a+[2*sqz 0 0 -mshvd];

$b=b+[2*sqz 0 0 0];

$c=c+[2*sqz 0 0 0];

$d=d+[2*sqz 0 0 mshvd];

$B=addpnts(B, [a; b; c; d]); % add multiple points

$ltype=’Line’;

$[B lna]=addlines(B,[1 2],ltype); % line 1

$[B lnb]=addlines(B,[2 3],ltype); % line 2

$[B lnc]=addlines(B,[3 4],ltype); % line 3

$[B lnd]=addlines(B,[4 1],ltype); % line 4

$[B lnloopa]=addlineloops(B,[lna lnb lnc lnd]); % lineloop 1

$stype=’Plane’;

$[B surfa]=addsurfaces(B,lnloopa,stype);

% Add surfaces B to the larger object

$G=addsurface(G,B);

% We can now write out the compisite object

$write(G);

% We can now directly run GMSH

$meshout=rungmsh(G);

The combined surfaces are shown in fig. 5.4:

Figure 5.4: Simple meshed combined square example using @gmsh and GMSH.

5.2.2 Running EM code from Octave

FEKO is chosen as the EM software, as it was already available and contains good low level
calling functions, specifically EDITFEKO [73].

The code as with GMSH is written using an object orientated approach to create a FEKO
class which contains fields of all the available control and geometrical cards associated with
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EDITFEKO. This allows anyone with a knowledge of EDITFEKO to easily be able to use the
class. EDITFEKO is a card based code where an object is specified with fields arrayed along
a line of code separated by colons. This makes it difficult to read and debug complex objects
(it has some limited support for programming commands), it however makes it useful from
a scripting perspective because it is has a text based input structure with all the geometry
objects being described by primitives.

In the class structure each of these primitives or cards is called with a separate function
and returns the EDITFEKO object, this is easy to read and debug. When its written the
wrapping class takes care of all the tricky card based spaces. The code outline is given in
fig. 5.5, and the @WritePreFeko object contains the following fields:

F . f i lename = [ ] ;
F . d i r e c t o r y = [ ] ;
F . header = [ ] ; % comments
F . vars = [ ] ; % d e f i n e a v a r i a b l e
F . varsA = [ ] ; % d e f i n e an a r r a y
F . IP = [ ] ; % meshing p a r a m e t e r s o p t i o n s
F .FM= [ ] ; % f a s t s o l v e r o p t i o n s (MLFMM)
F .DP= [ ] ; % d e f i n e s a p o i n t
F . ZY = [ ] ; % c y l i n d r i c a l s u r f a c e
F .KR= [ ] ; % c i r c u l a r s u r f a c e
F .KK= [ ] ; % c o n i c a l s e c t i o n
F .AW= [ ] ; % wavepor t e x c i t a t i o n
F . FF = [ ] ; % f a r f i e l d c a l c u l a t i o n o p t i o n s
F . FE = [ ] ; % near f i e l d c a l c u l a t i o n o p t i o n s
F . OS = [ ] ; % c u r r e n t c a l c u l a t i o n o p t i o n s
F . SP = [ ] ; % s−p a r a m e t e r c a l c u l a t i o n o p t i o n s
F . FR = [ ] ; % f r e q u e n c y c a l c u l a t i o n o p t i o n s
F .PW= [ ] ; % s o u r c e power o p t i o n s
F .DA= [ ] ; % d a t a out o p t i o n s
F . SY = [ ] ; % symmetry s e t t i n g s
F .BQ= [ ] ; % f l a t q u a d r a n g l e s u r f a c e
F . BP = [ ] ; % f l a t p a r a l l e l o g r a m s u r f a c e
F .PM= [ ] ; % f l a t po lygon s u r f a c e
F .DZ= [ ] ; % c y l i n d r i c a l s h e l l
F .PH= [ ] ; % q u a d r a n g l e p l a t e , wi th c i r c u l a r h o l e o r e l l i p s e
F .TG= [ ] ; % t r a n s l a t i o n , o r r o t a t i o n o f t r i a n g l e s
F . BT = [ ] ; % f l a t t r i a n g l e s h a p e
F .RM= [ ] ; % s e t r emesh ing r u l e s
F . DI = [ ] ; % f r e q u e n c y dependant m a t e r i a l o p t i o n s ( d i e l e c t r i c s )
F . SF = [ ] ; % s c a l i n g o f g e o m e t r i c a l d a t a
F . LE = [ ] ; % c o n i c a l s e c t i o n , wi th v a r y i n g a n g l e s
F .MB= [ ] ; % modal p o r t boundary c o n d i t i o n
F . PB = [ ] ; % p a r a b o l i c r e f l e c t o r

With associated functions:
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AW.m, BP.m, BQ.m, BT.m, CS.m, DA.m, DI.m, display.m, DPA.m

DPAxyz.m, DP.m, DZ.m, FE.m, FF.m, FM.m, FR.m, header.m, IP.m,

KK.m, KKxy.m, KKxz.m, KR.m, LA.m, LE.m, MB.m nodes2tri.m, notes.m,

OS.m, PB.m, PH.m, PHsq.m, PM.m, PW.m, read.m, RM.m, SF.m, SP.m,

SY.m, TG.m, varsA.m, vars.m, write.m, WritePreFeko.m and ZY.m.

EDITFEKO Class

AW BP BQ . . . ZY

Antenna High Level Description

EDITFEKO file doc FEKO FEKO out files

Matrices

Beam S-Par . . .

Analysis and Optimisation

write() read()

Figure 5.5: GNU Octave class structure

Further details are provided in Appendix C. A simple horn is used to demonstrate the
class functionality.

5.2.3 Smooth walled horn example

Let’s start with a simple smooth walled conical horn. The geometry frequency and the
simulated requirements are specified in a Shorn structure. This makes it natural to script
and modify it.

% Variables

c0=physical_constant(’speed of light in vacuum’);

rot_ang=360;

lambda=c0/Shorn.freq;

% Create the class object

Cone=WritePreFeko(Shorn.filename, Shorn.directory);

Cone=header(Cone, ’Simple Horn Function’);

% Set the simulated frequency

Cone=FR(Cone,’s’,Shorn.freq);

% Set the meshing rules, as per FEKO requirements

Cone=IP(Cone,[],Shorn.maxTrimesh*lambda,[],[],[]);

% Define points to creates the inner waveguide section

Cone=DP(Cone, ’origin’,0,0,0,[]);
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Cone=DP(Cone, ’Gin_StrtTop’,Shorn.Gin_rad*lambda,0,0,[]);

Cone=DP(Cone, ’Gin_EndCent’,0,0,Shorn.Gin_len*lambda,[]);

Cone=DP(Cone, ’OrgPforG’, 0, 0, 0+1, []);

% Create the waveguide section using the ZY card (Cylinder)

Cone=ZY(Cone,’origin’,’Gin_EndCent’,’Gin_StrtTop’,rot_ang,...

Shorn.Gin_msh*lambda,[],0, ’Waveguide’);

% Create the waveguide port section using the KR card (Ellipse)

Cone=KR(Cone,’origin’,’OrgPforG’,’Gin_StrtTop’, [], rot_ang,...

Shorn.Gin_msh*lambda, Shorn.Gin_msh*lambda,[], ’WGPort’);

%Create a waveguide excitation incident on the KR section

Cone=AW(Cone, ’circ’,’WGport’,[], 0, ’origin’, ’Gin_StrtTop’,...

’Gin_EndCent’,1, 0, ’FUN’, 0, [], [], {1 1},[]);

% Remesh just the port

Cone=RM(Cone,’localpoint’,Shorn.maxTrimesh*lambda/10,...

’origin’,Shorn.Gin_rad*lambda,1);

% Define points to specify the cone section

Cone=DP(Cone, ’s1cone’,0,0,...

(Shorn.Gin_len+Shorn.Conelength)*lambda,[]);

Cone=DP(Cone, ’s2cone’,0,0,(Shorn.Gin_len)*lambda,[]);

Cone=DP(Cone, ’s3cone’,Shorn.ConeHeight*lambda,0,...

(Shorn.Gin_len+Shorn.Conelength)*lambda,[]);

Cone=DP(Cone, ’s4cone’,Shorn.Gin_rad*lambda,0,...

(Shorn.Gin_len)*lambda,[]);

% Create the inner waveguide section using the KK card (cone)

Cone=KK(Cone,’s1cone’,’s2cone’,’s3cone’,’s4cone’,0,rot_ang,0,...

rot_ang,Shorn.Gin_msh*lambda,Shorn.Gin_msh*lambda,[],[], ’cone’);

% Set the simulation parameters for the far field

Cone=FF(Cone, ’stand’, 1,[],’gain’, Shorn.numphi,Shorn.numtheta

,...

Shorn.phi0,Shorn.theta0, Shorn.iphi, Shorn.itheta);

% Set the requested files

Cone = DA(Cone, ’fo’, ’fo’, ’fo’,’fo’, ’s’ , 1);

% write the prefeko file

write(Cone);
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Figure 5.6: Simple horn created by GNU Octave and EDITFEKO.

