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”Brethren, I do not count myself to have apprehended; but one thing I do, forgetting

those things which are behind and reaching forward to those things which are ahead,”

Ap. Paul in Philippians 3:13, NKJV.



Abstract

In this thesis in order to study the complex dynamics of Rift Valley fever (RVF) we

combine two modelling approaches: equation-based and simulation-based modelling.

In the first approach we first formulate a deterministic model that includes two

vector populations, Aedes and Culex mosquitoes with one host population (live-

stock), while considering both horizontal and vertical transmissions. An easy

applicable expression of the basic reproduction number, R0 is derived for both

periodic and non-periodic environment. Both time invariant and time varying

uncertainty and sensitivity analysis of the model is carried out for quantifying

the attribution of model output variations to input parameters over time and

novel relationships between R0 and vertical transmission are determined providing

important information useful for improving disease management.

Then, we analytically derive conditions for stability of both disease-free and en-

demic equilibria. Using techniques of numerical simulations we perform bifurcation

and chaos analysis of the model under periodic environment for evaluating the

effects of climatic conditions on the characteristic pattern of disease outbreaks.

Moreover, extending this model including vectors other than mosquitoes (such as

ticks) we evaluate the possible role of ticks in the spread and persistence of the

disease pointing out relevant model parameters that require further attention from

experimental ecologists to further determine the actual role of ticks and other biting

insects on the dynamics of RVF. Additionally, a novel host-vector stochastic model

with vertical transmission is used to analytically determine the dominant period

of disease outbreaks with respect to vertical transmission efficiency. Then, novel

relationships among vertical transmission, invasion and extinction probabilities

and R0 are determined.

In the second approach a novel individual-based model (IBM) of complete mosquito

life cycle built under daily temperature and rainfall data sets is designed and

simulated. The model is applied for determining correlation between abundance of

mosquito populations and rainfall regimes and is then used for studying disease

inter-epidemic activities. We find that indeed rainfall is responsible for creating

intra- and inter-annual variations observed in the abundance of adult mosquitoes

and the length of gonotrophic cycle, number of eggs laid per blood meal, adults

age-dependent survival and flight behaviour are among the most important features

of the mosquito life cycle with great epidemiological impacts in the dynamics of

RVF transmission. These indicators could be of great epidemiological significance

by allowing disease control program managers to focus their efforts on specific

features of vector life cycle including vertical transmission ability and diapause.

We argue that our IBM model is an ideal extendible framework useful for further



investigations of other relevant host-vector ecological and epidemiological questions

for providing additional knowledge important for improving the length and quality

of life of humans and domestic animals.
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Chapter 1

Introduction

For many years there has been great interest in trying to understand what are the
rules that govern the spread, emergence, re-appearance and even persistence of
diseases. The emergence of infectious diseases has become a phenomenon of great
concern, especially in the case of vector-borne viral zoonoses that occasionally give
rise to human epidemics such as West Nile fever, Rift Valley fever (RVF) and
Japanese encephalitis [7]. For the past few decades the occurrence of RVF outbreaks
in endemic areas (sub-Saharan Africa) [8, 9], its emergence outside this region [10,
11] and its potential for global spread [12], has become a major concern for public
health authorities worldwide [3]. RVF occurs at irregular intervals and the disease
causes high mortality and abortion in domestic livestock, and significant morbidity
and mortality in humans [13], with devastating economic impact particularly in
vulnerable African communities with low resilience to economic and environmental
challenges [1, 11, 14]. Therefore, use of sound knowledge regarding the dynamics
of diseases and an understanding of the changing roles and relationships among
the drivers and the constraints on their spread [15] are needed for optimizing and
improving existing disease control interventions.

1.1 Background

1.1.1 Vector-borne diseases

Vector-borne diseases belong to a class of infectious diseases transmitted by the
bite of infected arthropod species, such as mosquitoes, ticks, triatomine bugs,
sandflies, and blackflies [16]. Transmission mechanisms underlying these diseases
have been well understood for more than a century. However, vector-borne diseases
continue to pose a significant burden worldwide [17]. Vector-borne diseases account
for more than 17% of all infectious diseases, causing more than 1 million deaths
annually [16]. The development of vector resistance to insecticides, changes in
public health programs, climate change, changes in agricultural practices, the
increased mobility of humans, and urban growth are all factors that contribute

1
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to the difficulty in controlling and eliminating vector-borne diseases [18]. They
have been responsible for the underdevelopment or non-development of large areas
of the tropics, especially in African countries with low resilience to economic and
environmental challenges. RVF is among the most vector-borne diseases that
disproportionately affect poor and marginalized populations in Sub-Saharan Africa.
The disease mainly affects livestock with severe socio-economic impacts in affected
countries resulting from cessation of trade in ruminants, livestock products and
livestock deaths [19]. RVF is listed as one of the neglected tropical diseases and for
many years received less attention as it was considered a disease of livestock and
wildlife only. This situation can also be reflected from the fact that there are about
1,415 known human pathogens while only about 616 pathogens of livestock are
known [20]. Similarly, very few infectious diseases of wildlife are known or studied
in any detail, and yet wildlife reservoirs may be important sources of novel emerging
human infections [21]. Further, the disease presents significant differences in the
ecology and transmission patterns of the virus in endemic regions [3]. Therefore,
understanding how to model transmission and persistence of vector-borne diseases
is of great epidemiological significance because of the different implications that
their unique transmission characteristic patterns have for veterinary and public
health worldwide.

1.1.2 RVF epidemiology and ecology

Rift Valley fever virus (RVFV), a member of the phlebovirus genus, and family
Bunyaviridae, is an enveloped virus with a segmented, RNA genome. RVF is a viral
disease that primarily affects both domestic and wild animals but is also capable of
infecting humans [22, 23]. Major host disease amplifiers are sheep, cattle and goats
but the disease also affects camels, buffaloes and other mammalian species [24],
causing high mortality, abortion and significant morbidity in domestic livestock
[13]. The disease is predominately transmitted through bite of an infected mosquito
[11, 25]. However, the majority of human infections results from direct and indirect
contact with blood or organs of infected ruminants [26]. The disease manifests itself
in humans as a fatal haemorrhagic disease syndrome, severe influenza/malaria-like
cases while in livestock it is characterized by the sudden onset of abortion in a
large proportion of the herd/flock associated with high neonatal mortality [27].

The virus has been isolated from at least 30 mosquito species in the field [27], biting
midges, blackflies and ticks [11, 28, 29], though this does not conclusively implicate
them as competent biological vectors [30]. Major vectors can be divided in two
groups: ’reservoir/maintenance’ vectors which are a certain species of mosquitoes
of the genera Aedes (mcintoshi,vexans, dentatus) associated with freshly flooded
temporary or semi-permanent fresh-water bodies [29, 31, 32] and ’epidemic/amp-
lifying’ vectors consisting of Culex (pipiens,quinquefasciatus,antennatus) species
commonly associated with permanent fresh–water bodies [11, 33].
The disease is endemic in sub-Saharan Africa and it exhibits different virus ecology
and transmission patterns in different regions of the continent [3]. In southern
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and eastern regions the disease is highly correlated to heavy rainfall and Aedes
mosquitoes are thought to be the reservoirs between epizootics [1, 14]. However,
the same cannot be said for west Africa, where no relationship between epidemics
or epizootics and heavy rainfall has been demonstrated [7, 29]. For the purpose
of model parametrization we design our models to fit disease patterns observed
in the eastern and southern regions with particular focus on East Africa. In this
region, RVF epizootics/epidemics have been largely correlated to the occurrence of
the warm phase of the El Nino/Southern Oscillation (ENSO) phenomenon [34],
associated with subsequent elevation of Indian Ocean temperatures which lead to
heavy rainfall and flooding of habitats suitable for the production of immature
Aedes and Culex mosquitoes [35, 36]. Aedes mcintosh is thought to be the reservoir
of the virus as it has the ability to transmit the pathogen transovarially to offspring
[11, 35], leading to virus persistence during dry season/inter-epidemic periods in
the endemic cycle [35]. In periods of rainfall activities, transovarially infected
adult mosquitoes may emerge in large numbers and transmit RVFV to nearby
domestic livestock populations [13]. High viraemia in these animals may then lead
to infection of secondary arthropod vector species including various Culex species
[37], and probably ticks species which are also capable of carrying RVFV [28, 29]
which further disperses the virus causing an outbreak.

1.1.3 Disease epidemic and inter-epidemic activities

Studies have shown that the disease has two distinct cycles: the epizootic/epidemic
and the enzootic/inter-epidemic also known as endemic. The existence of these
two cycles is intrinsically related to virus ecology and abiotic factors. The disease
epidemic activities occur at very irregular intervals of up to 15 years in the
southern and eastern regions of Africa as well as in the horn of Africa [1, 11, 14].
These activities are highly correlated to heavy rainfall and flooding that stimulate
hatching of infected Aedes mosquito eggs, resulting in a massive emergence of
adult infected Aedes mosquitoes. These infected mosquitoes then feed on nearby
vulnerable livestock, triggering virus amplification leading to an epizootic. An
epizootic/epidemic is mainly driven by the subsequent elevation of various Culex
mosquito populations, which serve as excellent secondary vectors if immature
mosquito habitats remain flooded for a long enough period [36]. Epizootics are
known to cause abortion storms with > 90% mortality in newborns and 10− 30%
in adults [38], stimulating human exposure to viremic livestock blood and tissue
which can occur during livestock slaughtering and care triggering outbreaks in
humans. The word epidemic refers to the rapid spread of an infectious disease on
a large number of people in a given population within a relatively short period
of time. When a similar event happens in an ruminant population it is called
epizootic. However, throughout this thesis I will use the two terms interchangeably
with more frequency on the term epidemic. Disease activities are also observed in
both mammalian host and vector populations between epidemics or post epidemics.
These are hereby referred to as disease inter-epidemic activities characterized by
sporadic cases of livestock infection at low levels during periods of average rainfall.
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However, these generally pass undetected clinically, but can be revealed where
active serological surveillance is regularly carried out in livestock [39]. Such inter-
epidemic activities have been detected without noticeable outbreaks or clinical cases
in cattle in Mayotte [40, 41], in sheep and goat in Senegal [42] and Mozambique
[43], in cattle, sheep and goats in Tanzania [3, 39] and Kenya [44–46]. It is thought
that the virus is maintained in nature through transovarial transmission from the
female Aedes mosquitoes to their eggs [11, 35], and by occasional amplification
cycles in nearby livestock. Understanding mechanisms underlying both disease
epidemic and inter-epidemic activities is a prerequisite for developing appropriate
tools useful for disease management.

1.1.4 Global Geographical Distribution of RVF

Although a RVF disease-like was first described between 1912 and 1913 at the
Naivasha area in Rift Valley province in Kenya [47], its aetiological agent was
first isolated and characterized in the 1930s in Kenya [47]. The disease is named
after its endemic location in Africa, the Great Rift Valley, which stretches 6,000
miles along the earth’s crust from Lebanon to Mozambique through East Africa
[48]. Since then the trend of its geographical expansion has increased significantly
due to several factors including increased irrigation and dams, climate change,
and movement of livestock between countries. Outbreaks have been reported in
sub-Saharan, North Africa and outside the Africa continent. In 1930-31 RVF was
reported in Kenya and Tanzania followed by epizootics in 1947 in Tanzania; 1950-51
in Kenya and South Africa; 1955-51 in Kenya, Namibia and Zimbabwe; 1956-57 in
Kenya, Tanzania and Zimbabwe; 1960-64 in Kenya and Tanzania; 1967-68 in Kenya
and Tanzania; 1969-70 in Mozambique and Zimbabwe; 1970-71 in Kenya; 1973-74
in Zambia and Sudan; 1974-75 in South Africa; 1974-76 in Namibia; 1977-78 in
Kenya, Tanzania, Zambia, Zimbabwe and Egypt. The 1977 outbreak in Egypt was
the first to occur out of sub-Saharan Africa and since then RVFV has been found
in Madagascar and smaller islands of the coast of mainland Africa [49]. Then, in
1981 and 1983 in Kenya; 1985 in Zambia; 1987 in Mauritania; 1989-91 in Kenya
and Tanzania; 1990-91 in Madagascar; 1997-1998 in Kenya, Tanzania and Somali;
1998-99 in Mauritania, Gambia and South Africa; 2000-01 in Saudi Arabia and
Yemen; 2002 in Mauritania and Gambia; 2006-07 in Kenya, Tanzania and Somali;
2007-2008 in Sudan; 2008-2009 in Madagascar and South Africa; 2010 in South
Africa, Mauritania, Botswana and Namibia [1, 3, 27, 50–55]. The 2000 and 2001
RVF outbreaks in Saudi Arabia and Yemen marked the first occurrence of the
disease out of the Africa continent. This is evidence of the potential of the disease
to extend its range to other receptive regions to the north and northeast outside
Africa, such as the Tigris/Euphrates Delta zone, which would be receptive for
RVFV transmission [27]. Studies suggest that the introduction of the disease into
new virgin areas is facilitated by aerial transport of vectors and increased livestock
movements [56], which is of great epidemiological concern that the virus will emerge
further in non-endemic areas, including the United States and temperate countries
[57, 58].
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1.2 State of the Art

Disease transmission interactions in a population are very complex so that it is
difficult to comprehend the large scale dynamics of a disease spread without the
formal structure of a mathematical model [59]. An epidemiological model uses a
microscopic description (the role of an infectious individual) to predict the macro-
scopic behaviour of disease spread through a population. This formalism allows us
to predict population-level epidemic dynamics from an individual-level knowledge
of epidemiological factors, long-term behaviour from early invasion dynamics, or
the impact of vaccination on the spread of infection [21].
In many sciences it is possible to conduct experiments to obtain information and
test hypotheses. Experiments with infectious disease spread in either human or
domestic livestock populations are often impossible, unethical or expensive. Data
are sometimes available from naturally occurring epidemics or from the natural
incidence of endemic diseases; however, the data are often incomplete due to under
reporting. This lack of reliable data makes accurate parameter estimation difficult
so that it may only be possible to estimate a range of values for some parameters
[59]. Therefore, mathematical models and computer simulations can be used to
perform needed theoretical experiments. Mathematical epidemiological models are
often used for prediction and understanding of processes underlying the spread of
a certain infection. In this thesis I consider both categories moving from under-
standing to predictive. Understanding models begin from building simple to more
complex models. In this way one can begin to understand all the rich complexities
and dynamics that are observed in the real world. Then the understanding gained
can help us to develop more sophisticated predictive models and help to gather
more relevant epidemiological data [21].
Epidemics/epizootics have been modelled mathematically for over a century. The
quantitative foundations of today’s development in infectious disease modelling are
traced back to early pioneers such as R. Ross 1908-1916, H. Hudson 1927, A. Lotka
1923, Kermack and Mckendrick 1927 and others (for more details see [60] and refer-
ences therein). From these early models, we obtain the standard categories used to
describe an epidemic by means of subgroups of the population known as compart-
ments. The SIS (Susceptible-Infected-Susceptible) model which describes diseases
for which there is no acquired immunity; the SIR (Susceptible-Infected-Removed)
model which represents diseases with acquired immunity. Further detailed struc-
tures can be obtained such as the SEIR or SLIR (Susceptible-Exposed/Latent-
Infected-Removed) model with an intermediate step which represents the latent
period between exposure and external symptoms and thus can take into account
differing degrees of infectiousness which occur during these two stages [61]. It is
still possible to divide the Infected compartment into two or more such as infected
asymptomatic or symptomatic as well as obtaining further subgroups according to
the epidemiology of the disease.
These basic epidemiological models written in the language of classical deterministic
models assume that the population being considered is uniform and homogeneously
mixing, however, most infectious diseases actually spread in a diverse or dispersed
population. In these settings, spatial effects of spread of epidemics, interaction
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between individuals, effects of individual behaviour among others are ignored.
However, implementation of such simplifying assumptions facilitates the use of
analytic techniques to gain background understanding of disease dynamics [59], in
the case of non-complex models. On the contrary, rapid growth of the mathematical
complexity is observed when systems are used to describe various aspects of disease
phenomena in sufficient detail, which may limit their practical use in specific
cases. Alternative tools are multi-agent systems [62], that are based on cellular
automata [63] or network theory. Extensive literature on multi-agent systems
exists, especially in social sciences [64] and ecology [65]. In epidemiology, despite
some individual-based models for directly-transmitted diseases [66], multi-agent
or individual-based systems have not been used to study vector-borne disease
dynamics in spatial contexts [67].

In this thesis I build my models based on two categories: the classical equation-
based (deterministic and stochastic) models and the individual-based models (IBM).
Unlike for other vector-borne diseases such as malaria, cholera, where extensive
literature in mathematical models is available, this is not the case for RVF. Two
reasons can be pointed out: (1) RVF has for long been considered a disease of
ruminants only, thus it is has been neglected; (2) the mechanisms underlying its
spread, re-emergence and maintenance in nature have not been fully understood.
The present work builds on previous studies of RVF dynamics. Favier et al. [68]
formulated and analysed a pond-level metapopulation model to assess the possibility
of RVF endemicity without wild animals providing a permanent virus reservoir,
assuming that Aedes was the sole source of virus and abundance of mosquitoes
was triggered by rainfall. Various theoretical transmission scenarios were explored
and it was shown that without livestock migration from outside the system, virus
persistence was possible if cattle moved between ponds and if rainfall did not occur
at the same time at all ponds. A novel mathematical model in a closed system based
on ordinary differential equations, with two mosquito population species Aedes and
Culex, and one population of livestock showed that the virus could persist if there
was high contact rate between hosts and mosquito vectors [69]. Another theoretical
mathematical model on RVFV dynamic transmission was proposed by Mpeshe
et al. [48] which modified the model in [69] by adding human hosts, merging all
mosquitoes into one population, and removing mosquito egg compartment and
vertical transmission. Results showed that disease prevalence in mosquitoes is
sensitive to mosquito death rate, while disease prevalence in livestock and humans
is sensitive to livestock and human recruitment rates and that isolation of livestock
from humans is a viable preventive strategy during an outbreak [48]. Later Gaff
et al. [70] extended their previous model [69] to include several disease control
measures in order to study the efficacy of countermeasures to disease transmission
parameters. Their results revealed that livestock vaccination and culling offer the
greatest benefit in terms of reducing livestock morbidity and mortality. Niu et
al. [71] extended the model in [69] to include mitigation strategies by considering
the movement of humans, livestock, and mosquitoes between patches, which cause
the geographical transfer of the virus to new receptive locations. Their study
mainly contributed by providing a methodology for analysing the likelihood of
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pathogen establishment should an introduction occur into a new area. Chitnis
et al. [5] analysed a RVF model with vertical transmission for Aedes mosquitoes
as in [69, 70] but removed compartments representing Culex mosquitoes. Their
model included an asymptomatic class for livestock. Additionally, they extended
the model to explicitly include an aquatic juvenile stage and compared versions
of the model with and without this juvenile class. They suggested that vertical
transmission is an important factor in the size and persistence of RVF epidemics.
Xue et al.[72] proposed and analysed a network model with ODE systems at the
nodes including both Aedes and Culex mosquitoes, humans and livestock while
focusing on the role of spatial heterogeneity in the spread of a single outbreak.
Using the model they were able to reproduce the different starting times of the
2010 outbreak in South Africa. Then, Xue et al. [73] extended their model for
much larger scale to investigate possible implication of virus introduction in the
US soil, and cattle movement between farms was found to be the major driver of
virus expansion. Recently, Mpeshe et al. [74] extended their previous study [48] to
include vertical transmission in Aedes species and climate-driven parameters.
From the above literature review it is more than obvious that little research
has been undertaken on this topic, and there is much room to further improve
the models to obtain more insights about the dynamics of the disease. So far,
few studies have focussed on exploring mechanisms of RVF virus circulation
during inter-epidemic periods if none. Further, models that take into account
other disease vector hosts are essential for improving our understanding of virus
maintenance in nature between epidemics. The present study intends to build on
from previous studies to more detailed models including individual-based models
(IBM) to better investigate disease epidemic and inter-epidemic activities. These
models include pathogen propagation via movement of livestock and mosquitoes,
taking into account individual’s variability and interaction with the environment
and synchronization of the mosquito life cycle with weather conditions.

1.3 Problem Statement

During RVF outbreaks domestic livestock loss can lead to food shortages, loss
of earnings and livelihoods with devastating economic impacts on the already
economically challenged vulnerable African communities with low resilience to eco-
nomic and environmental challenges [1, 11, 14]. The majority of these communities
are pastoralist, at least in East Africa and their livelihood mainly depends on
livestock production [45, 58]. In East Africa estimates indicate that the 2006/07
RVF outbreak resulted in losses amounting to more than 60 million US$ due to
disruption in trade of livestock, including costs of livestock deaths [75], with an
estimate of 27,500 human cases [45] and losses amounting to > 610 million Ksh
due to domestic livestock losses in Kenya [76].
Currently, two types of vaccines are available for livestock: inactivated whole-virus
and live-attenuated Smithburn vaccines [27]. Inactivated vaccines can be applied
to ruminants of all ages without causing abortions but they are expensive and
repeated doses are required, which makes it difficult to sustain in RVF affected
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countries for economic reasons [11]. On the other hand, live-attenuated vaccines
are cheap and effective. They confer a lifelong immunity with a single dose [77].
However, they may lead to fetal abnormalities and abortions in pregnant ruminants
and there is the safety concern of reversion to virulence [78]. Therefore, alternatives
are required in order to minimize the burden posed by the disease during outbreaks.

RVF is known to occur in outbreaks that come in cycles of up to 15 years after
heavy rainfall and floods [11]. Climate variability and the occurrence of the El
Niño/Southern Oscillation (ENSO) phenomenon lead to heavy rainfall which stimu-
lates massive emergence of disease potential vectors [34], however it remains unclear
the exact role of rainfall on the temporal characteristic pattern of disease outbreaks.
On the other hand, there is more and more evidence of RVF transmission during
the inter-epidemic period [3, 39, 44–46]. However, these generally pass undetected
clinically, but can be revealed where active serological surveillance is regularly done
in either livestock or human populations [39]. RVF maintenance in nature between
epidemics both in the mammalian host and vector populations has not been fully
explained. This is partly due to the limited evidence that has been gathered and
knowledge of the other factors driving its maintenance in a particular geographical
scale. Such factors interact in diverse ways in different geographical regions of
Africa or beyond and may play a crucial role in vector population dynamics and
disease transmission.

