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FOREWORD

Variable speed motors are achieved by varying the voltage of a DC machine or by

varying the frequency of an AC machine, the former method being the simpler of the

two. DC motors have the major disadvantage of brushes and commutators which require

regular downtime for maintenance, a fact already recognised by Tesla [1] in 1888. Thus

the AC motor, in particular the induction motor, is of a more rugged design and does

not suffer from the commutator problem of its DC counterpart. Recent advances in the

technology of the power electronics used to supply a variable frequency to the motor

has allowed the induction motor to be a viable alternative to the DC motor in variable

speed applications.

Problems have been encountered in industry when an inverter is injudiciously selected

to be combined with a motor. Such problems were highlighted by difficulties being

experienced with some 400 kW inverter drives. The inverters had been bought from one

supplier and the motors from another. When this system was coupled together, there

was excessive heating in the motors and the overall plant was only able to operate well

below its capacity, incurring a substantial weekly loss of income. The motor and inverter

were evidently incompatible, and since the inverter could not be modified, the motor

was redesigned to make it less susceptible to the harmonics present in the inverter

waveform,

.)

These problems have led to the development of a variable speed drive simulation package

at the University for use oy the local industry which can accurately model the complete



system of inverter, motor and its associated load. It is envisaged that this package could

be used to predict the performance of a drive system and highlight problems that may

occur. To be able to do this, an accurate model of the motor is required.

This investigation gives the development of an induction motor model which is suitable .

for variable speed drive system simulations. The model accounts for the deep bar effect

by using lumped parameter circuits and includes saturation of the leakage paths using

only information which is typically available from motor design data. A complete analysis

is given of the different lumped parameter models and their suitability for use in this

application. The thesis also shows the utilisation of the deep bar model to simulate

reswitching transients and double cage motors. The author hopes that the models used

in the simulation package wallow industry to predict problems prior to their occurrence,

alter the designs and thereby avoid costly remanufacture of the system. .s
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LIST OF SYMBOLS

A = area

B = flux density (T)

Cs = number of stator conductors per slot

Dis = stator inside diameter (mm)

d = depth (mm)

F = coefficient of friction

:J = magneto-motive force (mmf)

[0] - rotational inductance matrix

H = mmf per m

J = current (A)

[1] = vector of two-axis currents

J = rotational moment of inertia .J

Kd -. stator winding distribution factor

Kp = stator coil pitch factor

L = self inductance (H)

LI = leakage inductance (H)

[L] = inductance matrix

= length (mm)
.......

M = mutual inductance (H)

N = number of turns
0

Nt = number of stator turns in series per phase

Pc = number of stator parallel circuits

PU = per unit

0 .P = penneance

iv



p = number of pole pairs

q = number of phases

R = resistance (n)

[R] = resistance matrix

RMS = root mean square

S = number of slots

rr = torque (Nm)

t = time (seconds)

V = voltage (V)

[V] = vector of two-axis voltages

w = width (mmi

Superscripts

,_J
= rotor value referred to stator

T = matrix transposition

Subscrilll.s

a,b,c = three phase winding subscripts

b = bar

> >.".... blk = block

c = core

o d = d-axis

e = end-ring, electrical

= inner bar

.- leakage, load

o In = mechanical

v



0 = outer bar

q = q-axis

r = rotor

s = stator, saturable, synchronous

sat = saturable portion

sec = section

t = tooth tip

u = .msaturable portion

0 _. refers to leakage above bar

O)l ..n = refers to the number of any specific section of bar

Greek Letter:~

<)

a,~ = axes which three phase a,b,c system is passively transformed to

y = zero sequence axis

e = angle between stator and rotor axis

').. = permeance coefficient per unit length

I-Lo = magnetic space constant

p = resis tiv ity
0' = saturation fac.or

't = time constant

<I:> = flux

'¥ = flux linkage

(J) = rotational speed
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CHAPTER 1

INTRODUCTION

The large increase in the industrial usage of induction rrotors for variable speed drives

(VSD) hJS seen an associated increase in the problems encountered with these systems.

These problems often arise because the motor has not been specifically designed for the

.nverter drive, but has simply been connected to an inverter with similar ratings. Typical

prcblems encountered are instability of the system due to mechanical/electrical resonance

.nd excessive heating of the motor due to .rIditional harmonics present in the motor

"lorn the inverter supply, which can dramatically shorten the life span of the motor.

The non-sinusoidal waveform of the inverter introduces harmonics into the currents in

the stator and rotor of the motor ([10], [11], [22]). Thus, in the rotor bars, high frequency

components of current exist which flow in the upper portions of the bar. This phenomenon

is known as the skin, or deep bar, effect and effectively increases til", resistance of the

bars. Also, under transient conditions, the currents in the motor are larger than rated

value and saturation of the leakage paths will occur ([26], [33], [36]), Both these situations

can have a profound effect on the performance of the system and need to be considered

when examining a VSD system.

,,)

o To try to avoid incompatibility problems associated with inverter drives, a method is

required to predict the system performance prior to manufacture of the system. The most

efficient method of prediction is computer simulation, which requires an accurate model

of each component of the system. An induction motor model which accounts for deep

1



bar and saturation effects is thus required which can link its input/output to the converter

model of McCulloch et al [37]. The standard d-q axis motor model, as given by O'Kelly

and Simmons [12], has some inherent assumptions which make it unsuitable for VSD

system simulations. Firstly the rotor parameters used in the model are fixed and secondly

the model assumes a linear characteristic, thus neither frequency nor saturation effects

are accounted for.

The analytical solution ....f the deep bar enuation as proposed by Liwschitz-Garik [5J and

Alger [14] is the most accurate solutioz ,t suffers from the follow! ..g drawbacks when

applied to VSD simulations :

1) Many frequencies exist in the current waveform and each separately contributes to

the total skin effect.
,J

2) Knowledge of the frequency content of the non-sinusoidal waveform is not readily

available.

Mahmoud and Menzies [30] and Boldea and Nasar [32] suggest using fictitious coils in

o

the rotor to simulate the deep bar effect, one coil fer starting and one for running

conditions. The parameters of these additional coils are obtained from frequency tests

of the motor. This method has similar problems to those listed above, because many

different frequencies exist in the motor and the model would thus require far too many

coils. Bruges [2] first proposed a ladder-type network to model the rotor, and Babb and

Williams [3 and 4] showed how a lumped parameter model could be used to calculate

the impedance of a rotor bar. Babb and Williams [4J also suggest alternate lumped

parameter models which can be used. This thesis analyses the accuracy of the differento

2
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lumped parameter models and compares their performance under various frequency

conditions. A novel algorithm is introduced which increases the accuracy of the model

by up to thirty times at certain frequencies.

Articles on accounting for saturation effects of either the magnetising or the leakage

flux paths abound in the literature. The research has been directed towards the effects

in synchronous motors ([23], [27], [31]) and the problem has a.,o been addressed for

induction motors ([7], [13], [21], [25], [26], [28], [36]). Most articles use the same

"

method of accounting for saturation - split the inductance into a saturable and an

unsaturable portion and alter the saturable portion according to the mot or's measured

voltage-nux characteristic. This method would require tests to be performed on the motor

and is thus unsuitable for the present application. Two alternative methods have been

used ~ the first is an empirical correction tactor and the second is based on the current

I
/

b
at which the leakage paths will saturate (Agarwal and Alger [7]).

The aim of this work has been to develop an accurate induction motor model which is

suitable to be used in conjunction with an inverter model. The motor model should be

able to account for any frequency variations of the rotor parameters caused by harmonics

from ~he inverter. Saturation of the leakage flux paths should also be included. The

input parameters of the model must be obtained from design data so that no tests reed

be performed on the motor to simulate the system. This thesis details the development

of a motor model which accounts for both the deep bar effect and saturation present

in the motor. The correlation between the predicted curves using this model and the

measured results indicate that the objective has been realised.

3
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The motor models have been implemented in a variable-speed drive (VSD) simulation

package which consists of three main programs as shown in Chapter 2. The author's

main contribution to the package has been the development of the "CREATE" program

which reads ir, the necessary nata for the VSD system and saves the data in files which

have a format suitable for the "SIM" program to use. The source code listings for the

"CREATE" program would comprise a volume of more than 100 pages and have therefore

not been included.

Chapter 2 gives background information of the d-q axis model and its implementation.

Chapter 3 gives the development of the new deep bar model, followed by a Chapter

showing that this deep bar model may be extended to model double cage motors. Chapter

5 gives the methods used to include saturation of the leakage paths in the tooth tips

and the last Chapter shows how the deep bar model can be applied to reswitching ,j

transients.

4
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CHAPTER 2

BACKGROUND INFORMATION

This chapter gives a review of the d-q axis theory of machines, showing the derivation

of the differential equations of a three phase induction motor in any arbitrary reference

frame. The transformations that are applied to the three phase equations to reduce them

to the d-q axis equivalent will be given. The equation for the electromagnetic torque

and a brief description of the implementation of the motor equations in the simulation

program will also be given.

2.1. Induction Motor Differential Equations

For simulation of an induction motor on a digital computer, the three phase differential

equations describing the performance of the motor are transformed to a corresponding

set of two axis equations. These transformations simplify the equations by making the

machine inductances independent of the angle between the axes of the stator and rotor

windings, i.e, independent of time.

The following assumptions are made in deriving the two-axis equations

1) Magnetic saturation of the leakage f'-~x paths has been ignored; this assumption

will be discussed in a later Chapter where a means of accounting for saturation

effects is shown.

5
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2) The magneto-motive force (mmf) p-oduced by the distributed winding is sinusoidal.

3) Eddy current and hysteresis losses are negligible and have thus been ignored.

Figure 2.1 : d-q axis Representation Of Induction Motor ..)

Appendix A gives the derivation of the stator and rotor equations transformed to the

two phase d-q axis which rotates at an arbitrary speed, shown in Figure 2.1. The final

form of these equations has made use of the following two facts

1) The rotor winding (squirrel cage) is short-circuited and thus "',d = V'rq = 0

?; The systems under consideration are balanced three phase, three wire systems and

thus the zero sequence components are non-existent (i.e. Vsy= V'rr = lsy= /'ry = 0)

Then, as given in equation (A.41), the induction motor equations are

6
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d -00£ M!!... -roMRs+Ls dt s dtv, d M!!...
Isd

roLs R, +Ls dt roM
ISqVSq dt

=
0 M!!... ' ,d 'J"- «(0- O)r)M R r+L r dt - (0) --Wr)L'r rd

0 dt r; (2.1)

(O)-w,)M M!!... (0) - O)r)L'r ' L' d
dt R r + "dt

where (J) can have the following values

1) (J) = 0 : here the rotational terms in the stator equations fall away, the rotational

terms in the rotor equations consist of ro, only, and thus the system represents the

motor equations in a stationary stator-fixed frame of reference.

2) (J) = (J)r : the rotational terms in the rotor fall away and this system has its reference

frame attached to the rotating rotor.

3) co= (J)st : co, is the frequency of the supply and thus this system has its frame of

reference rotating at synchronous speed.

4) co= ro, : to, is any arbitrary rotational speed at which the frame of reference can

o rotate, relative to the rotor.

For simulation of the traditional fourth order differential equation of the motor as given

by equation (2.1), the stator-fixed reference frame is the simplest, quickest and most

7
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efficient system to use. The derivation of the deep bar model given in Chapter .3 has

used the rotor-fixed reference frame to avoid including rotational terms in the complex

rotor equations.

Equation (2J) can be rewritten in the form

d
[V] = [R] . [1] + [L] d; [1] + [G] . [1]

(2.2)

where

(.)

rV"][V] = ~q

Lo

i:
[l] = lsq

r:
I'T

Rs 0 0 0
0 Rs 0 0

[R]= 0 0 R' (l
r

0 0 0 R' r.

i; 0 M 0
0 L,: 0 [(1

[L] =
M 0 L' 0r

0 M 0 L' r.

(2.3)

.J

(2.4)

(2.5)

(2.6)
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0 -roLs 0 -roM

roLs 0 roM 0
[G] =

0 - (ro - ro,)M 0 - (ro-ror)L'r
(ro - ro,)M 0 (ro - ror)L', 0 (2.7)

2.2. Electromagnetic Torque

The electromagnetic torque of the induction motor is given by

(2.8)

where '¥',q ann \V'r:! are given by equations (A.36). Substituting for the flux linkages

gives
.J

(2.9)

and the torque equation of the motor with its load is

(2.10)

where Fm is the -coefficient of friction of the motor, Jm is the rotational moment of

inertia of the motor plus load and 'lj is the load torque.

9
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2.3. The Simulation Program

The computer package CASED ~omputer Analysis and Simulation of Electric Drives)

is a modular program for the simulation of motors and variable speed drive systems

(see McCulloch et ai [40]). The package is composed of :

1) "CREATE" arranges the system to be simulated and reads in all the required data.

Firstly the timing functions of the system simulation are entered i.e. frequency to

save information to disk, time to change models, end time etc. Then the parameters

of each individual component making up the system are read in, the state space

model is generated and saved to files for the simulation program to use.

I
2) "SIMI! is the main simulation program of CASED and has the flow diagram shown

in Figure 2.2. The initialisation routine reads in the system files from "CREATE"

and control of the program is then passed to the equation solver/event scheduler

part of the program. The event scheduler is called up whenever an event occurs

and needs to be processed (such as outputting to screen, logging to disk, changing

sub-models and ending the simulation), The differential equation solver consecutively

solves the state equations of each component of the system. The "state events"

block is that portion of the program which changes the inverter model being used.