5.2.4 Corrugated horn example

FEKO is an excellent and powerful commercial EM solver with wide applicability and de-
sign options. It is possible with a little effort to produce a satisfactory smooth walled horn.
It takes substantial additional effort to produce a corrugated horn. It is perhaps due to the
difficulty of producing a corrugated horn that FEKO now includes a corrugated horn in the
Antenna Magus design toolbox [74]. Scripting this in Octave is much simpler, replacing the
single KK cone function with a loop.

for Cnum = 1:CNUM-1

% Find the starting and ending X and Z co-ordinates for the

corrugation.

% Ct is a vector with the corrugation teeth widths

xzS = xzE; xzE = [xzS(1)+Ct(Cnum)*sin(alphar(Cnum)) xzS(2)+Ct(

Cnum)*cos(alphar(Cnum))]; xR = org(1);

% Create a single label, so do this only for the 1st corrugation

if(abs(Cnum-1)<tol)

[ch ind] = KKxz(ch, xzS, xzE, xR, org(2), angV, mshV,ind, ’

Corrugations’);

else

[ch ind] = KKxz(ch, xzS, xzE, xR, org(2), angV, mshV,ind);

end

% Cd is a vector of the corrugation left depths

xzS = xzE; xzE = [xzS(1)+Cd(Cnum)*cos(alphar(Cnum)) xzS(2)-Cd(

Cnum)*sin(alphar(Cnum))]; xR = org(1);

[ch ind] = KKxz(ch, xzS, xzE, xR, org(2), angV, mshV,ind);

% Cw is a vector of the corrugation widths

xzS = xzE; xzE =[xzS(1)+Cw(Cnum)*sin(alphar(Cnum)) xzS(2)+Cw(Cnum

)*cos(alphar(Cnum))]; xR = org(1);

[ch ind] = KKxz(ch, xzS, xzE, xR, org(2), angV, mshV,ind);

% Cdd is a vector of the corrugation right depths

xzS = xzE; xzE =[xzS(1)-Cdd(Cnum)*cos(alphar(Cnum)) xzS(2)+Cdd(

Cnum)*sin(alphar(Cnum))]; xR = org(1);

[ch ind] = KKxz(ch, xzS, xzE, xR, org(2), angV, mshV,ind);

if (Lmax-xzE(2))<tol, msg = [’Maximium length reached after ’

num2str(Cnum) ’ Corrugations’]; disp(msg); break; end

end
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Where the horn is specified in terms of a series of vectors where the corrugations are
specified using; w for width, d for depth (back), df for depth (front) and t for tooth width,
as shown in fig. 5.7.

Lint
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df1

t2

d2

w2

df2

t3

d3

w3

df3

t4

Figure 5.7: Cross section of a simple linear horn.

Arranging the code in this manner any horn can quickly and easily be produced, for
example consider the design of a dual mode horn shown in fig. 5.8. Produced by changing
the vector properties.

Figure 5.8: Cross section of generated dual mode horn

Or a logarithmic horn shown in fig. 5.9, where all the vectors are spaced logarithmically
across standarad corrugated octave band horn. A truncated version built in FEKO is shown
fig. 5.10.
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Figure 5.9: Cross section of generated logarithmic horn.

5.2.5 Exporting GMSH geometries into FEKO

If the antenna is specified in gmsh it is now possible to import the mesh directly into FEKO
using the @WritePreFeko class. It is a simple matter of reading in the mesh and writ-
ing it into EDITFEKO as series of triangles. This allows us to create curved edges and
surfaces without having to use EDITFEKO cards. A simple example is to take the curved
surface shown in fig. 5.3 and import it into FEKO. Following directly from the example in
section 5.2.1.

% First we get the nodes out of the mesh

$nodes=readmsh(A,’mesh’);

% Create the @WritePreFeko object to write to

$filename=[ ’curvedobjectimport.pre’];

$C=WritePreFeko(filename, [CurrentDirectory ’/

geofiles/’]);

$C=header(C, ’Testing gmsh to feko’);

$C=notes(C, ’Testing of gmsh to feko’);

% Convert the nodes to triangles, and add them to the FEKO object

$C=nodes2tri(C,nodes,’test’,1,’PEC’);

$C=IP(C,[],1,[],[],[]);

% Write out the file

$write(C);

The final curve is shown in fig. 5.11 identical to the Gmsh version in fig. 5.3.
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Figure 5.10: Logarithmic corrugated horn, side and front views.

Figure 5.11: Imported curved surface.
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5.3 Optimisation

The combination of GNU Octave and GMSH allows complex shapes to be created from
primitive elements within FEKO. This flexibility means it is possible to build antennas based
on any descriptive parameter. The EM solver can be run using text based commands issued
by Octave and the solutions written to external files which can be easily read using standard
IO libraries [75].

It is now possible to implement a custom optimisation with the system sensitivity linked
to noise modelling. The implemented process for a single antenna with a simple feeding
system is shown in fig. 5.12. Where:

Hi Horn and excitation description.

Oc Octave build, control and optimisation code.

Fi FEKO input files (.pre).

Fe FEKO.

Fo FEKO output files (.ffe .sNp).

Op Optimisation routines, can be within FEKO or Octave.

Re Reflector geometry, environmental variables and amplifier parameters.

Histart Oc

Fi

Fe

FoOp

Re

1

2 3

Op

45
6

7

Figure 5.12: Design and optimisation code structure.

The procedure referring to fig. 5.12 is:

1. script the horn description with relevant variables for optimisation.

2. create a .pre file FEKO to run.

3. pass this to FEKO to run and locally optimise if required.

4. write out the relevant far field and S–parameter files.

5. read these into Octave.

6. solve the cost function for the specific input parameters.

7. based on an optimisation function modify the horn variables.

This method gives the user much more control by separating out the horn description
and cost function to Octave and the EM modelling to FEKO. The optimisation routines in
FEKO are still available along with any other routines the user wishes to run.
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5.3.1 Simple system test

In order to test the code a simple narrow band single polarised receiver system is used, the
advantage is that this does not need large amounts of simulation time and is quickly veri-
fied. The system is a 3 m dish that required a feed to image the Hydrogen Line at 1420 MHz

for a physics laboratory. Choke horns with flat corrugations have been shown to be a good
choice for shallow parabolic dishes (F/D < 0.35). Starting with the suggested design by
Wohlleben, Mattes and Lochner [76] shown in fig. 5.13. The scripting of the design process
allows for much greater freedom in the optimisation, as the antenna is free to be designed
across almost any parameter. This however is not the focus of the research here and rather
the setting up of the goal function and the modelling of the entire system is researched,
rather than the specific optimisation routine to use a few key parameters are chosen and a
simple gradient based search chosen. It should be noted that the goal here is not to verify
the design of an antenna or the simulation tools, but to show that the simulation tools can
be run and optimised by octave.

Hwid = 1.2λ

Hlen = 2.1887λ

Ct1 = 0.044λ

Cd1 = 0.58λ

Cw = 0.22λ

Cd2 = 0.202λ

Plen = 0.25λ

Pdep = 0.24867λ

Figure 5.13: Cross section of standard choke horn design.

The ambient noise amplifier ZX60-P162LN+ from Mini-Circuits is chosen with a noise
figure of 0.5 dB [77]. The noise matching is not available for this model but given the
sensitivity not critical to model, instead a simple single channel model is sufficient. The
cost function is the final system sensitivityA/T , based on the aperture efficiency calculated
from the dish and simulated beam parameters. Given that the system is ambient the noise
figure is sufficient to simulate the system temperature T . The amplifier noise temperate
spill over efficiency and known connector ohmic losses are summed. The matching criteria
is solved by optimising the S11 a second time over the length the excitation stub.

Results A cross section of the simulated horns are plotted in fig. 5.14, demonstrating the
progression of the optimisation.
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(a) n = 1 (b) n = 2 (c) n = 3 (d) n = 4

(e) n = 5 (f) n = 10 (g) n = 20 (h) n = 40

(i) n = 80 (j) n = 100 (k) n = 120 (l) n = 136

Figure 5.14: Selection of iterated simple choke horn sections.

The convergence of the first optimisation loop is shown in fig. 5.15, the individual com-
ponents are shown in fig. 5.16a and fig. 5.16b. The second optimisation loop, focusing on
improving the S11 matching is shown in fig. 5.16c.

Final design The final optimised design is shown in fig. 5.17.
The final optimised beam pattern along with the measured beam with the standard de-

sign for comparison is shown in fig. 5.18. The original horn’s performance is only slightly
changed as it is an optimised design. The back lobes in the single corrugations as is ex-
pected are higher but still below −10 dB and not significant to the system performance.
The optimised design is simpler requiring only a single corrugation and has lower side
lobes corresponding to a reduced brightness temperature. The measured beam is ≈ 10°
wider than the simulated beam at the −10 dB point. This is within expected tolerances
given measurement and rough construction accuracies of the prototype.
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Figure 5.15: Convergence of fminsearch() function for a simple choke horn.
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Hlen = 2.4091λ

Ct1 = 0.044λ

Cd1 = 0.6956λ

Cw = 0.34489λ

Cd2 = 0.3176λ

Plen = 0.831λ

Pdep = 0.26004λ

Figure 5.17: Final optimised corrugated horn.
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Figure 5.18: Theta cuts of the original choke horn, final design and measured horn (φ = 0◦).
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5.3.2 System wide optimisation

For more complex designs with orthogonal and wideband feeding it is required to simulate
the system components separately and combine later. A total system optimisation routine
is given below in fig. 5.20. It is now possible to use multiple different specialised programs
to produce a single optimisation routine and final design. A component based method can
still be used as an initial point for the optimisation.
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Oistart
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Re Am
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1 2,8 3,9

Op

4,105,11
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7
12
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13

1414

15

14 Hi−1

1514 Oi−1

Figure 5.20: Complex system design and optimisation code structure.