Understanding underlying factors leading to disease epidemic and inter-epidemic
activities is central for disease management. What could be the actual role of
intensive rainfall and flooding regimes regarding the characteristic pattern of disease
outbreaks? Could RVF outbreaks build up from disease inter-epidemic activities?
Both climatic and weather conditions increase the number of breeding sites for
mosquitoes resulting in an increase in the number of vectors and therefore more
intense virus transmission and circulation [79], enhancing risk of vector-borne
disease infection. An increase in temperature increases the development rate of
each stage of the mosquito, hence reduces time from egg to adult. Hence, rapid
emergence of young adults is triggered enhancing risk of disease transmission. What
features of the mosquito life cycle affect mosquito population dynamics? Is there
any correlation between abundance of mosquitoes and rainfall events? The virus
outlives in nature between outbreaks through infected eggs from some female Aedes
mosquitoes. Is there any correlation between abundance of mosquitoes and RVF
incidences during the inter-epidemic period (IEP)? What are the factors during
the mosquito life cycle that contribute to disease inter-epidemic activities? What
are the necessary levels of vertical transmission to maintain the disease between
outbreaks? The present research aims to test the above mentioned hypothesis by
means of mathematical models and computer simulation models. These models are
to be used to learn many characteristics of disease outbreaks such as the probability,
size, and duration time of an epidemic, or the probability for the epidemic to die
out. On the other hand understanding mechanisms of disease persistence during
inter-epidemic period may help to stop an outbreak at early stages by controlling
parameters that are key drivers of the spread of the disease. The developed models
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may also be used to explore post-epidemic activities for enhancing the utilization of
rapid response measures and observe the impact over time under varying scenarios.

1.4 Research Objectives

The goal of the study is therefore to develop models for analysing and understanding
the epidemic and inter-epidemic activities of RVF and use the outcome for improving
the disease management strategies.

1.4.1 Specific Objectives

The specific objectives are:

1. To formulate and assess model parameter sensitivity to RVF transmission
and prevalence and the impact of vertical infection for the persistence of the
disease.

2. To explore the stability of equilibrium points of the RVF model.

3. To explore means of predicting RVF outbreak periods based on the disease
inter-epidemic activities.

4. To develop an approach that provides a framework for analysing systems of
ecological and inter-epidemiological interactions of RVF drivers.

5. To explore possibilities of adjusting current RVF management strategies to
help reduce the disease impact.

1.5 Thesis Contribution

Efforts have been capitalized on formulating and analysing disease mathematical
models for both RVF epidemic and inter-epidemic activities. The models include
both mammalian and vector hosts. Further, individual-based models that incorpor-
ate effects of environment, temperature, rainfall, individual’s variability, behaviour
and mosquito life cycle have been studied to explore various hypotheses regarding
small scale movement of vectors, mosquito life cycle, and effects of climatic condi-
tions in the spread of the disease. The present thesis is a valuable contribution to
both the academic community and decision makers. Below major contributions
are outlined:

1. Vertical transmission on Aedes mosquitoes, which is central to understanding
initial disease spread and persistence has been included and thoroughly
investigated.
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2. The livestock infected class was further divided into two compartments of
asymptomatic and symptomatic infected animals for examining their impact
in the spread of the disease in both cases of severe and non severe outbreaks.

3. In the deterministic model, effects of seasonality were modelled by imple-
menting an extrinsic forcing function in the oviposition rate for both Aedes
and Culex mosquitoes for determining the actual contribution of rainfall in
the temporal characteristic patterns of RVF outbreaks.

4. An explicit expression of the basic reproduction number, R0 for non and
periodic environment considering both vertical and horizontal transmission
was computed and assessed for different disease control strategies.

5. Both time invariant and time varying uncertainty and sensitivity analysis
were performed for both the measure of the initial spread of the disease, R0

and the measure of disease prevalence providing new light as to how each
model parameter contributes to disease dynamics at every important stage of
the epidemic which is central for designing appropriate intervention programs.

6. Stability analyses of the deterministic model were conducted for establishing
critical conditions of disease spread and extinction. Bifurcation and chaos
analyses were explored for determining fluctuations found in RVF empiric
outbreak data, as well as the non deterministic nature of both RVF epidemic
and inter-epidemic activities.

7. A model with additional vectors other than mosquitoes was formulated and
analysed for determining the possible contribution of ticks in the spread and
persistence of RVF.

8. Relationships among disease invasion and extinction probabilities and the
basic reproduction numbers are analytically derived from a stochastic host-
vector model with vertical transmission. Additionally the theoretical dom-
inant period of disease outbreaks is determined and will be compared with
actual prediction when reliable data become available.

9. Novel relationships among temperature, rainfall and abundance of mosquitoes
are determined. Furthermore, important stages of the mosquito life cycle in
disease spread are identified allowing disease managers to focus their efforts
on specific features of the mosquito life cycle.

10. Correlation between abundance of mosquitoes and RVF incidence cases
during the inter-epidemic period was determined and contributions of vertical
transmission to disease inter-epidemic activities are characterized in detail.

1.6 Methodology and Thesis Outlines

In order to investigate the dynamics underlying both epidemic and inter-epidemic
activities of RVF we build models that range from classical approaches to more
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recent ones. In the first part we formulate and analyse two mathematical epi-
demiological models: one based on ordinary deterministic differential equations
(ODE) and the other on stochastic processes and simulations. In the second part
we formulate and analyse an individual-based model of the mosquito life cycle.
The first part consists of four chapters. Chapter 1 provides a general introduction
to the thesis. In Chapter 2 which corresponds to specific objective 1 we formulate
an ODE model that accounts for one population of livestock (we do not make
distinction of whether sheep, cattle or goats), one population of Aedes mosquitoes
and one population of Culex mosquitoes. For Aedes we incorporate mechanisms
of vertical transmission and for livestock we include mechanisms underlying the
development of symptoms in each individual livestock, given that even in scenarios
of severe outbreaks some infected livestock presents no symptoms. We use this
model to derive an explicit formula for the basic reproduction number, R0 then we
use R0 to study the relative importance of vertical transmission in the spread and
persistence of the disease over a long time period. Furthermore, using techniques of
uncertainty and sensitivity analysis we carry out a systematic investigation of the
relative importance of every model parameter to the initial spread and prevalence of
the disease [80]. In Chapter 3 which is related to the specific objective 2 we use the
model developed in Chapter 2 to analytically study the stability behaviour of the
steady states of the model and by means of numerical simulations we investigate
the attractors structure of the steady states under the influence of external forcing
[4]. The external forcing functions are used to mimic the effects of rainfall in
the emergence of new cohorts of mosquitoes. Optimal climatic conditions and
the presence of mosquitoes have not fully explained the dynamics of both disease
epidemic and inter-epidemic activities. Therefore, in Chapter 4 we extend the
previous model to include another vector host (a ticks species of genera Hyalomma
truncatum) that have been implicated in the transmission of the virus. This aims
to examine the possible role of additional vectors (for example ticks) in the spread
of the disease. This Chapter results from an extension of the specific objectives
1 and 2. In Chapter 5 which corresponds to specific objective 3 we formulate a
stochastic host-vector model for investigating the relationships among the invasion
probabilities, extinction and basic reproduction numbers. Further, we use the
model for predicting the temporal characteristic pattern of disease outbreaks.
In Chapter 6 we develop an individual-based model (IBM) of the mosquito life cycle
based on daily temperature and rainfall data. Then we use the model to investigate
the correlation between climatic conditions and abundance of mosquitoes, and
determine features of the mosquito life cycle that affect the mosquito population
dynamics. In Chapter 7 we extend the model developed in Chapter 6 to study
spread of the disease during the inter-epidemic period in livestock and assess the
relationship between abundance of mosquitoes and RVF incidence cases. The model
is also applied to assess different levels of vertical transmission responsible for
disease inter-epidemic activities and determine important features of the mosquito
life cycle that affect the transmission and persistence of the disease.
In Chapter 8 we conclude the thesis summarising what we have learnt about the
different models and methodologies. In addition we summarise several future
studies suggested by these investigations.



Chapter 2

Uncertainty and Sensitivity
Analysis of a Rift Valley fever
Model1

2.1 Introduction

Rift Valley fever (RVF) is a vector-borne viral disease caused by RVF virus (RVFV)
belonging to the genus Phlebovirus of the family Bunyaviridae [22]. The virus
infects primarily both wild and domestic livestock, however it is also capable of
infecting humans. In ruminants, infection can produce high rates of abortion
and significant morbidity and mortality [81]. Livestock losses can lead to food
shortages, loss of earnings and livelihoods with devastating economic impacts,
particularly in vulnerable African communities with low resilience to economic and
environmental challenges [1, 11]. The 2006-07 RVF outbreak in East Africa was
the most widespread with total number of deaths of 16,973 in cattle, 20,193 in
goats and 12,124 in sheep resulting in economic losses amounting to US$32 million
in Kenya alone [76]. The disease is endemic in much of sub-Saharan Africa [9] with
significant differences in the ecology and epidemiology of the disease. The disease
occurs in two distinct cycles: the enzootic/endemic and the epizootic/epidemic
cycles [13]. The enzootic transmission occurs at low levels in nature during periods
of average rainfall (low moisture) in which the virus is maintained through vertical
transmission from the female Aedes mosquito to eggs and through occasional
amplification cycles in susceptible livestock [11, 35]. The epizootic cycle appears at
irregular intervals, after heavy rainfall and floods (high moisture), which stimulate
the hatching of infected Aedes mosquito eggs, resulting in a massive emergence of
Aedes with subsequent elevation of various Culex species that serve as the amplifiers
of the disease [13, 36].
Vector control in either adult or mosquito larvae and livestock vaccination are

1This chapter has been published: S.A. Pedro et al., Uncertainty and sensitivity
analysis of a Rift Valley fever model, Applied Mathematics and Computation (2016),
http://dx.doi.org/10.1016/j.amc.2016.01.003
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among the most effective disease control and public health intervention measures.
However, the effectiveness of any intervention program depends mainly in our
knowledge of disease transmission, threshold concept in the epidemiology of the
disease and disease parameters that govern its spread. The basic reproduction, R0

is one of the foremost concepts in the epidemiology of the disease [82], which is
widely used to quantify the spread of the disease at early stage of the epidemic. This
quantity is either derived from data or from mathematical models that describe the
dynamics of the disease. Mathematical models consist of parameters and initial
conditions for independent and dependent variables. In most cases these parameters
are not known with sufficient degree of certainty due to natural variations and
error in measurements [83].
Uncertainty and sensitivity analysis of model parameters is very important for
quantifying these variations and uncertainties. For example, sensitivity analysis
enhances our understanding and guide in developing appropriate measures for
disease control. Uncertainty analysis is used to explore the uncertainty in the
model output that is generated from uncertainty in input parameters [83] while
sensitivity analysis assesses how variations in model outputs can be attributed
qualitatively and quantitatively to different input parameters [84]. Although the
field of mathematical epidemiology is well established very few models of RVF
have been developed and analysed. This is in part due to the fact that the disease
for many years was known as a disease of ruminants only. Thus, receiving little
attention from various stakeholders. In the recent past few RVF mathematical
models have been developed, see [4, 5, 48, 69, 71, 72, 74] and references therein.
However, only few studies have performed uncertainty and sensitivity analysis of
RVF epidemic models to the parameters and to the endemic equilibrium state
[5, 48, 69, 71]. These studies have determined the relative importance of various
parameters in RVF transmission and spread characterized by R0 using sampling-
based uncertainty and sensitivity analysis techniques, with exception of Mpeshe et
al.[48] who applied sensitivity indices of the endemic equilibrium point to the model
parameters. Still, two main questions remain not completely explored: (1) what is
the role and contribution of vertical transmission from Aedes mosquitoes for both
disease epidemic and endemic activities? (2) What is the time contribution of each
model parameters to model output variations during an outbreak? The former
question is central to our understanding of the relative importance of various input
parameters as the disease evolve with time. The same input model parameter may
contribute to model output variations in different ways as the model evolves with
time. That is, for instance at the beginning of an outbreak the parameter may be
positively correlated to the size of the epidemic but at the peak of the outbreak this
correlation may inverse [83]. To the best of our knowledge these types of analyses
are missing in disease models, particularly to vector-borne disease models such as
RVF models.
Therefore, in this paper we use our previous RVF model [4] to systematically study
the sensitivity of both the measure of the initial spread of the disease, R0 and the
measure of disease prevalence, represented by the endemic equilibrium state, E∗ to
both low and high moisture model parameters. The initial spread of the disease
depends on the competence of primary vectors, the Aedes mosquitoes through
vertical transmission [4]. Hence, we start our analysis by investigating the relative
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importance of vertical transmission in disease transmission and persistence. Then
we proceed with sensitivity analysis of the basic reproduction number, R0 using
two approaches: one based on local derivatives and the other on sampling-based
method, that is, Latin hypercube sampling (LHS) on combination with partial rank
correlation coefficient (PRCC). Furthermore, we perform uncertainty and sensitivity
analysis of some chosen model state variables (Uninfected eggs, U1, Exposed Aedes
E1, Infected Aedes I1, Infected symptomatic host A2, Infected symptomatic host
I2, Exposed Culex E3 and Infected Culex I3) to model input parameters at a
particular time during the course of the outbreak. In addition, we compute the
sensitivity indices of the endemic equilibrium state, E∗ using local derivatives in
order to assess the relative importance of different input parameters to disease
prevalence. Finally, in order to assess whether significance of each parameter
occurs over an entire time interval during model dynamics, we investigate the rank
correlation coefficient (RCCs) for multiple time points and plot them versus time.
We show that during endemic cycle (low moisture) vertical transmission drives
the persistence of the disease. In addition, a threshold of this rate is required
for virus reproduction and subsequent propagation. However, during periods of
outbreaks (high moisture) the effect of vertical transmission is significant in the
first transmission cycle and may actually reduce the time of the outbreak. Our
analysis sheds new light on the relative importance of the most significant input
parameter for both disease epidemic and endemic/inter-epidemic activities for both
single and multiple time points. Time varying sensitivity analysis provides to
our understanding deep insights about how each parameter contributes to disease
dynamics at every important stage of the epidemic which is central for designing
appropriate intervention strategies.

2.2 RVF Model

The RVF model in [4] consists of a system of nonlinear ordinary differential
equations, that describes disease transmission through interaction among Aedes,
Culex mosquitoes and livestock. The Aedes mosquito population is divided into
5 compartments: Uninfected eggs P1, Infected eggs U1, Susceptible adults S1,
Exposed adults E1 and Infected adults I1 and their total population size is given by
N1 = S1 +E1 + I1. The Culex mosquito population is divided into 4 compartments:
Uninfected eggs P3, Susceptible adults S3, Exposed adults E3 and Infected adults
I3 and their total population size is given by N3 = S3 + E3 + I3. The livestock
population has 4 compartments: susceptible S2, Infected asymptomatic A2, Infected
Symptomatic I2 and Recovered R2. The total population size is given by N2 =
S2 +A2 + I2 +R2. The set of equations that describe the system is given below (see
systems (2.1-2.3)) and the description of parameters and their respective baseline
values and ranges are given in Appendix A.
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Aedes

Ṗ1(t) = b1(N1 − q1I1)− θ1P1,

U̇1(t) = b1q1I1 − θ1U1,

Ṡ1(t) = θ1P1 −
σ1σ2β12

σ1N1 + σ2N2

I2S1 −
σ1σ2β̃12

σ1N1 + σ2N2

A2S1 − d1
S1N1

K1

,

Ė1(t) =
σ1σ2β12

σ1N1 + σ2N2

I2S1 +
σ1σ2β̃12

σ1N1 + σ2N2

A2S1 − γ1E1 − d1
E1N1

K1

,

İ1(t) = γ1E1 + θ1U1 − d1
I1N1

K1

,

(2.1)

Livestock

Ṡ2(t) = b2N2 −
σ1σ2β21

σ1N1 + σ2N2

I1S2 −
σ3σ2β23

σ3N3 + σ2N2

I3S2 − d2
S2N2

K2

,

Ȧ2(t) = (1− θ2)
σ1σ2β21

σ1N1 + σ2N2

I1S2 + (1− θ2)
σ3σ2β23

σ3N3 + σ2N2

I3S2 − ε̃2A2 − d2
A2N2

K2

,

İ2(t) = θ2
σ1σ2β21

σ1N1 + σ2N2

I1S2 + θ2
σ3σ2β23

σ3N3 + σ2N2

I3S2 − ε2I2 − d2
I2N2

K2

−m2I2,

Ṙ2(t) = ε̃2A2 + ε2I2 − d2
R2N2

K2

,

(2.2)

Culex

Ṗ3(t) = b3N3 − θ3P3,

Ṡ3(t) = θ3P3 −
σ3σ2β32

σ3N3 + σ2N2

I2S3 −
σ3σ2β̃32

σ3N3 + σ2N2

A2S3 − d3
S3N3

K3

,

Ė3(t) =
σ3σ2β32

σ3N3 + σ2N2

I2S3 +
σ3σ2β̃32

σ3N3 + σ2N2

A2S3 − γ3E3 − d3
E3N3

K3

,

İ3(t) = γ3E3 − d3
I3N3

K3

.

(2.3)

Note that the natural death rate di
IiNi
Ki

is also denoted as µi for i = 1, 2, 3. Table
2.1 gives description of the state variables and further details regarding the model
are given in the next chapter.
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Variable Description

P1 Number of uninfected Aedes mosquito eggs
Q1 Number of infected Aedes mosquito eggs
S1 Number of susceptible Aedes mosquitoes
E1 Number of exposed Aedes mosquitoes
I1 Number of infected Aedes mosquitoes

S2 Number of susceptible livestock
E2 Number of exposed livestock
A2 Number of asymptomatic livestock
I2 Number of infected livestock

P3 Number of uninfected Culex mosquito eggs
S3 Number of susceptible Culex mosquitoes
E3 Number of exposed Culex mosquitoes
I3 Number of infected Culex mosquitoes

Table 2.1: State variables for the model system (3.1-3.3)

2.3 Model Analysis

2.3.1 Basic Reproduction Number, R0

In host-vector systems R0 is described as the expected number of secondary
infections after one average, complete (host-vector-host or vector-host-vector)
transmission cycle [85]. An analytical expression of the basic reproduction, R0 has
been derived in [4] and R0 for horizontal transmission only is given by

R0,H =√
(1−θ2)(l03)2β23β̃32γ3N0

2N
0
3

b3(ε̃2+b2)(γ3+b3)
+

(1−θ2)(l01)2β21β̃12γ1N0
1N

0
2

b1(ε̃2+b2)(γ1+b1)
+

θ2(l03)
2β23β32γ3N0

2N
0
3

b3(ε2+b2+m2)(γ3+b3)
+

θ2(l01)
2β21β12γ1N0

1N
0
2

b1(ε2+b2+m2)(γ1+b1)

(2.4)

where l01 =
σ1σ2

σ1N0
1 + σ2N0

2

and l03 =
σ3σ2

σ3N0
3 + σ2N0

2

. When strictly defined as the

reproductive rate of the pathogen, R0 (obtained via the next generation-matrix)
for the overall model that accounts for both vertical infection and horizontal
transmission is given by:

R0 =
q1

2
+

1

2

√
q2

1 + 4R2
0,H . (2.5)

In the absence of vertical transmission, q1 = 0, R0 = R0,H is the geometric
mean of the number of new infections in livestock from Aedes and Culex infected
mosquitoes, and the number of new infections in both species of mosquitoes from
an infected ruminant (asymptomatic or symptomatic), in the limiting case that
both populations are fully susceptible. Thus, R0,H can be described in four parts,
corresponding to the Aedes-asymptomatic livestock interaction, Aedes-symptomatic
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livestock interaction, the Culex-asymptomatic livestock interaction and Culex-
symptomatic livestock interaction. On the other hand, the reproduction number
R0,H can be written as follows:

R0,H =

√
(l03)

2β23γ3N0
2N

0
3

b3(γ3+b3)

[
(1−θ2)β̃32

ε̃2+b2
+ θ2β32

ε2+b2+m2

]
+

(l01)
2β21γ1N0

1N
0
2

b1(γ1+b1)

[
(1−θ2)β̃12

ε̃2+b2
+ θ2β12

ε2+b2+m2

]
.

(2.6)

2.3.2 Vertical transmission and reproductive numbers

At early stage of an epidemic/epizootic vertical transmission from the female Aedes
mosquitoes is likely to have a significant impact. An increase in the number of
infectious Aedes mosquitoes directly affects the number of secondary infections
and indirectly increases the transmission from livestock to mosquitoes and back
to livestock. The number of secondary infections at initial spread of the disease
is usually described by R0. The basic reproductive number, R0 is defined as the
average number of secondary infections caused by a single infected individual in
an otherwise susceptible population during his infectious life period. However,
R0 obtained through the next generation method does not produce the exact
expected number of secondary cases in a host-vector disease such as RVF, but
rather the geometric mean of the number of secondary infections per generation.
Therefore, to carefully determine the relationship between vertical transmission and
the reproduction number we apply the approach used in [85] where we define type
reproductive numbers as follows: the number of new infected hosts caused by a single
infected host, T h1 and the number of new infected vectors caused by a single infected
vector, T v1 . Since the model accounts for vertical transmission from the female
Aedes mosquito, R0 then represents the expected number of secondary infections
after a complete average (host-vector-host or vector-host-vector) transmission cycle,
but it does not correspond to a specific transmission cycle. Therefore, the type
reproductive number that describes the total average number of secondary host
infections required to account for vector-vector transmission cycles that occur
during both disease cycles is given by

T h1 =
R2

0,H

1− q1

(2.7)

and the vector type reproductive number is given by

T v1 = q1 +R2
0,H . (2.8)
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Figure 2.1: Relationship between percentage efficiency of vertical transmission
with both complete transmission cycle R2

0 and type reproductive numbers T v1 and
T h1 . This relationship is depicted for both low moisture parameters ( see (a)-(c))
and high moisture parameters (see (d)-(f)) while varying the initial number of
livestock N0

2 and keeping initial number of adult mosquitoes constant N0
1 and

N0
3 . All other parameter values are in Table A.1.