.J

For the model of the motor, as given by equation (2.2) to be used in this program,

the state-space model is re-arranged to be of the form

(1

10



- ..-------------------------------------------------------~----------------

Initialisation

Event Scheduler

DE Solver Slate Events

Figure 2.2 : Simplified Flow Diagram Of The Simulation Program

:t [1] = [Lr1 {[V] - [R] .[1] - [G] .[1]}
(2.11)

,,)

where [V] is the input to the motor model from the supply and [1] is the output

of the motor model fed back to the supply. Both [V] and [1] here are two phase

(d-q) quantities, whereas the inverter or sinusoidal supply work with three phase

quantities. Thus Va,b,c are transformed to Vd,q, then the matrix of differential

equations (2.11) is solved to give Isd,l ..,q which in turn are transformed back to

la,b,c and made available to the system.

3) "GRAPH" reads in the data file of saved information from "SIM" and allows
o various options for graphing the data.

11



CHAPTER 3

DEEP BAR MODEL

In this Chapter, the necessity for having a motor model which accurately accounts for

deep bar effects is discussed. The work carried out in this field by other researchers is

then reviewed. The new deep bar model is detailed and a comprehensive comparison

of the accuracies is given. An algorithm is outlined to improve the accuracy at higher

frequencies and two case studies are discussed to highlight the effectiveness of the model.

3.1. The Nt!ed For An Accurate Deep Bar Model

o

In an induction motor, the lower portions of the bars of the rotor cage are linked by

more slot leakage flux than the upper portions of the bar. This can be seen in Figure

3.1, which shows a rectangular bar in a slot, with a higher density of lines representing

leakage flux at the bottom of the slot. Under transient conditions, the inductance of the

lower part of the bar is higher than that for the upper portion of the bar (caused by

the non-uniform flux distribution) causing the current to flow primarily in the upper

portion of the bar. The re-distribution of the current flowing in the bar effectively

increases the resistance of the bar. This phenomenon of increased resistance and decreased

inductance is known as the deep bar effect or skin effect. The effect is dominant in

motors with rotor bars that have a large bar depth to bar width ratio (Alger [14]) and

in motors where high frequency currents (> 50 Hz) flow in the bars.
I

~J
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Figure 3.1 : Typical Leakage Flux Pattern In The Rectangular Slot Of A Rotor

Typically currents with a frequency ranging from nearly DC to 2500 Hz could be present

in the rotor of the motor. If the motor 1S supplied from a sinusoidal source, the current

would have a frequency equal to that of the supply (50 Hz) at starting and equal to

the slip frequency (0.25 Hz for a 0.5 % slip) at running speed. For an inverter supply,

the fundamental current could have a frequency from 100 Hz to less than 1 Hz. The

inverter can also introduce time harmonics with frequencies up to or even greater than

4500 Hz (this frequency represents the 25th harmonic of a 100 Hz waveform). Therefore,

whether a motor with deep bars is supplied from a sinusoidal source or an inverter

supply is present, skin effect will be present and needs to be accounted for.

.J,

o

The model of the motor, as given by equation (2.2) does not take account of deep bar

effects because the rotor values s', and L', are not dependent on the frequency of the

currents flowing in the rotor. By not taking account of the rotor parameter variation

with frequency, the predicted transient torque and currents will be ir correct, as shown

in the first case study. Therefore a dynamic model is required in which the values R',

and L', are continuously adjusted as the rotor frequency changes, thereby allowing better

predictions of rotor current and developed torque.

13



3.,2. Previous Models

Many articles have appeared in the literature on the simulation of induction motors fed

from sinusoidal and non-sinusoidal waveforms ([9], [15], [29], [34], [35]). The researchers

that have addressed the problem of modelling the deep bar effect will be discussed .

below.

Mahmoud and Menzies [30] have used the equivalence between a deep bar and a double

cage rotor to account for the d .ep bar effects. Instead of having one d-axis and one

q-axis winding to represent the rotor, they have used tw> windings on each axis. The

resistances and inductances of the 1\\'0 rotor windings are obtained from measurements

performed on the motor. This model is acceptable for sinusoidal waveforms where

effectively one winding represents the rotor at start-up and the other winding represents

the rotor at full speed. Under non-sinusoidal conditions, where harmonics introduce

currents at higher frequencies than 50 Hz, this model will introduce inaccuracies. Also,

this model is unsuitable to predict the performance of the motor prior to manufacture

because tests need to be performed to obtain parameters of the model.

,_)

o

The model of Boldea and Nasar [32] uses two or three "fictitious short ci.cuited windings"

on each orthogonal axis, to represent the rotor. The parameters for these windings are

determined from a range of frequency tests performed on the motor. The use of three

circuits for the rotor improves the accuracy of Mahmoud and Menzies' [30] model under

non-sinusoidal conditions but still has the drawbacks outlined in the previous paragraph.

Mukherjee et al [38] have modelled the induction motor using the three phase equations

for the stator. The rotor is modelled as a phase for every slot per pole pair, where each

14
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phase has a differential equation associated with it. Finite element techniques are used

to obtain all the required inductances as a function of e, the rotor position relative to

the stator. At each integration step, depending on the value of e, the inductance matrix

is generated and inverted, a computationally expensive procedure. Skin effect in the rotor

bars is accounted for by using the integro-differential approach of Konrad [19 and 20],

which is a finite element solution of Maxwell's equations.

An analytical solution of the deep bar equations, giving the ra.los of AC to DC resistance

and inductance is proposed by Liwschitz-Garik [5] and [6]. The first paper gives the

derivation of these ratios, in terms of hyperbolic sines and cosines, which at the time

were awkward to calculate on a slide-rule. The second paper defines a "depth of

penetration" as a function of the AC to DC ratios to avoid having to calculate the

hyperbolic values. Alger [14] gives a similar derivation to Liwschitz-Garik [5] for a

rectangular bar and states that different equations are needed for each different bar shape.

For the rectangular bar, Alger gives a correction factor to be made to the DC resistance

and inductance in terms of the frequency present in the bar. Although this analytical

solution is obviously very precise, it could not be used in the present application for

the following reasons :

o

There are different deep bar differential equations for each bar shape, which is

impractical for the generality required for CASED.

15
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• This method only corrects the 'UC values of resistance and inductance for one

particular frequency at a time. Under non-sinusoidal conditions when harmonics are

present, more than one frequency exists in the rotor and it is difficult to determine

what these frequenc' are.

Therefore this method has not been used in the simulation, but it has been used for

comparative purposes to analyse the accuracy of the lumped parameter circuit.

Bruges [2] was the first to show that a ladder network (or lumped parameter circuit)

of resistances and inductances could be used as an equivalent circuit of a conductor in

a slot of highly permeable material. In the 19JO's, Babb and Williams published two

articles on using the lumped parameter circuit to measure the impedance of a conductor

in a slot at any frequency. The first, [3], describes the measurement of the resistance

and the inductance of a rectangular bar, a T-bar and a slot containing one active and :)

one idle bar. This paper concludes that the AC impedance of any shape of bar can be

similarly calculated, and in the authors' re; to the discussion they mention that dividing

the bar into unequal sections gives improved accuracy. In the second paper, [4], they

suggest a new circuit to represent the sections of the bar which is more accurate than

o

previous circuits. Klingshirn and Jordan [16] showed the possibility of using an analog

simulation of an induction motor with deep rotor bars. They used the T configuration

to approximate each section of the bar because this resulted in fewer meshes in the

equivalent circuit. The work outlined by Babb and Williams in [3] and [4] forms the.
basis for the present investigation because this method accounts for any frequency being

present and is suitable for any shape of bar.
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3.3. Equiva1ent Circuit For Rectangular Rotor Bar

M
,)

Appendix B shows the derivation of the resistance and leakage inductance of a rectangular

bar in an open slot. The inductance is made up of two permeance contributions, one

':or the slot area above the bar (~) and one for the bar itself O"b)' The permeance

coefficient of the bar is obtained by calculating the flux in an elemental slice of the

iar and then integrating this flux over the depth of the bar. The resistance and leakage

nductance so calculated is then used in the equivalent circuit of Figure 3.2 as R'; and

'~fl r respectively.

Rs Lls

Figure 3.2 : Equivalent Circuit Of An Induction Motor

o

~:he same rectangular bar used in Appendix B is now divided into n equal sections

along the depth of the bar, with each section having its own resistance and leakage

i iductance associated with it. Klingshirn and Jordan [16] have shown that such a rotor

car can be represented as a 'l-equivalenr lumped parameter circuit as shown in Figure

2.3.

17
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L'ln-2-

M R~2

Figure 3.3 Equivalent T Circuit Of Induction Motor

Both this circuit and that of Figure 3.2 are identical on the left of the dotted line, which

represents' the stator winding parameters and the mutual inductance. The new circuit has

split the rotor values of Figure 3.2 into two components each. The resistance is split

into the end-ring resistance R', and the bar resistance made up of R'rt ... R'rn. The

leakage inductance is composed of the inductance L'/o whose flux links the whole bar

i.e. it represents Ao of Appendix B, and the bar leakage inductance which is made up

of L'll".L'ln' The terminology used here is :

,J

a section (sec) denotes any individual segment that the bar has been divided into.

a block (blk) denotes the sum of all the sections below and including the current

section, as illustrated in Figure 3.4.

Each section of Figure 3.4 has a resistance of

o

18
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Figure 3.4 : Rectangular Bar Divided Into n Equal Sections

P lbR =--
sec dW sec (3.1) ,J

and a leakage inductance of

(3.2)

where the permeance coefficient "-sec, as shown below, is calculated by a similar procedure

to that outlined in Appendix B,

The flux for any section is given a,

cI>sec =B bile A sec (3.3)

where

19
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(3.4)

The flux density of the block is

(3.5)

and, unlike the argument of Appendix B, the current of any block is now not a fraction

of the total current, but is the total current for that block. This is so because the leakage

inductance of that section due to the current flowing in that block is being calculated.

Similarly, the number of turns for a block is not a portion of the total turns, as shown

in Appendix B, it is the total for that block. Thus the total flux is

(3.6)

where

(3.7)

Having followed a similar line of reasoning to that of Appendix B, equation (3.7) is

the equivalent of equation (B.8). The integration for determining the total flux (Appendix

B), has effectively been carried out here by adding the flux from each of the n sections.

Thus the permeance coefficient for any section is derived from equation (3.7) aso

'A, ::: dsec
sec W

(3.8)
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which is substituted into equation (3.2) to give the leakage inductance of a section.

Equations (3.1) and (3.2) give the resistance and leakage inductance for a section of

each bar, whereas Figure 3.3 requires the per phase resistance and leakage inductance

of the whole rotor cage referred to the stator winding. To achieve this, the resistance.

and inductance of each section must be

multiplied by the number of rotor slots S; so that each value applies to the complete

rotor winding

• divided by the number of phases q to work on a per phase basis

multiplied by the equivalent turns ratio T, which is given by

.J

where

Sf.,S, = number of stator and rotor slots

{)

cs = number of stator conductors per slot

P, = number of stator parallel circuits

Kws. Kwr = stator and rotor winding factors
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Thus R'rsec and L'/sec of Figure 3.3 (where sec = l..n) are given by

3.4. Other Lumped Parameter Circuits

The procedure of Section 3.3 has been to calculate an inductance and a resistance of

each section of bar, and then to use these values in the T equivalent circuit. There are

other lumped parameter circuits for which the above analysis is equally valid, since these

other circuits also require an inductance and a resistance of each section. The circuits

that have been analysed are listed below and their differential equations appear in

Appendix C.

1) The L circuit, where each section is represented as an inductance in series with

its resistance, and each section is in parallel with the next as shown in Figure 3.5.

c
2) The Pi circuit which has each section represented as an inductance with twice the

resistance of each section on either side of the inductance (see Figure 3.6).

(1
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o

Figure 3.5 Lumped Parameter L Circuit

.J
Figure 3.!i : Lumped Parameter Pi Circuit

3) An improved Pi circuit (as suggested by Babb and Williams [4]) which has the

complex form shown in Figure 3.7 for each section of the bar. This circuit attempts

to accurately predict the current present in each section of the bar, by weighting

the inductances in the ratio one sixth, two thirds, one sixth (1:4:1). The method

is based on Simpson's integration rule which is an accurate, high order numerical

integration routine with its three predicted points ill the ratio 1:4:1.

.... ,
One way of understanding the equivalence of these lumped parameter circuits is to think

of the section resistance as a resistance along the length of the bar and the section

inductance as a link between one section and the next. Consider a rotor bar divided

23
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6

2R~ ,

.E.ig.ure3.7 : Lumpc.I Parameter Improved Pi Circuit

into four equal sections, and the typical non-linear current distribution for each section

as shown in Figure 3.8. The current in the bottom section (section 1) is fairly constant

along its depth, whereas the current in the top section (section 4) is highly non-linear.

Current (AI

(1l

.J

(2) (4)

o

Depth from bottom of bar

Figure 3.8 : Typical Current Distribution Along The Depth Of A Rotor Bar

The circuit of each section attempts to calculate the current distribution present in that

section by predicting the current at one or more points, depending on which circuit is

used. The overall circuit therefore tries to predict the non-uniform current along the

24



depth of the bar. The lumped parameter circuits differ from each other in the number

of currents predicted per section, the weightings that the prediction points have and

where in the section the currents are predicted. This is analogous to the various numerical

integration routines which also differ from each other by the number of points used,

where the points are and their weightings. Each circuit will now be explained in terms

of predicting the current along the curve of Figure 3.8, from which the accuracy of the

circuit may be anticipated. In each case it is assumed that the bar is divided into four

sections.

The L circuit predicts only one current per section (i.e. 4 points along the complete

curve), that current being at the top of the section, as shown in Figure 3.9. This Figure

shows that the circuit takes each predicted current as constant over that section, so that

the error is the difference between the area under the predicted (stepped) curve and the

actual curve. This circuit is based on the rectangle rule for integration, which is an

order 0 method and will thus not be particularly accurate.