Where:

Oi Orthogonal feeding section.

Ai Antenna geometry.

Oc Octave build, control and optimisation code.

Fi FEKO input files (.pre).

Fe FEKO.

Fo FEKO output files (.ffe .sNp).

Re Reflector geometry and environmental variables.

Am Amplifier noise and S–parameters.

Nm Noise modelling software.

Ni Noise input.

Ss Predicted total system sensitivity.

Op Optimisation routines, can be within FEKO or Octave.

Referring to fig. 5.20 the software now runs as follows:
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1. script the feeding description, with relevant variables for optimisation.

2. create a .pre file FEKO to run.

3. pass this to FEKO to run, and locally optimise if required.

4. write out the relevant S–parameter files, and mode or voltage excitations.

5. read these into Octave.

6. write the excitation into the antenna description, such that it is this excitation that is
simulated.

7. pass this as an object to Octave for scripting.

8. create a .pre file FEKO to run.

9. pass this to FEKO to run, and locally optimise if required.

10. write out the relevant S–parameter and far field files.

11. read these into Octave.

12. pass the relevant information for noise modelling, combined with the environmental
data.

13. combine the amplifier, antenna and environmental data.

14. run the optimisation and derive the modify the feeding and antenna parameters.

15. update the model parameters ready for the next iteration.

This scheme is beyond just incorporating noise parameters into the optimisation, it is
possible to perform full system design as required.

5.4 Conclusion

It is been demonstrated that complex structures can be built up from primitive elements
and imported into an EM solver. This is applied successfully to a choke horn based on
an existing reflector geometry, and optimised based on a simple noise model for the goal
function. The next chapter looks at a more typical design.
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Chapter 6

System Design

6.1 Introduction

In chapter 5 the principles of the design approach have been solved but there are still prob-
lems to solve for more complex receivers. We now look at a practical wideband design.
This crucially relies on the ability to separate out components and simulate them sepa-
rately, this is first verified and then a real world system is considered.

Given time and resource limitations the final design is left to future work. This means
that the final optimisation loop could not be implemented but rather the initial design, lo-
cal optimisation and incorporating of certain components is presented.

Wideband microwave receiver systems are in generally complex and difficult to simu-
late and global optimisation impossible. Instead separate optimisation of components of
the system is done and matched, for example the antenna is optimised for the correct beam
pattern given a certain input impedance and excitation. Practically this is a good approach
and is taken as a first step here. By altering the simulation approach slightly and goal
functions it is possible to take further steps to tune the optimisation to be more sensitive
to noise considerations. First we will verify this approach and then apply it to a practical
corrugated horn design.

6.2 Approach and verification

The feeding system in fig. 6.1a is modelled as the S–matrix S such that the input and output
voltage amplitude vectors, va and vb are related by vb = Sva. The voltages here are the field
strength imposed and reflected in [V/m] across the waveguide, the associated currents i are
given in [A/m] and are related by the mode impedances Z. Useful as TE and TM modes are
imposed differently in our simulations. The horn is modelled as a series of beam patterns
associated with the modes. So the final beam f =

∑
fb
k. This requires simulating the

antenna with a pure mode for every significant mode, but this only needs to be done once
after which the effect of changes in the feeding section are immediately calculable. The
weightings for each of the modes is calculated from the power within the modes. The
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va vbS

(a)

vb fb

(b)

va f

(c)

Figure 6.1: Verification of the approach of breaking up the designed receiver, into a feeding
section (a) and horn section (b), with the complete simulation (c).

power in each circular waveguide mode is given by [78, 79]:

PTEmn = πa4
ε0m
4
kβ

[
Jm(p′mn)

p′mn

]2(
1− m2

p′mn

)
η|H|2 (6.1)

PTMmn = πa4
ε0m
4
kβ

[
J ′m(pmn)

pmn

]2 |E|2
η

(6.2)

Where:

k = 2πf

a = waveguide radius
pmn = the mth root of the Jn function
p′mn = the mth root of the J ′n function

kc =
p′mn
a for TE modes and pmn

a for TM
β =

√
k2 − kc2

H = magnetic field strength in [A/m]

E = electric field strength in [V/m]

η =
√

µ
ε intrinsic impedance

ε0m = 2, for m = 0 else 1

The power into the converter can be calculated by summing up the power in the input
modes given by eqs. (6.1) and (6.2), where E and H fields are associated with va and ia

respectively. The power transferred to each mode is related by the S matrix. The coefficients
of the S matrix relate the voltage waves so the relationship to the power is given by |S|2.
The basic assumption in this method is that the beam pattern is separable into a linear
combination of modal beam patterns. This is seems obviously true following directly from
the fact that modes are orthogonal, but it is worth checking. It is noted that even for normal
antenna simulations, splitting the beam is useful to better take advantage of magnetic and
electric symmetries in the simpler mode patterns.

Truncating the horn to a single corrugation and simulating with three cases: i. TE11,
ii. TM11∠90◦, and iii. HE11. The weighting is for the TE mode is 1 A m−1 and 1 V m−1 for
the TM mode. The plots of the simulated and later calculated by summing the directivity
patterns is plotted in fig. 6.2a. The approach is clearly valid, the error in the directivity is
within 0.01 dB .

This approach also allows us to simulate a single horn and by scaling the input modes,
dependent on a variation in the TE toHE transition predict the directivity pattern, without
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Figure 6.2: Comparisons between simulated and calculated directivity patterns for a simple
truncated horn for a scaled HE mode.

having to run the larger more complex simulation. A more complex case, where we have
scaled the weightings is plotted in fig. 6.2b. It is also within 0.01 dB.

Considering a single reflection in well matched systems (S11 < −10 dB) this assumption
is sufficient. The power then into each mode is given by:

Pbi =

N∑
j

P (vaij)|Sij |2∠Sij (6.3)

The voltage or current of the excited mode is then calculated from this power. The
matching criteria assures that any reflected power sums to less than −20 dB of the beam
sum. If this is insufficient the sum can be modified to:

Pbi =

N∑
j

P (vaij)
(
|Sij |2∠Sij + |SijSjiS2

ii|2∠SijSjiS2
ii

)
(6.4)

Which can be expanded indefinitely, it is noted that an exact solution is available [80] but
for our purposes is considered overly complex to implement. A simple example is useful
to test and verify this approach using a small simplistic example, a single corrugation and
a simple horn are simulated together and separately, the later and former beam patterns
are compared. We simulate with a single TE11 mode such that va = [0 0 1 0 · · · 0]. The
two most significant modes are the TM11∠90° and TE11. The patterns for these modes are
simulated the unaccounted modes introduce a small error, but we can calculated exactly
the effect by considering the amount of power in the modes not considered.

Considering a circular waveguide corrugation with an input radius of 0.65λ , to al-

74



low for the TE11 mode to propagate. The input power, per A/m is then calculated as
434.11 mW , and STE11

= −20 dB, as required. The power transferred directly to the TE11

mode is now calculated. STE21
= −0.91 dB∠−110.34° so using eq. (6.3) we calculated the

power in the output mode PbTE11
= 351.91 mW∠−110.34°. Given an output radius of

0.667λ, the associated current iTE11
= 0.9 A m−1∠−110.34°. For the next most important

mode TM11∠90°, STM21
= −0.317 dB∠−86.469°, so using eq. (6.3) we calculated the power

in the output mode PbTM11
= 43.609 mW∠−86.469°. Given an output radius of 0.667λ the

associated current iTM11
= 454.45 V m−1∠−86.469°. Given that the simulation is lossless

the power accounted for is ≈ 91 %. The simulations in fig. 6.3 show good agreement which
can be improved by including more modes, given this increases the number of required
simulations it should only be done if required for the resolution of the noise calculation.
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Figure 6.3: Comparisons between simulated and calculated directivity patterns for a simple truncated horn
for scaled TE and TM modes.
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6.3 Practical wideband system

The HartRAO observatory is currently upgrading their receiver systems on their 26 m

cassegrain reflector. The objective is replace several narrow band Potter Horns (around
10 %) receivers with wider band systems (2 : 1). This allows the use of wider band lower
noise LNAs without the need for isolators, increases simultaneous observing, frees up
space on the antenna for higher frequency receivers and reduces running costs (fewer Cryo-
genic packages). The following section details the initial design, simulations and optimisa-
tion. The current status and future work is discussed.

6.3.1 System specifications and chosen design

Given the optics of the dish at this stage are being kept the same, the existing Potter Horn
receivers give the initial design specification:

a) frequency range of 4.5 GHz to 9 GHz. b) Dual Polarization (< −20 dB isolation, typical
−30 dB) c) Feed illumination angle 13.771°, −20 dB edge taper. d) S11 < −10 dB, typical
−15 dB. e) Optimised for system sensitivity [A/T].

The design presents numerous problems for system wide optimisation, the main limit-
ing factor is the computationally intensive simulations required for implementing the goal
function. The existing reflector geometry is given in fig. 6.4.

φv

φr

Dm

Ds

Fm

Fc

Lv

Real Focal Point

Virtual Focal Point
y

x

Figure 6.4: Cross section of the HartRAO’s 26 m telescope’s geometry.