Figure 2.1 describes the behaviour of both complete transmission cycle R2
0 and

type reproductive numbers T v1 and T h1 below and above unity for both low and high
moisture parameters depending on the percentage efficiency of vertical infection.
From (a)-(c) we depict this relationship for low moisture parameters given in
Appendix A Table A.1 for different values of initial number of livestock N0

2 while
keeping constant the initial number of adult Aedes and Culex mosquitoes N0

1 and
N0

3 respectively. We observe that vertical infection efficiency leads to a linear
increase in the basic reproductive number and vector type reproductive number but
an exponential increase in the host type reproductive number. Aedes eggs, after
maturing hatch during the next flooding event, leading to emergence of probably
the first generation of vertically infected Aedes mosquitoes. Thus, the higher the
proportion of vertical infection the higher the quantity of R0 and T v1 is, since
at the beginning of each rainy season, Aedes mosquitoes quickly grow towards
the maximum densities. As infected Aedes mosquitoes feed on nearby vulnerable
livestock, they trigger virus amplification resulting in an exponential increase of T h1
in the subsequent generations or transmission cycles. This is furthermore enhanced
through subsequent elevation of secondary vectors including various Culex species
that amplify the spread of the disease. In (a) and (b) the trajectories of all
reproductive numbers are almost indistinguishable for vertical infection efficiency
of up to 20%. A clear divergence begins when vertical infection is around 40%.
This suggests that a certain level of vertical transmission efficiency should be met
for the initial spread of the disease [4]. Nevertheless, the efficiency of vertical
infection is a function of moisture since high moisture leads to massive hatching
of mature eggs. This is confirmed by Figures (d)-(f) depicting the relationship
between vertical infection efficiency and all reproductive numbers. Here the host
type reproductive number quickly accelerates even for vertical infection less than
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5%. In (c) an interesting feature is observed. All reproduction numbers lie below
unity for vertical infection efficiency below 60% with a substantial divergence when
vertical infection is above 60%. The divergence between T h1 and R0 reveal the
degree to which initial spread of RVF outbreaks depends on vertical infection
efficiency. However, if the initial number of livestock, N0

2 is kept higher we observe
a substantial decrease in the magnitude of all reproductive numbers. This suggests
that if the ruminants stay together in large herds the effort it takes for each
domestic livestock to prevent a mosquito bite (such as switching its tail) is likely
to be more effective than if there were in small herds.
Two types of vaccines (live vaccine and inactivated vaccine) can be used to reduce
the negative impacts of RVF morbidity and mortality in livestock. However, the
current live vaccine cannot be used for prevention because it is not sustainable in
current RVF affected countries due to economic limitations [1, 74, 86]. In such
conditions, reducing vector population is the most viable disease control measure.
R0 is a quantity that is directly related to the initial spread of an epidemic,
heavily used for disease prevention. But, it is also used to guide eradication efforts
when a disease is endemic [87]. In this case we define the eradication effort as
the percentage reduction in vector population size required to prevent disease
transmission and persistence [85]. This means that either the vector or host type
reproductive numbers should be kept below the threshold. Thus, using the host
type reproductive number, the eradication effort is 100(1 − 1/T h1 ). Therefore,
the efficiency of vertical infection is linearly related to the eradication effort, as
shown in Fig.2.2, and vertical infection at x% can be responsible for at most x%
of the required eradication effort. Again, we observe that increasing the initial
number of livestock, N0

2 the magnitude of eradication effort required to prevent
the spread of the disease reduces dramatically. Note that we have only considered
eradication effort for high moisture parameters only. This is due to the fact that
the relationship between eradication effort and percentage efficiency of vertical
infection for low parameters follows the same behaviour as for parameters for high
moisture.

Figure 2.2: Percentage of mosquito population that must be removed to
reduce the host type reproductive number below unity and eradicate the virus,
depending on the efficiency of vertical infection for high moisture parameters
and for different values of initial number of livestock N0

2 . The values of all other
parameters are given in Table A.1.
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2.3.3 Vertical transmission and persistence of RVF

The derivation of R0 via the next generation method is obtained when the disease-
free state is at equilibrium, which makes R0 very useful to describe initial spread
of the disease. Hence, R0 is not appropriate to describe the potential for long term
circulation of the virus, that is, during inter-epidemic periods. Persistence may be
affected by seasonal fluctuations, low mosquito-livestock transmission cycles due to
low population densities, high levels herd immunity, long viral incubation period
or many other factors [4, 5, 85]. Since the disease persists during inter-epidemic
periods through transovarial transmission from the female Aedes mosquito to eggs,
we only focus on the role of vertical transmission by considering a proportion of
infected newly born and adult Aedes mosquito populations with no transmission
between mosquitoes and livestock or vice versa. Therefore, we describe the process
through a pair of ordinary differential equations:

dU1

dt
= b1q1I1 − θ1U1

dI1

dt
= θ1U1 − µ1I1

(2.9)

where µ1 = d1N1

K1
.

In the absence of mosquito-livestock transmission, one may expect long term viral
extinction. However, this is not the case for RVF disease which is mediated by
various vectors and one of them is Aedes mosquitoes whose eggs undergo diapause.
The system (2.9) can be solved subject to the initial condition of U0

1 of infected
pre-adults and I0

1 of infected adults. Since part of the solution is multiplied by
exp(−(µ1 + θ1 + φ)) which makes it decay very rapidly and can be discarded to
give a good approximate solution for the total number of infections at time t,
I(t) = U1(t) + I1(t) is given by:

I(t) =
(φ+ µ1 + θ1)U0

1 + (φ+ µ1 + 2b1q1 + θ1)I0
1

2φ
e−

(µ1+θ1−φ)t
2 (2.10)

where φ =
√

(µ1 − θ1)2 + 4b1q1θ1.
The quantity, I(t) represents a decay process and can be used to determine the
half-life, t1/2 which is the amount of time required for I(t) to fall to half its value.
Thus, the approximated time until the number of infected mosquitoes is reduced
by 50% is given by

t(1/2) =
2

µ1 + θ1 − φ
ln

[
(U0

1 + I0
1 )φ

(φ+ µ1 + θ1)U0
1 + (φ+ µ1 + 2b1q1 + θ1)I0

1

]
(2.11)

and the approximated time until the number of infected mosquitoes is less than
unity is:

te =
2

µ1 + θ1 − φ
ln

[
2φ

(φ+ µ1 + θ1)U0
1 + (φ+ µ1 + 2b1q1 + θ1)I0

1

]
. (2.12)
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Both half-life and total time to extinction increase with vertical infection efficiency
see Fig.2.3. The rate at which percentage efficiency of vertical infection extends
both half-time and total time to extinction is exponential. For both Figures 2.3(a)
and (b) U0

1 = I0
1 = 10, but half-life does not depend on the initial conditions.

However, the approximate time until the number of infected mosquitoes is less
than unity increases substantially with increments in the values of initial conditions
U0

1 and I0
1 (see (b)-(d)). It is worth noting that we have plotted half-time and

additional time only for high moisture parameters. This is because we are interested
in quantifying these indicators in case of outbreaks activities and not inter-epidemic
activities. During inter-epidemic activities the infection may pass undetectable as
infection remains asymptomatic or dormant within livestock hosts. Nevertheless,
both half-time and additional time to extinction for low moisture parameters follow
the same trend as for high moisture parameters but with reduced time.

Figure 2.3: Time taken for the density of Aedes mosquitoes to fall by half
and unity depending on the efficiency of vertical transmission if no transmission
between mosquito and livestock for high moisture parameters. (b)-(d) approxim-
ate time until the number of individuals is less than unity for different initial

conditions. All other parameters are given in Table A.1.

2.4 Sensitivity Analysis of R0

In order to assess the impact of the parameters and decision rules within the
model, a sensitivity analysis is performed to determine how sensitive the model is
to changes in the parameters value as well as to determine the parameters that
have the most influence on the stability/instability of the equilibrium points and
on the reproduction number. We also assess the relative importance of different
factors responsible for transmission and prevalence of RVF to better determine
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how to reduce the livestock mortality and morbidity. Initial disease transmission
and endemicity are directly related to R0. In the following section we compute the
sensitivity indices of R0 based on perturbation of fixed point estimation [88], also
known as normalized forward sensitivity index [89].

2.4.1 Sensitivity indices of R0

Sensitivity indices for the basic reproduction number, R0 change with the change
in input parameter values. Here we study these variations in parameter values in
order to explore the relative importance of different drivers responsible for disease
transmission. The sensitivity indices for R0 are given by

ΓR0
ψ =

∂R0

∂ψ
× ψ

R0

(2.13)

where ψ represents an arbitrary model parameter. For more details in the derivation
of the above formula see [88, 89]. The sensitivity indices of R0 with respect to all
model parameters for both low and high parameter values are shown in Table 2.2.
For both low and high parameter values, the sensitivity indices for q1, θ2, σ1, σ2, σ3,
β12, β21, β23, β32, β̃12, β̃32, γ1, γ3, N

0
1 and N0

3 are positive and the remaining are neg-
ative. The sign of the sensitivity indices of R0 suggests a monotonic relationship
between R0 and the parameters. That is, an increase/decrease on parameters
increases/decreases R0, which agrees with the intuitive expectation from the model.
For both low and high parameter values the Aedes death rate and the number
of times an Aedes mosquito would bite a host are the most sensitive, followed by
the probability of transmission from an infected Aedes mosquito to a susceptible
host. However, for low parameter values, the initial number of livestock N0

2 , initial
number of Aedes N0

1 , the recovery rate of the infected symptomatic host and the
number of bites a Culex mosquito would bite a host are more sensitive than the
corresponding high parameter values. For both low and high parameter values in
order to have 10% decrease in the value of R0 it is necessary to increase the Aedes
deaths by 2.8605% and 0.1095% respectively; decrease σ1 by 4.1952% and 1.3459%
respectively. The explanation for other sensitivity indices is similar.
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Low Parameters R0 = 0.8560 High Parameters R0 = 4.8681

Parameters Sensitivity Indices Corresponding Changes Sensitivity Indices Corresponding Changes
b1 −0.5718 +2.8605 −0.3750 +0.1095
b2 −0.0051 +6.4607 −0.0004 +1.4925
b3 −0.2668 +6.1309 −0.1719 +0.2391
q1 +0.0614 −19.0398 +0.0104 −19.7946
θ2 +0.1967 −35.6357 +0.1039 −11.8577
σ1 +0.6962 −4.1952 +0.5037 −1.3459
σ2 +0.1343 −1652.2703 +0.2551 −152.9760
σ3 +0.3248 −8.9916 +0.2308 −2.9370
β12 +0.2816 −29.0399 +0.2241 −6.4160
β21 +0.3939 −6.2285 +0.3393 −1.2713
β23 +0.18378 −9.5353 +0.1555 −1.9817
β32 +0.1437 −40.6559 +0.1143 −8.9824

β̃12 +0.1123 −31.2130 +0.1152 −5.3493

β̃32 +0.0401 −43.6982 +0.0411 −7.4891
γ1 +0.1779 −11.1646 +0.0357 −9.7770
γ3 +0.0830 −23.9291 +0.0164 −21.3360
ε2 −0.3014 +9.6915 −0.1879 2.7328
ε̃2 −0.1507 +19.3805 −0.1562 3.2884
m2 −0.1205 +9.6915 −0.1503 +2.7328
N0

1 +0.3023 −386470.8209 +0.1644 −249965.7111
N0

2 −0.4433 +26351.9978 −0.2397 +8570.8127
N0

3 +0.0263 −828321.1332 +0.0753 −545493.0811

Table 2.2: Sensitivity indices of R0

2.4.2 Uncertainty Analysis of R0

Many of the parameters in this model, although they have biological interpretations,
are either known imprecisely or vary significantly from region to region, taking on
a range of values. Therefore, it is necessary to see how the outcome of the model
may vary over these ranges of plausible parameter values.
We employed the technique of Latin Hypercube Sampling [83], which belongs to
the Monte Carlo class of sampling methods. Latin hypercube sampling technique
is a stratified sampling without replacement, where each parameter distribution is
divided into N equal probable intervals, which are then sampled. For each input
parameter we have assumed a normal distribution across the ranges listed in the
second table in Appendix A. We then calculated R0 as the model output using
n = 5000 sets of sampled parameters. Averaging R0 over all parameter sets gives a
mean of 1.19 and a median of 1.18.
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Figure 2.4: Significance test of model parameters and PRCC results for R0 for
5000 simulations. The (∗) denotes PRCCs that have P-value < 0.01.

We used the partial rank correlation coefficient (PRCC) to assess the significance of
each parameter with respect to R0. Partial rank correlation characterizes the non-
linear but monotonic relationship between outputs and inputs [83] and it has been
successfully used to characterize the linear relationship between rank-transformed
inputs Xranked(i) and output Yranked after the linear effects on the output Yranked of
the remaining inputs are discounted [70]. The results are shown in Figure 2.4. The
sign of the correlation coefficient indicates the direction of the relationship and the
value of the correlation indicates the strength of the relationship between input
parameters and model output. The more the p-value is close to zero the more the
parameter is significant. The per capita birth rate/death rate b1, b2 and b3 show
moderate influence to the model output with increasing per capita death rates de-
creasing R0. This relationship is due to the fact that increasing these rates reduces
the species lifespan or simply mean that reducing the mosquito densities will help
to control the outbreak. Vertical infection q1 and the probability of transmission
from Aedes mosquitoes to susceptible livestock β21 have positive PRCC values, all
above 0.5 indicating high significance to R0 with direct proportional relationship,
that is, an increase in q1 and β21 increases R0. This results from the fact that
vertical infection initiate the transmission with high significance during dry season
when infected eggs hatch after rainfall and the first generation of infected female
Aedes bites livestock for blood meal during their second gonotrophic cycle from
which they are able to infect the host, hence, further spreading the virus.
The parameters 1− θ2, β23, β12, β32, β̃12, 1/ε2 and 1/ε̃2 appear to be significant
with PRCC positive indicating an increase in R0 with an increase in the probabil-
ity of susceptible livestock moving to asymptomatic class, probabilities of virus
transmission and the average duration of infection in livestock (symptomatic and
asymptomatic). The model output is also highly sensitive to initial total Aedes
population N0

1 , initial total livestock population N0
2 and to the number of times

an Aedes mosquito would bite a host σ1, with directly proportional increase in
R0, that is only influenced by N0

1 and σ1. This relationship results from the that
an outbreak at early stage may be dependent on the initial number of vectors,
number of bites to a host and initial number of available host. Since in our model
the total number of bites on livestock varies with both the livestock and mosquito
population sizes, increasing the initial size of host population does not necessarily
mean that we will observe an increase in R0 as shown by the PRCC value for N0

2 .
This may be explained by the fact that livestock availability to mosquitoes can be
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reduced through human control interventions and by the efforts the host takes to
prevent mosquito bites (such as switching its tail) making σ1 possibly very small.

2.5 Sensitivity Analysis of the Endemic Equilib-

rium, E∗

Sensitivity analysis of the endemic equilibrium state is used to determine the
relative importance of different parameters responsible for equilibrium disease
prevalence [88], which is related to the endemic equilibrium state
E∗ = (P ∗1 , U

∗
1 , S

∗
1 , E

∗
1 , I
∗
1 , S

∗
2 , A

∗
2, I
∗
2 , R

∗
2, P

∗
3 , S

∗
3 , E

∗
3 , I
∗
3 ). However, for our analysis

we assume that the equilibrium disease prevalence is related to the following disease
states: U∗1 , E

∗
1 , I
∗
1 , A

∗
2, I
∗
2 , E

∗
3 , I
∗
3 . Given the fact that E∗ is not expressed explicitly,

analytical derivation of the indices is not possible. Therefore, we compute the
sensitivity indices numerically using the method developed by Chitnis et al.[89], also
applied in [88]. Following the notation in [88], we have replaced the model state vari-
ables (U1, E1, I1, A2, I2, E3, I3) by (x1, x2, x3, x4, x5, x6, x7), the model parameters
(b1, d1, d2, d3, q1, θ1, θ2, σ1, σ2, σ3,β12, β21, β23, β32, β̃12, β̃32, γ1, γ2, ε2, ε̃2) have been re-
placed by
(y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21) and the
endemic equilibrium disease state (U∗1 , E

∗
1 , I
∗
1 , A

∗
2, I
∗
2 , E

∗
3 , I
∗
3 ) by (x∗1, x

∗
2, x
∗
3, x
∗
4, x
∗
5, x
∗
6, x
∗
7).

The sensitivity index of the endemic equilibrium disease state, x∗i , to the parameter,
yj is given by

∂x∗i
∂yj
× yj
x∗i

(2.14)

for 1 ≤ i ≤ 7 and 1 ≤ j ≤ 21. The numerically computed endemic disease state for
low parameter values is given by

E∗ = (500, 0.4095, 4956, 9.639, 93.5, 66.81, 0.4395, 0.351, 890.6, 500, 4974, 6.238, 53.34)
(2.15)

and for high parameter values is

E∗ = (500, 40, 4956, 40, 40, 66.81, 0.005, 0.5, 890.6, 500, 4974, 14, 24.18). (2.16)
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2.5.1 Sensitivity Indices of E∗

Parameters U∗1 E∗1 I∗1 A∗2 I∗2 E∗3 I∗3
b1 +0.0108 +0.0008 +0.0008 −25.2897 −0.7227 −0.0070 −0.0042
d1 −0.1763 −0.1998 −0.1763 +6433.9936 +183.8729 +1.7728 +1.0566
d2 0.0000 0.0000 0.0000 +0.0165 −0.0001 0.0000 0.0000
d3 +0.3466 +0.3367 +0.3466 +6420.7205 +9.9271 −1.2941 −0.7543
q1 +0.0108 +0.0008 +0.0008 −25.2897 −0.7227 −0.0070 −0.0042
θ1 +7.0042 +7.7755 +8.0042 −250367.8884 −7155.1013 −68.9862 −41.1172
θ2 +0.0001 +0.0001 +0.0001 −109.9836 +0.7489 +0.0001 +0.0001
σ1 −0.0635 +0.0079 −0.0635 −262.2369 −7.9111 −0.0755 −0.0450
σ2 −0.0080 −0.0018 −0.0080 −68.8993 −0.7646 +0.0028 −0.0057
σ3 −0.0291 −0.0283 −0.0291 −531.1488 −0.8931 +0.1076 −0.0207
β12 −0.0681 +0.0091 −0.0681 −293.8141 −8.3967 −0.0810 −0.0483
β21 −0.0006 −0.0006 −0.0006 +10.0632 −0.1655 −0.0008 −0.0005
β23 −0.0003 −0.0003 −0.0003 +4.3452 −0.0714 −0.0003 −0.0002
β32 −0.0313 −0.0304 −0.0313 −579.8804 −0.8966 +0.1169 −0.0222

β̃12 −0.0003 +0.0000 −0.0003 −1.2592 −0.0360 −0.0003 −0.0002

β̃32 −0.0001 −0.0001 −0.0001 −1.7396 −0.0027 +0.0004 −0.0001
γ1 +7.7510 +6.5581 +7.7510 −211168.8756 −6034.8582 −58.1854 −34.6796
γ3 −6.5110 −6.3249 −6.5110 −120624.6443 −186.4978 +24.3123 +15.0696
ε2 0.0000 0.0000 0.0000 −0.6373 +0.0051 0.0000 0.0000
ε̃2 +0.0004 +0.0004 +0.0004 +30.1844 −0.1344 +0.0005 +0.0003
m2 0.0000 0.0000 0.0000 +2.4148 −0.0108 0.0000 0.0000

Table 2.3: Sensitivity indices of E∗ to the high parameters.

Intuitively, the sensitivity indices of the endemic equilibrium state indicate that
an increase/decrease in disease prevalence leads to a decrease/increase in the
equilibrium of the infected symptomatic livestock due to disease-induced death rate
m2 in livestock [48]. Note that these intuitive explanations agree with the signs of
the sensitivity indices (see Tables 2.3 and 2.4). For both low and high parameter
values for A∗2 and I∗2 the most sensitive parameters are: d1, d3, σ1, θ2, γ1, γ3. This
agreement results from the fact that the prevalence of the disease is driven mainly
by the dynamics of the vectors.
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Parameters U∗1 E∗1 I∗1 A∗2 I∗2 E∗3 I∗3
b1 +7.8391 −0.0046 −0.0007 −1.4086 −4.6158 −0.0571 −0.0094
d1 +32.1994 +0.6773 +0.1410 +208.0621 +681.7857 +8.4392 +1.3933
d2 +0.0033 +0.0001 0.0000 −0.0033 +0.0116 +0.0001 0.0000
d3 +96.9302 +2.9169 +0.4245 +103.5420 +174.6454 −3.7730 −0.5748
q1 +7.8391 −0.0046 −0.0007 −1.4086 −4.6158 −0.0571 −0.0094
θ1 −1.2533 −0.0076 −0.0011 −2.3418 −7.6736 −0.0950 −0.0157
θ2 −0.8320 −0.0250 −0.0036 −24.0414 17.8278 −0.0221 −0.0036
σ1 −18.3365 −0.1926 −0.0803 −8.6146 −42.1976 −0.4872 −0.0804
σ2 −1.3460 −0.0169 −0.0059 −0.6855 −3.0531 −0.0285 −0.0059
σ3 −2.1224 −0.0639 −0.0093 −1.8055 −4.2095 +0.0533 −0.0093
β12 −8.9103 −0.0190 −0.0390 −5.8370 −19.1270 −0.2368 −0.0391
β21 −5.8510 −0.1761 −0.0256 −0.2120 −15.5825 −0.1555 −0.0257
β23 −0.4768 −0.0143 −0.0021 −0.0173 −1.2699 −0.0127 −0.0021
β32 −1.2595 −0.0379 −0.0055 −1.3454 −2.2693 +0.0490 −0.0055

β̃12 −4.7815 −0.0102 −0.0209 −3.1323 −10.2641 −0.1271 −0.0210

β̃32 −0.5257 −0.0158 −0.0023 −0.5615 −0.9472 +0.0205 −0.0023
γ1 +19.8838 −0.1100 +0.0871 −33.7844 −110.7061 −1.3703 −0.2262
γ3 −15.4500 −0.4649 −0.0677 −16.5039 −27.8372 +0.6014 +0.2162
ε2 +0.1477 +0.0044 +0.0006 −0.6400 +0.9321 +0.0039 +0.0006
ε̃2 +0.1477 +0.0044 +0.0006 +0.3490 +0.1066 +0.0039 +0.0006
m2 +0.0118 +0.0004 +0.0001 +0.0279 −0.0085 +0.0003 +0.0001

Table 2.4: Sensitivity indices of E∗ to the low parameters.