")

o

The T circuit also predicts one current per section (i.e. 4 points), but here that current

is in the middle of the section, as shown in Figure 3.10. This circuit is based on the

mid-point rule, which is a special case of the rectangle rule. It is also an order 0 method,

but will be more accurate than the rectangle rule. The improved accuracy can be seen

in Figure 3.10 which shows that the predicted curve follows the actual curve closer than

the method of Figure 3.9. Also, the area under the predicted curve is closer to the area

under the real curve than the L circuit can predict.
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e

o

Current CA)

(1) (2)

Depth from bottom of bar
Figure 3....2. : Predicting The Current Distribution Of A Rotor Bar Using The L

Circuit

The Pi circuit predicts two currents per section (i.e. 8 points along the complete curve),

one at the top and one at the bottom of each section, as shown in Figure 3.11. Here

the predicted current for a section is the straight line joining the two points in that

section, which is obviously a more accurate method than the other two. This circuit is

based on the trapezoidal rule which is an order 1 method.

26
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Current (A)

(1) (2) (3) (4)

Depth from bottom of bar
Figure 3.10 : Predicting The Current Distribution Of A Rotor Bar Using The T

Circuit
,)

The improved Pi circuit predicts three currents per section (i.e. 12 points along the

complete curve), one at the top, one at the bottom and one in the middle, as shown in

Figure 3.1/,. From this Figure it can be deduced that this circuit should be the most

accurate of all the models. This is verified by the fact that the improved Pi circuit is

based on Simpson's rule which is an order 2 method.
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(1)

Current (A)

Depth from bottom of bar
Figure 3.11 : Predicting The Current Distribution Of A Rotor Bar Using The Pi

Circuit

c
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Current (A)

(1)
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I,
I

,I
Depth from bottom of bar

Figur~ 3.12 : Predicting The Current Distribution Of A Rotor Bar Using The
Improved Pi Circuit

3.5. Accuracy Of Equivalent Circuit

In this Section, comparisons of the accuracy of the four equivalent circuits will be given,

as were developed by Levy et al [39], These comparisons will be made at frequencies

across the typical expected spectrum of frequencies found in variable speed drive motors

(as given in Section 3.1) and will also examine the effect of the number of sections

used to model the bar.

Depending on which circuit is under consideration, the appropriate equivalent circuit can

be constructed (i.e. one of those of Figures C.2, C.4 or C.6). The inductances in the

29
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circuit are converted to reactances, using the particular frequency that is being examined.

The only details required to construct this circuit are slot and bar dimensions which are

readily available from motor design data. The Thevenin impedance of the rotor circuit

is then found giving an equivalent R and X for the rotor.

From the same design data, the LC value of the rotor resistance and leakage reactance

can be obtained. The frequency dependent correction factors obtained from the analytical

so.ution as given by Alger [14), are then applied to the DC rotor values. These corrected

values an; therefore the effective resi tance and reactance of the rotor including deep

bar effects.

The impedance of the rotor LtS given by the lumped parameter circuit (subscript 1\1 .el)

is then compared with the corresponding impedance obtained by applying the correction

factor (subscript Analytical). This is exnressed in terms of the percentage impedance

error defined as

J

% Impedance Error = lOO(ZAnalYlical-ZMOdCl]
ZAn'.lJYlical (3.9)

where each impedance is given by

(3.10)

TI'.e comparisons are for a 268 kW motor with a rectangular bar 4 mrn wide and 50

mm deep. Imtially the errors of all four models will be compared by varying the number

of sections used and the frequency of the current present in the bar. The number of

iections shown ranges from two to fifteen to show the trend, whereas practically no

30

___ ~ ~__0 _J



more than eight to ten sections would be used for a simulation because of numerical

processing limitations. Three different frequencies have been considered, 50 Hz, 500 Hz

and 2500 Hz, which accounts for most of the range of expected frequencies of variable

speed drive motors. Figures 3,13, 3.14 and 3.15 show the percentage impedance error

for the circuits at the different frequencies. Some points should be noted about the

graphs at this stage

1) The error for the first few sections of some of the curves have purposefully been

omitted from the graphs. The errors at these points are so large that they would

have masked the trend of the other curves had they been included.

2) A positive error implies that the model's impedance is lower than the analytical

impedance v-d a negative error implies that the model's impedance is higher than

the analyti ...al impedance, ,,)

3) The' error decreases to zero as the number of sections increases. This result is

expected because the larger the number of sections used, the mere uniform will

be the current distribution along the depth of that section. The non-uniform current

distribution across the whole bar has been segmented into many sections having

uniform distribution across each section.

An increase in frequency is accompanied by an increase in the error of all the

lumped parameter circuits. This result is also expected because at the higher

frequencies, skin effect is more pronounced. The less uniform current distribution

4)

\
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across each segment of the bar at higher frequencies means that all of the circuits

are less able to account for these effects. (Note that the scales of the Y axes are

different for the three graphs)

-20

-40

-60~~--~--~--~--~~~~--~~~-~--~--~--~~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sections .)
-e- L circuit -I- T circuit --6- Pi olrcult -x-Improved PI clreult

Eigure 3.13 : Variation Of Percentage Impedance Error With Number Of Rotor
Bar Sections For The Above Four Circuit Models. Bar Current Frequency = 50

Hz
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Fi2ure 3.14 : Variation Of Percentage Impedance Error With Number Of Rotor
Bar Sections For The Above Four Circuit Models. Bar Current Frequency = 50\}

Hz
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JDl:ure 3~ : Variation Of Percentage Impedance Error With Number Of Rotor
Bar Sections For The Above Four Circuit Models. Bar Current Frequency =

2500 Hz
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From the graphs it can be seen that the accuracy of the L circuit is much worse than

the other circuits, as previously predicted. In fact for the higher frequency applicaticns,

the L circuit would need many more than fifteen sections to achieve any sore of

reasonable accuracy. Thus this circuit has been discarded and will not be included in

any further comparisons. The Pi and the T circuits seem to be equally accurate at the

lower frequencies (the percentage error being positive and negative respectively), whereas

the Pi circuit is significantly more accurate at the higher frequencies. The error of the

Pi circuit is consistently greater than zero and that of the T circuit is consistently less

than zero; this result is predicted by Babb and Williams [4]. The improved Pi circuit

is the most accurate because the error converges faster to zero with fewer sections, than

it does in the other circuits,

A factor which has thus far been ignored but needs to be considered is the time required

for simulation. This time is dependent On the number of states of the system. For a

particular model, the number of loop currents necessary to define the equivalent circuit

of that model will give the number of d-axis or q-axis states i.e. twice the number of

loop currents will give the total number of states required for that model. The equivalent

circuit of Figure 3.2 requires two loop currents, thus the traditional three phase induction

motor model comprises four states, two for the d-axis and two for the q-axis, The larger

number of states necessary for the motor model which takes account of deep bar effects,

is dependent on the number of sections used and on which "deep bar" model has been

used. The reduced equivalent circuit for the T model of Figure C.2 requires one loop

current for the stator and one for each rotor section, giving a total of (2*sectioIlS +2)

states for the whole motor. The reduced equivalent circuit for the Pi model of Figire

34
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C.4 requires one loop current for the stator, one for loop 0 and one for each rotor

section, giving a total of (2*sections +4) states. The two additional states occur because

the inductance L'lo cannot be combined with L'/1 as it is in the T circuit. The improved

Pi circuit of Figure C.6 requires one loop current for the stator and ~ for each rotor

section giving a total of (4 »sections + 2) states.

For this comparison, a sinusoidal source supplying a 2615 k\V induction motor with

rectangular bars was simulated for two seconds ' ',} Alt'le, (Jie time required for the

machine to accelerate from zero speed to the full speed steady state condition) on an

HP 9000 Series 300 workstation. Two sets of results are given for each circuit, the first

has the number of sections so arranged that each circuit has fourteen states and the

seco.id so that each circuit has eighteen states.

Table I : Computer Simulation Times For Various Lumped Parameter Circuits .J

o

% Error % Error % Error Time
Model Sections State's @ 50 Hz @ 500 Hz @ 2500 Hz (mins), . -

T 6 jl4 ~2.07 ~75.48 -282.06 42.95

Pi 5 14 3.96 51.84 78.17 44.12

Improve
Pi 3 14 6.44 -19.21 -154.91 42.47- -
T 8 18 -0.67 ~38.54 -187.27 79.4U,

Pi 7 18 1.11 34.93 69.49 94.50

Improved
Pi 4 18 2.63 2.69 -92.00 74.85

o ')
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The first set of results of Table I shows that the simulation times are approximately

equal for the three circuits and, now that the number of states has been considered, the

Pi circuit seems to be the most accurate. When the second set of results is examined

it is seen that for a small increase in simulation time all the circuits display improved

accuracy, and the improved Pi circuit shows improved accuracy in the low to medium

frequency ranges. Regardless of which circuit is used, at frequencies greater than 500

Hz all the circuits are unacceptably inaccurat~, and the next Section gives an algorithm

which successfully improves the accuracy of all the circuits.

3.6. Algorithm To Improve The Accuracy Of Models

o

To increase the accuracy of the lumped parameter circuits, a new algorithm has been

developed which divides the bar into unequal sections, the smallest section being at the

top of the bar. This algorithm calculates a value, called a unit, which is a fraction of

the total depth of the bar. A geometric series is then used such that the depth of each

section is equal to unit multiplied by an increasing number of the form num'">, where

sec is the number of the section whose depth is being calculated and num is a parameter

greater than 1.0. By setting num to 1.0, the equal sections criterion of Section 3.3 is

obtained and by '.etting num to a value greater than 1.0, improved accuracy of the

models is obtained. The algorithm reduces the error because the smaller sections 4, the

top of the bar account far more accurately for the highly non-uniform current distribution

that exists in that portion of the bar.

,J

()
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o

Figures 3.16, 3.17 and 3.18 show the error of the improved Pi circuit as a function of

num for 3, 5 and 7 sections respectively, evaluated at the same frequencies that were

examined previously (the bar shape being rectangular as before). From these graphs it

is seen that a different "ideal" value for num exists for each frequency. Consequently,

a particular value of num (referred to as the optimum value), must be chosen which

ensures that the errors obtained at all frequencies are low. It is also clear that the number

of sections used has a large influence on the optimum value of num to be used. Thus

from the three graphs, the optimum values of num for 3, 5 and 7 sections of the

improved Pi circuit are 4.4, 2.2 and 1.8 respectively. Similarly, the other circuits will

also have different optimum values of num,

% Impedance Error
20 I
10

01-7~:fl::£l-#·

"10

-20

-30

-40

-60

-60~--~----~----L---~~--~----L---~----~
1.0

"J

1.5 2.0 5.04,52.5 3.0

num
3.6 4.0

-G- CiO Hz --t- 2CiC Hz: -f:r- CiOOH;t "*' 1250 Hz: -e- 2500 Hz

Fi~ure 3,16 : Variation Of Percentage Impedance Error 'Vith Value Of num At
Different Frequencies For Three Sections Of The Improved Pi Circuit
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num
3,6

-"&- 50 Hz .-+- 250 H .-/:r- GOOHz "*"' 1260 Hz -e- 2600 Hz

Eigure 3,17 : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Five Sections Of The Improved Pi Circuit
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each circuit, graphs are given for the number of sections ranging from two to fifteen.

Figure 3.18 : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Seven Sections Of The Improved Pi Circuit

o
Appendix D gives a complete set of graphs to find the optimum value of num . For

CJ
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The numerical processing ability available at the present time restricts the number of

sections to about eight or ten, but the graphs for up to fifteen sections have been

included because the ever-improving computing power may soon allow larger models to

be simulated.

Table II shows the accuracy of the circuits for the same analysis as that used for Table

I where the errors are now given for num set to the 'optimum value obtained from

Appendix D. It can be seen that the errors for the higher frequencies have been

dramatically reduced by choosing optimum values of num to partition the bar.

Table n : Improvements In Accuracy From Varying num

% Error % Error % Error Time
Model Sections num @ 50 Hz @ 500 Hz @ 2500 Hz (mins)

T 6 2.1 -4.11 -4.25 -5.52 165.93

Pi 5 2.7 5.82 7.88 6.84 160.63

Improved
Pi 3 4.4 -4.21 -3.03 3.65 158.23

T 8 1.7 -2.03 -2.50 -3.42 277.63

Pi 7 1.8 2.44 3.17 4.30 277.62-
Improved

Pi 4 2.6 0.81 U13 0.22 279.12

.J

o The time taken to simulate these results is on average 3.5 times longer than the

corresponding time for num =1.0. This increase in simulation time is deemed acceptable

considering the increases in accuracy of up to sixty times achieved at certain frequencies.

The increase in simulation time is expected because of the electrical time constants

o
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involved. The time constant of any section of the lumped parameter circuit is given by

(3.11)

from which it is seen that the time constant is proportional to the square of the section

depth. If the depth of each section is equal (i.e. num=1.0), the time constant for each

section will be the same, whereas if unequal section depths are used, the time constants

will be different Table lIT shows typical section depths for the different circuits for the

same rotor bar used before. From the Table it is seen that the ratio of the bottom

section depth to the top section depth can be in the order of 50. Therefore the ratio of

the time constants of the bottom and top bar sections can be as high as 2500. Systems

of equations having such high ratios of time constants are termed stiff and need specialised

numerir al differential equation solvers. Although these equation solvers cope with stiff

equations far better than ordinary solvers, they are still somewhat slower (see Enright

et al [18]).

o
This analysis has shown that improved accuracy of deep bar models can be achieved

by having smaller sections at the top of the bar and the la est section at the bottom

of the bar. The improved Pi model shows superior accuracy at the higher frequencies,

with simulation times being very comparable to the other circuits.
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Table m : Section Depths For Different Values Of nurn

Secuons Depth (mm) Depth (mm) Depth (mm) Depth (mm)
T circuit Pi circuit Improved Pi

num=1.0 num=2.1 num=2.7 num=2.0

1 10.0 1.38 0.60 1.61
,

2- 10.0 2.90 1.61 3.23.
3 10.0 6.09 4.35 6..45

4 10.0 12.78 11.74 12.90

5 10.0 26.85 31.70 25.81

3.7. Implementation Of Different Bar Shapes

Although the improved Pi circuit is the most accurate, as shown in the previous Section,

the accuracy and simulation time of all three circuits (T, Pi and improved Pi) are similar

and these have all been implemented in CASED. This has been done because situations

exist where it is beneficial to use more sections of a less accurate circuit to achieve

the same results to those obtained from fewer sections of a very accurate circuit. An

example of this is the case stud.y of Section 3.8.2, where the bar shape necessitated

using hand calculations for the depth and width of each section (as explained later).