Where, for HartRAO:

Dm = Diameter of the main reflector (25.9 m)

Ds = Diameter of the subreflector (2.5 m)

Lv = Height from centre of subreflector to Virtual Focal Point (0.984 m)

Fm = Height from centre of main reflector to Virtual Focal Point (10.973 m)

Fc = Distance between Real and Virtual Focal Points (5.791 m)

φr = Illumination angle for feed (13.771°)
φv = Illumination angle for the main reflector (61.089°)
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Cassegrain systems can be simplified by using the concept of a virtual feed and deriving
an equivalent parabola with illumination angle φr [81]:

Fe = Fm
Fc − Lv
Lv

(6.5)

φr = 2 arctan

(
Dm

4Fe

)
(6.6)

Assuming the antenna is pointed at zenith, and using a ray tracing approach the bright-
ness distribution can be simplified for the noise modelling. The beam sees the sky at zenith
for angles to the edge of the subreflector, sky to the horizon for angles greater than this
to 90° and the ground for angles greater than this. The chosen antenna is a corrugated
horn. Corrugated horns have: high bandwidth (3:1), high gain, low peak cross polarisation
and low sidelobes [82], making them a common choice for Radio Telescope applications
[83, 84], and a satisfy the requirement to replace the narrower band Potter horns. A good
initial horn can be found using design curves. First the feeding system is considered.

6.3.2 Orthomode transducer

The horn requires dual polarized feeding and consequently is excited by an Orthomode
Transducer (OMT), which converts the dual circular from the horn to dual linear. Quadru-
ple Ridged Waveguides [85] have a sufficiently wide bandwidth, and have been used for
similar designs. Several variations are given in the literature, eg. Coutts or de Villiers, Meyer
and Palmer [86, 87]. The simpler design of Skinner and James is chosen [88] as the starting
point. A cut of the design is shown in fig. 6.5.

Hbase

Lbbase

Ltbase

Pdy

Hp

Rp, Rc

Lexp

sinNb

sinNt

Htip

Pdx Lsep

Wsep

Figure 6.5: Upper cross section of half an OMT, adapted from [88].

Building the OMT The OMT in fig. 6.5 is a complex structure and given the specific func-
tion of the curve difficult to build. Scripting this simplifies the process using GMSH and the
@WritePreFeko, the approach is to break the structure into individual surfaces that are
later combined. This allows us to easily construct any new version based on the descriptive
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variable, some simple examples are shown in fig. 6.6. The generated FEKO model is shown
in fig. 6.7. It is now possible to optimise the OMT based on any combination of variables
and for any output parameters.

(a) Standard OMT design based on dimensions
from [88]. (b) Changing the length, Lsep.

(c) Changing the wall curve function, Nt. (d) Changing the waveguide size, Htip.

Figure 6.6: OMT designs based on varying single design parameters, the walls, rear match-
ing cone and y–axis septum are not shown.

Optimising the OMT Given the large number of possible variables it is impossible to
optimise over all of them. Initial optimisation focused on just the matching criteria and de-
termining the important parameters. For the matching the parameters are found to be the
separation between the septum and the port length. The initial optimisation cost functions
are shown in fig. 6.8, where the individual frequency and total cost functions are shown. It
is clear that the low and high frequency cost functions start to diverge and further optimi-
sation is not useful here. The associated S–parameters are shown in fig. 6.9.

Results and future work The simulated OMT does not meet the requirement across the
band so it is decided to change the design to the one given by Coutts. It is a more complex
but is currently being used on the Very Large Array (VLA) in similar frequency bands with
good results. This is left to future work.
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Figure 6.7: Quadridge orthomode transducer modelled in FEKO, front and back view in-
cluding coaxial feeding arrangement. The back matching cone is not shown so as not to
obscure the feeding arrangement.

6.3.3 TE2HE transition

Corrugated horns require a hybrid HE mode and so the second step is to transform the TE
mode produced by the OMT. The transition creates the Hybrid mode (HE11) where HE11

is a mix of TE11 and TM11 modes. Following the work by B. Thomas,G. James and K. Greene
[89] for a frequency range from 4.5 − 8.7 GHz we can specify and initial design given in
fig. 6.11.

Table 6.1: Dimensions in mm of precise TE2HE converter fig. 6.11

n 1 2 3 4 5 6 7 8 9 10 11
an 27.81 28.76 29.71 30.66 31.61 32.55 33.5 34.45 35.4 36.35 37.3
bn 0.9 1.56 2.21 2.87 3.52 4.17 4.83 5.48 6.14 6.79
wn 7.44 7.44 7.44 7.44 7.44 7.44 7.44 7.44 7.44 7.44
d2n−1 14.43 14.43 14.42 14.42 14.42 14.42 14.41 14.41 14.41 14.41
tn 8.12 7.47 6.81 6.16 5.5 4.85 4.2 3.54 2.89 2.23
h2n 9.62 9.62 9.61 9.61 9.61 9.61 9.61 9.61 9.6 9.6
h2n−1 9.62 9.62 9.62 9.61 9.61 9.61 9.61 9.61 9.61 9.6
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Figure 6.8: Individual cost functions for initial optimisation for matching criteria, for initial
OMT design, RG402 connectors.
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Figure 6.11: Ten ring loaded slot TE2HE converter (to scale) with dimensions given in ta-
ble 6.1.
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Figure 6.12: Widths required for discretization of transition shown in fig. 6.11 by using Al
sheeting.

The exact transition can be machined out of solid Al however this is expensive espe-
cially for prototyping. A much cheaper method is to use standard sheeting and cut out
rings that are stacked together. Given available sheeting of 1, 1.2, 1.6, 2.0, 2.4, 3.0, 3.2, 4.0

and 5 mm, and allowing for stacking of different sheets we can get a transition which is
close to the design. The rings can still be cut out to any value so only the widths need to be
considered, referring to fig. 6.11, the relevant widths are given in fig. 6.12 and the prototype
in fig. 6.13. The required sheeting is given in table 6.2.

Table 6.2: Al thickness’s required for prototype, dimensions in mm of the TE2HE section
given in fig. 6.11

wn 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4
swn 3.2 3 2.6 2.2 2 1.6 1.2 1 1 0
tn − swn−1 − swn 5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1 1.2

Table 6.3: Dimensions in mm of the discretised TE2HE section given in table 6.2

n 1 2 3 4 5 6 7 8 9 10 11
an 27.81 28.76 29.71 30.66 31.61 32.55 33.5 34.45 35.4 36.35 37.3
bn 1 1.4 2.2 3 3.4 4.2 5 5.4 5.4 7.4
wn 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4
d2n−1 14.43 14.43 14.42 14.42 14.42 14.42 14.41 14.41 14.41 14.41
tn 8.2 7.4 6.8 6 5.4 4.8 4 3.4 3 2.2
h2n 9.62 9.62 9.61 9.61 9.61 9.61 9.61 9.61 9.6 9.6
h2n−1 9.62 9.62 9.62 9.61 9.61 9.61 9.61 9.61 9.61 9.6

The transition is built in the same way as the corrugated horn and the final FEKO model
is shown in fig. 6.14.

The Simulated reflection coefficients of the discrete and initial design is given in fig. 6.15.
The mode transmissions are given in fig. 6.16 including the unwanted 12 modes. As ex-
pected the discretisation has only a small effect and the transition is well matched across
the band. The horn can now be designed based on the S–parameters of the transition as-
suming an ideal TE11 excitation.
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Figure 6.13: Ten ring loaded slots TE2HE converter (to scale).

Figure 6.14: TE2HE transition modeled in FEKO.
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6.3.4 Corrugated horn design

A good initial horn can be designed by using a Gaussian beam model as detailed by Kildal
[90]. Traditionally the horn design begins by finding out the gain and beam angle for a
given taper which is matched to the existing Potter Horn and ideally can be seen in fig. 6.18.
For wide band horns the ideal is a flare controlled horn, a geometrical characteristic which
remains invariant over the band. This however results in a long horn with a large aperture.
The cassegrain dish has a relatively small cone section with multiple receivers placed inside
and a given these physical space requirements a compact design is required. This reverses
the design procedure. We begin by considering the largest horn we can fit and work out
the optimal flare for the required beam taper and phase centre location.

Given an aperture limitation of 400 mm which translates to D = 6λ at 4.5 GHz. From
fig. 6.18 it is calculated that the if we want Feed illumination angle (13.771°), −20 dB edge
taper. This means we need a gain of 23.5 dB. The possible beam angles are plotted in
fig. 6.17.
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Figure 6.17: Possible horns, dotted line show boundary between flare and Aperture con-
trolled horns.

If we choose 14° then we get a directivity of between 21.85 to 24.54 dB or if we choose
15° then we get a directivity of between 21.59 to 24.04 dB. The associated edge taper of
these two choices is plotted in fig. 6.18 and the phase centre variation in fig. 6.19.

Considering a beam angle α of 14° to 15°. This gives us a horn of between 746 to 802 mm
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Figure 6.18: Required Directivity, for various beam tapering.

and a phase center variation of between 313 to 602 mm. This gives us a good starting point
for the design.
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The design curves assume that the horn is exctied by a pure HE11 mode and an ideal
corrugated surface. Corrugated surfaces to be effective need to fullfill the following con-
ditions: a) at least 10 corrugations long, b) slot depth λ0/4 < d < λ0/2, c) slot width
w < λ0/10 and d) tooth width t < w/10 [91]. This slot depth gives corrugated surface a
bandwidth of 2 : 1.