2.6 Uncertainty and sensitivity analysis of the

model dynamics

In this section we aim to determine the uncertainty of various model output
state variables (U1, E1, I1, A2, I2, E3, I3) based on the uncertainty of the input
parameters sampled using the Latin hypercube sampling technique described in
section 2.4.2. Our model (2.1-2.3) consists of more than 23 parameters, however
for this analysis we are considering only 21 parameters. Each parameter is divided
into 100 equal probable intervals, used to construct the LHS-matrix which is then
used to compute 100 model simulations. Given, this matrix of randomly selected
input parameters we can calculate the model output values providing means for
determining parameter sensitivity. Marino and colleagues [83] reports that for
nonlinear but monotonic relationship between model outputs and model input
parameters, sensitivity analysis techniques that work well include Spearman rank
correlation coefficient (RCC), partial rank correlation coefficient (PRCC), and
standardized rank regression coefficients (SRRC). Although, the PRCC is widely
used and is reported to be more powerful tool [90]. For the following sections,
instead of the PRCC we make use of the Spearman rank correlation coefficient by
assuming that model output state variables monotonically depend on input model
parameters. By this approach we may neglect possible statistical dependencies
between input variables. Note however that we keep the notation PRCC although
the RCC algorithm was used to compute the sensitivity indices. Since our model
is formulated to predict disease outbreaks we only consider high rainfall and
moderate temperature parameter values to generate the LHS-matrix (see Table
A.1 in Appendix A).
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2.6.1 Time invariant sensitivity analysis

The model is simulated for 600 days and the 12th day is selected (representing
the peak of the outbreak) and the PRCCs and their respective significances are
computed for U1, E1, I1, A2, I2, E3, I3 model state variables. RVF outbreaks in a
particular location are very short and the peak of the epidemic is usually reached
between 10-20 days [4, 48]. Hence, we have selected the 12th day to assess the
variation on model output when we are at the peak zone using PRCCs. PRCC
provides answers to questions about how the output is affected if we increase (or
decrease) a specific parameter [83].
As shown in Figure 2.5 the number of infected eggs U1 is highly correlated to the
Aedes death rate d1, birth rate b1, infected symptomatic disease-induced death rate
m2 and to the vertical transmission rate q1. The number of exposed Aedes E1 is
highly correlated to the number of bites an Aedes mosquito would bite a host σ1,
the number of bites a host would sustain σ2, probability of transmission from an
infected asymptomatic host to susceptible Aedes β̃12, the probability of transmission
from an infected Aedes to a susceptible host β21 and to m2. The number of infected
Aedes I1 is more sensitive to d1 and m2 followed by the probability of transmission
from an infected Culex to a susceptible host β23 and vertical transmission q1. In
general, we observe that reducing the prevalence of the disease in livestock reduces
the number of secondary infections in mosquitoes.

Figure 2.5: Presentation of PRCC results for n = 100 simulations at time
t = 12 days. ∗ and M denote PRCCs that are significant with p < 0.01 and
0.01 ≤ p ≤ 0.05 respectively, for Aedes infected eggs U1, Exposed Aedes E1, and

Infected Aedes I1 state variables.

In Figure 2.6 we represent the PRCCs for A2, I2, E3, I3. The number of infected
asymptomatic livestock A2 is more sensitive to σ1, σ2 and β21 followed by d2.
However, the number of infected symptomatic livestock I2 is more sensitive to
σ1, σ2, β21 and to m2 followed by q1. These results suggest that reducing σ1, σ2, β21

and the efficiency of vertical transmission q1, reduces the prevalence of the disease.
This agrees with common knowledge that vector control and intervention in livestock
are effective control measures [13]. In addition, our results suggest that if m2 is
taken as removal rate, then livestock isolation can be an additional control measure,
as increasing m2 decreases I2. The number of exposed Culex E3 is more sensitive
to σ1, σ2, β21 and m2 followed by the probability of transmission from an infected
asymptomatic host to a susceptible Culex mosquito β̃32. While the number of
infected Culex I3 is highly sensitive to the Culex death rate d3.
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Figure 2.6: Presentation of PRCC results for n = 100 simulations at time
t = 12 days. ∗ and M denote PRCCs that are significant with p < 0.01 and
0.01 ≤ p ≤ 0.05 respectively, for Asymptomatic infected host A2, Symptomatic

infected host I2, Exposed Culex E3, and Infected Culex I3 state variables.

2.6.2 Time varying sensitivity analysis

Time varying sensitivity indices are calculated over a specified time period and
plotted versus time. This is fundamental to assess the significance of model input
parameter over a specified time interval during model dynamics [83]. For our
analysis we took a time period that goes from day 1 to the 60th day of the outbreak.
RVF outbreaks in most cases take less than 60 days in a particular location. This
time interval is sufficient to capture all parameter changes due to the natural
evolution of the disease. Figure 2.7 (a)-(d) show the PRCCs for U1 which is highly
sensitive to vertical transmission q1 for the entire interval. It is worth to note that
in c) the relationship between U1 and β23 changes sigh between 40-50 days of the
outbreak. E1 is more sensitive to d1 around the peak of the outbreak and tends to
be more sensitive to b2 after the peak (see Fig.2.7(e)). In (f) E1 is more sensitive
to σ1 before the 40th day. E1 is also sensitive to β21, however, the relationship
between E1 and β21 changes sigh around the 30th day Fig.2.7(g). Here the effect
of β21 (probability of disease transmission from an infected Aedes mosquito to a
susceptible symptomatic ruminant) changes with respect to the number of exposed
Aedes mosquitoes E1 over time: it is positively correlated right from the beginning
of the outbreak up to the end of its peak, then it becomes negatively correlated
as the infection progresses to the steady state. This means that transmission of
infection to susceptible livestock is responsible for updating the new generation
of infected mosquitoes until the end of the outbreak. A similar phenomenon is
also observed in Fig.2.9(c). I1 is more sensitive to d1 over the entire interval (see
Fig.2.7(i)), to σ1 and β21 during the first 20 days of the outbreak Fig.2.7(j) and
(k). I1 is also sensitive to q1 as the epidemic progresses over the time period.
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Figure 2.7: Description of how the sensitivity of parameters changes as the
system dynamic progress. Note that here we have considered the Aedes Infected

eggs U1, Aedes Exposed E1 and Aedes Infected I1 state variables.

A2 is more sensitive to σ1 and β21 Fig.2.8(b) and (c) respectively. However, the
relationship between A2 and σ1 and β21 changes sign after the first 20 days. The
effect of parameter σ1 (number of bites an Aedes mosquito would bite a host)
changes with respect to the number of infected asymptomatic hosts over time: it
is positively correlated right from the beginning of the epidemic up to the end
of its peak, then it becomes negatively correlated as the infection progresses to
the steady state. This indicates that the number of times an infected Aedes mos-
quito feeds on a host is responsible for spreading the infection; however, as time
progresses these infected animals start to recover from the infection. Thus, the
number of susceptible and infected livestock reduces while the number of recovered
ones increases. This phenomenon has also been observed in Fig.2.8(f) for infected
symptomatic ruminants.
Furthermore, A2 is more sensitive to the asymptomatic host recovery rate ε̃2 and
changes sign (see Fig.2.8(d)). The effect of the rate of recovery of infected asymp-
tomatic ruminants changes with respect to the number of infected asymptomatic
ruminants over time: it is positively correlated (low) at the very beginning of
the infection, but few days before the peak it then becomes negatively correlated
(strong) until the infection dies out. The negative sign suggest that if we increase ε2,
the number of infected asymptomatic ruminants increases quickly (and vice versa).
These results suggest that intervention strategies in asymptomatic ruminants even
after the initial spread of the disease are essential for stopping further spread of
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the disease.
I2 is more sensitive to b2 over the end of the interval Fig.2.8(e). I2 is also sensitive
to σ1, β21 and ε2 Fig.2.8(f),(g) and (h) respectively. Note that the relationship
between I2 and σ1 and β21 changes sign after the first 20 days.

Figure 2.8: Description of how the sensitivity of parameters changes as the
system dynamic progress. Note that here we have considered the Asymptomatic

infected host A2 and the Symptomatic infected host I2 state variables.

The number of exposed Culex E3 is more sensitive to σ1 and β21 Fig.2.9(b) and (c)
respectively. In both cases σ1 and β21 change sign and E3 tends to be more sensitive
to d3 towards the end of the time interval (see Fig.2.9(a)). I3 is more sensitive to
d3 at the beginning and the end of the interval Fig.2.9(e). This is an interesting
situation. As the infection progresses to the steady state the parameter birth rate
b2 enhances its correlation (positively) with the number of infected symptomatic
livestock I2. This improvement of the correlation indicates that new born ruminants
may be responsible of a second wave for the epidemic if these ruminants are not
vaccinated. These insights are fundamental for guiding intervention programs both
at the beginning of the infection and after the peak. I3 is also more sensitive to σ3

over the entire interval Fig.2.9(f) and more sensitive to β21 over the first 30 days.
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Figure 2.9: Description of how the sensitivity of parameters changes as the
system dynamic progress. Note that here we have considered the Culex Exposed

E3 and Culex Infected I3 state variables.

2.7 Vector abundance during an outbreak

Using model system (2.1-2.3) we investigate the effects of vertical transmission on
the abundance of adult mosquitoes in an epidemic situation. Fig.2.10 depicts the
time evolution of the number of infected adult Aedes mosquitoes for different values
of initial number of infected eggs U0

1 . In a) we observe that for U0
1 = 999 the number

of infectious adult Aedes reaches its maximum around 25 days, while for U0
1 = 100

the number of infectious adult Aedes reaches its maximum at around 40 days see
Fig.2.10(b). This suggests that: depending on the efficiency of transovarial/vertical
transmission RVF outbreak at a particular site is very brief, and the peak is likely to
be reached in a span of 30 days; depending on the efficiency of vertical transmission
the duration of the outbreak is likely to either be reduced or increased.
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Figure 2.10: Simulation of infectious Aedes populations with varying initial
number of infected eggs. (a) With 999 initial infected eggs and (b) with 100 initial
infected eggs. The remaining initial conditions are: S1 = 5000, P1 = 1000, E1 =
0, I1 = 1, S2 = 1000, A2 = I2 = R2 = 0, S3 = 5000, P3 = 1000, E3 = 0 and I3 = 1.

All model parameters (high moisture) are given in Table A.1.

2.8 Conclusions

Using a RVF model developed by Pedro et al.[4] and its analytical expression of the
basic reproduction, R0 we studied the relative importance of vertical transmission
to disease spread governed by R0. Reducing the model system to a system of two
ordinary differential equations (U1, I1) we investigated the importance of vertical
transmission to disease persistence and its relation with the basic reproductive
number and type reproductive numbers. Furthermore, by employing techniques
based on perturbation of fixed points estimations we determined sensitivity indices
of various model outputs to the input parameters. Based on Latin hypercube
sampling (LHS) and Partial rank correlation coefficients (PRCCs) and rank correl-
ation coefficients (RCCs) we systematically determined the relative importance
of model parameters to the basic reproduction number R0 and to model state
variables for single time and multiple time points. Sampling-based procedures
provided a range of values of both R0 and model state variables in an interval
while methods based on perturbation of fixed points estimations or computation
of local derivatives provided only a single value of the model output [88]. Thus
sampling-based procedures (both time varying and time invariant) provide more
information as compared to local derivative techniques.
Using the basic reproductive number, R0 to assess the importance of vertical infec-
tion efficiency, we characterized the relationship predicted by the model output:
for low moisture parameters the response was initially very small but strengthened
rapidly when the vertical infection efficiency exceeded 20%, highlighting the im-
portance of vertical transmission for initial spread and persistence of the disease
during endemic activities. Applying vector type reproductive number, T v1 we
showed that vertical infection of 20% can be responsible for more than 80% of the
required effort to eradicate the epidemic. This suggests that reducing the size of
mosquito population and mosquito biting rates will help control both the initial
spread of the disease and ongoing disease activities during an outbreak. Previous
studies have also shown that, if policy-makers wish to decrease the transmission
of RVF, keeping the vector populations at the lowest levels is required [4, 5, 48].
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In addition, two important features were observed: (1) during epidemic activities
vertical transmission accelerated the course of the outbreak as it increased the size
of infected vectors and reduced the duration of the outbreak while during endemic
activities heavily contributed to disease persistence; (2) an increase in the initial
number of livestock N0

2 substantially reduced the magnitude of all reproductive
numbers.
We then used global sensitivity analysis to determine which parameters are most
important to disease persistence and epidemicity. The basic reproductive number,
R0 was most sensitive to probability of vertical transmission q1, probability of
transmission from an Aedes mosquito to livestock β21, initial density population of
Aedes mosquitoes N0

1 and livestock N0
2 and to the Aedes biting rate σ1. Vertical

transmission has potential for initiating virus circulation [26], mosquito biting to
spread the infection to nearby susceptible livestock [36]. Thus, understanding the
role of each of the above five parameters (q1, β21, N

0
1 , N0

2 and σ1) is central for
designing effective RVF control strategies.
The sensitivity indices of the endemic equilibrium state variables showed that for
both low and high parameter values for A∗2 and I∗2 the most sensitive parameters are:
Aedes death rate, Culex death rate, the number of bites an Aedes mosquito would
bite a host, the progression rates from exposed to infectious stage for both Aedes
and Culex. This agrees with the fact that the prevalence of the disease is driven
mainly by the dynamics of the vectors. Nevertheless, reducing the prevalence of
the disease in livestock reduces the number of secondary infections in mosquitoes.
On the other hand the RCCs calculated between the values of each of the 21 model
parameters and model state variables which was derived from the uncertainty
analysis strongly supported previous results obtained through perturbation of fixed
point estimations method. Furthermore, time varying sensitivity analysis of model
state variables showed an extra potential for exploring parameter space variations
and their contribution to model variations during disease evolution. The effect
of model input parameters to model output variations does not remain static
over time. There are changes that occur as the disease evolve. One of the main
objectives of this study was to quantify the attribution of model output variations
to input parameters over time. Through this analysis we have identified four key
parameters (β21, σ1, b2 and ε̃2) which effect change over time. The results of this
analysis are of higher epidemiological significance as they provide experimental
epidemiologists and health policy-makers with time specific information on major
disease factors. In addition, this opens a new direction into future research [88]
which should exhaustively investigate the effects of these parameters both at the
initial phase of the epidemic and during the transient phase when the effect of
initial conditions have been discarded.



Chapter 3

Stability, bifurcation and chaos
analysis of vector-borne disease
model with application to Rift
Valley fever1

3.1 Introduction

Rift Valley fever virus (RVFV), a member of the phlebovirus genus, and family
Bunyaviridae which has been isolated from at least 30 mosquito species in the
field [27] infects both wild and domestic livestock and humans. The RVF epizo-
otics/epidemics are closely linked to the occurrence of the warm phase of the El
Nino/Southern Oscillation (ENSO) phenomenon [34]. In addition, elevated Indian
Ocean temperatures lead to heavy rainfall and flooding of habitats suitable for the
production of immature Aedes mosquitoes that serve as the primary RVF virus
(RVFV) vectors in East Africa [35, 36]. Studies have shown that the life cycle of
RVFV has distinct endemic and epidemic cycles. During the endemic cycle the virus
persists during dry season/inter-epizootic periods through vertical transmission in
Aedes mosquito eggs [35]. Aedes eggs need to be dry for several days before they can
mature. After maturing, they hatch during the next flooding event large enough to
cover them with water [11, 91]. The eggs have high desiccation resistance and can
survive dry conditions in a dormant form for months to years. At the beginning of
the rainy season, Aedes mosquitoes quickly grow to large numbers before declining
due to the need for dry conditions for egg maturation. There can be a second peak
in mosquito densities at the end of the rainy season if there is a gap in rainfall for
several days [91]. When these mosquitoes lay their eggs in flooded areas (including
dambos), transovarially infected adults may emerge and transmit RVFV to nearby
domestic livestock, including sheep, goats, cattle, and camels. High viremias in

1This chapter has been published: Pedro SA, Abelman S, Ndjomatchoua FT, Sang R, Tonnang
HEZ (2014) Stability, Bifurcation and Chaos Analysis of Vector-Borne Disease Model with
Application to Rift Valley Fever. PLoS ONE 9(10): e108172. doi:10.1371/journal.pone.0108172
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these ruminants may then lead to the infection of secondary arthropod vector
species including various Culex species [37]. Epizootic/epidemic cycles are driven
by the subsequent elevation of various Culex mosquito populations, which serve as
excellent secondary vectors if immature mosquito habitats remain flooded for a
long enough period [36]. Their eggs require water to mature and hatch and the
mosquitoes survive the dry season in adult form and during the rainy season, the
population of Culex mosquitoes reaches a maximum towards the end of the season
[5]. The disease is known to occur in outbreaks that come in cycles of up to 15
years in the Eastern Africa region and the Horn of Africa [39].
These variations in climatic factors induce seasonal fluctuations in mosquito pop-
ulation densities. Hence the complexity observed on the dynamics of RVF virus
transmission and maintenance. The interplay between the internal nonlinear dy-
namic of ecological systems and various external factors that affect them, makes
understanding of population fluctuation a unique problem [92]. Mathematical
models have been developed in order to provide a better understanding of the
nature and dynamics of the transmission and persistence of the disease, as well
as predict outbreaks and simulate the impact of control strategies [5, 48, 69, 70].
Most of these models considered constant mosquito oviposition rates, ignoring
effects of seasonal fluctuations in the mosquito population size. Furthermore, some
have ignored the effects of vertical transmission and secondary vectors [48] and
some only considered Aedes species only [5]. Temperature, rainfall and humidity
have great influence in all stages of mosquito development from the emergence
and viability of eggs, to the size and longevity of adults [6, 93]. Recently, Mpeshe
et al. [74] modified their previous study [48] to include vertical transmission in
Aedes species and climate-driven parameters. These models provide important
insights but do not investigate the stability dynamics and attractors structures of
the model when there are external forces in the density of vector populations.
The most common manifestation of external forcing is through seasonality including
both naturally (e.g. the occurrence of the warm phase of the El Nino/Southern
oscillation phenomenon) and induced (e.g human deforestation or human pollu-
tion). Studies for understanding dynamical consequences of regular and stochastic
external forcing are still ongoing but poorly understood [94–97]. To the best of
our knowledge, no systematic investigation of stability and attractor structures
of a realistic RVF model comprising two populations of mosquitoes (Aedes and
Culex) and one livestock host population with two infected classes (asymptomatic
and symptomatic) and seasonal variation on mosquito oviposition rates has been
carried out.
Based on the model proposed by Gaff et al. [69], we investigate a two vector
and one host epidemic model, to capture the dynamical behaviour of both the
disease free and endemic equilibria, the effects of seasonality on mosquito ovi-
position rates (b1, b3), parametrized by δ1, δ3 and effects of asymptomatic class
in livestock (parametrized by 1 − θ2). We prove existence and global stability
of both the disease-free and the endemic equilibria in the absence of secondary
vectors (I3 = 0), as well as the existence and local stability of both disease free
and endemic equilibrium points of the overall model. We then investigate the
structures of model attractors through bifurcation analysis, taking as bifurcation
parameters δ1 and δ3 the strengths of seasonality of mosquito oviposition rates.
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The bifurcation diagrams with simultaneous variation of seasonal forcing on the
oviposition rates of the two mosquito species reveal the complexity induced by
their interactions. The understanding of possible state space scenarios through
bifurcation analysis is helpful for understanding RVF epidemiological data with
its seasonality aspects. To obtain robust analysis we then compute the largest
Lyapunov exponents, Poincaré maps and maxima return maps.
The section methods gives a detailed description of the model and its paramet-
ers. In results the model is used to study the dynamic behaviour of the disease
stability and bifurcation analysis. Simulations are performed to investigate model
dependence on initial condition and attractors structures of the model applying an
external forcing on mosquito’s oviposition rates.

3.2 RVF epidemic model

Gaff et al.[69] proposed a one host and two vectors population model for RVF with
vertical transmission in Aedes vectors to study the transmission of RVF and the
impact of vertical transmission on the persistence of the disease. Chitnis et al.[5]
analysed a RVF model with vertical transmission for Aedes mosquitoes and included
asymptomatic class for livestock and removed one population of mosquitoes.
The model presented in this paper adopts a similar structure as in Gaff et al.[69].
We introduce an asymptomatic class for livestock [5], because for many species
of livestock, RVF virus infection are frequently subclinical [27, 98]. As the main
purpose of this study is to study the dynamic behaviour of the disease, influenced
by changes on the climate and oscillation on rainfall, we include seasonal variation
in the oviposition rates of both Aedes and Culex mosquitoes.
We divide the livestock population into four classes: susceptible, S2, asymptomatic,
A2 , infectious, I2 , and recovered (immune), R2. Livestock enter the susceptible
class through birth (at a constant rate). Birth rates are important because after an
outbreak, herd immunity can reach 80% and the proportion of susceptible livestock
must be renewed through birth or movement before another outbreak can occur [7].
When an infectious mosquito bites a susceptible animal, there is a finite probability
that the animal becomes infected. Since the duration of the latent period in cattle
is small relative to their life span, we do not model the exposed stage. Many adult
cattle do not exhibit clinical signs apart from abortion of foetuses [11, 27], thus,
include an asymptomatic class for infectious livestock that transmit the virus at
a lower rate than those with acute clinical symptoms. After being successfully
infected by an infectious Aedes and/or Culex mosquito, livestock move from the
susceptible class S2 to either the infected symptomatic I2 or asymptomatic A2

class. After some time, the symptomatic and asymptomatic livestock recover and
move to the recovered class, R2. The recovered livestock have immunity to the
disease for life. Cattle leave the population through a per capita natural death
rate and through a per capita disease-induced death rate only for symptomatic
livestock. The size of the livestock population is given by N2 = S2 +A2 + I2 +R2.
We divide the Aedes and Culex mosquitoes population into three classes: susceptible,
Sa , exposed, Ea , and infectious, Ia. The subscripts a = 1 and a = 3 represent
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Aedes and Culex mosquitoes, respectively. Female mosquitoes (we do not include
male mosquitoes in our model because only female mosquitoes bite ruminants
for blood meals) enter the susceptible class through birth. The virus enters a
susceptible mosquito, Sa , with finite probability, when the mosquito bites an
infectious animal and the mosquito moves to the exposed class, Ea. After some
period of time, depending on the ambient temperature and humidity [99], the
mosquito moves from the exposed class to the infectious class, Ia. To reflect the
vertical transmission in the Aedes species, compartments for uninfected P1 and
infected U1 eggs are included. As the Culex species cannot transmit RVF vertically,
only uninfected eggs P3 are included. Mosquitoes once infected remain infectious
during their lifespan. Mosquitoes leave the population through a per capita natural
death rate. The size of each adult mosquito population is N1 = S1 + E1 + I1

for adult Aedes mosquitoes and N3 = S3 + E3 + I3 for adult Culex mosquitoes.
The three populations are modelled with carrying capacity K1, K2, K3, for Aedes,
livestock and Culex respectively. While in [69], the total number of mosquito bites
on cattle depends on the number of mosquitoes, in our model, the total number
of bites varies with both the cattle and mosquito population sizes. This allows
a more realistic modelling of situations where there is a high ratio of mosquitoes
to cattle, and where cattle availability to mosquitoes is reduced through control
interventions [5].