The bar (Figure 3.26) is composed of five distinct segments - the top and bottom half

circles, the rectangular portion, the tongue and the trapezoidal portion .. and therefore

needs L_ be divided into at least five sections. For this example the rectangular and

trapezoidal portions were divided into more than one section each, giving a total of

eight sections. These eight sections gave good accuracy using the T model, but would

have taken far too long to simulate using eight sections of the improved Pi model.
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Figurt;. 3.19 : Bar Shapes Implemented In CASED

Most bar shapes can be simulated. and four of the commonly used shapes have been

directly implemented. These four shapes, shown in Figure 3.19, are

1) A rectangular bar in an open slot.

2) A rectangular bar in a semi-closed slot with a wedge.

3) A trapezoidal bar in a semi-closed slot with a wedge. Here the wider portion of

the bar can be at the top or the bottom. The width of any section is taken as the-

average width across the depth of that section.
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4) A Tee shaped bar, which includes an inverted Tee where the upper portion of the

bar is wider than the lower portion. T:1e algorithm arranges the depths of the

sections so that no section will ever straddle the part of the bar where the width.'
changes.

24mm

,
I

Fieure 3.2Q : Example Bar Shape

o

This implementation of the deep bar model has also been successfully applied to a

double cage motor, as discussed in Chapter 4. Finally, a method has been implemented

which allows virtually any bar shape to be simulated, but which does require some hand

calculation by the user. If a bar shape is required which will not fit into one of the

standard bar shapes shown in Figure :U9, an alternative method is required to calculate

'he depth and width of each section. Take for example the shape shown in Figure 3.20,

where the following user calculated steps would be required :

{) I
i

)
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1) Divide the bar into a certain number of sections.

For the example, the half circles at the top and bottom would each be a section,

and dividing the middle portion into three sections gives a total of five sections

with depths from top to bottom of 5 mm, 8 mm, 8 mm, 8 mm, 5 mm.

2) Calculate the width of the bar for each section. If the width is not constant over

the section, an average width is calculated.

The three middle sections are obviously each 10 mm wide and the top and bottom

sections have an average width of 5 mm,

3) Calculate the width of the slot for each section, if it is different to the bar widths

of step 2 above.

The algorithm to improve the accuracy of the models is only used with the four standard

bar shapes; it does not apply to the method just described, as seen by the depths of

each section given in step 1 above. To apply the algorithm to the above example, the

user must substitute the steps below for step 1 above.

sec;:: sections
bd = L munsec-1

sec = 1 (3.12)

In) Calculate the bar divisor bd as
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For the example, assume sections = 5 and the improved Pi circuit is being used,

where num = 2.0

=31.0 (3.13)

1b) Calculate the unit depth ud as

d _ total depth
U - bd

(3.14)

For the bar of Figure 3.20, the total bar aeprh is 34 mm, so that

3t.·
ud = 31.0

= 1.0968 (3.15)

1c) Calculate the depth of each section as

d ::;:ud . num see-dsoo sec == 1..sections (3.l6)

which, for the example, gives
"',

d1 = 1.0968, d2 = 2.1936, d3 ::;: 4.3872,

d4 = 8.7744,ds::: 17.5488,
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3.8. Model Verification

T! s Section gives two case studies to show the validity of the models. The first example

is for a sinusoidal input waveform to the motor and the second is for a motor supplied

from an inverter.

3.g.1! Sinusoida) :nput waveform

The system under consideration is a sinusoidal supply feeding an induction motor with

no attached load. The motor is a 254 kW, 3300 V, 3 phase, 50 Hz, 4 pole squirrel

cage induction motor with fifty Teshaped rotor bars. All results are given for the motor

initially at rear, The motor is then supplied with full rated sinusoidal voltage and is

allowed to run up against its own inertia.

(J

The measured results have been obtained using a "double disc" system. This involves

connecting one disc to the shaft of the motor under test and connecting the other disc

to a reference motor, which is placed so that the discs line up axially and are separated

from each other by only about 10 mm. Both discs are opaque and have many slots

accurately machined into their periphery. A concentrated light source is shone onto a

section of the periphery, spanning approximately five slots. The light that crosses both

sets of slots is focussed onto a photo-transistor by means of an optical lens. The second

motor is driven at a constant speed and thus the output of the transistor is a pulse train

whose frequency is directly proportional to the speed of the test motor. The speed can

be differentiated to' give acceleration, which is proportional to the torque because the
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motor is u.iloaded. Thus this measurement system gives a torque-time and speed-time

trace of the motor under test. More information on this measurement technique as well

as circuit diagrams of the measuring system can be found in Gomes [24].
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Figure 3.21 : Measured Torque And Speed Trace Of 254 kW, 3300 V, 4 Pole
Induction Motor With T.Sh3ped Rotor Bar (Time :: 100 ms/div, Torque :: 1.65

PU/div, Speed = 0.25 PU/div)

Figures 3.21 and 3.22 show the measured results which have been recorded on a storage

oscilloscope and then photographed. From these graphs it will be seen that the first peak

of speed occurs at 0.43-0.46 seconds, the initial peak of torque is 5.28 PU and the

pull-out torque; is 2.10 PU. Two sets of photographs have been given for the same

fun-up condition which show slightly different results due to different initial conditions

of the supply and some noise on the measuring system, thus a small discrepancy appears

in the results of Figures 3.21 and 3.22.

Figure 3.23 shows the predicted results obtained using the improved Pi model with the

rotor bar divided into four sections. The value of num used here is 2.(J, as shown in
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Induction Motor "Viti, T.Shaped Rotor Bar (Time = 100 ms/div, Torque = 1.65

PU/div, Speed = 0.25 PU/div)

o

Table II. The overall shape of both the torque and the speed trace are very similar to

the measured results, including the initial oscillations in the speed. The first peak of

speed occurs at 0.52 seconds. the initial peak of torque is 4.1 PU and the pull-out

torque is 2.0 PU. These results show that the simulation model is able to predict the

shape of the torque and speed curve. but there is a difference in the measured and

predicted magnitudes. This discrepancy can be attributed to the fact that thus far saturation

effects in the motor have been neglected. If saturation was accounted for, the large

starting current would cause the leakage flux paths to saturate which would increase the

magnitude of the torque peaks. This effect has been verified in Chapter 5 which deals

with saturation of the tooth tip leakage flux.

o
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Figure 3.23 : Predicted Torque And Speed Curves Of 254 kW, 3300 V, 4 Pole

Induction Motor With T-Shaped Rotor Bar Using Improved Pi Model

To illustrate the effectiveness of the new deep bar models developed, simulations were

performed with the bar resistance and leakage inductarv= fixed at two sets of values.

These arc :

1) The 50 Hz or starting values which can only be obtained from correction curves

as given in Alger [14] or from tests performed on the motor.

2) The DC or running values which are obtained from the design calculations.

o

Figures 3.24 and 3.25 show the predicted results for the 50 H3 and DC cases respectively.

Figure 3.24 shows that although the motor runs up in the correct time, the predicted

torque is far too high and the speed trace has no overshoot as measured. Figure 3.25

shows a starting torque which is half the magnitude that it should be and consequently

the motor takes 1.84 seconds to run up to speed. The corresponding currents are shown

in Appendix E, along with those of the deep bar model.
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This case study has shown that the deep bar models will give far better correlation with

measured results than the traditional model. The rotor bars of the test motor are T-shaped,

which the new model is able to easily cope with.

3..8.2. Inverter input

This example is of a 70 kW, 270 V, 8 pole induction motor supplied from a PWM

inverter. The motor has the rotor bar shape an.l dimensions shown in Figure 3.26. The

results are given for the motor initially at rest and lightly loaded; with the inverter set

to 7 Hz the motor is then allowed to accelerate up to speed. When the motor was

constructed and tested, instability problems were discovered at 7 Hz.

1,5

12

19,5

o

Fif,!ure 3.2(i : Bar Shape And Dimensions Of 70 kW, 270 V, 8 Pole Induction
Motor
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The shape of the rotor bar implies that none of the standard pre-defined deep bar shapes

can be used for the simulation. Thus the user defined bar division has been used with

eight sections defined, The first and last sections are taken as the half circles at the

top and bottom of the bar; the rectangular portion of the bar is divided into two sections

3 mm and 9 mm deep. The tongue portion is taken as one section and the trapezoidal

portion is split into three sections 2 mm, 6.5 mm and 11 mm deep. The T circuit has

been used because the accuracy of eight T sections is acceptable and it uses fewer states

than the other circuits.

Figures 3.27 and 3.28 show the predicted torque-time and speed-time run-up curves for

the fourth order model and the deep bar model respectively. The first peak of torque

in Figure 3.27 is 500 Nm whereas the deep bar model's peak is 521 Nm. Both models

show the instability at "steady s!'ve" which the motor exhibited in practice. (Note that

the scale on the right hand side refers to the curve marked with X's). The rotor parameters

used here with the traditional model are those for DC conditions. As shown in Section

3.8.1, using DC rotor parameters will result in a torque magnitude less than the correct

value. The torque of the deep bar model (Figure 3.28) is thus assumed to be more

accurate.

52



_______ --- ~-_ .. , · 2&BilII.... -"'=':;...J· _

iOOO~ __ ~ __ ~ 'r-__-rs=c3~r~u~n;u~p~.~lo~gT-__ -r __-. ~ __~50

600
!:·····....········..······..·i·..···

· .· . ....................' - ~ ~...............................30· . .· . .· , .· . ,· , .· . .· . ...· ·l.· · ~. ·····..·..I..· ····..·..~···..··~·o< • ··I····~:~··10
• • I· I "\t , I I

I I I I

-200 ...•..~ " : : ,..~ ~ -10

-600 t ····:,.l..· ..l...,. ·..t · ···.. ·· l -30
I I I I

• I I I
• • I I, I I I
I • I I
, I , I
t I I I

-1000 : : : : -5(1
o 0.4 0.8 1.2 1.6 2

Title

200

Figure 3.27 Predicted Results Of 70 kW, 270 V, 8 Pole Induction Motor
Supplied From A lPWM Inverter Using Traditional Model

50 )

30 "X
v

"10 \I
~
~-.10 v
I..,

dI
-30 dI

Q
(1

600

I , •

~~___.-1t- _

I . I . I •
................................ r .. ••• • ~ r" ~ ~ r , 0.' ..

I , I •

: : :
I I •

• I •· , .
I· : : :

... , ~ ):r\... .. ~ '.Ii ~ ~ ~Ii. , , •••••
I ••~ I , I

i : I ~4: .. : .."V. .
• I f I

.10 ~ r •• • : •..•• ..•••••• t , : .~ .
I I • I

1 ! ~ f: : : :
... ,. , Oi .. ····t···· , ,._ .

I , I I

: : :
I • •· i j

-1000 .f---.----;. ---,----i----..----r---r----;---r----+ -50
o 0.4 0.8 1.~ 1.6 2

TiMe

200

-200

-600

o Flg_Y!'e 3.28 Predicted Results Of 70 kW, 270 V, 8 Pole Induction Motor
Supplied From A PWM Inverter Using Deep Bar Model

Figure 3.29 gives the current density in the top and bottom sections of the deep bar

model for the first half second of the fun-up. Current density as opposed to current has
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been used because the sections all have diiferent areas. This graph dearly shows the

harmonics which flow in the top section, distorting the waverorm, and the lack of

harmonics in the bottom section, resulting in a nearly smooth sinusoidal waveform. Figure

3.30 shows the conditions at steady state. It is seen that the current density in the top

section (the smaller trace) has a high harmonic content whereas the current density of

the bottom section contains harmonics with greatly reduced magnitudes. (Note tnat the

scales of the two current densities are different, but the peak values are approximately

equal).
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Figure 3.29 Current Densities In Top And Lottom Sections Of Rotor Bar FOI'
Run-up Condition (70 kW, 270 V, 8 Pole Induction Motor Supplied From A

PWM Inverter)

o This case study has shown that the deep bar model can supply much useful information

about the harmonics present in the rotor bars under both starting and steady-state

conditions. Also, the magnitude of the currents flowing in different sections of the bar

can be examined, which illustrates the deep bar pher omenon.
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.cHAPTER 4

DQUBLE CAGE MOTOR

Many induction motors are designed with two squirrel cages to ensure a high starting

torque. The high resistsnc- outer cage usually has a high starting torque and the pull-out

torque occurs near or below zero speed. In contrast, the high reactance low resistance

inner cage has a very low s.arting torque and a high pull-out torque which occurs near

slip speed. The superposition of the two characteristics gives the typical double cage

torque-speed curve of a high starting torque, a tendency for the torque to decrease as

the speed increases and a pull-out torque which is often not as large ali the starting

torque.
)

This Chapter shows that the deep bar model developed in the previous Chapter can

readily be adapted to simulate double cage motors. The method used and its implementation

is given and a predicted torque-speed curve is compared with a measured curve for a

particular motor.