The horn is simulated seperately for both TE11 and TM11 modes and the final beam
pattern calculated using the S–parameters from the TE2HE transition. Several variations
where simulated and a horn with the following parameters, in wavelengths at the lower
frequency, is found to give good performance:

Gin = Inner radius 0.715λ matched to the TE2HE section
L = Horn length 11.582λ

α = flare angle 14°
Cw = Corrugation width 0.1λ

Ct = Corrugation teeth width 0.01λ

Cd = Corrugation initial depth 0.25λ

Cdd = Corrugation second depth 0.25λ

The beam patterns including the modal patterns are plotted in fig. 6.20 and a composite
plot is given in section 6.3.4. The phase centre optimised over the whole and main beams
is given in fig. 6.22, further plots and details of this calculation is given in Appendix E.

The beam patterns meet the specifications as required and the phase centre matches
exactly the range expected from the design curves. It is noted that at the higher end of the
band the sidelobes begin to rise, this is due to a field distribution not being well tapered at
the edge of the apeture. The reason is that the corrugated surface is starting to no longer
act as a perfect magnetic conductor and is conducting some current.

6.4 Conclusions and future work

Corrugated surfaces and mode converters in particular are well modelled using mode
matching code [92]. More complex horns can be designed and simulations significantly
sped up using this numerical method. Initial work has been done on producing this code
but has been left to future work. The method and approach are detailed in Appendix D.

The horn as designed and simulated can be used to optimise any part of the system
as any variation in the feeding system only changes the mode weightings and so the new
beam pattern and noise consequences is easily calculated without the need for further sim-
ulation. Therefore the effect of a non-ideal OMT is easily calculated by adding the weighted
modal patterns. The system is optimised within Octave and so the noise temperatures can
as is shown previously in the simpler design, be directly incorporated into the design.

The scripting and simulation approach works, it allows the design to be broken up and
the final system sensitivity to be calculated based on simulating each component separately.
This has the great advantage that no other components need to be simulated except for the
one being locally optimised. For example once the horn is optimised, further optimisation
of the OMT or transition does not need the horn to be resimulated to determine the effect
on the beam pattern. Given the large number of meshes required for the horn this is a
significant saving.
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Figure 6.20: Final corrugated horn design beam patterns, based on the summation of TE2HE modes.
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Currently a higher frequency horn and transition is planned to be built and excited by
narrow band TE feeding sections to verify the design. Once this is complete the OMT can
be designed and optimised based on the existing transition, antenna and chosen amplifier.
Therefore directly incorporating the system sensitivity into the receiver design as required.
The system performance based on changing the OMT is a numerical calculation requiring
no further EM simulation, adding very little simulation time to any optimisation loop.

95



Chapter 7

Conclusion

Many future Radio Astronomy systems are required to be wideband, compact, highly sen-
sitive and consisting of arrayed elements. Their modelling and design requires the incorpo-
ration of noise modelling and overall sensitivity. Multiport noise theory is well developed
and good models are possible as confirmed with modelling and measurements. Commer-
cial solvers do not however for good practical reasons include this theory. Given the use-
fulness and power of commercial solvers this is a problem for designers of very low noise
critical receivers.

It is possible to use commercial solvers to design and optimise receivers for low noise
applications however it requires considerable effort. One approach is to use specialised
software with the outputs of commercial solvers. Specifically it is shown using a test folded
dipole simulation that CAESAR can be incorporated with CST. The theory to combine any
of the commercial solvers is developed, as long as the input port definitions of the original
simulation is known. Given that the original simulation does have to simulate each port in-
dividually this does add a cost to the simulation. If the structure is symmetrical around the
feeding ports however it is shown that the symmetry of the problem can be recovered by
mirroring the beam patterns, even if it is not possible to use this in the original simulation.

Using an Eleven antenna and ultra wideband low noise Caltech LNAs, multiport noise
modelling is tested and given the highly sensative nature of the system the theory gives
excellent agreement with measurement validating the approach.

The optimisation of structures outside of the commercial solvers framework is signif-
icantly more complex. It requires the development of a software outside of commercial
solvers to run the simulation. Using the open source program GNU Octave and the com-
mercial solver FEKO this is done using a class based scripting approach. The added com-
plexity of this approach however has three main advantages. Firstly it allows the incorpo-
ration of any output variable such as sensitivity as part of the criteria for the optimisation
goal function. In principle this could include any variable, for example the cost of the ma-
terials and weight to be optimised for. Secondly it is a convenient mathematical approach
to describing designs, complex three dimensional elements are easily described and repli-
cated. This allows for easy modelling of, for example complex waveguide structures, Self-
complementary and Fractal antennas. Thirdly given the modular nature of this approach it
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allows almost any variable of the design to be used as the input parameter for the optimi-
sation, for instance the number of corrugations in a horn or whole sections in a waveguide
transformer.

Traditionally this type of optimisation is difficult or impossible. It is typically never
done. The complexity of using multiple different software languages and programs is more
than made up for by the simplification in design and flexibility in optimisation.

The application and utility of the approach and software is demonstrated with a basic
example and a more complex design. The simple example proves that this approach is
possible and works. It is clear that the use of scripting and modularisation improves the
ability to design Radio Telescope receiver systems. This leads to cheaper, more sensitive
systems and better designs for specialised problems.
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Appendix A

Antenna efficiencies

We can directly calculate the beam efficiencies follow the form given in [47], where the an-
tenna is approximated as a Body of Revolution–Type 1 (BOR1) antenna and the efficiencies,
of the BOR1 components, calculated. The actual efficiency is then a product of the approx-
imate eant efficiency and the BOR1 efficiency eBOR1, giving the overall antenna efficiency.
The calculations are:

eap =
4π cot2

(
θ0
2

) ∣∣∣∫ θ00
Gco45 (θf ) tan

(
θf
2

)
dθf

∣∣∣2
2π
∫ π
0

[
|Gco45 (θf )|2 +

∣∣Gxp45 (θf )
∣∣2] sin

(
θf
2

)
dθf

(A.1)

esp =
2π
∫ θ0
0

(
|Gco45 (θf )|2 +

∣∣Gxp45 (θf )
∣∣2) sin θfdθf

2π
∫ π
0

(
|Gco45 (θf )|2 +

∣∣Gxp45 (θf )
∣∣2) sin θfdθf

(A.2)

eill = 2 cot2
(
θ0
2

) ∣∣∣∫ θ00

∣∣∣Gco45 (θf ) tan
(
θf
2

)
dθf

∣∣∣∣∣∣2∫ θ0
0
|Gco45 (θf )|2 sin θfdθf

(A.3)

eφ =

∣∣∣∫ θ00
Gco45 (θf ) tan

(
θf
2

)
dθf

∣∣∣2[∫ θ0
0
|Gco45 (θf )| tan

(
θf
2

)
dθf

]2 (A.4)

eBOR1 =
2π
∫ π
0

(|Gco45 (θf )|2 +
∣∣Gxp45 (θf )

∣∣2) sin θdθ

Ptot
(A.5)

99



Appendix B

Testing port combinations

B.1 Testing of mirroring function

The Eleven Antenna consists of four differential ports, defined, with coordinate system,
as simulated in fig. B.1. The verification of mirroring and combining these eight ports is
plotted here. Considering just single petal patterns, that is we excite a single port and
terminate all the other ports, we do this for all eight ports and compare the simulated to
analytically mirroring and rotating the pattern from port 1.

Y
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◦ ◦
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X

φ̂
00
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OO
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Figure B.1: CST ports definition.
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Figure B.2: Comparisons between mirrored and directly computed beam pattern cuts for
port 2.

101



−180−120−60 0 60 120 180
−40

−35

−30

−25

−20

−15

−10

θ [deg]

|E
x
2
|(
φ

=
0◦

)

−180−120−60 0 60 120 180
−40

−35

−30

−25

−20

−15

−10

θ [deg]

|E
x
2
|(
φ

=
4
5◦

)

Mirrored
Computed

−180−120−60 0 60 120 180
−40

−35

−30

−25

−20

−15

−10

θ [deg]

|E
x
2
|(
φ

=
90
◦ )

−120 −40 40 120

−180

−120

−60

0

60

120

180

θ [deg]

|∠
x
2
|(
φ

=
0◦

)

−120 −40 40 120

−180

−120

−60

0

60

120

180

θ [deg]

|∠
x
2
|(
φ

=
45
◦ )

Mirrored
Computed

−120 −40 40 120

−180

−120

−60

0

60

120

180

θ [deg]

|∠
x
2
|(
φ

=
90
◦ )