Figure 3.1: Flow diagram of RVFV transmission with each species, namely,
Aedes mosquitoes,Culex mosquitoes and livestock (the solid lines represent the
transition between compartments and the dash lines represent the transmission

between different species).

3.2.1 Mathematical Model

The equations describing the model flowchart 3.1 are given in Chapter 2 (see
systems (2.1-2.3)). However, to keep the flow we rewrite them as follows:
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Aedes

Ṗ1(t) = b1(N1 − q1I1)− θ1P1,

U̇1(t) = b1q1I1 − θ1U1,

Ṡ1(t) = θ1P1 −
σ1σ2β12

σ1N1 + σ2N2

I2S1 −
σ1σ2β̃12

σ1N1 + σ2N2

A2S1 − d1
S1N1

K1

,

Ė1(t) =
σ1σ2β12

σ1N1 + σ2N2

I2S1 +
σ1σ2β̃12

σ1N1 + σ2N2

A2S1 − γ1E1 − d1
E1N1

K1

,

İ1(t) = γ1E1 + θ1U1 − d1
I1N1

K1

,

(3.1)

Livestock

Ṡ2(t) = b2N2 −
σ1σ2β21

σ1N1 + σ2N2

I1S2 −
σ3σ2β23

σ3N3 + σ2N2

I3S2 − d2
S2N2

K2

,

Ȧ2(t) = (1− θ2)
σ1σ2β21

σ1N1 + σ2N2

I1S2 + (1− θ2)
σ3σ2β23

σ3N3 + σ2N2

I3S2 − ε̃2A2 − d2
A2N2

K2

,

İ2(t) = θ2
σ1σ2β21

σ1N1 + σ2N2

I1S2 + θ2
σ3σ2β23

σ3N3 + σ2N2

I3S2 − ε2I2 − d2
I2N2

K2

−m2I2,

Ṙ2(t) = ε̃2A2 + ε2I2 − d2
R2N2

K2

,

(3.2)

Culex

Ṗ3(t) = b3N3 − θ3P3,

Ṡ3(t) = θ3P3 −
σ3σ2β32

σ3N3 + σ2N2

I2S3 −
σ3σ2β̃32

σ3N3 + σ2N2

A2S3 − d3
S3N3

K3

,

Ė3(t) =
σ3σ2β32

σ3N3 + σ2N2

I2S3 +
σ3σ2β̃32

σ3N3 + σ2N2

A2S3 − γ3E3 − d3
E3N3

K3

,

İ3(t) = γ3E3 − d3
I3N3

K3

,

(3.3)

with
dN1

dt
= b1N1 − d1

K1
(N1)2,

dN2

dt
= b2N2 − d2

K2
(N2)2 −m2I2,

dN3

dt
= b3N3 − d3

K3
(N3)2.

(3.4)

Following the approach in [5], σa, where a = 1 for Aedes and a = 3 for Culex is the
rate at which a mosquito would bite livestock (related to the gonotrophic cycle
length), and σ2 is the maximum number of bites that an animal can support per
unit time (through physical availability and any intervention measures on livestock
taken by humans). Then, σaNa is the total number of bites that the mosquitoes
would like to achieve per unit time and σ2N2 is the availability of livestock. Thus,
the total number of mosquito-livestock contacts is half the harmonic mean of σaNa
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and σ2N2,

b̄ = b̄(N2, Na) =
σaNaσ2N2

σaNa + σ2N2

=
σaσ2

σa(Na/N2) + σ2

Na.

In addition to having the correct limits at zero and infinity, this form also meets
the necessary criteria that b̄ ≤ min(σaNa, σ2N2) where b̄ is the total number of
bites per unit time. The total number of mosquito-livestock contacts depends on
the populations of both species. We define b̄2 = b̄2(N2, Na) = b̄(N2, Na)/N2 as the
number of bites per livestock per unit time, and b̄a = b̄a(N2, Na) = b̄(N2, Na)/Na

as the number of bites per mosquito per unit time.
We defined the force of infection from mosquitoes to livestock, λa2(t), as the
product of the number of mosquito bites that one animal has per unit time, b2,
the probability of disease transmission from the mosquito to the animal, β2a, and
the probability that the mosquito is infectious, Ia/Na . We define the force of
infection from livestock to mosquitoes, λ2

a(t), as the force of infection from infectious
(symptomatic and asymptomatic) livestock. This is expressed as the number of
livestock bites one mosquito has per unit time, b̄a; the probability of disease
transmission from an infected (asymptomatic) animal to the mosquito, βa2(β̃a2);
and the probability that the animal is infectious, I2/N2 (A2/N2). Therefore the
forces of infection are given by:

λ2
1 =

σ1σ2N2

σ1N1 + σ2N2

(β12
I2

N2

+ β̃12
A2

N2

) =
σ1σ2β12I2

σ1N1 + σ2N2

+
σ1σ2β̃12A2

σ1N1 + σ2N2

,

λ1
2 =

σ1σ2N1

σ1N1 + σ2N2

β21
I1

N1

=
σ1σ2β21I1

σ1N1 + σ2N2

,

λ3
2 =

σ3σ2N3

σ3N3 + σ2N2

β23
I3

N3

=
σ3σ2β23I3

σ3N3 + σ2N2

,

λ2
3 =

σ3σ2N2

σ3N3 + σ2N2

(β32
I2

N2

+ β̃32
A2

N2

) =
σ3σ2β32I2

σ3N3 + σ2N2

+
σ3σ2β̃32A2

σ3N3 + σ2N2

,

The model system (3.1-3.3) is biologically relevant (solutions are positive) in the
set

Ω =

{
(P1, U1, S1, E1, I1, S2, A2, I2, R2, P3, S3, E3, I3) ∈ R13

+ : P1, U1, S1, E1, I1, S2, A2, I2,

R2, P3, S3, E3, I3 ≥ 0, N1 ≤
b1K1

d1
, N2 ≤

b2K2

d2
, N3 ≤

b3K3

d3
, P1+U1 ≤

b1N1

θ1
, P3 ≤

b3N3

θ3

}
.

(3.5)

Lemma 3.1. The model system (3.1-3.3) is well-posed in Ω which is invariant
and attracting.

Proof. When Si = 0 for i = 1, 2, 3 then
dS1

dt
= θ1P1,

dS2

dt
= b2N2,

dS3

dt
= θ3P3 that is

dSi
dt
≥ 0 for i = 1, 2, 3 for t ≥ 0.

Similarly, when Ei = 0, Ii = 0, P1 = U1 = P3 = A2 = R2 = 0 for i = 1, 2, 3 we
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have
dEi
dt
≥ 0,

dIi
dt
≥ 0,

dP1

dt
≥ 0,

dU1

dt
≥ 0,

dP3

dt
≥ 0,

dA2

dt
≥ 0,

dI2

dt
≥ 0. If

Si + Ei + Ii ≥ 0 for i = 1, 2, 3 and S2 + A2 + I2 + R2 ≥ 0 we have
dNi

dt
=

biNi − di
N2
i

Ki

⇔ Ni(t) =
biKi

di +Ni(0)e−bit
for i = 1, 3 and

we show that for t→∞ Ni ≤ biKi
di

for i = 1, 3.

Similarly, if P1 + U1 ≥ 0 we can show that Ṗ1 + U̇1 ≤ b1N1

θ1
and Ṗ3 ≤ b3N3

θ3
for t ≥ 0.

Thus, the solution remain in the feasible region Ω if it starts in this region.

3.3 Results

3.3.1 Basic Reproduction Number

For epidemiology models, a quantity, R0 is derived to assess the stability of the
disease free equilibrium [69]. R0 represents the the number of individuals infected by
a single infected individual during his or her entire infectious period, in a population
which is entirely susceptible [82]. When R0 < 1, if a disease is introduced, there
are insufficient new cases per case, and the disease cannot invade the population.
When R0 > 1, the disease may become endemic; the greater R0 is above 1, the less
likely stochastic fade out of the disease can occur. To compute this threshold we
use the next generation operator approach, as described by Diekmann et al. [100]
and van den Driessche and Watmough [101] as well as to describe the conditions
for which the disease-free equilibrium points lose stability.
Since the model incorporates both vertical and horizontal transmission, R0 for
the system is the sum of the R0 values for each mode of transmission determined
separately [102],

R0 = R0,V +R0,H .

To compute each component of R0, the model equations in vector form are the
difference between the rate of new infection in compartment i, Fi and the rate of
transfer between compartment i and all other compartments due to other processes,
Vi [101], (see Appendix B). Then, R0 is given by

R0 =
b1q1

2µ1

+
1

2

√
R2

0,V + 4R2
0,H (3.6)

where R0,V = b1q1
µ1

and

R0,H =√
(l03)

2β23γ3N0
2N

0
3

µ3(γ3+µ3)

[
(1−θ2)β̃32

ε̃2+µ2
+ θ2β32

ε2+m2+µ2

]
+

(l01)
2β21γ1N0

1N
0
2

µ1(γ1+µ1)

[
(1−θ2)β̃12

ε̃2+µ2
+ θ2β12

ε2+m2+µ2

]
.

(3.7)



Chapter 3. Stability, bifurcation and chaos analysis 42

3.3.2 Basic Reproduction Number for periodic environ-
ment

In periodic environment, the basic reproduction number is the generalization of
the R0 in non periodic environment. It is known as the transmissibility number
R̄0, which is defined as the average number of secondary cases arising from the
introduction of a single infectious individual into a completely susceptible population
at a random time of the year [103]. Thus, R̄0 is defined through the spectral radius
of a linear integral operator on a space of periodic functions, given by the integral
operator Gj (see Appendix B),

Gj =

b1q1
µ1 + 2πji

• θ1
θ1 + 2πji

+
γ1

γ1 + µ1 + 2πji
• (l01)2β21S

0
2S

0
1

µ1 + 2πji

[
(1− θ2)β̃12

ε̃2 + µ2 + 2πji
+

θ2β12
ε2 +m2 + µ2 + 2πji

]

+
γ3

γ3 + µ3 + 2πji
• (l03)2β23S

0
3S

0
2

µ3 + 2πji

[
(1− θ2)β̃32

ε̃2 + µ2 + 2πji
+

θ2β32
ε2 +m2 + µ2 + 2πji

]
(3.8)

where i2 = −1. As proposed by Bacaer [104], the transmissibility number R̄0 is
given by

R̄0 = G0 +
δ2

2
Re(

G0G1

G0 −G1

) (3.9)

where Re(.) is the real part of (.). G0 is the basic reproduction number for the
non-seasonal model, obtained when δ = 0.

The size of R̄0 is reduced compared to R0 when oviposition rates are constant,
and this makes it slightly difficult for the virus to invade the population with such
fluctuations on the transmission rates [104].

From G0 the following sub-reproduction numbers R21, R12, R23, R32 can be
obtained:
R21 is the number of new infections in livestock from one infected Aedes mosquito
and is given by

R21 =
γ1

γ1 + b1

× β21l
0
1N

0
2

b1

,

representing the product of the probability that the Aedes mosquito survives the
exposed stage γ1

γ1+b1
, the number of bites on livestock per mosquito l01N

0
2 , the prob-

ability of transmission per bite β21, and the infectious lifespan of Aedes mosquito
1/b1.

R12 is the number of new infections in Aedes mosquitoes from one infected (asymp-
tomatic or symptomatic) animal, and is given by the weighted sum of new infections
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resulting from asymptomatic and symptomatic livestock

R12 = l01N
0
1

(
(1− θ2)β̃12

ε̃2 + b2

+
θ2β12

ε2 + b2 +m2

)
.

This is the product of the number of bites an animal receives l01N
0
1 , the probability

of transmission per bite (β̃12 for an asymptomatic animal and β12 for symptomatic
animal), and the duration of the infective period ( 1

ε̃2+b2
for an asymptomatic animal

and 1
ε2+b2+m2

for symptomatic animal) weighted by the probability that an animal
either becomes asymptomatic or symptomatic upon infection.

R23 is the number of new infections in livestock from one infected Culex mosquito
and is given by

R23 =
γ3

γ3 + b3

× β23l
0
3N

0
2

b3

.

This is the product of the probability that the Culex mosquito survives the exposed
stage γ3

γ3+b3
, the number of bites on livestock per mosquito l03N

0
2 , the probability of

transmission per bite β23, and the infectious lifespan of Culex mosquito 1/b3.

R32 is the number of new infections in Culex mosquitoes from an infected (asympto-
matic or symptomatic) animal and is given by the weighted sum of new infections
resulting from asymptomatic and symptomatic livestock

R32 = l03N
0
3

(
(1− θ2)β̃32

ε̃2 + b2

+
θ2β32

ε2 + b2 +m2

)
.

This is the product of the number of bites one animal receives l03N
0
3 , the probability

of transmission per bite (β̃32 for an asymptomatic animal and β32 for symptomatic
animal), and the duration of the infective period ( 1

ε̃2+b2
for an asymptomatic animal

and 1
ε2+b2+m2

for symptomatic animal) weighted by the probability that an animal
either becomes asymptomatic or symptomatic upon infection.
If q1 > 0, R0 increases because vertical transmission directly increases the number
of infectious mosquitoes and indirectly increases the transmission from livestock to
mosquitoes and back to livestock.

3.3.3 Stability analysis

The computation of the equilibria for model system (3.1-3.3) yields, respectively:
the disease-free equilibrium (DFE),

X0 = (P 0
1 , U

0
1 , S

0
1 , E

0
1 , I

0
1 , S

0
2 , A

0
2, I

0
2 , R

0
2, P

0
3 , S

0
3 , E

0
3 , I

0
3 )

= ( b1N1

θ1
, 0, b1K1

d1
, 0, 0, b2K2

d2
, 0, 0, 0, b3N3

θ3
, b3K3

d3
, 0, 0)

(3.10)
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and the endemic equilibrium (EE)

X∗ = (P ∗1 , U
∗
1 , S

∗
1 , E

∗
1 , I
∗
1 , S

∗
2 , A

∗
2, I
∗
2 , R

∗
2, P

∗
3 , S

∗
3 , E

∗
3 , I
∗
3 )

where

P ∗1 =
b1N1 − b1q1I

∗
1

θ1

U∗1 =
b1q1I

∗
1

θ1

(3.11)

S∗1 =
b1N1 − b1q1I

∗
1

g1I∗2 + g2A∗2 + µ1

E∗1 =
µ1 − b1q1

γ1

I∗1 (3.12)

I∗1 =
g1I
∗
2 + g2A

∗
2

g1I∗2 + g2A∗2 + µ1

× b1N1 − b1q1I
∗
1

(γ1 + µ1)g7

(3.13)

S∗2 =
b2N2

g3I∗1 + g4I∗3 + µ2

(3.14)

A∗2 =
g3I
∗
1 + g4I

∗
3

g3I∗1 + g4I∗3 + µ2

× 1

g8

I∗2 =
g3I
∗
1 + g4I

∗
3

g3I∗1 + g4I∗3 + µ2

× 1

g9

(3.15)

R∗2 =
ε̃2A

∗
2 + ε2I

∗
2

µ2

P ∗3 =
b3N3

θ3

(3.16)

S∗3 =
b3N3

g5I∗2 + g6A∗2 + µ3

E∗3 =
µ3

γ3

I∗3 (3.17)

I∗3 =
g5I
∗
2 + g6A

∗
2

g5I∗2 + g6A∗2 + µ3

× 1

l4
, (3.18)

g1 = σ1σ2β12

σ1N1+σ2N2
, g2 = σ1σ2β̃12

σ1N1+σ2N2
, g3 = σ1σ2β21

σ1N1+σ2N2
, g4 = σ3σ2β23

σ3N3+σ2N2
,

g5 = σ3σ2β32

σ3N3+σ2N2
, g6 = σ3σ2β̃32

σ3N3+σ2N2
, g7 = µ1−b1q1

γ1
, g8 = ε̃2+µ2

(1−θ2)b2N2
, g9 = ε2+m2+µ2

θ2b2N2

, l4 = µ3(γ3+µ3)
γ3b3N3

, l5 = (γ1 + µ1)g7.

Substituting equations (3.15) into equation (3.13) we obtain

b1N1g3l6I
∗
1 + b1N1g4l6I

∗
3 − µ1µ2l5I

∗
1 = g3l7(I∗1 )2 + g4l7I

∗
1I
∗
3 (3.19)

where l6 = g1g8+g2g9

g8g9
, l7 = b1q1l6 + l5l6 + µ1l5.

In solving for the equilibria, we omit the expression containing R2 because it can
be determined when S2, A2 and I2 are known. We then determine analytically the
conditions under which these equilibria are stable or unstable. The following result
holds without proof to avoid repetition:

Lemma 3.2. The resulting model is biologically relevant (solutions are positive)
in the set

Ω1 =

{
(P1, U1, S1, E1, I1, S2, A2, I2, P3, S3, E3, I3) ∈ R112

+ : P1, U1, S1, E1, I1, S2, A2,

I2, P3, S3, E3, I3 ≥ 0, N1 ≤
b1K1

d1
, N2 ≤

b2K2

d2
, N3 ≤

b3K3

d3
, P1+U1 ≤

b1N1

θ1
, P3 ≤

b3N3

θ3

}
(3.20)
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The model system (3.1-3.3) being nonlinear, stability analysis will be carried out via
linearisation. The Jacobian matrix of system (3.1-3.3) at an arbitrary equilibrium
is

J =



−θ1 0 0 0 −b1q1 0 0 0 0 0 0 0
0 −θ1 0 0 b1q1 0 0 0 0 0 0
θ1 0 −a1−µ1 0 0 0 −a2 −a3 0 0 0 0
0 0 a1 −a14 0 0 a2 a3 0 0 0 0
0 θ1 0 γ1 −µ1 0 0 0 0 0 0 0
0 0 0 0 −a4 −a5−µ2 0 0 0 0 0 −a9

0 0 0 0 (1−θ2)a4 (1−θ2)a5 −a6 0 0 0 0 (1−θ2)a9

0 0 0 0 θ2a4 θ2a5 0 −a7 0 0 0 θ2a9
0 0 0 0 0 0 0 0 −θ3 0 0 0
0 0 0 0 0 0 −a10 −a11 θ3 −a12−µ3 0 0
0 0 0 0 0 0 a10 a11 0 a12 −a13 0
0 0 0 0 0 0 0 0 0 0 γ3 −µ3


(3.21)

where a1 = g1I2 + g2A2, a2 = g2S1, a3 = g1S1, a4 = g3S2, a5 = g3I1 + g4I3, a6 =
ε̃2 + µ2, a7 = ε2 + m2 + µ2, a9 = g4S2, a10 = g6S3, a11 = g5S3, a12 = g5I2 +
g6A2, a13 = γ3 − µ3, a14 = γ1 + µ1.
Evaluating J at the disease-free equilibrium and using basic properties of matrix
algebra, it is evident from the characteristic polynomial of J that the following
eigenvalues λ1 = −µ1, λ2 = −θ1, λ3 = −µ2, λ4 = −θ3, λ5 = −µ3 have negative
real part and the remaining reduced matrix is

J1 =


−θ1 0 b1q1 0 0 0 0

0 −(γ1+µ1) 0 g2S0
1 g1S0

1 0 0
θ1 γ1 −µ1 0 0 0 0
0 0 (1−θ2)g3S0

2 −(ε̃2+µ2) 0 0 (1−θ2)g4S0
2

0 0 θ2g3S0
2 0 −(ε̃2+m2+µ2) 0 θ2g4S0

2

0 0 0 g6S0
3 g5S0

3 −(γ3+µ3) 0
0 0 0 0 0 γ3 −µ3

 (3.22)

The stability of a disease-free equilibria should be established from the eigenvalues
of the reduced Jacobian matrix (3.22). To simplify the computations, we perform
the following operations on matrix (3.22): first we add the first row to the third
one and take the resultant as the new third row; second we multiply the second
row by γ1/(γ1 + µ1) and add it to the new third row, then take the resultant as
the new third row and at last we multiply the sixth row by γ3/(γ3 + µ3) and add it
to the last row and maintaining the rest as it is, we obtain the following matrix

J2 =



−θ1 0 b1q1 0 0 0 0
0 −(γ1+µ1) 0 g2S0

1 g1S0
1 0 0

0 0 b1q1−µ1
γ1g2S

0
1

γ1+µ1

γ1g1S
0
1

γ1+µ1
0 0

0 0 (1−θ2)g3S0
2 −(ε̃2+µ2) 0 0 (1−θ2)g4S0

2

0 0 θ2g3S0
2 0 −(ε̃2+m2+µ2) 0 θ2g4S0

2

0 0 0 g6S0
3 g5S0

3 −(γ3+µ3) 0

0 0 0
γ3g6S

0
3

γ3+µ3

γ3g5S
0
3

γ3+µ3
0 −µ3

 (3.23)

From the basic properties of matrix algebra, it is evident from the characteristic
polynomial of J2 that the following eigenvalues λ1 = −θ1, λ2 = −(γ1+µ1) and λ3 =
−(γ3 + µ3) have negative real part and the remaining reduced matrix is

J̃(X0) =


b1q1 − µ1

γ1g2S0
1

γ1+µ1

γ1g1S0
1

γ1+µ1
0

(1− θ2)g3S
0
2 −(ε̃2 + µ2) 0 (1− θ2)g4S

0
2

θ2g3S
0
2 0 −(ε2 +m2 + µ2) θ2g4S

0
2

0
γ3g6S0

3

γ3+µ3

γ3g5S0
3

γ3+µ3
−µ3

 (3.24)
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3.3.4 Stability analysis of the model (3.1-3.3) without Culex
species

In the absence of Culex species, I∗3 = 0, equation (3.19) can be written as

g3l7(I∗1 )2 − (b1N1g3l6 − µ1µ2l5)I∗1 = 0. (3.25)

Equation (3.25) has two possible solutions I∗1 = 0 or I∗1 6= 0. The case I∗1 = 0
implies an existence of a disease-free equilibria and the case I∗1 6= 0 implies an
existence of an endemic equilibria. Let us now derive conditions under which
positive endemic equilibria exist. For I∗1 6= 0, we get

I∗1 =
b1N1γ1g3(g1

ε̃2+µ2

(1−θ2)b2N2
+ g2

ε2+m2+µ2

θ2b2N2
)− µ1µ2(γ1 + µ1)(µ1 − b1q1) (ε̃2+µ2)(ε2+m2+µ2)

(1−θ2)θ2b2b2N2N2

g3[b1q1γ1(g1g8 + g2g9) + (γ1 + µ1)(µ1 − b1q1)(g1g8 + g2g9) + µ1(γ1 + µ1)(µ1 − b1q1)g8g9]
,

(3.26)

I∗1 is epidemiologically meaningful, that is, I∗1 > 0 if and only if
b1N1γ1g3[θ2b2N2g1(ε̃2 + µ2) + (1 − θ2)b2N2g2(ε2 + m2 + µ2) > µ1µ2(γ1 + µ1)(µ1 − b1q1)(ε̃2 +

µ2)(ε2 +m2 + µ2)

which can be written in the form

b1b2

µ1µ2(1− b1q1
µ1

)
× g3γ1N2

µ1(γ1 + µ1)
×
[

(1− θ2)g2N1

ε̃2 + µ2

+
θ2g1N1

ε2 +m2 + µ2

]
> 1

where R1
0 = g3γ3N2

µ1(γ1+µ1)
×
[

(1−θ2)g2N1

ε̃2+µ2
+ θ2g1N1

ε2+m2+µ2

]
is the basic reproductive number for

the model without Culex species and R21 =
g3γ3N2

µ1(γ1 + µ1)
represents the number of

new infections in livestock from one infected Aedes mosquito and R12 = (1−θ2)g2N1

ε̃2+µ2
+

θ2g1N1

ε2+m2+µ2
represent the number of new infections in Aedes mosquitoes from one

infected (asymptomatic or symptomatic) animal and R0,V = b1q1
µ1

represents the
vertical transmission reproductive number. Therefore, I∗1 > 0 if and only if R0,V < 1
and R1

0 > 1. Thus, the following result holds:

Theorem 3.3. The RVF model (3.1-3.3) without Culex species has exactly one
disease-free equilibrium point (DFE), X0

1 = (P 0
1 , U

0
1 , S

0
1 , E

0
1 , I

0
1 , S

0
2 , A

0
2, I

0
2 , R

0
2) =

( b1N1

θ1
, 0, b1K1

d1
, 0, 0, b2K2

d2
, 0, 0, 0) for R1

0 ≤ 1 and exactly one endemic equilibrium point

(EE), X∗1 = (P ∗1 , U
∗
1 , S

∗
1 , E

∗
1 , I
∗
1 , S

∗
2 , A

∗
2, I
∗
2 , R

∗
2) whenever R1

0 > 1.