4.1. Tradition~l Model

o The standard sixth order double cage induction motor model is similar to the single

cage model of equation (2.2), except that it has two sets of rotor equations. Thus the

equations, given in an arbitrary reference frame are

()
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d
[V] = [R] . [1] + [L] dt [I] + [GJ . [1]

(4.1)

where

Vsd

Vsq

o[V] = o
o
o (4.2)

r

r /sd

.;

]'
[TJ = rd i
. ]'.

rq I

I'rd 0

I'rq 0

(4.3)

Rs 0 0 0 0 0
0 Rs 0 0 0 0

-""_"" 0 0 R'ri 0 R' 0[R] = e
0 0 0 R'ri 0 R' e

0 0 0 R' 0 R'ro 0e

0 0 0 R' 0 R'roe
(4.4)

(1
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L8 0 M 0 M 0
0 Ls 0 M 0 M
M 0 u., 0 M 0

[L] =
0 M 0 L'ri 0 M
M 0 M 0 u., 0
0 M 0 M 0 i/.,

(4.5)

f

r
0 -O)Ls 0 -roM 0 -roM

roLs 0 roM 0 roM 0
0 - (ro- O)r)M 0 (0)- ro,)L'ri 0 (ro-ro,)M[G] =

(ro-ror)M 0 CCl.' - ror)L'r i 0 (ro-O)r)M 0
0 «(J)-ror)M 0 (ro- O).)M 0 (0) - O)r)L 'r 0

(0) - O)r)M 0 (0) - O)r)M 0 (ro-ror)L'ro 0

)

(4.6)

Subscripts i refer to the inner cage and subscripts 0 refer to the outer cage. The

electromagnetic torque is given by

(4.7)

()
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4.2. New Deep Bar Double Cage Model

4.2.1. Method and implementatiQll

Using the same technique as that employed in Section 3.3, the rotor portion of the

double cage model can be replaced by an equivalent lumped parameter circuit. Each bar

is divided into a number of sections and the resistance and leakage inductance of each

section is calculated using equations (3.1) and (3.2) respectively.

I-- ---....!...-----
21----------
3

4
L':=====;-]- - r----' A

c

5
r-- __ B

6
--~---

Figure 4.1 : Correct Method Of Dividing Double Cage Bar

(\
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The algorithm which calculates the depth of each section of bar arranges that the

bottom-most section of the outer bar (section 4 in Figure 4.1) always coincides with

line A which is the interface between the outer bar and the tongue. Similarly, the

bottom-most section of the tongue (section 5) will always coincide with line B, the

interface between the tongue and the inner ~:u'. Thus the algorithm ensures that no

section overlaps from the outer bar to the tongue or from the tongue to the inner bar,

which is the case in Figure 4.2. If the tongue between the two cages is a leakage

POl non i.e, there is no bar in that portion of the slot, then that section will have a

leakage inductance and no resistance, From the equivalent circuits of the lumped parameter

models in Appendix C, the section which has no bar portion will have an infinite

resistance and thus the series inductances may be combined, thereby reducing the number

of sections (and. states), The torque of this deep bar model is the same as that of

equation (2.9). This method of combining the inductances and reducing the number of

sections has been implemented in CASED. The results obtained are illustrated in the

following example.

o

o
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Figure 4.2 : Incorrect Method Of Dividing Double Cage Bar

4.2.2. Example

The induction motor used for this example is a 1850 kW, 6600 V, 3 phase, 50 Hz, 6

o

pole, double cage motor with outer bar dimensions of 19x19 mm, an inner cage 18 mm

deep by 12.5 mm wide and a tongue portion 13.5 mm deep by 5 mm wide with no

bar section present. The results are given for the unloaded motor being run at full speed

in one direction, plugged and allowed to decelerate through zero speed and accelerate

to full speed in the opposite direction. This then gives a steady state run-up curve of

th, motor.
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The measured results are obtained using a DC tacho-generator which is hand held against

the shaft of the machine. The tache-generator output is filtered and recorded as the

speed signal. This signal is also differentiated to give the shaft angular acceleration,

which can be scaled in terms of the torque because the motor runs up against its own

inertia. The motor is tested on reduced voltage to allow a longer run-up time, and the .

supply voltage is also monitored. It was observed that during the measured run-up, the

voltage changed and thus the torque curve has been corrected for this volt drop.

(Note: Even though the measurements were taken at the reduced voltage of 1230 V,

the measured curve ShOW.lhas been scaled to full voltage by the voltage"

method)

Figure 4.3 gives the measured torque-speed curve of the motor, from which the typical

double cage characteristic can be seen. The predicted torque-speed curve of the motor

using the traditional double cage model of equations (4.1) to (4.7) is given in Figure

4.4. The predicted "deep bar" curve, Figure 4.5, has been ob=iined using five sections

of the improved Pi model, three sections for the outer bar, one section for the inner

bar and one for the tongue portion. The fact that there is no bar in the tongue portion

means that the simulation reduces the number of sections by one and thus the number

of states by four. Both of the predicted curves have the measured torque-speed curve

superimposed on them for comparative purposes.

o
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Figure 4.5 : Predicted Torque-Speed Curve Of 1850 kW, 6600 V, 6 Pole Motor
Using Deep Bar Double Cage Model (The X's Are The Measured Points

Transcribed From The Measured Curve)

There seems to be little difference between the two predicted curves, although the "deep

bar" model comes closer to predicting the dip in torque prior to the pull-out torque.

The similarity in these results can be attributed to the following :
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1) The traditional double cage model is capable of producing results very similar to

the measured values.

2) The "deep bar" model has only used three sections for the outer bar (i.e. for

start-up) and one section for the inner bar, which may have introduced some .

inaccuracy into the prediction.

It can be seen that both the predicted curves show a slight overshoot in speed, which

the measured curve does not display. This overshoot may have been introduced by using

a value for the inertia which is slightly too small.

This Chapter has shown that the deep bar model developed in Chapter 3 can readily

be applied to double cage motors, although the results show that the traditional model

is capable of producing predictions which compare favourably with measr red values.
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.Q:IAPTER 5

SATURATION

In induction motors, which generally have fairly narrow slot ol:,enings and small air

gaps, the slot leakage flux which links the whole sloe as well as the zigzag flux is

forced through the small area of the tooth tip. Under transient conditions, when t~J'

current I:; cigh, the concentration of flux into a narrow portion of iron leads to saturation

-kage flux paths. This saturation effectively reduces the leakage reactance, thus

the current and the corresponding torque.

This Chapter will review some of the work done by other researchers in this field and

then describe the methods which have been implemented in CASED to account for this

phenomenon. Finally the case study which was carried out in Chapter 3 is extended to

show improved results when accounting for saturation.

5.1. Work Done By Other Researchers

Many research papers have been published on methods of accounting for saturation

effects during starting, and more recently for taking these effects into account in

simulations. These methods will now be reviewed.

Fuchs et al [33] use finite element methods to predict the flux fields during starting.

Their calculation of the stator and rotor leakage reactances, like most other methods, is
"- ,
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l based on splitting each component into a saturable and an unsaturable portion. Mukherjee

et al [38] use a finite element package which can accept non-linear curves for the

magnetic material to calculate the leakage reactances.

Lipo and Consoli [26] and Keyhani and Tsai [36] show similar methods of accounting

for saturation of the stator and rotor Jeakage inductances. Lipo and Consoli [26] apply

a saturation factor to the saturable portion of the inductance which is defined as the

ratio of the change in inductance due to saturation 'rver the unsaturated inductance. These

values are obtained from the measured voltage-fi ... ~haracteristic. Keyhani and Tsai [36]

obtain the saturation factor by defining the flux linkages as some function of the current,

where the con-rants involved are estimated using a non-linear curve fitting program.

These methods are unsuitable for the present application because both methods rely on

measured data.

o

Chalmers and Dodgson [13] calculate a saturation factor based on the comparison of

the leakage flux present with no saturation to that when saturated. Each unsaturated

leakage flux is calculated and its path determined assuming no other fluxes are present.

When the paths of all the fluxes are determined, decisions can then be made as to

which path will saturate first. Once the saturation of this path has been accounted for,

the next path to saturate is determined, and so on. Although this method has shown

good correlation with measurement in the paper, it requires a knowledge of the magnitude

of the (!u,x in each path. Such information is not readily available from the simulation

and would thus require extensive additional calculations.

o
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Agarwal and Alger [7] have proposed a method of calculating a saturation factor for

the tooth tip leakage flux of both the stator and rotor. The factor is based on the ratio

of the current at which saturation occurs to the actual current in the stator or rotor.

This method is readily adaptable to the present situation and is one of the methods that

has been implemented.

5.2. Methods Implemented In CASED

Two methods of accounting for saturation of the Jc:akage flux through the tooth tips

have been implemented, both of which calculate a saturation factor cr. Both the stator

and rotor leakage inductances are split into a saturable and an unsaturable portion such

that

(5.1)

(5.2)

where the unsaturable portion is made up of the end winding and the skew leakage

inductances and the saturable portion is composed of the zigzag and slot leakage

inductances.
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5.2.1. The empirical :nre.thrul

The first method to be implemented makes use of an empirical curve for the saturation

factor 0'. It is a generalised solution of the saturation problem and has been used

extensively and successfully in an induction motor design analysis program. The curve .

used to obtain the saturation factor is shown in Figure 5.1 where the variable amp wires

per mm is defined as

(5.3)

where

C, ::: number of stator conductors per slot
.)

K; ::: stator coil pitch factor

S, :::number of stator slots

P, ::: number of stator parallel circuits

Dis ::: stator inside diameter (mm)

c
1 :::either the stator or rotor current

This empirical method assumes that the width of the stator and rotor slot openings are

the same, which is often erroneous in practice. The CUITentratio method accounts for
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the width of the stator and rotor slot openings being different. Thus the empirical method

will not be as accurate as the second method because of its generalisation but ~-; useful

if complete stator slot letails are unavailable. The current to be used in equation (5.3)

;s calculated from the two-axis currents for each of the stator and rotor as follows

(5.4)

(5.5)

Saturation Faotor1~--~~----~-----~------~----~----------~------~
i II I ! . . . .

O.B ...•........... i....···..·......{....·......······j..······..··..·..j·..·..··........ ·l..··..···········f·····..·····..···i········..·..·..·
f I ! i I I
1 1 1 1 1 •

I lit I : :0.6 l .!.. - ~ J : ~ ~ ~ ..
i ! ! ! i ! !
'I I ; I I I :
I : I : : :

0.4 + +. ..J. ! ! ~ ~ .
I 1 • 1 I : 1
~ ! I : i !
1 ! ill !! 1 1 I 1 •

0.2 ·· •..·+ ··..· +··..··..····..·+·..··..· ·..·1..· ·· + -l- ~........ . ..
: I I tIl t

i ! i I ! i !
1 I ! It: 1
: ! I I : ! i

150 200 250
AW/mm

Figure 5.1 : Curve For Evaluation Of The Empirical Saturation Factor-

o
o 50 100 350 400300
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5.2.2. The current ratio methQd

This method is based on that proposed by Agarwal and Alger [7], where the saturation

factor c is defined as

(5.6)

where

ISaJ = the current at which saturation occurs

I =: the actual stator or rotor current

Considering the stator winding, the peak leakage flux passing through the tooth tips of

the stator slot is

(5.7)

where IRMs is the total RMS current per stator slot and ~ is the sum of all the permeances

of the flux passing through the tooth tip portion of the stator slot, i.e.

o (5.8)

where

q = the number of phases
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N, = number of stator turns in series per phase

Ip = the stator current per phase

If the flux in the stator tooth tips begins to saturate at a flux density of Bssat , corresponding'

to an RMS slot current of IRMs sat then

(5.9)

where

d, ::: the depth of the tooth tip section through which the saturating flux flows

Equating (5.7) and (5.9) and replacing iRMS with JRlt'l's stu gives

(5.10)

where

AI = the permeance coefficient per unit length of the tooth tip

o
(5.11)

(\
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From equation (5.8), the stator phase current at which saturation occurs, I
ssat

, is given

by

I = S)RMSsat
s sai 'iqK N•• d 1

(5.12)

so that the stator saturation factor is now

Is sat
0' =-

oS Is (5.13)

Similarly for the rotor tooth tips, the saturation factor is '.J

Irsat
0' =-

r Ir (5.14)

where

(5.15)

o and I, = the rotor current defined by equation (5.5)

Brsat = the flux density at the tooth tips begin to saturate.

o For both the stator and the rotor, the saturation factor is
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f

(5.16)

except if I < Isa/ then 0'= 1.0 .

5.3. Case Study

The same 254 kW motor that was examined in Section 3.8.1 with deep bar effects is

now considered with saturation included. Two simulations have been carried out, both

using identical cone ns to those of Section 3.8.1, except that the two methods of

accounting for saturation have been included. The data used for both saturation methods

was readily obtained from the motor manufacturer's design sheet. -.J

For the amp wire method, from equation (5.3)

AWl . == 16XO.978X60/ =0788 1
mm lX1tx379.1 "x (5.17)

For the current ratio method, the saturable stator current is given by equation (5.12) as

o

/ = 60 X 1.3 X 0.002
s sal 2 X 3 X 0.957 X 160 X -Y2x4 X rcX 10-7(0.285 +0.089)

== 255.47

(5.18)

and the corresponcling saturable rotor current is

Cl
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I
f

50 x 1.3 x 0.00254
I -
r sai - 2x 3 x 0.957 x 160 x-{2x4 X1tX 10-7(0.464+0.8)

== 80.00

(5.19)

so that the saturation factors are

255.47
O's=---

Is (5.20)

80.00
O'r::::-'-- -

Ir (5.21)

This result of a saturable stator current which is larger tnan the corresponding saturable

rotor current is expected if the slot shapes of the two portions are considered. The

stator has a rectangular open slot 11.176 nun wide whereas the rotor has aT-shaped

slot with a slot opening of 3.175 mm. Thus the stator tooth tip area is large and will

only saturate at a large current. In contrast, the rotor tooth tip area is small and saturates

at a much lower current.