Figure B.3: Comparisons between mirrored and directly computed beam pattern cuts for
port 3.
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Figure B.4: Comparisons between mirrored and directly computed beam pattern cuts for
port 4.
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Figure B.5: Comparisons between mirrored and directly computed beam pattern cuts for
port 5.
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Figure B.6: Comparisons between mirrored and directly computed beam pattern cuts for
port 6.
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Figure B.7: Comparisons between mirrored and directly computed beam pattern cuts for
port 7.
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Figure B.8: Comparisons between mirrored and directly computed beam pattern cuts for
port 8.
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B.2 Testing of computing full beam from single port mea-

surements

The following are plots testing the combining of single port patterns to produce a combined
beam pattern. The phase is left wrapped for compactness.
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Figure B.9: Comparisons between mirrored patterns at 2 GHz and directly computed beam
pattern cuts at 2 GHz.
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Figure B.10: Comparisons between mirrored patterns at 3.1 GHz and directly computed
beam pattern cuts at 3.08 GHz.
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Figure B.11: Comparisons between mirrored patterns at 4 GHz and directly computed
beam pattern cuts at 4.01 GHz.
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Figure B.12: Comparisons between mirrored patterns at 5 GHz and directly computed
beam pattern cuts at 5.2 GHz (simulated in frequency domain).
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Figure B.13: Comparisons between mirrored patterns at 5.2 GHz and directly computed
beam pattern cuts at 5.2 GHz.
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Figure B.14: Comparisons between mirrored patterns at 6.2 GHz and directly computed
beam pattern cuts at 6.2 GHz.
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Figure B.15: Comparisons between mirrored patterns at 7.4 GHz and directly computed
beam pattern cuts at 7.370 GHz.
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ŷ

(φ
=

0◦
)

−180−120−60 0 60 120 180
−20
−15
−10
−5

0
5

10
15

θ [deg]

|E
|·
ŷ
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·ŷ

(φ
=

45
◦ )

Mirrored and combined Full pattern simulated

−120 −40 40 120

−180

−120

−60

0

60

120

180

θ [deg]

∠
E
·ŷ
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Figure B.16: Comparisons between mirrored patterns at 8 GHz and directly computed
beam pattern cuts at 8.040 GHz.

116



−180−120−60 0 60 120 180
−35

−30

−25

−20

−15

−10

−5

θ [deg]

|E
|·
x̂

(φ
=

0◦
)

−180−120−60 0 60 120 180
−35

−30

−25

−20

−15

−10

−5

θ [deg]

|E
|·
x̂

(φ
=

4
5◦

)

−180−120−60 0 60 120 180
−35

−30

−25

−20

−15

−10

−5

θ [deg]

|E
|·
x̂

(φ
=

9
0◦

)

−120 −40 40 120

−180

−120

−60

0

60

120

180

θ [deg]

∠
E
·x̂
|(
φ

=
0◦

)

−120 −40 40 120

−180

−120

−60

0

60

120

180

θ [deg]

∠
E
·x̂

(φ
=

45
◦ )

−120 −40 40 120

−180

−120

−60

0

60

120

180

θ [deg]
∠
E
·x̂

(φ
=

9
0◦

)

−180−120−60 0 60 120 180
−20
−15
−10
−5

0
5

10
15

θ [deg]

|E
|·
ŷ
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·ŷ

(φ
=

0◦
)

−120 −40 40 120

−180

−120

−60

0

60

120

180

θ [deg]

∠
E
·ŷ
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Figure B.17: Comparisons between mirrored patterns at 9.6 GHz and directly computed
beam pattern cuts at 9.570 GHz.
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Figure B.18: Comparisons between mirrored patterns at 10.4 GHz and directly computed
beam pattern cuts at 10.430 GHz.
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Figure B.19: Comparisons between mirrored patterns at 11.4 GHz and directly computed
beam pattern cuts at 10.390 GHz.
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Figure B.20: Comparisons between mirrored patterns at 12 GHz and directly computed
beam pattern cuts at 12.420 GHz.
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Appendix C

Class function definitions

For the usage the readers is refered to the individual m–files.

C.1 @gmsh class

func t ion Gms=addgmsh (Gms, Gmsa)

funct ion Gms=addsurface (Gms, gms)

funct ion Gms=addsurfaceSimp (Gms, gms)

funct ion display (Gms)

funct ion sv = get (Gms, prop )

funct ion Gms = s e t (Gms, varargin )

funct ion display (Gms)

funct ion sv = getgmsh (Gms, prop )

funct ion [ l i n e l o o p s l l n ] = g e t l i n e l o o p s (Gms, l i n e s )

funct ion [ l i n e s linenums ] = g e t l i n e s (Gms, pnts )

funct ion [ xyz pnts ] = getpnts (Gms)

funct ion [ s u r f a c e s ] = g e t s u r f a c e s (Gms, l i n e l o o p s )

funct ion mesh=readmsh (Gms, form )

funct ion [ meshout ]=rungmsh (gms)

funct ion Gms = s e t (Gms, varargin )
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func t ion Gms = translateGmsh (Gms, vect )

func t ion wri te (Gms, compound )

funct ion wri te (Gms, compound )

C.2 @gmshSurf class

func t ion [gms pLl ] = addl ineloops (gms , l i n e s )

funct ion [gms pNC]= addpntsC (gms , xyzm , msh)

funct ion [gms pSL ] = addsurfaceloops (gms , s u r f a c e s )

funct ion gms = addsurfC (gms , gmsn , type , vrb ) ;

func t ion [gms pV] = addvolume (gms , sur face loops )

funct ion display (gms)

funct ion [ meshout ]= rungmshSurf (gms)

funct ion gmsn = t r a n s l a t e S u r f (gms , vect )

func t ion wri te (gms , i n i t v a l u e s )

funct ion [gms pL ] = addl ines (gms , pnts , l type )

funct ion [gms pN]= addpnts (gms , xyzm , msh)

funct ion [gms pS ] = addsurfaces (gms , l ine loops , stype )

funct ion gms = addsurf (gms , gmsn , type , vrb ) ;

func t ion gms = c r e a t e s u r f a c e (gms , xyzt , xyzb )

funct ion gms = getgmshSurf (gms , prop ) ;

func t ion mesh=readmsh (gms , form )

funct ion gms = setgmshSurf (gms , varargin )

funct ion writeC (gms , i n i t v a l u e s )

funct ion wri te (gms , i n i t v a l u e s )

C.3 @WritepreFeko class
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func t ion [ F ind ] = AW( F , varargin )% s1 , s2 , s3 , s4 , ns , as , lpt ,
medt , aptgeom , ecfm , tem , tm , temm, mind , nind , mag, ph , rotang ,

% mexp , pasp )

funct ion F = BP ( F , s1 , s2 , s3 , s4 , msha , mshb , La )

funct ion F = BQ( F , s1 , s2 , s3 , s4 , LA, varargin )

funct ion F = BT( F , s1 , s2 , s3 , a , b , c , La )

funct ion F = CS( F , s1 , s2 , s3 , s4 , angBotStr t , angBotEnd , angTopStrt ,
angTopEnd , edgelenBot , edgelenTop , i n f l a g , sca le , LA)

funct ion [ F ind ] = DA( F , Eopt , Hopt , FFopt , Copt , f i l e s , ind )

funct ion F = DI ( F , varargin ) %, s1 , s2 , s3 , s4 , angBotStr t , angBotEnd ,
angTopStrt , angTopEnd , edgelenBot , edgelenTop , i n f l a g , sca le ,
LA)

funct ion displayWritePreFeko ( a )

funct ion F = DP( F , name , x , y , z , NurbW)

funct ion F = DZ( F , s1 , s2 , s3 , s4 , ang , maxarc , med, LA, varargin )

funct ion [ F ind ] = FE ( F , c a l c u l a t i o n , ind , varargin )

funct ion [ F ind ] = FF ( F , f i e ldpos , ind , varargin )

funct ion F = FM( F , varargin )

funct ion F = FR( F , modes , varargin )

funct ion F = header ( F , header , ign )

funct ion F = IP ( F , Wr, Tl , Ws, Cbl , T t l )

func t ion F = KK( F , s1 , s2 , s3 , s4 , angBotStr t , angBotEnd , angTopStrt ,
angTopEnd , edgelenBot , edgelenTop , i n f l a g , sca le , La , MEkr)

funct ion [ ch ind ] = KKxy( ch , xzS , xzE , xR , y , angV , mshC, ind , La )

funct ion [ ch ind ] = KKxz( ch , xzS , xzE , xR , y , angV , mshC, ind , La )

funct ion F = KR( F , s1 , s2 , s3 , s4 , ang , edgelenOut , edgelenIn , sca le ,
LA, MEkr)

funct ion F = LA( F , s t r i n g , ind )

funct ion F = LE ( F , Mode, varargin )
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func t ion [ F ind ] = MB( F , name , s1 , s2 , s3 )

funct ion F=nodes2 t r i ( F , nodes , name , msh , La ) ;

func t ion F = notes ( F , notes )

funct ion [ F ind ] = OS( F , c a l c u l a t i o n , ind , varargin )

funct ion F = PB ( F , s1 , s2 , s3 , s4 , subang , maxtri , LA, MEkr)

funct ion F = PH( F , s1 , s2 , s3 , s4 , s5 , maxedge , sca le , LA)

funct ion F = PHsq ( F , cornp , rad , pname , maxedge , LA)

funct ion F = PM( F , pnts , msh , varargin )

funct ion F = PW( F , modes , varargin )

funct ion [ y ] = read ( F , typ )

funct ion F = RM( F , RMmode, mshsize , varargin )

funct ion F = SF ( F , s c a l e )

funct ion [ F ind ] = SP ( F , A, R , Z0 , ind )

funct ion F = SY ( F , xyz , l a b e l )

func t ion F = TG( F , numcopies , l a b e l s t r , labelend , incr , rot , tran ,
mirror , sca le , inc ludes )

funct ion F = varsA ( F , varName , varValues )

funct ion F = vars ( F , varName , varValue )

funct ion wri te ( F )

funct ion F = ZY( F , s1 , s2 , s3 , ang , edgelen , sca le , i n f l a g , LA, MEzy)
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Appendix D

Mode matching theory

D.1 Introduction

The principles of Mode Matching where first formally presented in the late 1960s and the
early 70s, and, with the increase in available computational power, have become a very
useful numerical technique. Existing software is available, but due to a desire for flexibility
and user understanding custom code is preferred.