The result in Theorem 3.3 indicates the impossibility of backward bifurcation in
the RVF model system (3.1-3.3) without Culex species since it has no endemic
equilibrium when R1

0 < 1. This explains that the model (3.1-3.3) without Culex
species has a globally asymptotically stable disease-free equilibrium whenever
R1

0 ≤ 1.
In its simplest form, backward bifurcation in epidemic models usually implies the
existence of two subcritical endemic equilibria when the basic reproductive number
for R1

0 < 1, and a unique supercritical endemic equilibrium for R1
0 > 1 [105]. Thus,

a unique positive endemic equilibrium exists only when R1
0 > 1. We note that the
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increase in complexity of an epidemic model (by adding more infected classes, for
example) can lead to backward bifurcation and even more complicated phenomena
associated with endemic equilibria [105]. However, an increase in complexity of
the proposed RVF model does not appear to give rise to more complex behaviour
with regard to endemic equilibria.

3.3.4.1 Local stability of DFE, X0
1

In the absence of secondary vector (Culex species) that serve as RVF outbreak
amplifiers the Jacobian matrix J̃(X0) in (3.24) reduces to

J(X0
1 ) =

 b1q1 − µ1
γ1g2S0

1

γ1+µ1

γ1g1S0
1

γ1+µ1

(1− θ2)g3S
0
2 −(ε̃2 + µ2) 0

θ2g3S
0
2 0 −(ε2 +m2 + µ2)

 (3.27)

The characteristic equation corresponding to the above Jacobian matrix is

λ3 + Aλ2 +Bλ+ C = 0 (3.28)

where A = ε2 + m2 + µ2 + ε̃2 + µ2 + µ1(1 − b1q1
µ1

), B = −θ2g3S
0
2
γ1g1S0

1

γ1+µ1
− (1 −

θ2)g3S
0
2
γ1g2S0

1

γ1+µ1
+ (ε2 +m2 +µ2)(ε̃2 +µ2) + (ε2 +m2 +µ2)(µ1− b1q1) + (ε̃2 +µ2)(µ1 +

b1q1), C = −θ2g3S
0
2
γ1g1S0

1

γ1+µ1
(ε̃2 +µ2)−(1−θ2)g3S

0
2
γ1g2S0

1

γ1+µ1
(ε2 +m2 +µ2)+(ε̃2 +µ2)(ε2 +

m2 + µ2)(µ1 − b1q1).

Here A > 0 for b1q1
µ1

< 1, B > 0 ∧ C > 0 for b1q1
µ1

< 1 ∧ R1
0 < 1. Thus the

equation (3.28) has no root which is positive or zero (Descartes’rule of sign). The
equation (3.28) will only have negative roots or complex roots with negative real
part if AB−C > 0 (according to Routh-Hurwitz criteria), that is, b1q1

µ1
< 1∧R1

0 < 1.

Thus, the system (3.1-3.3) without Culex species is stable about the interior equi-
librium X0

1 and the following result holds:

Theorem 3.4. For R1
0 < 1 the model system (3.1-3.3) without Culex mosquitoes

has a unique DFE point which is locally asymptotically stable in Ω1.

3.3.4.2 Global asymptotic stability of DFE, X0
1

To ensure that the disease elimination is independent of the initial sizes of the
populations, we need to show that the disease-free equilibrium X∗1 is globally
asymptotically stable (GAS). This is established using the approach proposed in
Castillo-Chavez et al.[106]. There are two conditions that if met guarantee the
global asymptotic stability of the disease-free state. First, system (3.1-3.3) without
Culex mosquitoes must be written in the form:

dX
dt

= F (x, Z),
dZ
dt

= G(X,Z), G(x, 0) = 0
(3.29)
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where X ∈ Rm denotes (its components) the number of uninfected individuals and
Z ∈ Rn denotes (its components) the number of infected individuals including
latent and infectious. U0 = (x0, 0) denotes the disease-free equilibrium of this
system.
(H1) For dX

dt
= F (X, 0), X0 is globally asymptotic stable

(H2) G(X,Z) = AZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ Ω1

where A = DZG(X0, 0) (see [100] for more details) is an M-matrix (the off diagonal
elements of A are nonnegative) and Ω1 is the region where the model makes
biological sense.
If the system (3.29) satisfies the above two conditions then the following Theorem
holds.

Theorem 3.5. The fixed point U0 = (x0, 0) is globally asymptotic stable equilib-
rium of system (3.29) provided that R1

0 < 1 (locally asymptotic stable) and that
assumptions (H1) and (H2) are satisfied.

Proof. Rewriting the model system (3.1-3.3) without Culex mosquitoes in the
form of equation (3.29) then X = (P1, S1, S2, R2), Z = (U1, E1, I1, A2, I2)

T and
F (X, 0) = (b1N1 − θ1P1, θ1P1 − µ1S1, b2N2 − µ2S2, 0), then

A = DZG(X0, 0) =


−θ1 0 b1q1 0 0

0 −(γ1+µ1) 0
σ1σ2β̃12

σ1N1+σ2N2
S0

1
σ1σ2β12

σ1N1+σ2N2
S0

1

θ1 γ1 −µ1 0 0

0 0 (1−θ2)
σ1σ2β21

σ1N1+σ2N2
S0

2 −(ε̃2+µ2) 0

0 0 θ2
σ1σ2β21

σ1N1+σ2N2
S0

2 0 −(ε2+m2+µ2)


(3.30)

and Ĝ(X,Z) = AZ −G(X,Z) =

=


−θ1 0 b1q1 0 0

0 −(γ1+µ1) 0
σ1σ2β̃12

σ1N1+σ2N2
S0

1
σ1σ2β12

σ1N1+σ2N2
S0

1

θ1 γ1 −µ1 0 0

0 0 (1−θ2)
σ1σ2β21

σ1N1+σ2N2
S0

2 −(ε̃2+µ2) 0

0 0 θ2
σ1σ2β21

σ1N1+σ2N2
S0

2 0 −(ε2+m2+µ2)


( U1

E1
I1
A2
I2

)
−

−


b1q1I1−θ1U1

σ1σ2β12
σ1N1+σ2N2

S1I2+
σ1σ2β̃12

σ1N1+σ2N2
S1A2−(γ1+µ1)E1

γ1E1+θ1U1−µ1I1

(1−θ2)
σ1σ2β21

σ1N1+σ2N2
S2I1−(ε̃2+µ2)A2

θ2
σ1σ2β21

σ1N1+σ2N2
S2I1−(ε2+m2+µ2)I2

 =


0

σ1σ2
σ1N1+σ2N2

(β12I2+β̃12A2)(S0
1−S1)

0

(1−θ2)
σ1σ2β21

σ1N1+σ2N2
(S0

2−S2)

θ2
σ1σ2β21

σ1N1+σ2N2
(S0

2−S2)


Since 0 ≤ S1 ≤ K1 and 0 ≤ S2 ≤ K2 it is clear that Ĝ(X,Z) ≥ 0. Then
X0 = (b1N1 − θ1P1, θ1P1 − µ1S1, b2N2 − µ2S2, 0) is globally asymptotic stable
equilibrium of dX

dt
= F (X, 0). Hence, by the above Theorem, U0 which represents

the disease-free equilibrium X0
1 is globally asymptotic stable.
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3.3.4.3 Global asymptotic stability of EE, X∗1

Since the DFE is locally stable when R1
0 < 1 (this will suggest local stability of the

EE for the reverse condition [101]), we only investigate the global stability of the
endemic equilibrium.

Theorem 3.6. For R1
0 > 1, the model system (3.1-3.3) without Culex mosquitoes

has unique positive EE point X∗1 , such that
E∗1
E1
≤ F ∗1 S

∗
1E1

F1S1E∗1
≤ 1 for 0 < E1 < E∗1 ,

S∗2
S2
≥ I∗1S

∗
2

I1S2
≥ 1 for 0 < S2 < S∗2 ∧ 0 < I1 < I∗1 and

S∗1
S1
≤ P1S∗1G

∗
1

P ∗1 S1G1
≤ 1 for 0 < S∗1 < S1 ∧ 0 < P1 < P ∗1

Then, X∗1 is globally asymptotic stable in Ω̊1 ⊂ Ω1.

Proof. Global stability of the EE is explored via the construction of a suitable
Lyapunov function. Let us consider the following function:

V (P1, U1, S1, E1, I1, S2, A2, I2) = e1(P1 − P ∗
1 lnP1) + e2(U1 − U∗

1 lnU1) + e3(S1 − S∗
1 lnS1)

+e4(E1 − E∗
1 lnE1) + e5(I1 − I∗1 ln I1) + e6(S2 − S∗

2 lnS2)
+e7(A2 −A∗

2 lnA2) + e8(I2 − I∗2 ln I2),
(3.31)

where ei > 0 for i = 1, 2, · · · , 8 with e7 = 1
I∗1S
∗
2
, e8 = 1−θ2

θ2
1

I∗1S
∗
2
. e2 and e5 are chosen

very small such e2X
∗
1 < δ, e5X

∗
1 < δ for δ ∈ (0, 1). V (> 0 in Ω̊1) is a Lyapunov

function (Korobeinikov [107]). The time derivative of V is

V̇ = e1(1− P∗
1

P1
)Ṗ1 + e2(1− U∗

1

U1
)U̇1 + e3(1− S∗

1

S1
)Ṡ1 + e4(1− E∗

1

E1
)Ė1 + e5(1− I∗1

I1
)İ1

+e6(1− S∗
2

S2
)Ṡ2 + e7(1− A∗

2

A2
)Ȧ2 + e8(1− I∗2

I2
)İ2

= e1(1− P∗
1

P1
) [b1(N1 − q1I1)− θ1P1] + e2(1− U∗

1

U1
) [b1q1I1 − θ1U1] + e3(1− S∗

1

S1
)

[θ1P1 − g1I2S1 − g2A2S1 − µ1S1] + e4(1− E∗
1

E1
) [g1I2S1 + g2A2S1 − (γ1 + µ1)E1]

+e5(1− I∗1
I1

) [γ1E1 + θ1U1 − µ1I1] + e6(1− S∗
2

S2
)(b2N2 − g3I1S2 − µ2S2)

+e7(1− A∗
2

A2
) [(1− θ2)g3I1S2 − (ε̃2 + µ2)A2] + e8(1− I∗2

I2
) [θ2g3I1S2 − (ε2 +m2 + µ2)I2] .

(3.32)

At X∗1 , we have b1N1 = b1q1I
∗
1 + θ1P

∗
1 , b1q1 =

θ1U∗1
I∗1
, θ1 =

g1I∗2S
∗
1+g2A∗2S

∗
1+µ1S∗1

P ∗1
, γ1 +

µ1 =
g1I∗2S

∗
1+g2A∗2S

∗
1

E∗1
,

µ1 =
γ1E∗1+θ1U∗1

I∗1
, b2N2 = g3I

∗
1S
∗
2 + µ2S

∗
2 , ε̃2 + µ2 =

(1−θ2)g3I∗1S
∗
2

A∗2
, ε2 + m2 + µ2 =

θ2g3I∗1S
∗
2

I∗2
.

Let F1 = g1I2 + g2A2, F ∗1 = g1I
∗
2 + g2A

∗
2, G1 = g1I2 + g2A2 + µ1, G∗1 =

g1I
∗
2 + g2A

∗
2 + µ1, H1 = γ1E1 + θ1U1,

H∗1 = γ1E
∗
1 + θ1U

∗
1 . Then, V̇ can now be written as
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V̇ = e1(1− P∗
1

P1
)(b1q1I

∗
1 + θ1P

∗
1 − b1q1I1 − θ1P1) + e2(1− U∗

1

U1
)(
θ1U

∗
1

I∗1
− θ1U1)

+e3(1− S∗
1

S1
)(
P1G

∗
1S

∗
1

P∗
1
−G1S1) + e4(1− E∗

1

E1
)(F1S1 − F∗

1 S
∗
1E1

E∗
1

) + e5(1− I∗1
I1

)(H1 − H∗
1 I1
I∗1

)

+e6(1− S∗
2

S2
) [(g3I

∗
1 + µ2)S∗

2 − (g3I1 + µ2)S2] + e7(1− A∗
2

A2
)
[
(1− θ2)g3I1S2 − (1−θ2)g3I∗1S

∗
2A2

A∗
2

]
+e8(1− I∗2

I2
)
[
θ2g3I1S2 − θ2g3I

∗
1S

∗
2 I2

I∗2

]
.

(3.33)

Further simplification yields

V̇ = −e1(1− P ∗1
P1

)2θ1P1 − e6(1− S∗2
S2

)2µ2S2 + F (P1, U1, S1, E1, I1, S2, A2, I2)

(3.34)
where

F = e1b1q1(1− P∗
1

P1
)(
I∗1
I1
− 1)I1 + e2θ2(1− U∗

1

U1
)(
U∗

1 I1
U1I∗1

− 1)U1 + e3(1− S∗
1

S1
)(
P1S

∗
1G

∗
1

P∗
1 S1G1

− 1)S1G1

+e4(1− E∗
1

E1
)(1− F∗

1 S
∗
1E1

F1S1E∗
1

)S1F1 + e5(1− I∗1
I1

)(1− H∗
1 I1

H1I∗1
)H1 + e6g3(1− S∗

2

S2
)(
I∗1S

∗
2

I1S2
− 1)I1S2

+e7(1− θ2)g3(1− A∗
2

A2
)(1− I∗1S

∗
2A2

I1S2A∗
2

)I1S2 + e8θ2g3(1− I∗2
I2

)(1− I∗1S
∗
2 I2

I1S2I∗2
)I1S2.

(3.35)

Recalling that U∗1 = b1q1
θ1
I∗1 , e7 = 1

I∗1S
∗
2

and e8 = 1−θ2
θ2

1
I∗1S
∗
2

we obtain,

e2θ2(1− U∗1
U1

)(
U∗1 I1

U1I∗1
− 1)U1 = e2θ2U

∗
1 (1− U1

U∗1
− U∗1 I1

U1I∗1
) + e2θ2

b1q1

θ1

I1, (3.36)

e5(1− I∗1
I1

)(1− H∗1I1

H1I∗1
)H1 = e5H1(1− I∗1

I1

− H∗1I1

H1I∗1
) + e5H

∗
1 , (3.37)

and e7(1− θ2)g3(1− A∗2
A2

)(1− I∗1S
∗
2A2

I1S2A∗2
)I1S2 + e8θ2g3(1− I∗2

I2
)(1− I∗1S

∗
2 I2

I1S2I∗2
)I1S2 =

(1− θ2)g3
I1S2

I∗1S
∗
2
(2− A∗2

A2
− I∗1S

∗
2A2

I1S2A∗2
− I∗2

I2
− I∗1S

∗
2 I2

I1S2I∗2
) + 2(1− θ2)g3.

By theorems hypothesis,

e1b1q1(1− P ∗1
P1

)(
I∗1
I1

− 1)I1 ≤ 0,

e3(1− S∗1
S1

)(
P1S

∗
1G
∗
1

P ∗1S1G1

− 1)S1G1 ≤ 0,

e4(1− E∗1
E1

)(1− F ∗1S
∗
1E1

F1S1E∗1
)S1F1,

e6g3(1− S∗2
S2

)(
I∗1S

∗
2

I1S2

− 1)I1S2 ≤ 0,

where strict equalities holds only when,
P1 = P ∗1 , I1 = I∗1 , S1 = S∗1 , E1 = E∗1 and S2 = S∗2 .
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Furthermore,

U1

U∗1
+
U∗1 I1

U1I∗1
≥ 2,

I∗1
I1

+
H∗1I1

H1I∗1
≥ 2,

A∗2
A2

+
I∗1S

∗
2A2

I1S2A∗2
+
I∗2
I2

+
I∗1S

∗
2I2

I1S2I∗2
≥ 4,

for all I1, S2, A2, I2 ≥ 0, because the arithmetic mean is greater than or equal
to the geometric mean. Thus, F ≤ 0 for P1, U1, S1, E1, I1, S2, A2, I2 > 0. Hence,
V̇ ≤ 0 for all P1, U1, S1, E1, I1, S2, A2, I2 > 0 and is equal to zero for P1 = P ∗1 , U1 =
U∗1 , S1 = S∗1 , E1 = E∗1 , I1 = I∗1 , S2 = S∗2 , A2 = A∗2, I2 = I∗2 and X∗1 is the only
equilibrium state of the system on this plane. Therefore, the largest compact
invariant set in Ω̊1 such that V̇ ≤ 0 is the singleton X∗1 which is the endemic
equilibrium point. LaSalle’s invariant principle [108] guarantees that X∗1 is globally
asymptotically stable (GAS) in Ω̊1, the interior of Ω1.

3.3.5 Stability analysis of the overall model (3.1-3.3)

The overall model system (3.1-3.3) describes the epidemiological and ecological
complexity involved on RVF dynamics. Theorem 2 in van den Driesche and
Watmough [101] states that the local stability of the disease-free equilibrium of
the model can be determined by its basic reproduction number, R0. However, in
host-vector models where multiple transmission cycle are observed to occur as in
the case of our model (vertical transmission, host to Aedes infection, Aedes to host
infection, host to Culex infection and Culex to host infection) the basic reproductive
number obtained via next-generation method does not give the number of host
infected by a single host if there an intermediate vector, but rather the geometric
mean of the number of infections per generation [87]. Therefore, in our case the
local stability of the disease -free equilibrium, X0, (3.10) of the model is established
through the Routh-Hurtwitz criteria [109, 110], and the following result holds:

Theorem 3.7. The model system (3.1-3.3) always has the disease-free equilibrium
X0. If b1q1

µ1
< 1 ∧ R1

0 < 1 ∧ R3
0 < 1 ∧ R0 < 1, the disease-free equilibrium is

locally asymptotically stable in Ω1.

Proof. To prove the stability of the equilibrium point X0 we use the Jacobian
matrix (3.24) of the linearised system, which yield the following characteristic
polynomial:

x4 + n1x
3 + n2x

2 + n3x+ n4 = 0 (3.38)

where n1 = µ3 + ε̃2 + µ2 + ε2 +m2 + µ2 + µ1 − b1q1,
n2 = µ3(ε̃2 + µ2)(1− c1) + µ3(ε2 +m2 + µ2)(1− c2) + (µ1− b1q1)(ε̃2 + µ2)(1− c3) +
(µ1 − b1q1)(ε2 +m2 + µ2)(1− c4) + µ3(µ1 − b1q1) + (ε̃2 + µ2)(ε2 +m2 + µ2),
n3 = (µ1−b1q1)(ε̃2 +µ2)(ε2 +m2 +µ2)(1−R1

0)+µ3(ε̃2 +µ2)(ε2 +m2 +µ2)(1−R3
0)+
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µ3(µ1 − b1q1)(ε̃2 + µ2)[1− (c1 + c3)] + µ3(µ1 − b1q1)(ε2 +m2 + µ2)[1− (c2 + c4)],
n4 = µ3(µ1− b1q1)(ε̃2 +µ2)(ε2 +m2 +µ2)[1− (c1 + c2 + c3 + c4)] = µ3(µ1− b1q1)(ε̃2 +
µ2)(ε2 +m2 + µ2)(1−R0),

with c1 =
(1−θ2)γ3g4g6S0

2S
0
3

µ3(γ3+µ3)(ε̃2+µ2)
, c2 =

θ2γ3g4g5S0
2S

0
3

µ3(γ3+µ3)(ε2+m2+µ2)
, c3 =

(1−θ2)γ1g1g3S0
1S

0
2

(µ1−b1q1)(ε̃2+µ2)
,

c4 =
θ2γ1g1g3S0

1S
0
2

(µ1−b1q1)(ε2+m2+µ2)
, and

R3
0 = c1 + c2 =

γ3g4S2

µ3(γ3 + µ3)

[
(1− θ2)g6S

0
3

ε̃2 + µ2

+
θ2g5S

0
3

ε2 +m2 + µ2

]
.