This occurrence of the stator and rotor tooth tips saturating at different currents is not

taken into account with the empirical method because the same value for eq -tion (5.3),

excluding the current, is used for both the stator and rotor. This can be seen in Figures

5.2 and 5.3 which give comparisons of the stator and rotor saturation factors for both
o

methods.

(1
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The ordinate on the graphs is the saturation factor o and the abscissa is the current

found in the stator or rotor. As discussed, the empirical (AW/mm) method is the same

for both the stator and the rotor and the current ratio method shows the large difference

between its two factors. The flat portion of the current ratio method at low currents

represents the linear portion of the B~H curve, which the first method does not take

into account.

" l·~.''!J rw ......
"-
o .. I • ' .. . ... .... , , ~. ,., , . . .... • t •• ....
0

,.
U!.L.. _J, .. ~, IV .~ I....

t- i~:"; r •..I -.4 ..... . &.... ... .........

F 'j :U lIT' ~ .." T

J
,.

~~,
10

~': ...Ir: t •• , i •• t .I'. •• t' • iI •• t ••• .., .
. -

• J' .

o

Figure 5.4 : Measured Torque And Speed Traces Of 254 kW, 3300 V, 4 Pole
Squirrel Cage Induction Motor (Time = 100 ms/dlv, Torque = 1.65 PU/div, Speed

= 0.25 PU/div)

o

(Although the measured torque and speed results for this motor were given in Section

3.8.1, they are repeated here (Figure 5.4) for ease of comparison.) Figure 5.5' gives the

predicted results for the simulation of the motor with the deep bar effect and the empirical

method of saturation included. Figure 5.6 gives the corresponding predictions with the

current ratio method of saturation used. In the case study of the deep bar effect, the
(I
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predicted torque waveform compared well with the measured curve but the magnitude

of the peak torques was lower than the measured value. Both Figures 5.5 and 5.6 show

that the magnitude of the peak torques has increased now that saturation has also been

accounted for and that the shape of the torque waveform is essentially the same. The

predicted first peak of torque is 5.13 PD for the empiric.d method and 5.30 PU for the

current ratio method. The value for the current ratio method compares well with the

measured value of 5.28 PD. From Figures 5.2 and 5.3 it is seen that the difference

between the saturation factor determined by the two methods is fairly large. However,

the saturable portion of the leakage inductance only accounts for 10-20% of the total

stator or rotor leakage inductance. Therefore the effect on the torque and current predictions

is not very marked so the difference between the predicted results using either method

Figure 5.5 : Predicted Torque And Speed Traces Of 254 kW, 3300 V, 4 Pole
Squirrel Cage Induction Motor Using The Empirical Method Of Saturation

is minimal in this case.
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Fi2ure 5.6 : Predicted Torque And Speed Traces Of 254 kW, 3300 V, 4 Pole
Squirrel Cage Induction Motor Using The Current Ratio Method Of Saturation

This case study has shown that accounting for deep bar and saturation effects give torque

and speed predictions which compare very favourably in an respects. Both methods of

accounting for saturation are acceptable, but the current ratio method is more accurate

because it allows for different saturating currents in the stator and the rotor. The empirical

method has been generalised and is very useful if the stator slot shape is not fully

known. This is so because only the rotor dimensions need be known to account for the

deep bar effects.

o
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CHAPTER 6

RESWITCHING TRANSIENTS

Reswitching transients occur when the supply to the motor is disconnected and then

reconnected a short time later. Landy [17] has shown that the current and torque transients

that result under these conditions can be many times their rated values depending on

the phase of the motor induced voltage with respect to the supply voltage. This Chapter

shows the development of the equations and initial conditions for the evaluation of

reswitching transients for both the traditional model and the deep bar model of Chapter

3. An example is given which shows that the transient torque predicted by using the

deep bar model is considerably larger than that predicted by using the traditional model.

6.1. Reswitchin2 Usin2 The Traditional Model

This model is derived using the basic equations (A.37) . (A.40) and applying certain

boundary conditions. When the supply is disconnected from the motor, the stator currents

are zero and thus

o (6.1)

V Mdl' ,
sq = dt rq - roMI rd (6.2)

(1
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Vrd=0 =R',l'rd+ i/, !r., - (00- OOr)L'/'rq
(6.3)

dV =O=R'1' .J T' -I' +(OO-(I))L'1'rq r, ~ r dt rq r r rd
(6.4) .

The d- and q-axis currents are proportional to the mmf's produced by them so that, just

before disconnection of the supply,

(0.5)

(6.6)

.
and once the supply has been removed,

(6.7)

a: 0- I'
.J q ~ rq+ (6.8)

where the subscripts - and + refer to just before and just after the instant of switching.

To maintain the balance of mmf over the instant of switching, the rotor current must

adjust as follows

I' l' ,rd + = rd - +1sd _ (6.9)

(6.10)

81

o o



, .""
o

6.2. Reswitching Using The Deep Bar Model

As derived in Appendix C, the stator equations for the deep bar model are

(6.11)

(6.12)

The rotor equations for the first loop of any of the lumped parameter circuits have a

similar format to equations (6.13) and (6.14)

VT 0 (R R')' d, I' dIdrq= = 0+ e I rqo+Lod/ rqO-R1 rql+M d/ rqo+M d/Sq

J

(6.13)

(6.14)

where 0 refers to the first loop, 1 refers to the second loop and R', is the end-ring

"'~sistance. As for the previous Section, for disconnection of the supply, the stator currents

are zero and thus
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Vsq=M :tr; + ro)1I'rd

, I )1' d If R' Mdl'Vrq = 0 ::;«Ro+R e rq 0+Lo dt rq 0 - l rq 1+ dt rq 0

(6.15)

(6.16)

(6.17)

(6.18)

The boundary conditions for the currents to maintain the balance of mmf over the interval

of switching are

The application cf these models is well illustrated by the following example.

j

(6.19)

(6.20)

The 254 kW induction motor of Section 3.8.1 has been used for this comparative

example. For the traditional model, the DC (running) values of rotor resistance and

leakage inductance have been used. The deep bar model is the same as that in Section
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3.8.1, i.e. the improved Pi model with the bar divided into four sections. For both cases,

the motor was run up to slip speed so that steady-state conditions were achieved. These

steady-state conditions were then used as initial conditions for the rest of the work.

Also, the friction and inertia used here are larger than those used in Section 3.8.1, so

that the simulation is that of a motor operated at full load.

Figure 6.1 shows the torque and the speed trace of the motor, predicted by the traditional

mode.. with the supply disconnected at 0.1 seconds for 8 cycles (0.16 seconds) and then

being re-made. Figure 6.2 shows the same conditions predicted using the deep bar model.

The traditional model was simulated using a rotor fixed reference frame so that the

current waveforms can easily be compared to those of the deep bar model.
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Figure 6,1 : Predicted Results Of 254 kW, 3300 V, 4 Pole Induction MOtOI'
Using The Traditional Model. The Supply Is Disconnected At 0.1 Seconds For 8

Cycles (0.16 Seconds) And Then Re-made

For both cases, the graphs show zero developed electromagnetic torque while the supply

is disconnected. This is expected because equation (2.9) shows that the torque is dependent

on both the d- and q-axis stator currents. Both graphs also show a negative reswitching
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Eigute 6..2.: Predicted Results Of 254 kW, 3300 V, 4 Pole Induction Motor
Using The Deep Bar Model. The Supply Is Disconnected At 0.1 Seconds For 8

Cycles (0.16 Seconds) And Then Re-made

torque transient many times larger than the rated torque, which is as predicted by Landy

[17] and de Mello and Walsh [8]. The deep bar model predicts the peak at -14 PU

whereas the traditional model predicts -10 PD. This difference comes from the transient

currents that occur under reswitching conditions, which the deep bar model predicts more

accurately. Also, it should be noted that during the off period the motor speed has

dropped to 0.68 PD at the instant when the supply is reconnected. For the traditional

model, the rotor parameters are no longer valid because the rotor frequency has increased

from nearly zero to 16 Hz. Thus, at the instant when the supply is reconnected, the

traditional model will be inaccurate and the predicted negative torque will not be as

large as the torque predicte-i by the deep bar model.

c Figures 6.3 and 6.4 show the stator currents and Figures 6.5 and 6.6 show the rotor

currents of the traditional model for the condition of Figure 6.1. Figures 6.7, 6.8, 6.9
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and 6.10 show the corresponding stator and rotor currents for the deep bar model. It

should be noted that the magnitude of the current transients predicted using the deep

bar model are significantly larger than those predicted by using the traditional model.
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Figure 6.3 : Predicted Stator d-axis Current Of 254 kW, 3300 V, 4 Pole
Induction Motor USing The Traditional Model. The Supply Is Disconnected At

0.1 Seconds FOI' 8 Cycles (0.16 Seconds) And Then Re-made
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Figure 6.4 : Predicted Stator q-axis Current Of 254 kW, 3300 V, 4 Pole
Induction Motor Using The Traditional Model, The Supply Is Disconnected At

0.1 Seconds For 8 Cycles (0.16 Seconds) And Then Re-made
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Eigure 6,5 : Predicted Rotor d-axis Current Of 254 kW, 3300 V, 4 Pole

Induction Motor Using The Traditional Model. The Supply Is Disconnected At
0.1 Seconds For 8 Cycles (0.16 Seconds) And Then Re-made
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Figure 6,6 : Predicted Rotor q-axls Current Of 254 kW, 3300 V, 4 Pole
Induction Motor Using The Traditional Model. The Supply Is Disconnected At

0.1 Seconds For 8 Cycles (0.16 Seconds) And Then Re-made

Equations (6.9) and (6.10) or (6.17) and (6.18) suggest that, at the instant

that the supply is disconnected, the rotor current will usually increase because

of the stator current contribution. Here, for both the traditional and the deep

bar model, the rotor current seems to drop to zero. This is actually not the

() NOTE

o
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case, but the large scale of the rest of the graph hides its value during the

off period. The fact that the rotor current does not increase is attributed to

the phase of the stator and rotor currents at that particular instant.
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Figure 6.7 : Predicted Stator d..axis Currents Of 254 k'W, 3300 V, 4 Pole
Induction Motor Using The Deep Bar Model. The Supply Is Disconnected At 0.1

Seconds For 8 Cycles (0.16 Seconds) And Then Re-made
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88



50

... 30::l
B.
"I
oj 100
U•~ ~10011
C,
L
L~ -30
CJ

-50 10

,,,
, , , I

. ~ ! : ! ~ .
• I I I
I I • I
Itt I
• • I •
I I I t
I I I I
I • I .1
I , I I......................... ~........... ..u.·.. · : ; H .••••• ~ h U •••••••

I • I I
I • I I
I t I I-r--.__._;:----. ! : :

..................................... .•••.. . ·..·····.··..·H·.. ·.·"·· ·..··..···..··
, , I I
I I • I" ,., ,
" ," ,
: : I :

••• ,u r : ~ H ••••• '••••• : .

I I I I
I • I I

! ; 1 i
0,2 0, ~ 0.6 0,8 1

tiMe
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Induction Motor Using The Deep Bar Model. The Supply Is Disconnected At 0.1

Seconds For 8 Cycles (0.16 Seconds) And Then Re-made
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Figure 6.10 : Predicted Rotor q-axis Currents Of 254 kW, 3300 V, 4 Pole
Induction Motor Using The Deep Bar Model. The Supply Is Disconnected At 0.1

Seconds For 8 Cycles (0.16 Seconds) And Then Re-made

This example has shown that the deep bar model is capable of being used for reswitching
'" .
transients. It accounts for the switching transient currents and the frequency effects due
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to the motor slowing down, better than does the traditional model. Therefore improved

predictions of transient torques are obtained which are required for the mechanical analysis

of the reswitching effects.

The importance of being able to predict reswitching transients was highlighted when a

large industrial motor failed (note that it is not the one given in the example in this

Chapter). The motor had been in service for some time prior to its failure. It was found

that several rotor bars had broken and that the key on the shaft had been distorted by

several millimetres. The distortion of the key indicated ths : the motor had been subjected

to severe negative torques during operation. Analysis revealed that the supply to the

motor was occasionally lost and thus the motor was being subjected to reswitching

transients. Simulating this condition could have suggested the minimum amount of time

to wait, once the supply has been disconnected, before reswitching the supply.

o

e
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CHAPTER 7

CONCLUSIONS

The first objective of this work has been to develop an accurate induction motor model

which can be used for variable speed drive system simulations. The model must be able

to account for deep bar effects and include saturation of the tooth tip leakage flux. From

the curves given in the examples of Chapters 3 and 5, the predicted results using this

new model compare very favourably with the measured results. Therefore it is clear that

this objective has been realised.

The other objective has been to implement all these models in the computer package

CASED. This entailed writing the CREATE program referred to in Chapter 2, which

forms the state space models of the system. The models are then written to files in a

format suitable for use by the simulation program.

The development of a deep bar model is given in Chapter 3. Although the analytical

solution to the deep bar differential equations, as given by Alger [14] is accurate, it is

unsuitable for transient predictions because knowledge of the frequency content of the

waveform is unavailable. A lumped parameter circuit has thus been used to account for

the non-linear current distribution in the rotor bar, by having many sections whose

distribution is linear.

Four circuits were compared with the analytical solution, in terms of their accuracy at

different frequencies across the typical expected frequency spectrum. Section 3.5 shows
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that, at higher frequencies, the circuits only begin to have acceptable accuracies when

a large number of sections are used. A large number of sections is undesirable because

the length of time required for simulation is large. Thus a novel algorithm was developed

which divides the rotor bar unequally along its depth, having smaller sections at the top

where the current distribution is highly non-linear and larger sections at the bottom

where the distribution is more linear. The analysis shows that different circuits and even

different number of sections used requires slightly different conrants in the algorithm.