The operating principle is to describe a section of waveguide, by decomposing the EM
waves within it into the constituent modes. The steps required to solve for the modes
is to solve for the waves, given the geometry and fields, assuming a potential function.
The boundary conditions are used to solve for the mode coefficients. Depending on the
discretization, sometimes evanescent modes are required.

Once the form of the modes is known, the behaviour of the guide is solved for by step by
step solving for the coupling coefficients between sections of the guide, most often straight
planar sections are used as an approximation for the guide. Spherical propagation is pos-
sible, but is very guide specific.

D.2 Theory

The theory of Mode Matching has been extensively covered in many papers and text books,
starting in the 1960s to the present day. The theory here is based on the general case as
described by Masterman and Clarricoats [93]. The advantage of this formulation is it avoids
the need to normalise the mode terms. The theory is presented here for completeness and
so that their is no confusion of later use of terms and implementation. The problem is
shown in fig. D.1.

If we consider that surface S contains k apertures described by a surface Sk. The fields
within waveguide one can be described as a series of orthogonal modes. Given the condi-
tion of orthogonality, this means that:∫

S

ei × hj ds = 0 and
∫
S′

e′i × h′j ds = 0 ; i 6= j (D.1)

The fields in each waveguide can be expressed as a sum of these orthogonal fields such
that, the transverse fields ET are given by:
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Waveguide 1 S

S′ Waveguide 2

Figure D.1: General waveguide discontinuity

Waveguide 1:

ET =

∞∑
m=1

(aim + arm)em (D.2a)

HT =

∞∑
m=1

(aim − arm)hm, (D.2b)

Waveguide 2:

E′T =

∞∑
n=1

(a′in + a′rn)e′n (D.3a)

H ′T =

∞∑
n=1

(a′in − a′rn)h′n, (D.3b)

Where the i modes indicate incident and r the reflected waves. The goal is to calculate
these coefficients. To solve this, we introduce an expression for the fields at the discontinu-
ity. We can represent the fields within the apertures, in a similar manner, such that, for the
kth aperture:

ETk =

∞∑
i=1

bkieki and HTk =

∞∑
i=1

ckihki (D.4)

Where, as before the modes are orthogonal:∫
Sk

eki × hkj ds = 0 ; ki 6= kj (D.5)

If we can solve for the b and c coefficients, we can solve for the desired a and a′ coeffi-
cients. It is noted that the fields expressed in eq. (D.4) do not represent the actual fields, but
rather are used as a mathematical tool to solve for the real fields in the waveguides. The
fields must be continuous. Considering the kth aperture:

Over the kth apeture:

ETk =

∞∑
m=1

(aim + arm)em =

∞∑
i=1

bkieki =

∞∑
n=1

(a′im + a′rm)e′n (D.6a)

HTk =

∞∑
m=1

(aim − arm)hm =

∞∑
i=1

ckihki =

∞∑
n=1

(a′im − a′rm)h′n, (D.6b)
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Using eq. (D.6a), if we obtain the cross product with hM and integrate over the kth
aperture we get the set of equations:

∞∑
m=1

(aim + arm)

∫
Sk

em × hM ds =

∞∑
i=1

bki

∫
Sk

eki × hM ds ; M = 1, 2, 3 · · ·∞ (D.7)

If we define the surface around P apertures as S0 = S −
∑P
k=1 Sk. Then as the field

must vanish across this surface:

∞∑
m=1

(aim + arm)

∫
S0

em × hM ds = 0 (D.8)

We can sum over all P apertures in eq. (D.7), and apply the orthogonality condition
given by eq. (D.1), to give:

aiM + arM =

∑P
k=1

∑∞
i=1 bki

∫
Sk

eki × hM ds∫
S
eM × hM ds

(D.9)

And similarly for waveguide 2:

a′iN + a′rN =

∑P
k=1

∑∞
i=1 bki

∫
Sk

eki × h′N ds∫
S′

e′N × h′N ds
(D.10)

Using eq. (D.6b), we can similarly obtain the cross product with eI and integrate over
the kth aperture we get the set of equations:

∞∑
m=1

(aim − arm)

∫
Sk

ekI × hm ds =

∞∑
i=1

cki

∫
Sk

ekI × hi ds ; I = 1, 2, 3 · · ·∞ (D.11)

As before applying eq. (D.5), all but the i = I term disappears, gives us:

ckI =

∑∞
m=1(aim − arm)

∫
Sk

ekI × hm ds∫
Sk

ekI × hi ds
(D.12)

Similarly for the other terms in eq. (D.6b).

ckI =

∑∞
n=1(a′in − a′rn)

∫
Sk

ekI × h′n ds∫
Sk

ekI × hkI ds
(D.13)

We are now in the position to solve eqs. (D.9), (D.10), (D.12) and (D.13). The series are
truncated, to p and p′ modes in waveguide 1 and 2 respectively and the modes in aperture
k is truncated to qk, so that:

m ≤ p,M ≤ p

n ≤ p′, N ≤ p′

i ≤ qk, I ≤ qk

We can now write out eq. (D.9) in matrix form:
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ai1

ai2
...
aip

+


ar1

ar2
...
arp

 =


R1(1, 1) · · · R1(1, q1) RP (1, 1) · · · RP (1, qP )

...
... · · ·

...
...

R1(p, 1) · · · R1(p, q1) RP (p, 1) · · · RP (p, qP )





b11
...

b1q1
...
bP1

...
bPqP


(D.14)

Where:

Rk(i, j) =

∫
Sk

ekj × hi ds∫
S
ei × hi ds

(D.15)

For ease eq. (D.14) is written compactly as:

ai + ar = Rb (D.16)

Setting qT =
∑P
k=1 qk, R has dimensions p× qT , and b has dimensions qT × 1. Similarly

from eq. (D.10):

a′i + a′r = R′b (D.17)

Similarly R′ has dimensions p′ × qT elements, and

R′k(i, j) =

∫
Sk

ekj × h′i ds∫
S′

e′i × h′i ds
(D.18)

Putting eq. (D.12) in matrix form gives:

c11
...

c1q1
...
cP1

...
cPqP


=



S1(1, 1) · · · S1(1, p)
...

...
S1(q1, 1) · · · S1(q1, p)

...
...

SP (1, 1) · · · SP (1, p)
...

...
SP (qP , 1) · · · SP (qP , p)





ai1 − ar1
...
...
...
...

aiP − arP


(D.19)

Where:

Sk(i, j) =

∫
Sk

eki × hj ds∫
Sk

eki × hki ds
(D.20)

Matrix eq. (D.19) in compact form:

c = Sai − Sar (D.21)

The c has qT elements, S has dimensions qT × p. Similarly for eq. (D.13):
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c = S′a′i − S′a′r (D.22)

Where:

S′k(i, j) =

∫
Sk

eki × h′j ds∫
Sk

eki × hki ds
(D.23)

It is now possible to solve for ar given an excitation ai. Multiply eq. (D.16) by S:

Sai + Sar = SRb

and substituting eq. (D.21):

Sai + [Sai − c] = SRb

c = 2Sai − SRb (D.24)

Similarly from eqs. (D.17) and (D.22):

c = S′R′b− 2S′a′i (D.25)

By eqs. (D.24) and (D.25) we get the equation relating ai and ar to b:

2Sai − SRb = S′R′b− 2S′a′i

[SR + S′R′]b = 2Sai + 2S′a′i

b = [SR + S′R′]−1[2Sai + 2S′a′i] (D.26)

Once b has been solved for, it can be substituted into eqs. (D.16) and (D.17), to find the
desired reflected coefficients ar and a′r, as follows:

ar =R[SR + S′R′]−1[2Sai + 2S′a′i]− ai (D.27)

a′r =R′[SR + S′R′]−1[2Sai + 2S′a′i]− a′i (D.28)

These represent the set of simultaneous equations to be solved.