Thus, n1 > 0 for b1q1
µ1

< 1, n2 > 0 for b1q1
µ1

< 1∧c1 < 1, c2 < 1, c3 < 1, c4 < 1, n3 > 0

for b1q1
µ1

< 1 ∧ c1 + c3 < 1 c2 + c4 < 1 and n4 > 0 for R1
0 < 1 ∧ R3

0 < 1 ∧ R0 < 1.

Thus the equation (3.38) has no root which is positive or zero (Descartes’rule of
sign). Therefore equation (3.38) will only have negative roots or complex roots
with negative real part if n3(n2n1 − n3)− n2

1n4 > 0 (according to Routh-Hurwitz
criteria), that is, b1q1

µ1
< 1∧R1

0 < 1 ∧ R3
0 < 1 ∧ R0 < 1. Thus, the system (3.1-3.3)

is locally asymptotically stable about the boundary equilibrium X0.

3.3.5.1 Existence and uniqueness of endemic equilibrium, X∗

The existence of the endemic equilibrium in Ω1, is determined by equation (3.19).
Taking A = g3l7, B = g4l7, C = b1N1g3l6, D = µ1µ2l5 and E = b1N1g4l6, equation
(3.19) can be written as

A(I∗1 )2 + (BI∗3 +D − C)I∗1 + EI∗3 = 0. (3.39)

Solving equation (3.39) for {I∗1 , I∗3} we get {I∗1 > 0, I∗3 = − I∗1 (AI∗1 +D−C)

I∗1B−E
} which

gives {I∗1 > 0, I∗3 =
g3γ1b2I∗1 (aR1

0−1−g3l7I∗1 )

g4[g3γ1b2l7I∗1−µ1(γ1+µ1)R1
0]
}, with a = b1b2

µ2(µ1−b1q1)
. The existence of

positive I∗3 is given by the following inequalities: E
B
< I∗1 <

C−D
A
∨ C−D

A
< I∗1 <

E
B

.

Since E
B

= b1N1g4l6
g4l7

= b1N1l6
l7

and C−D
A

= b1N1g3l6−µ1µ2l5
g3l7

= b1N1l6
l7
− µ1µ2l5

g3l7
, we get that

the meaningful inequality is C−D
A

< I∗1 <
E
B

, thus
aR1

0−1

g3l7
< I∗1 <

µ1(γ1+µ1)R1
0

g3γ1b2l7
.

Since I∗1 > 0, then C − D should be positive. C − D is the expression on the
numerator of equation (3.26), which was verified to be positive whenever R1

0 > 1
and b1q1

µ1
< 1. This gives the threshold for the endemic persistence. Therefore the

following result holds:

Theorem 3.8. The RVF model (3.1-3.3) has a unique endemic equilibrium point

X∗ whenever R1
0 > 1 and

aR1
0−1

g3l7
< I∗1 <

µ1(γ1+µ1)R1
0

g3γ1b2l7
.

The result in Theorem (3.8) indicates that depending on vertical transmission
efficiency, if the Aedes basic reproduction number R1

0 > 1 and I∗1 satisfy the

inequality
aR1

0−1

g3l7
< I∗1 <

µ1(γ1+µ1)R1
0

g3γ1b2l7
, it is sufficient to cause an outbreak, since

secondary vectors (Culex species) co-exist and serve as disease amplifiers. Figure
3.2 shows the region where I∗3 is strictly positive when varying both I∗1 and R1

0.
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Figure 3.2: Base on equation (3.39), we represent the condition for existence of
infected Culex mosquitoes at the endemic equilibrium (EE) state. The existence
of infected Culex is impossible in region I. In region II both Aedes and Culex
coexist. The border black line represents the threshold of coexistence, which is

exactly I∗3 = 100.

That is, in region II both infected Aedes and Culex co-exist while in region I only
infected Aedes exist. This confirm the analytical results obtained above. The
existence of infected Culex at endemic equilibrium depend on the existence infected
Aedes and initial spread of the disease R1

0. Thus, Aedes species has the potential to
initiate the epidemic through transovarial transmission and the potential to sustain
low levels of the disease during post epidemic periods.

3.3.6 Bifurcation and chaos investigation on the RVF model

To provide some numerical evidence for the qualitative dynamic behaviour of the
model (3.1-3.3), time series with both transient and permanent regimes, phase
portraits, Poincaré maps, bifurcation diagrams, Lyapunov exponents to assess
model sensitive dependence on initial conditions and return maps are used to
illustrate the above analytical results and for determining new dynamics as the
parameters vary. We start by introducing a simple case of seasonality on time
dependent birth rates of mosquito populations (Aedes and Culex):

b1(t) = b1

(
1 + δ1 sin

(
2πt

T

))
, b3(t) = b3

(
1 + δ3 sin

(
2πt

T

))
(3.40)

where b1 and b3 are the baseline parameters of the birth rate of Aedes and Culex
mosquitoes respectively, T = 1 year, δ1 and δ3 are the external forcing amplitudes
for the two species of mosquitoes respectively, which represent the strength of
seasonality that controls the magnitude of the fluctuations. When δ1 = δ3 ≡ 0, the
model reduces to a non-seasonal model.
When there is no external forcing (i.e. δ1 = δ3 = 0) the system possesses two
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types of equilibria: disease free and endemic equilibria. When the magnitude
of the external forcing parameters δ1, δ3 is sufficiently small, δ1, δ3 ∈ (0, 1) the
system responds with oscillations of the same annual period as external forces (see
Figs.3.3(a) and (b)). However with larger values (for instance δ1 = 70, δ3 = 1.1) the
system shows other modes of oscillations Fig.3.3(c),(d) with period 5 as confirmed
by Poicaré maps Fig.3.4. In all this section, the system is integrated numerically
with the fifth order Runge-Kutta algorithm [111]. The initials conditions and
other values are P1(0) = 1000, U1(0) = 999, E1(0) = 0, I1(0) = 1, S2(0) = 1000,
A2(0) = 0, I2(0) = 0, R2(0) = 0, P3(0) = 1000, S3(0) = 5000, E3(0) = 0, I3(0) = 0,
K1 = 10000, K2 = 2000 and K3 = 10000. The parameter values are shown in
Table A.2 in Appendix A.

3.3.6.1 Time series simulations

Figure 3.3 depicts the time evolution of the sum of infectious Aedes and Culex
mosquitoes I1 + I3 and sum of infectious asymptomatic and symptomatic livestock
for different values of δ1 = 0.6, δ3 = 0.6; δ1 = 70, δ3 = 1.1 and δ1 = 24.7, δ3 = 1.1.
In (a) the number of infectious mosquitoes oscillates yearly reaching the same
maximum. In (c) the quantity I1 + I3 also oscillates with first peak of above 500
around the second year. In (c) we notice a long lasting peak of about 500 infectious
mosquitoes in the interval 18-25 months, which is likely to cause an inter-epidemic
outbreak. Fig.3.3(b) shows a constant low oscillation, high peaks around second
and fifth year in (d) and high peaks around second and fourth year in (f). Note that
the internal figures describes the permanent regime which represent the dynamics
where the system is expected to adapt to the external forcing.
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Figure 3.3: We display the time series of (I1 + I3) left and (A2 + I2) right.
Parameters used for (a) and (b) are δ1 = 0.6, δ3 = 0.6, for (c) and (d) are
δ1 = 70, δ3 = 1.1, finally for (e) and (f) are δ1 = 24.7, δ3 = 1.1. Figure (d)
and (f) shows a linear increase in livestock seroprevalence during post-epidemic

which comes in cycles of 5 to 7 years approximately.

The time series for δ1, δ3 ∈ (0, 1), also shows that the total of infected vectors I1 +I3

and infected livestock A2 + I2 stay quite away from zero, avoiding the chance of
extinction in stochastic system with reasonable size (see Fig.3.3(a) and (b)). This
is due to the fact that for δ1, δ3 ∈ (0, 1) vector oviposition continues throughout
the year, albeit at lower rates during unfavourable seasons. This is not the case
of East African region, where we have two rain seasons (long and short) and a
dry season, where under this former we expect stochastic extinction during some
intervals of inter-epidemic periods.
In the region δ1 > 1, δ2 > 1 Fig.3.3(c)-(f), we observe fluctuations in the total
number of infected from reasonable small peaks (describing RVF post-epidemic
activities) to very low values, which in this case drive almost surely the system to
extinction.

3.3.6.2 Phase portrait diagrams and Poincaré maps

Instead of studying the entire complicated trajectories, important information is
encoded in the phase plane. This approach allow us to analyse geometrically the
total dynamics of the system. Varying δ1, δ3 the state space plots show a rich
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dynamical behaviour with bifurcations from limit cycles, multi-periodic oscillation
to completely irregular behaviour which is usually the fingerprint of chaos (see
Fig.3.4).

Figure 3.4: Phase portrait with couple (I2 + A2, S2) on the left and (I1 +
I3, S1 + S3) on the right. In (a) and (b), δ1 = 0.6 , δ3 = 0.6, the system is
attracted by a limit cycle. In (c) and (d), δ1 = 70, δ3 = 1.1, the system is
multi-periodic. And in (e) and (f), δ1 = 24.7, δ3 = 1.1, the systems behave with

higher multi periodicity.

Poincaré map is a useful tool for analysing the dynamics of a nonlinear system. It
allows good insight for global dynamics of the system by displaying the types of
attractors of the system [112]. The successive iterations of the map are defined as:

P : Σ→ Σ

Σ =

{
X|t = 0,

2π

Ω
,
4π

Ω
,
8π

Ω
, . . .

}
∈ R13 (3.41)

The attractor is generated by sampling the system stroboscopically at time corres-
ponding to the multiple of the period T = 2π/Ω. We have used 100, 000 points
and a period of one year. Figures 3.5(a) and (b) with ( δ1 = 0.6, δ3 = 0.6) show
that the system is attracted by a limit cycle, because of the presence of a single
dot. In this case the system is periodic. In (c) and (d) with ( δ1 = 70, δ3 = 1.1) we
notice a presence of a few dots, thus, the system is multi-periodic and in (e) and
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(f) with (δ1 = 24.7, δ3 = 1.1) we notice a strange attractor which is usually a sign
of a chaotic system.

Figure 3.5: Poincaré maps with couple (I2 + A2, S2) on the left and (I1 +
I3, S1 + S3) on the right. In (a) and (b), δ1 = 0.6, δ3 = 0.6, in (c) and (d),

δ1 = 70, δ3 = 1.1 and in (e) and (f), δ1 = 24.7, δ3 = 1.1.

3.3.6.3 Maxima return maps of I1 + I3, A2 + I2 for state phase plots

We have investigated maxima return maps in order to get supplementary classifica-
tion of different dynamics for parameters δ1 and δ3. For a time selected as tmax, at
which I1 + I3 and A2 + I2 have a local maximum, we have plotted the number of
infected mosquitoes and livestock respectively at time tmax and at the next local
maximum treturnmax. Figures 3.6(a) and (b) show that all consecutive maxima
coincide with themselves as shown by a single dot. In (c) and (d), we notice that
consecutive maxima are few and different as a sign of irregularity, and in (e) and
(f), we observe that a dot rarely comes back to the same point. The fingerprint of
chaotic attractor is clearly visible with the maxima return maps analysis.
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Figure 3.6: We display the maxima return map of I1 + I3 and A2 + I2 with
(a)-(b) δ1 = 0.6, δ3 = 0.6, (c)-(d) δ1 = 70, δ3 = 1.1 and (e)-(f) δ1 = 24.7, δ3 = 1.1.

The blanc line represents the first bisectrix of the plane.

3.3.6.4 Lyapunov exponents and bifurcation diagrams

The largest Lyapunov Exponent (LE) is quantitatively characterized by the average
rate of separation of infinitesimally close trajectories in the phase space for a
dynamic system. It can be used to determine how sensitive a dynamical system
is to initial conditions [113]. In general for a N-dimensional dynamical system

described by a set of equations dXi

dt
= F i(X, t), the LEs are defined by [114]:

λi = lim
t→∞

lim
δXi

0→0

1

t
ln

(
‖ δX i

t ‖
‖ δX i

0 ‖

)
, (3.42)

where λi is the ith LE and ‖ δX i
t ‖ is the distance between the trajectories of the

ith component of the vector field F at time t. Recall that exponential divergence
in the phase space is given by the LEs. If the largest LE is less than or equal to
zero, then the system may be regarded as periodic or quasi-periodic. Otherwise,
the largest LE is positive the system may have an irregular or chaotic behaviour.
Another important fact to be mentioned is that negative LE does not, in general,
indicate stability, and that positive largest LE does not, in general indicate chaos
[115, 116].
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Figure 3.7: In (a) and (b), bifurcation diagram for the local maximal quantities
of I1 by varying the parameter δ1 and fixing δ3=0.6(a) and δ3=1.1(b). In (c)
and (d), bifurcation diagram for the local maximal quantities of I1 + I3 by
varying the parameter δ1 and fixing δ3=0.1(c) and δ3=1.1(d). In (e) and (f), we
have computed the largest LE for δ3=0.6(e) and δ3=1.1(f) and in (g) and (h),
bifurcation diagram for the local maximal quantities of A2 + I2 by varying the

parameter δ1, and fixing δ3=0.6(h) and δ3 = 1.1(f).

In Figs.3.7(a)-(d) we have computed the bifurcation diagrams with respect to δ1,
the external forcing amplitude on the response of the RVF model. Figures (e) and
(f) show the maximal LE after infinitesimal perturbation of 10−10 in the initial
conditions. In Fig.3.7 (e), the maximal LE is positive for δ1 & 60 and around 50
and 25. In Fig.3.7(f), the maximal LE is positive for 15 . δ1 . 34 and for δ1 & 85.
Figure 3.7 shows the bifurcation diagrams of the local maxima of infectious mosqui-
toes and livestock undergoing forward forking bifurcation from period-1 to period-6
oscillatory type behaviour. In Fig.3.7(a), local maxima extrema I1 of infectious
Aedes species undergo irregular behaviour for δ1 & 65, which is the fingerprint of
chaos. Fig.3.7(b) shows irregular behaviour for 15 . δ1 . 34 and δ1 & 85, with
large number of periods. In Figs.3.7 (c) and (d), we observe almost the same
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qualitative behaviour with the same parameters, but with notable difference in
the value of the local maxima of the overall infectious mosquitoes fuelled by the
elevation of several secondary vectors which serve as disease amplifiers. When
δ3 = 1.1 the local extrema A2 + I2 undergoes irregular behaviour for 15 . δ1 . 34
and δ1 & 85, with large number of periods Fig.3.7(h).
We observe from Fig.3.7(e) that for a fixed δ3 = 0.1 and varying δ1 (0 ≤ δ1 . 62)
the largest Lyapunov exponent is fairly negative indicating stable limit cycles and
multi-periodicity with some shift to positive values as the system bifurcates through
period doubling routes to chaos. Above δ1 = 62 a positive Lyapunov exponent
clearly moves away from zero, indicating deterministically chaotic attractors. For
a fixed δ3 = 1.1 and varying δ1 Fig.3.7(f) the largest Lyaponov exponent fairly
confirms the behaviour seen through bifurcation diagrams with positive values on
the chaotic regions.

3.3.6.5 Interaction between Culex and Aedes oviposition rates

In the preceding section we have fixed the value of δ3, while investigating the
bifurcation behaviour when δ1 is varying. In Fig.3.8 we have computed the maximal
LE when those two parameters are varying. For 20 . δ1, δ3 . 100, the maximal
LE is negative, then the system is sensitive to initial conditions. For low values of
δ3 and 18 . δ1, δ3 . 45, the maximal LE is positive. Another remarkable fact is
observed when δ1 is around 10 no matter the value of δ3, the maximal LE will be
positive. This shows us that the impact of the birth rate of Aedes is predominant
in leading irregular behaviour in our system, confirming that Aedes are indeed the
RVF primary vectors.

Figure 3.8: In (a) we display the maximal LE function of δ1 and δ3. The
colorbar shows the value of the maximal LE. In (b) we display the number of
points in the Poincaré map (the colorbar) according to the set of parameters

(δ1, δ3).

Both maximal Lyapunov exponent functions of δ1 and δ3 and the Poincaré map
of the set (δ1, δ3) Fig.3.8 around δ1 = 10 agree with each other, confirming the
analytical results obtained in Theorem 3.8.
Recall that in certain Aedes species of the subgenera Neomelaniconion and Aedi-
morphus, the female mosquitoes transmit RVF virus vertically to their eggs [35].
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When these mosquitoes lay their eggs in flooded areas, transovarially infected
adults may emerge and transmit RVF virus to nearby domestic livestock which may
then lead to the infection of secondary arthropod vectors species including various
Culex [117]. Thus, there is an initial quantity of primary infected vectors required
to trigger an outbreak. Fig.3.8 shows that if the control magnitude of fluctuations
in Aedes oviposition rate is around 10, and the number of newly transovarially
infected mosquitoes is amplified by nearby domestic livestock, then, the number of
infectious (both host and vector) will be sufficiently enough to cause subsequent
elevation of secondary vectors, including Culex species, and consequently trigger
an outbreak.

3.4 Discussion and Conclusion

The proposed model accounts for the population dynamics of both livestock and
mosquitoes (Aedes and Culex) and seasonal changes in weather that heavily affects
the vector population size. Mosquito density varies over seasons, and the contact
rates and vector oviposition rates vary dynamically based upon both host and
vector densities since female mosquitoes need blood for oviposition. Qualitative
analysis of the model showed that there exists a domain where the model is epi-
demiologically and mathematically well-posed. We then analysed the existence
and stability of both disease free and endemic equilibria.
Dynamical analysis shows that when R0 < 1, then the disease dies out and when
R0 > 1 the disease become endemic. A suitably constructed Lypunov function
is used to determine the global stability of the endemic equilibrium of the model
without Culex species and the existence of the endemic equilibrium of the over-

all model is seen to exist whenever
aR1

0−1

g3l7
< I∗1 <

µ1(γ1+µ1)R1
0

g3γ1b2l7
, meaning that the

co-existence of the infectious host, Aedes and Culex mosquitoes is subject to the
number of infected Aedes mosquitoes.
We have used visualisation techniques to study the behaviour of RVF epidemic
model under external forcing in the mosquito oviposition rates. The bifurcation
diagrams show the emergence with an increase in external forcing parameters
δ1, δ3 of Hopf and pitchfork modes of bifurcation. That they have much larger
amplification of infection levels that can take place if the system is encouraged to
switch to multi-periodic mode. In transition, further amplification can occur if the
multi-periodic mode becomes unstable and the system moves into chaotic state
before finding an alternative stable periodic mode (e.g. Fig.3.7).
On the bifurcation diagrams the highest maximum number of infectious Aedes
mosquitoes is only observed for values of δ1 (δ1 < 10) with different values of
δ3, meaning that for the disease to trigger an inter-epidemic a certain number of
infectious Aedes mosquitoes is necessary. This confirm the analytical results obtain
in section 3.3.5, as well as results obtained in [5] which showed that when mosquito
populations follow seasonal patterns with large amplitudes, vertical transmission
could play a significant role in long-term persistence of a pathogen. Another import-
ant conclusion is that even with a low maximum number of infectious individuals,
the bifurcation diagrams show that if for fixed δ3 = 1.1 and varying δ1 the system
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becomes chaotic in the interval 15 . δ1 . 35, meaning that unpredictable and
possibly uncontrolled low levels of inter-epidemic activities may occur, leading
to higher morbidity in livestock. Hence observed fluctuations in RVF outbreak
data and non deterministic nature of RVF inter-epidemic activities could now be
better understood considering fluctuations on both rain season and dry season as
significant factor.
A sero-survey study done in livestock approximately four years after the 2006/07
RVF outbreak in Tanzania, showed a linear increase in seroprevalence in the post-
epidemic annual cohorts implying a constant exposure and presence of active foci
transmission [39]. Figure 3.3 (d) and (f) demonstrate this behaviour which is shown
to come in cycles of 5 to 7 years approximately, as well as fluctuations in the total
number of infected from reasonable small peaks (describing RVF post-epidemic
activities) to very low values. During these periods of low troughs for the total
number of infected, the virus survive through vertical transmission in Aedes species
and among wild animals as reservoirs [58]. Note that, this recurrent low level RVF
virus activity during inter-epidemic periods, in East African region in particular,
infects 1− 3% of livestock herds annually [118]. Generally, these infections pass
undetected where there is no regular active surveillance in the livestock and human
populations [39]. This suggests that RVF outbreaks partly result from build up
RVF inter-epidemic activities for it has been observed that optimum climatic
conditions (temperature and rainfall) only and presence of mosquitoes have not
completely explained the RVF outbreaks [26].
Simulation of the interaction between the two populations densities of Aedes and
Culex by varying the magnitudes of external forcing δ1 and δ3 of the oviposition
rates b1 and b3 have opened a new window of research about the potential of
Aedes species for initiating RVF outbreaks and sustaining low endemic levels of the
disease during inter-epidemic periods. This result concurs with the Chitnis et al.
[5] suggestion that vertical transmission is required for inter-epidemic persistence.
One of the main objectives of this study was to investigate the possibility of
prediction of RVF outbreaks with the aim to control RVF incidence. We have
shown that seasonality may induce irregular behaviour on the disease dynamics. It
has been shown that the interaction between oviposition rates of Aedes and Culex
mosquitoes makes prediction more complex. In fact it is naturally expected higher
irregularity in the higher seasonality forcing. However, our proposed model has
shown that the complexity occurs even for a relatively low level of the magnitude
of seasonal forces. We have also found that seasonal Aedes birth rate is most
likely to generate uncontrollable behaviour than Culex seasonal birth rate. The
epidemiological significance of this study is the higher uncertainty in outbreak
prediction of RVF by a simple theoretical mathematical model including seasonal
influence in mosquito populations. Also the model including external seasonal
forcing on mosquito oviposition rates shows ability to mimic the linear increase in
livestock seroprevalence as found in [39], with first post-epidemic peak around the
second year, a following peak larger than the previous one around the fifth year
Fig.3.3(d) and (f). Currently, two types of RVF vaccine for livestock exist: a live
vaccine and inactivated vaccine. However, the current live vaccine can not be used
for prevention and prevention using the inactivated vaccine is almost impossible
to sustain in RVF affected countries for economic reasons [1, 74, 86]. Then, the
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possible alternative of controlling RVF transmission remains in keeping the vector
population at the lowest levels. Therefore we argue that locations that may serve
as RVF virus reservoirs should be eliminated or kept under control to prevent
multi-periodic outbreaks and consequent chains of infections. We also recommend
a systematic surveillance in the livestock or human population in order to monitor
inter-epidemic RVF activities.
This study is not exhaustive and can be extend to include humans not just as dead
ends [48] but also as disease amplifiers since it has been demonstrated that humans
have potential to transmit the virus, particularly to Aedes mosquito species [119].
Also, including ticks on the model may help to explain and gain more insights on
the understanding of disease dynamics and enhance control strategies, since ticks
have been reported to play a role on disease transmission [26]. For mathematical
convenience and tractability of the model, we made several assumptions, thus our
results are driven by the model formulation and structure. A step toward a more
quantitative and qualitative study is viable by relaxing some of the assumptions
made and incorporating more epidemiological features of the disease as well as
the use of a double periodic function and inclusion of stochasticity in order to
capture the dynamic of the two rainfall seasons in East Africa (long and short
rainy seasons), where the disease is likely to be more predominant. Further studies
are needed to enhance the understanding of RVF epidemic and inter-epidemic
activities in order to provide further insights in assessing the current and future
control strategies.