The results shown in Section 3.6 indicate that improvements in accuracy of up to thirty

times at certain frequencies can be obtained by using this algorithm. For each of the

models, the larger the number of sections used, the smaller the error will be. However

the improved Pi model achieves this negligible error across a wide frequency range

using fewer sections than the other models. The improved Pi model is thus the most

accurate model.

Although it was beyond the scope of this project, it would be interesting to investigate

whether there is a mathematical expression which could describe the error of the models

as a function of num, This would then mean that the optimum value of num could he

obtained analytically instead of graphically.

This method of accounting for deep bar effects is dependent on the shape of the bar,

and thus numerous standard bar shapes have been implemented in CASEt. Also included

is a method of entering the depth and width of each section, so that almost any uncommon

bar shape may also be simulated. As an extension of this routine, a unique method of

simulating double cage motors using the deep bar model has been produced. Verification

o
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of the suitability of this algorithm to double cage machines is very aptly demonstrated

by the good agreement achieved between the measured and predicted torque speed curves

shown in Chapter 4.

The aim of this work has been to use a saturation factor which does not require testing

of the motor. Thus two methods have been implemented for saturation of the stator and

rotor tooth tip leakage flux. The first method uses an empirical factor which is a

generalised solution of the saturation problem. The second method, based on the work

by Agarwal and Alger [7], uses the current at which saturation of the leakage path

occurs, which is obtained from the permeances of that path. That current is then compared

to the actual current in the motor to determine the saturation factor. The case study of

Chapter 5 shows that correlation between measured and predicted torque is very jood

when both the deep bar effect and saturation are accounted for.

(.~

It must be noted here that for all the examples, only torque measurements have been

compared while the predicted currents have played a lesser role in the discussions. Only

the torque was measured and it has been assumed for the purposes of this work that

if the predicted torque compares well with the measured torque, then the predicted

currents will also be accurate. This assumption is reasonable because the torque is

calculated using the two stator and two rotor currents (see equation (2.9)). Thus if the

predicted torque is correct, the currents giving the torque must be correct.

o As an example of one of the applications of this deep car model, reswitching transients

are examr.ed in Chapter 6. It is shown that the standard =quations of a motor which

has its supply disconnected for a certain period of time and then reconnected, can be

o
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applied to the deep bar model. Depending on the inertia of the load and the duration

of disconnection, the speed of the motor can drop to half speed or even lower. The

traditional model has rotor parameters which are then not correct for the frequency of

the currents present in the rotor. Thus the deep bar model applied to reswitching transients

predicts higher transient torques than would be predicted with the traditional model.

It must be emphasised that the case studies used for verification of the models are large

induction motors used in industry. The motor used for the deep bar model and for

saturation is a 254 kW induction motor and the double cage model was verified "lith

a 1850 kW motor,

CASED has already been successfully used by undergraduate students of the Department

of Electrical Engineering at the University. The modularity of the package has also been

used advantageously by other students being able to add their own controllers and

permanent magnet motor models. It is hoped thaz the package will be used by the

industry for variable speed drive system simulations and ordinary sinusoidal motor

simulations. Further, the author hopes that the accurate models developed will allow

designers to reacu.y predict with confidence the performance of a system prior to its

manufacture.

o

o
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applied to the deep bar model. Depending on the inertia of the load and the duration

of disconnection, the speed of the motor can drop to half speed or even lower. The

traditional model has rotor parameters which are then not correct for the frequency of

the currents present in the rotor. Thus the deep bar model applied to reswitching transients

predicts higher transient torques than would be predicted with the traditional model.

It must be emphasised that the case studies used for verification of the models are large

induction motors used in industry. The motor used for the deep bar model and for

saturation is a 254 kW induction motor and the double cage model was verified with

a 1850 kW motor.

CASED has already been successfully used by undergraduate students of the Department

of Electrical Engineering at the University. The modularity of the package has also been

used advantageously by other students being able to add their own controllers and

permanent magnet motor models. It is hoped that the package will be used by the

industry for variable speed drive system simulations and ordinary sinusoidal motor

simulations. Further, the author hopes that the accurate models developed will allow

designerr to readily predict with confidence the performance of a system p.ror to its

ma.1ufacture.
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APPENDIX A

Deriv..ation Of T"lYQ-Axis Differential E(llliltions Of Induction Motor

This appendix shows the transformation from the three phase stationary stator and the

three phase rotating rotor to two sets of two phase windings, rotating at any arbitrary

speed.

The conversion of any three phase winding to an equivalent two phase winding rotating

at some arbitrary speed involves first passively transforming the three phase 1200 winding

(a.b,c) to a "two" phase. ~ winding (o., ~, y) and then actively transforming the (c ,

~, y) winding to a (d,q,y) frame of reference rotating ut 0)1 electrical radians/second.

Transfonnation between three tlhase (a,b,c) and two phase (q, p, ~) windings

Consider the balanced three phase winding and its corresponding orthogonal c,~ axes,

shown in Figure A.I, where the a-axis and the a.~axis are cc-incident.

By resolving the instantaneous mmf's set up by the a.b.c phase windings along the o, p
axes, the following equations are obtained :
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Fiiure A.1 : Three Phase And Two Phase Windings

:fa. == :Fa +~ cos(1200) + :Fe cos(-1200)

:Jp == :F,; sin(1200) +:Fe sin(-1200)

or in matrix form :

1
2
-{3
2

1
2

-{3
2

[
:Fa].~
:Fe.
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Equation (A.2) is acceptable in its present form, but to obtain :r".b,c in terms of 1"a,p

requires inverting the two by three matrix, which cannot be done in its present form.

Thus an additional y axis is added which is normal to both the ex. and ~ axes. Then

1 1 1-.-

[~=
2 2

1hl0
-Y3- -v3
2 2

1 1 1

fi fi fi
or

[.1tt,p) = [AJ,[,'Fa,b,c]

and

[,'Fa,b,c] = [Ar1.[.1tt,p,l'l

(A.3)

<.A.4)

(A.S)

1
where the values ~ have been chosen so that the inversion of [A] reduces to the

transposition of [AJ , and for balanced conditions

1s;= fi(,'Fa + ~ + !Fe) =0
(A.6)

Thus
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1 1 1--
2 2

[A]~{f--{f 0
{3 {3

~{f[S]- --2 2
1 1 1 I-;::=- 12 {i-,,2 .J

(A.7)

1 0 1
{i

[Arl~--{f{f 1 {3 1 =--{f [Sf--
2 2 12
1 {3 1-- -- {i2 2

(A.S)

i.e.

[B]-1 = [B] T (A.9)

and thus

[.'Ta,p) ~~. [S] [9;,.,.,]
(A. 10)

(A.ll)
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Iransfonnation between two phase (q, p, y) and two ph.a~e Cd,Q;Y)windings

Consider two sets of axes, where the 0:- ~ axis is rotating at a speed ~ electrical

radians/second and the d-q axis :s rotating at some arbitrary speed WI electrical

radians/second. Initially the a-axis, o:-axi~ ~nd d-flx:-: are all coincidenr After some time

t the situation is as shown in Figure A.2.

q-axis

I~-axis
/
/
/
/
/

Figure U :0:- ~ And d-q Axes

At this instant the mmf relationships are

o ~ == :Fa.COS(Sl - S2) + :Fp Sin(el - e2)
:Fq == --:Fa. sin(e1 - S2) + :fp COS(Sl - e2)

:fy==:fy
o (A.12)
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o

------.~-

or in matrix: form

[~J[008(91-92)
Sin(SI -ez)

m~1"q = - sin(el - S2) CDS(S!-S2)
:Fy. 0 0

and the inverse is

[~j[0~8(el-9~ - sin(6l - S2)

mmJ'~= sm(SI - 82) CDS(S}-S2)
:Fy. 0 0

(A.13) .

(A.l4)

(A.lS)

(A.16)

where

sin(S! - (2) OJ
cas(Sl - S2) °

° 1 (A.17)

To obtain the transformations between :;:;',b,c and !fd,q,'Y I equations (A.lO) and (A.ll) are

combined with (A.15) and (A.16) respectively, so that
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Now

[C] = [S] .[B]

and

- ----------------~-~------~----

[Jd,q) = [S] [J"a,p)

'" [S]-{f [B] ['F",b)

cosCS! -S:J
- sinCS! - S2)

1
-{2

cosCS! - S2 -120°)
- sinCS! ~ 62 - 120°)

1

~

coseS! - 82 + 120°)
- sincel - e2 + 120°)

1

fi

c
\__ -.------ --~ --"-- - ---

1

fi
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(A.2l)

Thus

[9;"q) =-{f [C] [J;".,J
CA.22)

o )

.../2 T[!Fa,b,cJ = .'V 3" [C] [!Jd,q)
(A.23)

Stator transfonnatiQns

The stator voltage equations can be expressed as

(A.24)

where st ,s2,s3 are the stator a.b,c phases respectively. Equation (A.24) is to be transformed

from the stationary a.b,c axis to an arbitrary rotating d, q, y axis. Thus in Figure A.2,

m2 == 0, m1 = CO and

o
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cos(S) . - sin(S) 1

~

[Cl'=1[ cos(S -120°) - sinCS-120°) 1

~

cos(S + 120°) - sinCe+ 120°)
1

~
(A.25)

Therefore

[Vsl s2 sJ = [C]T,[VSd sq s~

[Is 1 s2 sJ = [Cf.[lsd sq 8~

![\lIsl 82 :J =!{[e] T.[\fJsd sq s~}

(A.26)

(A.27)

(A.28)

Matrix [ef of equation (A.25) is time dependent because 9 is a function of time. Thus

equation (A.28) is expanded as follows :

o ).Ii
,

o
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l
01

o

- since) 1cos(8)

V2 [~j[Pjd sl d

~

1 sd

dt ~:2=dt cos(e - 120°) - since -120°) M· '¥sq
'J2 '¥

~'cosce + 120°) - since + 120°)

A r2[ since)
== - \f 3' - since - 120°)

- since + 120°)

cosce) - since)

+~ cos(9 -120°) - sin(8 -120°)

cos(e)

= ~ cos(S-120°)

::

- since)

1- sinCe+ 120°) -Y2_
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Substituting equations (A.26, A.27 and A.29) into equation (A.24) gives the stator

transformed voltage equations as :

(A.3D)

or

(A.31)

Rotor transformations

The rotor voltage equations can be expressed as

(A.32)

where rl,r2,r3 are the rotor a.b,c phases respectively. Equation (A.32) is to be transformed

from the rotating a.b,c axis to the same arbitrary rotating d, q, 'Y axis as for the stator.

Thus in Figure A.2, ~::. cor and COl = co
o

where ro, is the speed of the rotor.

o

)
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The transformation is

i-T 2
[C] = 3"

cos(9-9r) -sin(e-9r)
1
{2
1

~
1

~
(A.33)

- sinCe - Or+ 120°)

and following a similar procedure to that used for the stator gives the rotor transformed

voltage equations as :

[il' J [11 J {['¥f J [ \}"j-'~• rd rd rd - rq

[cl' ~::' '"R ',[C]T ~::' +[cl' !:::'+ ((1)- (I),) 'Pjd
(A.34)

or

[V'rd rq r~ =R'r[l'rd rq r~ +~['¥'rd rq '1'1 +(ro-ror)['¥'_rq rd J
CA.35)

o
Stator and rotor d-Q axis equations

Due to the fact that the three phase configuratior. of both the stator and rotor is balanced

and that the air-gap is uniform, the resistances and inductances are equal for each stator

phase and each rotor phase respectively. This implies that the resistances and inductances
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of the d-q axis windings are equal for the stator and rotor respectively. Also, because

only balanced winding conctitions are under consideration, the 'Y-axis equations are

discarded. Thus the flux linkages of the stator and rotor are defined as follews

UJ'I -L'/' +MTI rq - r rq 4 - sq

(A.36)

motor equations as :

and substituting equations (A.36) into (A.31) and (A.35) gives the d-q aXIS induction

V·a = 0 = R',1' rd + L tr!I' rd +M :t]sd - (ro - ror)L ',1' rq - ( ro - ror)M / sq

ell' iT) matrix form

(1

' .. )
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d
-roL M!!. -roMR,r+Ls dt s dt

Vsd d M!!.
Isd

coL R, +Ls dt roM i:VSq
s dt

0 M!!. I ,d
- (ffi - (J)r)L',

. I'
_.(0)- (J)r)M R r+L rdt rd

0 ... dt r;
(00- ffi,)M kl !!. (00- ffir)L'r R' L' d

dt ' + rdt
(A.41)

The two rotor voltages, Vrd and Vrq , arc set to zero in equations (A.39 - A.41) because

in a squirrel cage motor, the rotor is short circuited. Setting these voltages to zero is

or.ly valid for squirrel cage motors.
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APPENDIX B

Resistance AmI Leaka&e Inductance Of A Rectangular Bar Rotor

)

This Appendix shows the method used to calculate the resistance and leakage inductance

of a rectangular bar in an open slot. This is used to obtain the equivalent circuit of an

induction motor.