D.3 Rectangular modes

Solving for the classic case where:

129



Waveguide 1 S S′ Waveguide 2

Figure D.2: Rectangual waveguide discontinuity

The equations for the square waveguides are given by, for TE modes:

eTEx =
jµwky

k2c
cos (xkx) sin

(
yky
)

(D.29)

eTEy =
−jµwkx

k2c
sin (xkx) cos

(
yky
)

(D.30)

eTEz = 0 (D.31)

hTEx =
γkx

k2c
sin (xkx) cos

(
yky
)

(D.32)

hTEy =
γky

k2c
cos (xkx) sin

(
yky
)

(D.33)

hTEz = cos (xkx) sin
(
yky
)

(D.34)

and for TM modes,

eTMx =
γkx

k2c
cos (xkx) sin

(
yky
)

(D.35)

eTMy =
γky

k2c
sin (xkx) cos

(
yky
)

(D.36)

eTMz = sin (xkx) cos
(
yky
)

(D.37)

hTMx =
−jεwky

k2c
sin (xkx) cos

(
yky
)

(D.38)

hTMy =
εjwkx

k2c
cos (xkx) sin

(
yky
)

(D.39)

hTMz = 0 (D.40)

Where γ2 = k2c − k2, k2c = k2x + k2y , kx = mπ
a , ky = nπ

b and k2 = w2µ0ε0.
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D.4 Solving the cross products

Separating eq. (D.23) into the top and bottom terms, the top term we need to integrate is
given as:

S′topi,j = eiL × hjR · ẑ (D.41)

=

∣∣∣∣∣∣∣
x̂ ŷ ẑ

eiLx eiLy eiLz

hjRx hjRy hjRz

∣∣∣∣∣∣∣ · ẑ (D.42)

= eiLxhjRy − eiLyhjRx (D.43)

Dropping the i, j indices for conciseness and splitting this into; TETE, TMTM, TETM
and TMTE.

Starting with TETE:

STETEi,j =exLhyR − eyLhxR
=eTExLhTEyR − eTEyLhTExR

=
jµwγR
k2cRk

2
cL

[
kyLkyR cos (xkxL) cos (xkxR) sin (ykyL) sin (ykyR)

+ kxLkxR sin (xkxL) sin (xkxR) cos (ykyL) cos (ykyR)
]

(D.44)

For TMTM:

STMTMi,j =exLhyR − eyLhxR
=eTMxLhTMyR − eTMyLhTMxR

=
εjwγL
k2cLk

2
cR

[
kxLkxR cos (xkxL) cos (xkxR) sin (ykyL) sin (ykyR)

+ kyLkyR sin (xkxL) sin (xkxR) cos (ykyL) cos (ykyR)
]

(D.45)

For TETM:

STETMi,j
=exLhyR − eyLhxR
=eTExLhTMyR − eTEyLhTMxR

=
εµw2

k2cLk
2
cR

[
kxLkyR sin (xkxL) sin (xkxR) cos (ykyL) cos (ykyR)

− kyLkxR cos (xkxL) cos (xkxR) sin (ykyL) sin (ykyR)
]

(D.46)

For TMTE:

STMTEi,j =exLhyR − eyLhxR
=eTMxLhTEyR − eTMyLhTExR

=
γLγR
k2cLk

2
cR

[
kxLkyR cos (xkxL) cos (xkxR) sin (ykyL) sin (ykyR)

− kyLkxR sin (xkxL) sin (xkxR) cos (ykyL) cos (ykyR)
]

(D.47)
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To solve the method, we need to solve the integral
∫
S
Smnds =

∫ aL
0

∫ bL
0
Smn(x, y)dxdy.

Clearly we can separate variables and rearrange the integrals so the only integrals we need
to solve are:

∫
cos(b1u) cos(b2u)du and

∫
sin(b1u) sin(b2u)du, which can be solved using

common integral tables:∫
sin b1u sin b2u du =

sin((b2 − b1)u)

2(b2 − b1)
− sin((b1 + b2)u)

2(b1 + b2)
(for |b1| 6= |b2|)∫

sin2 bu du =
u

2
− 1

4b
sin 2bu (for |b1| = |b2| = |b|)∫

cos a1u cos a2u du =
sin((a2 − a1)u)

2(a2 − a1)
+

sin((a2 + a1)u)

2(a2 + a1)
(for |a1| 6= |a2|)∫

cos2 au du =
u

2
+

1

4a
sin 2au (for |a1| = |a2| = |a|)

Putting in the limits [0, L] we can define the functions:

S∫ (b1, b2, L) =


sin((b2−b1)L)

2(b2−b1) − sin((b1+b2)L)
2(b1+b2)

for |b1| 6= |b2|
L
2 −

1
4b sin 2bL for |b1| = |b2| = |b|

(D.48)

C∫ (a1, a2, L) =


sin((a2−a1)L)

2(a2−a1) + sin((a2+a1)L)
2(a2+a1)

for |a1| 6= |a2|
L
2 + 1

4a sin 2aL for |a1| = |a2| = |a|
(D.49)

Integrating Equations (D.44) to (D.47), by substituting eqs. (D.48) and (D.49), and rein-
troducing the i, j indices gives us:∫

Sk

STETEi,j ds =
jµwγRj
k2cRj

k2cLi

[
kyLikyRjC

∫ (kxLi , kxRj , aL)S∫ (kyLi , kyRj , bL)
+ kxLikxRjS

∫ (kxLi , kxRj , aL)C∫ (kyLi , kyRj , bL)] (D.50)∫
Sk

STMTMi,j
ds =

εjwγLi
k2cLi

k2cRj

[
kxLikxRjC

∫ (kxLi , kxRj , aL)S∫ (kyLi , kyRj , bL)
+ kyLikyRjS

∫ (kxLi , kxRj , aL)C∫ (kyLi , kyRj , bL)] (D.51)∫
Sk

STETMi,j
ds =

εµw2

k2cLi
k2cRj

[
kxLikyRjS

∫ (kxLi , kxRj , aL)C∫ (kyLi , kyRj , bL)
− kyLikxRjC

∫ (kxLi , kxRj , aL)S∫ (kyLi , kyRj , bL)] (D.52)∫
Sk

STMTEi,j ds =
γLiγRj
k2cLi

k2cRj

[
kxLikyRjC

∫ (kxLi , kxRj , aL)S∫ (kyLi , kyRj , bL)
− kyLikxRjS

∫ (kxLi , kxRj , aL)C∫ (kyLi , kyRj , bL)] (D.53)

Considering all the desired, Si,j , S′i,j , Ri,j and R′i,j terms, we alter eqs. (D.50) to (D.53)
to solve all the possibilities. If we define eqs. (D.50) to (D.53) as the function Sc ∫ (i, j, a, b),
where i, j index all the possible modes.
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So if we consider eqs. (D.15), (D.18), (D.20) and (D.23):

Rk(i, j) =

∫
S
ej × hi ds∫

S
ei × hi ds

=
Sc

∫ (jL, iL, aL, bL)
Sc

∫ (iL, iL, aL, bL)
R′(i, j) =

∫
S
ej × h′i ds∫

S′
e′i × h′i ds

=
Sc

∫ (jL, iR, aL, bL)
Sc

∫ (iR, iR, aR, bR)
S(i, j) =

∫
S
ei × hj ds∫

S
ei × hi ds

=
Sc

∫ (iL, jL, aL, bL)
Sc

∫ (iL, iL, aL, bL)
S′(i, j) =

∫
S
ei × h′j ds∫

S
ei × hi ds

=
Sc

∫ (iL, jR, aL, bL)
Sc

∫ (iL, iL, aL, bL)

So we need to solve for: Sc ∫ (jL, iL, aL, bL), Sc ∫ (iL, iL, aL, bL), Sc ∫ (jL, iR, aL, bL),
Sc

∫ (iR, iR, aR, bR), Sc ∫ (iL, jL, aL, bL), Sc ∫ (iL, jR, aL, bL). These are analytical functions
that don’t require integration so can be very quickly solved and substituted into eq. (D.28).
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Appendix E

Phase Centre Calculations

In order to correctly find the phase centre we solve for the point at which the phase is
optimally flat in the far field. In two dimensions the wave distance Zlp calculated from
placing the antenna dZ from the origin in the θ plane can be calculated geometrically as:

Zlp =

√
r sin2(θ) + r cos2(θ)− dZ (E.1)

The phase centre can be defined as the point dZ at which the phase remains flat across
the beam for all φ. The code is tested against an existing FEKO script, which is found to be
limiting due to its restriction to beams orientated along the z–axis [94]. For the designed
corrugated horn the phase variation for various depths is plotted in figs. E.1 to E.3. For a
reflector antenna the phase across the aperture is critical so it makes more sense to optimise
across the aperture, plotted in figs. E.4 to E.6.

E.1 Optimised over the whole beam
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(a) 4.5GHz,optimal depth 475mm.
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(b) 5GHz,optimal depth 377mm.
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(c) 5.5GHz,optimal depth 283mm.
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Figure E.1: Phase plots from 4.5 GHz to 6 GHz for the designed corrugated horn for various
depths, optimised over the whole beam pattern.
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(a) 6.5GHz,optimal depth 320mm.
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(c) 7.5GHz,optimal depth 329mm.
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Figure E.2: Phase plots from 6.5 GHz to 8 GHz for the designed corrugated horn for various
depths, optimised over the whole beam pattern.
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(a) 8.5GHz,optimal depth 269mm.
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Figure E.3: Phase plots from 8.5 GHz to 9 GHz for the designed corrugated horn for various
depths, optimised over the whole beam pattern.
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E.2 Optimised over the main beam
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(c) 5.5GHz,optimal depth 577mm.
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Figure E.4: Phase plots from 4.5 GHz to 6 GHz for the designed corrugated horn for various
depths, optimised over the main beam pattern.
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(a) 6.5GHz,optimal depth 718mm.
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Figure E.5: Phase plots from 6.5 GHz to 8 GHz for the designed corrugated horn for various
depths, optimised over the main beam pattern.
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(a) 8.5GHz,optimal depth 814mm.
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Figure E.6: Phase plots from 8.5 GHz to 9 GHz for the designed corrugated horn for various
depths, optimised over the main beam pattern.
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