M R'r

Figure Btl : Equlvalent Circuit Of Induction Motor

The per phase equivalent circuit of an induction motor with rotor values referred to the

stator is shown in Figure B.I, where the stator and rotor leakage inductances are given

as Lis=Ls-M and L'lr=L'r-M respectively,

Referring to Figure B.2, the rotor sk ,t leakage inductance for one bar in an open,

rectangular slot is obtained from the permeance coefficient per unit axial length of the
slot as

(l
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w1- -jh
-

1-

dx

d

x

IL

A.o is the penneance coefficient of the slot area above the bar! and is equal to htw, The J

Figure B.2 : Rectangular Bar In An Open Slot

(B.1)

permeance coefficient of the bar itself, A.b, is more complex. To calculate the leakage

flux of the whole bar, the leakage flux dCI>dx in the elemental path dx (at height x from

the bottom of the bar), is given as

(B.2)

where (dAdx);:: Ie (dx) ;:: the area that the flux links and

() Nix
B ==lloH. =11 -x ~ x ~O~)

(B.3)

where w is the length of the flux path across the slot. Substituting for B). gives
()
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Nxlxd<P =IL/-dxdx roc W (B.4-)

The flux in path dx only links the fraction x/d of the conductor, and the flux density

Ex is less than the total flux density because only the fraction x/d of the total conductor

current is available to provide mmf. Therefore substituting for N, and Ix as

x
N =-Nx d T

(B.5)

(B.6)

into equation (B.4) gives the amount of flux in path dx as

(B.7)

Integrating this equation from x=O to x=d give). the total flux as

(B.8)

from which the permeance coefficient can be deduced as
o

d"A -_
b -:hv

(B.9)

III



I

The corresponding bar resistance is

p1bR -_
i> wd (B.IO)

The values Llr and Rb of equations (B.I) and (B.IO) respectively, are then modified to

account for all the rotor bars and referred to the stator to give Vir and R', of the

equivalent circuit.

''I

o
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APPENDlX_C

Differential Equations Qf Lump'.!d Parameter Circults

This Appendix gives the differential equations of the lumped parameter circuits which

are discussed in Chapter 3. Equations are 'liven for the T model, the Pi model and the

improved Pi model.

The differential equations given in nu, Appendix are all in a rotor fixed reference frame

so that the rotational terms (those with cor) appear in the stator equations instead of the

rotor equations. This has been done because the rotor equations are now not as simple

as those of the traditional fourth order model, but are much more complicated to account

for deep bar effects. For each circuit \ differential equations for both the stator and

the rotor will be presented. J

o

o
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T Model

The equivalent circuit of an n section T model is shown in Figure C.l. The rotor

resistance and leakage inductance of each section is given by equations (3.1) and (3.2)

respectively.

I
I
I
I

------lL______----~---------~ _

Rs lIs
l'12 l'12
-2- -2- L\n

-2-

Figure C.l : Equivalent Circuit Of The T Model

The series inductances are combined to give the circuit of Figure C.2, where the subscript

i,j refers to a value composed of an ith and a jlh component. The values of the reduced

circuit are obtained from the original circuit by the relationships

L L' lL'
0,1 = 10+2: 11

(C.2)

Please note. that these new inductances Lj,j are all leakage inductances even though the

(I
subscript I has been omitted.
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I

(r:'Mi~Rl
I,,
I

I 0.1 1.2 2.3 n-t n n n-t

Figure C.2 : Reduced Equivalent Circuit Of The T Model

For this system, the stator equations are

V d d I· I
sd=Risd+LsdtIsd+lvl d/ rd+(J)rM1 rq+(J)rL/sq

T! -R J L d'I M!'_J' - 'vII' - L J• sq - e sq + S dt .sq + dt rq 00,1 rd (J), s sd

and the equations for the loops are

first loop (0,1) :

,'...

(.)

(\
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, L d t'-R/ rei.i+: + i,jdt rqi,j (C.8) ..J

(C.6)

intermediate loops (i,j) :

V'rd i,j = 0 =-R;I'rd i-l,i + tR,+R)I'rd i,j

-R/'rdj,j+l +Li,j :/'rd:,j (C.7)

V'rq i,j = 0 =-R;I'rq i-1,i + (Ri +R)I'rq i,j

last loop (n) :

V' -O--R l'rd fI - I,n - - n-1 rd n- 2,n- 1

, L !l.I'+(R/l_1+Rn)I rdn-l,n+ n-l,ndz ra'n-l,n (C.9)

V.. -O--R I'rdn-l,n - - n-1 rdn-2,n-1

o
(C.10)

c

116

o



·.)

The equivalent circuit of an n section Pi model is shown in Figure C.3. The rotor

resistance and leakage inductance of each section is given by equations (3.1) and (3.2)

respectively.

I
I
I
I
I
I

........... - .. ···N .:...• _.... - .... ·--·2Rl .... --2R1
I
I
I
I
I
I
I

Figure C,3 Equivalent Circuit Of The Pi Model

The parallel resistances are combined to give the circuit of Figure C.4, where

(C.11)
c

Please note that these new inductances L, are all leakage inductances even though the

subscript I has been omitted.

o
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Rs Lis I Ri: LO
I

I
I

j(r:\
I
I
I
I
I 0 2

Figure CA : Reduced Equivalent Circuit Of The Pi Model

For this system, the stator equatir .ns are

(C.12)

V d d f M 'sq= Rlsq +L, dt Isq +M dt I rq - (Or I rd - (OrL/sd
(C.13)

and the equations for the loops are

first loop (0) :

V'rd 0 = 0 =(Ro t R'e)I'rd 0+t;:tr; 0

(C.14)o
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d
V'rq 0 = '0 =(Ro+R'e)I'rqo+ LO'dtI'rq 0

, Md l' M~J- RJ rq 1+ dt rq 0+ dt sq

intermediate Ioops (i) :

, 'R +R)I' -Rl' . +L.!!_J' .V'rdl=O=-Ri_l rdi-l+~" 1-1 i rd i I rdl+l 'iu rd i

last loop en) :

V, -O--R I'rd n - - n- 1 rdn , L d I'+(Rn_l+Rn)! rdn+ "tit rd n

o
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Improved Pi Model

The equivalent circuit of an n section improved Pi model is shown in Figure C.S. The

rotor resistance and leakage inductance of each section is given by equations (3.1) and

(3.2) respectively.

J:h 2Lin .!:.in.
6 -3- 6

..,_

I
2R~ 2R~

SECTION 1 SECTION 2 SECTION n

Fi~ure C.S : Equivalent Circuit Of The Improved Pi Model
,)

The series inductances are combined to give . Ie circuit of Figure C.6, where subscripts

i refer to values of the ilb section, subscripts j refer to the jib section and subscripts i,j

refer to combinations of the iUl and jUl section. The values of the reduced circuit are

obtained from the original circuit by

R, = 2R',
I I

o
L. =~L'I'
I 3 I

o
L 1, 1 f.. =-L1,+-L/.

'tJ 6 I 6 J (C.20)
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Please note that these new inductances Lj and Lj,j are all leakage inductances even

though the subscript l has been omitted.

Rs Lis R~ Lo., L, L1.2

~, ~, R2 R2

0.1 1,2 2 2,3 nn-l.n

Figure C.6 Reduced Equivalent Circuit Of Improved The Pi Model

For this system, the stator equations are
f

(C.2I)

(C.22)

There will always be a specific equation for the first loop (0,1), for the last loop (n)

and for each set of two intermediate loops (i) and (i,j). The equations for the loops are

first loop (0,1) :

o
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d I' ..LM d I- R l' rd 1+M dt rd0,l' dt sd
(C.23)

d I'V'rq 0,1 = 0 =(R1 +R'eV'rq 0,1 +LO,l dt rq0,1

I ..« I' +M!!:_J-Rl rql +ll'.L dt rqO,l dt sq
(C.24)

intermediate loops (1) :

d /''2R I' R I' +L.-.V'rdi =O=-R/ rdi-I,i+ i rdi- i rdi,i+l "dt rdl
(C.25)

d I'I 2RI' -RI' .. +L.- .v, .=O=-R./ '-1;+ i rqi i rq"I+I "dt rq irq 1 1 rq1 I'

(C.26)

and intenned.iate loops (i,j) :

(C.2?)

o dV' .. = 0 = -R.J' .'+ (R,.+RJ.)I'rqi j -R/'rq j +LiljdtI'rq i,jrq I,J I rqI ,
(C.28)

last loop (n) :

o
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o

d ,V' =O=-R I'd -1 +2Ri'rdn+LlldtI rd nrdII n r n ,n
(C.29)

d ,
V' =O=-R I' -1 +?Ri'rqn+Ln7tI rqnrq n n rq n .n a

(C.30)

J
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APPENDIX D

A£gJracy Of Different Lumped Parameter Circuits

This Appendix gives the full set of graphs of impedance error versus num of the ~hl\"~

lumped parameter circuits. The graphs are given in order of increasing number of rotc!'

bar sections, from two to fifteen, and in the order T, Pi and then improved Pi.

Note : the first few and/or last few points have purposefully been omitted from some

of the graphs as the error at these points is very large and masks the trend of the other

curves on that graph.

All results are given for the. 254 kW, 3300 V, 3 phase, 50 Hz, 4 pole squirrel cage

induction motor of Section 3.8.1. The curves are given for a sinusoidal supply feeding

the motor with no attached load. The motor is initially at rest and is then supplied with

full rated voltage and allowed to run up against its own inertia.
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Figure..1!J. : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Two Sections Of The T Circuit
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Figure 0.2 : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Three Sections Of The T Circuit
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Figure D.3 : Variation Of Percentage Impedance Error With Value Of num At
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Figure D.~ : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Six Sections Of The T Circuit
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Figure D.6 : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Seven Sections Of The T Circuit
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Figure D.7 : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Eight Sections Of The T Circuit
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Figute D.S : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Nine Sections Of The T Circuit
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Figure D.9 : Variation Of Percentage Impedance Error With Value Of num At
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Figure ]).13 : Variation Of Percentage ImJ:)(" mce Error With Value Of num At
D:fftrent Frequencies For Fourteen Sections Of The T Circuit
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Figure D.17 : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Four Sections Of The Pi Circuit
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Figure D.t9 : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Six Sections Of The Pi Circuit
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Figure D.20 : Variation Of Percentage Impedance Error With Value Of num At
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Figul"e D,21 : Variation Of Percentage Impedance Error With Value Of num At
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Figure D.26 : Variation Of Percentage Impedance Error With Value Of man At
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Figure D.27 : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Fourteen Sections Of The Pi Circuit
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Figure·D.28 : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Fifteen Sections Of The Pi Circuit

Cl

138

... _.._. __._.,,,_,, . ":1\

o II
(), ~ ....-- .--,._/;,~.-"--.-~-,~\..--.-~-;---~--•.--.- ..- ----



2.0 2.5 3.0

num
3.5 4.0 4.5 5.0

-60

-100

-150

-200

-260

-300
1.0 1.6

-e- 60 Hz -I- 260 Hz -fro 600 Hz: -)<-1260 Hz: -S- 2600 Hz

Fi~ure L.2S' : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Two Sections Of The Improved Pi Circuit

'1(, Impodance Error
20 I I
10_1:~~~~~~~~1f~~~~~~!!~~~~~~~

-20

-30

-40

-50

_60~---J----~-----L----~----~---J-----L ~
1.0 1.5 2.0 2.5 3.0

num
3.6 4.0 4.6 5.0

-e- (50 Hz -I- 2150 Hz -6:- 1500 Hz ~ 12150 Hz -s- 21500 Hz:

Figure· D.30 : Variation Of Percentage Impedance Error With Value Of num At
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Figure D.31 : Variation Of Percentage Impedance Error With Value Of num At
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Figure'D.32 : Variation Of Percentage Impedance Error With Value Of num At
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Figure D.3~ : Variation Of Percentage Impedance Error With Value Of num At-
Different Frequencies For Six Sections Of The Improved Pi Circuit
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Figure·D.34 : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Seven Sections Of The Improved Pi Circuit
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Fi1!ure D.35 : Variation Of Percentage Impeaance Error With Value Of num At
Different Frequencies For Eight Sections Of The Improved Pi Circuit
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Figure D.37 : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Ten Sections Of The Improved Pi Circuit

% Impedance Error6r-----.-----r----,,----.-----.-----.-----.----~I Iii I I I
4 ···············,··......··•..····1...... ·.... ·..·..1.... ··.. ·...... ··1....··....·..··..i......··..·..·..·t..·..··..·..·..·~..........·..··

! i : I' :
2 ···..· ·..+..· ·I..• •..•..·..,j·..· · 1·..•..•••

I ! I Io~~~!~~;~~~~~~~~~~~--~
-2 ·..·..·..·..··+···..···..· ·I ··· ·..·j ··..·_,1 1' .

I I I I I I-4 ·..·..·..··....'·..·......·....··,......·....·....·r......·........T......·......···1"·····..·....···r....·....·....·!....
-6~--~----~----~----~----~----L-----L---~
1.0 1.6 2.0 2.6 3.0

num
3.6 4.0 4.6 6.0

-e- 50 H;: -+- 2(50 H1: -&- 600 Hz --?f- 1260 Hz: -e- 2600 Hz:

Figure· D.38 : Variation Of Percentage Impedance Error "VUh Value Of num At
Different Frequencies For Eleven Sections Of The Improved Pi Circuit
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Figure D.39 : Variation Of Percentage Impedance Error With Value Of num At
Different Frequencies For Twelve Sections Of The Improved Pi Circuit
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APPENDIX E

\....
o

Predicted Currents

This Appendix gives the stator and rotor current waveforms for the deep bar model, for

the traditional model using rotor values corrected for 50 Hz and for the traditional model

using DC rotor values respectively, All simulation!' were run in a rotor fixed reference

frame.

All results are given for the 254 kW, 3300 V, 3 phase, 50 Hz, 4 pole squirrel cage

induction motor of Section 3.8.1. The graphs are given for the motor initially at rest.

The motor is then supplied with full rated sinusoidal voltage and allowed to run up

against its own inertia.
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Figure E.2 : Stator d-axis Current _ Traditional Model DC Rotor Values Of 254
kW, 3300 V, 4 Pole Induction Motor
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