Chapter 4

The role of Hyalomma Truncatum
on the dynamics of Rift Valley
fever. Insights from a
mathematical epidemic model1

4.1 Introduction

Tick-borne diseases in livestock have a significant economic impact in particular in
the sub-Saharan region where Rift Valley fever (RVF) prevalence is endemic [7, 8].
Ticks are vectors of a number of both human and ruminant diseases including
Lyme disease, colorado tick fever, Rocky Mountain spotter fever, African tick bite
fever, bovine anaplasmosis and tick paralysis, just to mention a few. Virus isolation
and laboratory investigations have implicated ticks in the transmission of RVF
[7, 11, 28, 29]. Ticks attach to the skin of humans and ruminants and feed on
blood causing direct loss through sucking blood [26], limiting livestock production
and improvement [120].
In this chapter, we propose a model that investigates the possible implications
of ticks in the transmission of RVF [26, 28] and the resulting epidemiological
consequences in efforts for controlling RVF epidemics. We adapt previous RVF
transmission models [4, 69] to include ticks compartments. Hyalomma truncatum
is both a two-host and three-host tick depending on the hosts species [121]. This
means that it must feed on two different hosts as larva and adult or three different
hosts as larva, nymph and adult respectively [120]. Therefore, we include in our
model attached and detached compartments and combine both immature stages
and adults in one compartment to keep the model tractable.

1This chapter has been published: S. A. Pedro et al. The role of Hyalomma Truncatum on
the dynamics of Rift Valley fever. Insights from a mathematical epidemic model. Acta Biotheor.
64(3) 2016. DOI 10.1007/s10441-016-9285-0
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The chapter is set out as follows. In sections 4.1.1 and 4.1.2 we describe the
epidemiology of the disease and its important features as well as the biology of
ticks and their possible involvement in RVF transmission. In addition, we discuss
previous work and contribution in the sphere of understanding disease transmission
and persistence. Section 4.2 follows with model formulation, including the definition
of a domain where the model is mathematically and epidemiologically well posed.
In Section 4.3, we derive an explicit formula for the basic reproductive number,
R0, an important critical condition for quantifying initial disease invasion, then we
prove the existence and global stability of the disease-free equilibrium. In Section
4.4 we simulate the system to understand various underlying RVF dynamics and
possible contribution of ticks to the disease spread and persistence. Finally in
Section 4.5, we explore global sensitivity analysis followed by local sensitivity
analysis of the model output with respect to input parameters.

4.1.1 RVF epidemiology mechanism

Rift Valley fever virus (RVFV), a member of the phlebovirus genus, and family
Bunyaviridae, is an enveloped virus with a segmented, RNA genome. RVF is a viral
disease that primarily affects both domestic and wild animals but is also capable of
infecting humans [22, 23]. Major host disease amplifiers are sheep, cattle and goats
but the disease also affects camels, buffaloes and other mammalian species [24],
causing high mortality, abortion and significant morbidity in domestic livestock
[13]. The virus has been isolated from at least 30 mosquito species in the field [27],
biting midges, blackflies and ticks [11, 28, 29]. However, major vectors are certain
species of mosquitoes, most commonly of the genera Aedes, Culex, Eretmopodites
and Mansonia among others [29, 122]. For further details about the epidemiology
and ecology of the disease see Section 3.1 in Chapter 3.

4.1.2 Ticks and their possible role on the transmission of
RVF

Hlyalomma truncatum is a tick species of the family Ixodidae, widely distributed
within the African tropical geographical region [123], which is found throughout the
entire geographic range of RVFV [28]. Ticks require blood meals to survive at each
of their four life stages: egg, larvae, nymph and adult. Their hosts include humans,
mammals, birds, reptiles and amphibians. However, most ticks have a variant
of mammalian hosts at each stage of their life and disease transmission occurs
through the process of feeding. As pointed out in the introduction, Hyalomma
truncatum is both a two-host and three-host tick depending on the hosts species
[121]. Thus, a susceptible larvae, nymph or adult may acquire the disease when
feeding on an infected host, drop off and switch to another host while in the same
stage, and infect that host. Alternatively, susceptible larvae or nymph may acquire
the disease by feeding from an infected host then transmit the disease in a later
stage to the new susceptible host [120]. The present research study is motivated by
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a review undertaken by Nchu and Rand [26] on possible implications of Hyalomma
truncatum on the dynamics of RVF outbreaks and it aims to hypothetically evaluate
this phenomenon by means of mathematical modelling. This research builds on
important features that underline the biology and the ecology of ticks in particular
in Sub-Saharan Africa where RVF is endemic. The features are as follows:

1. Wild animals including rodents and livestock (sheep, cattle and goats) are
the same hosts for both ticks and mosquitoes that transmit RVF [11, 124].
In addition, immature stages of ticks prefer feeding on hares and rodents,
extending the range of feeding hosts [26].

2. Ticks can be transported over long distances on their vertebrate hosts, hence
serving as possible hosts for RVFV [28, 29].

3. Ticks are widely distributed in the entire geographic range of RVFV.

4. Ticks can often survive for long time between blood meals [125] and the
virus can persist in ticks for their whole lifespan [126]. Thus, long life for
ticks means a long time of persistence for the virus increasing the chances of
contact between ticks and hosts [26].

5. When feeding on blood, a tick excretes substances in its saliva which have
several effects. One is to modulate the hosts immune system. Viruses can
benefit from this mechanism, helping it to infect co-feeding ticks on the same
hosts vertebrate [127].

6. Ticks cause direct loss through sucking blood [26], reducing host production
and increasing host vulnerability to diseases.

7. Mosquito population peaks generally coincide with availability of pastures
for domestic livestock and abundance of adult H. truncatum ticks [26].

Putting together the above ticks, mosquito and host’s epidemiological and ecological
features we hypothesize that ticks may be contributing to RVF spreading and
endemicity. In spite of all these inherent complexities, mathematical models can
provide some very useful informative indicators regarding the potential contribution
of ticks in the transmission of RVF. Disease outbreaks in livestock in a particular
site are very brief [58] and the peak is likely to pass undetected or under-reported.
This may be due to interruption in the rainy events or the duration of the rain in a
particular site as well as to ruminant incubation period which is very short [11], and
the resulting acquired immunity. In livestock the peak is likely to occur after the
second or third week after the onset of the epidemic while in humans it is likely to
occur between the fourth and sixth week after the first human case [13, 58, 128, 129].
RVF modelling studies have also suggested that arthropods other than Aedes and
Culex species may be contributing to RVF transmission by accelerating the cause of
the outbreak [4]. Thus, this study aims to assess factors leading to this accelerated
exponential phase of RVF outbreaks. [26] suggested that in addition to mosquitoes,
optimum climatic conditions, international trade of livestock and livestock products,
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ticks could be implicated in the spread of RVF. This would affect the dynamics of
the disease, including the number of infected host, host extrinsic incubation period
and size of the epidemic. In recent years RVF disease models have been developed
for addressing a variety of questions related to disease transmission, maintenance
and propagation across geographical regions [4, 5, 48, 69–72, 74]. However, none
of these models has included ticks compartments in order to access the possible
implications of these blood feeding arthropods in the spread and endemicity of
RVF. Characterization of tick host preference at different life stages by means of
attached and detached compartments makes this modelling framework unique for
investigating how the above ecological tick features could affect the transmission
and maintenance of the disease. To explain this, we extend previous deterministic
epidemic models with two modes of disease transmission: horizontal (host-vector)
transmission and vertical transmission from a female Aedes to its eggs to include
compartments of ticks according to their questing and feeding behaviour. Then,
we thoroughly investigate the system analytical and numerically and show that
certain model parameters are relevant to the start of an outbreak, exponential
phase of an outbreak, the prevalence of RVFV and the epidemic size of an outbreak.
Some conclusions may also apply to other vector-borne diseases in which ticks are
thought to participate in transmission of the pathogen as additional or secondary
vectors. Our analysis provides general qualitative insights on the importance of the
time ticks spend attached to a particular host and their host life cycle preference.
These results suggest that it is possible to diminish the impact of ticks in the
transmission of RVF by either inhibiting ticks to attach to a host or by enhancing
the immunity of the host to avoid passage of the infection when a tick feeds on the
host.

4.2 RVF Model Development

Three vector species, Aedes, Culex mosquitoes and ticks and one host livestock
population (not necessarily cattle, sheep or goat) are considered in the model to
investigate the role of ticks on RVF disease dynamics. Female infectious Aedes
mosquitoes not only transmit RVFV to susceptible livestock, but also to their own
eggs [35, 69]. Culex mosquitoes and ticks acquire RVFV during blood meals on
an infected ruminant and then amplify the transmission while feeding on other
susceptible ruminants. The animal host, Aedes and Culex compartments follow the
same structure as in [4] while the ticks sub-model follows the structure proposed
in [130] and successfully applied by [120, 131], which is according to the questing
and feeding behaviour of ticks.

In livestock, the majority of animals do not manifest clinical signs even in regions
with severe RVF outbreaks [58]. However, for tractability, in this model we do not
include an asymptomatic class. Thus, the density of animal population is divided
into three classes according to the following epidemiological status: susceptible, S2,
infectious, I2, and recovered (immune), R2. Further details on disease progression
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among compartments for the mosquitoes-livestock sub-model are given in Chapter 3
Section 3.2. Ticks have unique life histories that create epidemics which differ from
other vector-borne diseases. Depending on the host species Hyalomma truncatum
has both two-host and three-host life cycles [121]. Meaning that they may need to
attach to two or three hosts during their developmental stages for a blood meal
at least once at the stages of larvae, nymph and or adult [120]. We assume no
transovarial transmission, meaning that no disease transmission from mother to
eggs. Thus, ticks become infected when feeding on infectious livestock. As a result
only the nymph and adult are able to transmit the infection when feeding on a
susceptible ruminant.
The structure of the tick sub-model follows the model framework of [120]. In this
framework, we assume that the population of ticks interacts with a population of
hosts where both tick and hosts may be infected or uninfected. For mathematical
tractability, we combine the larvae, nymphs and adults into one compartment.
However, we make distinction between attached and detached ticks such that adult
female ticks lay their eggs after detaching. The oviposition rate is proportional
to the number of newly attached ticks, A(t) = Sa(t) + Ia(t) as we do not keep
track of the time a tick stays attached or matures [120]. After birth they join the
susceptible detached compartment, Sd(t) and ticks die only while detached from
the host at rate dt. Both uninfected and infected ticks reproduce or lay eggs after
having detached from the host upon successful feeding or by rejection mechanisms
by the host or by human intervention. Ticks prefer feeding in some special areas of
the host, making it difficult for an extra tick to attach where one is already attached
[120]. Thus, we postulate that ticks attach with a constant rate depending on host
density and ticks already attached. This rate is a decreasing function of the total
number of attached ticks A(t) and an increasing function of the host population
N2, and it is defined to be αN2/(1 +A(t)). The constant is set equal to unity such
that if the number of attached ticks is zero then the overall attachment rate of
ticks will be αN2. On the other hand detaching ticks will increase with increasing
number of tick-susceptible livestock grazing in a given area. Thus, instead of a
constant detachment rate we set it as a linear function of N2, namely δN2. The
size of the animal host population may be reduced due to the disease-induced
mortality reducing the interaction between hosts and vectors. Therefore, for the
tick-submodel we assume that the rate at which new cases are produced in both
ticks and livestock follows the density dependent transmission mechanism and
both hosts and ticks are treated as separate populations but interacting species
as in a prey-predator system [120, 131]. The above RVF transmission process
is summarized by a schematic representation of the flow of individuals between
epidemiological classes (see Fig. 4.1).
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Figure 4.1: Flow diagram of RVFV transmission with each species, namely,
Aedes mosquitoes, Culex mosquitoes, ticks and livestock (the solid lines repres-
ent the transition between compartments and the dashed lines represent the

transmission between different interacting species).

4.2.1 Mathematical model of RVF transmission with three
vectors

Here we develop the mathematical representation of the RVF transmission processes
by making use of ordinary differential equations. Consider livestock population
settled in regions close to mosquito habitats, particularly species of genus Aedes.
When it rains mosquito eggs hatch and transovarially infected eggs emerge and
transmit RVFV to nearby domestic livestock [13]. High circulation of the virus
in these ruminants may then lead to infection of secondary arthropod vectors
including various Culex species [3, 37], and probably some ticks species, enough
to trigger an outbreak. The mosquito-host and vice-versa disease transmission
depends on both the vector and host population sizes [5]. The flow diagram in Fig.
4.1 with state variables described in Table 4.1 and parameters interpreted in Table
4.2 satisfy the following system of ordinary differential equations:

Aedes

Ṗ1(t) = µ1(A0 − q1I1)− θ1P1,

U̇1(t) = µ1q1I1 − θ1U1,

Ṡ1(t) = θ1P1 −
σ1σ2β12

σ1N1 + σ2N2

I2S1 − µ1S1,

Ė1(t) =
σ1σ2β12

σ1N1 + σ2N2

I2S1 − γ1E1 − µ1E1,

İ1(t) = γ1E1 + θ1U1 − µ1I1,

(4.1)
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Livestock

Ṡ2(t) = µ2L0 −
σ1σ2β21

σ1N1 + σ2N2

I1S2 −
σ3σ2β23

σ3N3 + σ2N2

I3S2 − β2tIaS2 − µ2S2,

İ2(t) =
σ1σ2β21

σ1N1 + σ2N2

I1S2 +
σ3σ2β23

σ3N3 + σ2N2

I3S2 + β2tIaS2 − ε2I2 − µ2I2 −m2I2,

Ṙ2(t) = ε2I2 − µ2R2,
(4.2)

Culex

Ṗ3(t) = µ3C0 − θ3P3,

Ṡ3(t) = θ3P3 −
σ3σ2β32

σ3N3 + σ2N2

I2S3 − µ3S3,

Ė3(t) =
σ3σ2β32

σ3N3 + σ2N2

I2S3 − γ3E3 − µ3E3,

İ3(t) = γ3E3 − µ3I3,

(4.3)

Ticks

Ṡa(t) =
αN2Sd

1 + Sa + Ia
− βt2I2Sa − δN2Sa,

Ṡd(t) = bt(Sa + Ia)−
αN2Sd

1 + Sa + Ia
+ δN2Sa − dtSd,

İa(t) = βt2I2Sa +
αN2Id

1 + Sa + Ia
− δN2Ia,

İd(t) = δN2Ia −
αN2Id

1 + Sa + Ia
− dtId.

(4.4)

Variables Description of the model (4.1-4.4) variables

Sa Number of attached susceptible ticks
Sd Number of detached susceptible ticks
Ia Number of attached infected ticks
Id Number of detached infected ticks

Table 4.1: Description of state variables of the RVF model. Other state
variables are described in Table 2.1 in Chapter 3.

For Aedes-Livestock-Culex RVF horizontal transmission we assume that the total
number of bites varies with both the livestock and mosquito population sizes (for
more details see [5]). While for the tick-livestock RVF horizontal transmission
we assume that the livestock and ticks separate populations that interact in a
similar manner as in a prey-predator system [120], such that the number of newly
infected ticks is proportional to infected livestock and the number of newly infected
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livestock is proportional to attached infected ticks [131]. Therefore, the forces of
infections are given by:

λ1 = λ12 =
σ1σ2N2

σ1N1 + σ2N2

β12
I2

N2

=
σ1σ2β12I2

σ1N1 + σ2N2

,

λ2 = λ21 + λ23 + λ2t =
σ1σ2β21I1

σ1N1 + σ2N2

+
σ3σ2β23I3

σ3N3 + σ2N2

+ β2tIa,

λ3 = λ32 =
σ3σ2N2

σ3N3 + σ2N2

β32
I2

N2

=
σ3σ2β32I2

σ3N3 + σ2N2

,

λ4 = λt2 = βt2I2.

(4.5)

Parameters RVF model (4.1-4.4) parameters and their dimen-
sions

bt/dt Tick birth/death rate, Days−1

βt2 Transmission rate of infection from livestock to ticks,
Days−1

β2t Transmission rate of infection ticks to livestock, Days−1

δ Detachment rate, Days−1

α Attachment rate, Days−1

L0 Stable livestock population in the absence of the disease,
dimensionless

A0 Stable Aedes mosquito population, dimensionless
C0 Stable Culex mosquito population, dimensionless

Table 4.2: Parameters of the RVF model. Other model parameters are
described in Table A.2 in Appendix A.

To establish the positivity and feasibility of solutions of the model system (4.1-4.4)
we discuss two invariant sub-systems as follows:

I. A sub-system of uninfected livestock, attached and detached ticks such that:

Ṡ2(t) = µ2L0 − µ2S2,

Ṡa(t) =
αN2Sd
1 + Sa

− δN2Sa,

Ṡd(t) = btSa −
αN2Sd
1 + Sa

+ δN2Sa − dtSd.

(4.6)

In the absence of the disease S2 = L0, thus the livestock population is at
equilibrium. Now we can investigate the remaining two equations of sub-
system (4.6) describing the dynamics of ticks as in [120]. Clearly there is
one free-tick equilibrium (Sa, Sd) = (0, 0), however, we are interested on the
non-trivial one. Adding the last two equations of (4.6) and equating the sum
to zero we obtain:

Sa =
dt
bt
Sd. (4.7)
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Then after substituting equation (4.7) into the last equation of (4.6) gives

Sd =
αb2

t − δbtdt
δd2

t

, (4.8)

such that the quantities Sa and Sd are only positive if and only if

αbt
δdt

> 1. (4.9)

Clearly the equilibrium (Sa, Sd) = (0, 0) is unstable if equation (4.9) holds.
The trace of the Jacobian matrix for the (Sa, Sd) system is negative. Thus, by
the negative criteria of Bendixon, periodic orbits do not exist which implies
that every trajectory goes to a stationary point [120, 132].

II. Now we consider a system made of livestock, Aedes and Culex mosquitoes only.
However, when no confusion arises we establish the positivity of solutions of
this sub-system together with the tick sub-system to avoid repetition.

Hence, we reorganize the system (4.1-4.4) and write it in matrix form as

dX

dt
= M(x)X + F (4.10)

where X = (P1, U1, S1, E1, I1, S2, I2, R2, P3, S3, E3, I3, Sa, Sd, Ia, Id). M(x) is a 16
by 16 matrix and F is a column matrix. Substituting I1 = N1 − S1 − E1 we have
Ṗ1(t) = µ1A0(1− q1) + µ1q1A0S1 + µ1q1A0E1 − θ1P1. Thus

M(x) =


M1(x) 0 0 0

0 M2(x) 0 0
0 0 M3(x) 0
0 0 0 M4(x)

 , (4.11)

where

M1 =


−θ1 0 µ1q1A0 µ1q1A0 0

0 −θ1 0 0 µ1q1
A0
N1

θ1 0 −g1I2−µ1 0 0
0 0 g1I2 −(γ1+µ1) 0
0 θ1 0 γ1 −µ1

 ,M2 =

(
−g3I1−g4I3−β2tIA−µ2 0 0

g3I1+g4I3+β2tIA −(ε2+m2+µ2) 0
0 ε2 −µ2

)
,

(4.12)

M3 =

(
−θ3 0 0 0
θ3 −g5I2−µ3 0 0
0 g5I2 −(γ3+µ3) 0
0 0 γ3 −µ3

)
,M4 =


−bt2I2−δN2

αN2
1+Sa+Ia

0 0

bt+δN2 − αN2
1+Sa+Ia

bt 0

βt2I2 0 −δN2−dt αN2
1+Sa+Ia

0 0 δN2 − αN2
1+Sa+Ia

−dt


(4.13)

and F = (µ1A0(1− q1), 0, 0, 0, 0, µ2L0, 0, 0, µ3C0, 0, 0, 0, 0, 0, 0, 0)T .
Combining all matrices together, M(x) is a Metzler matrix, i.e. a matrix such that
off diagonal terms are non-negative, for all R16

+ . F is non-negative given the fact
that 1− q1 ≥ 0 and F is Lipschitz continuous. Thus, system (4.10) is positively
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invariant in R16
+ . Then, the feasible region for the model system is the set

Φ =

{
(P1, U1, S1, E1, I1, S2, I2, R2, P3, S3, E3, I3, Sa, Sd, Ia, Id) ≥ 0 ∈ R16

+

}
. (4.14)

The solution remains in the feasible region Φ if it starts in this region. Hence, the
system is epidemiologically and mathematically well posed and it is sufficient to
study the dynamics of the model in Φ.

4.3 Model Analysis and Results

4.3.1 Existence and stability of equilibrium points

We analyse model system (4.1-4.4) to obtain equilibrium points of the system and
their stability. Let
X(P ∗1 , U

∗
1 , S

∗
1 , E

∗
1 , I
∗
1 , S

∗
2 , I
∗
2 , R

∗
2, P

∗
3 , S

∗
3 , E

∗
3 , I
∗
3 , S

∗
a, S

∗
d , I
∗
a , I

∗
d) be an arbitrary equilib-

rium point of system (4.1-4.4). At the equilibrium point, we have

P ′1 = U ′1 = S′1 = E′1 = I ′1 = S′2 = I ′2 = R′2 = P ′3 = S′3 = E′3 = I ′3 = S′a = S′d = I ′a = I ′d = 0.

(4.15)

4.3.1.1 Disease-free equilibrium (DFE), X0

In the absence of the disease, that is, U0
1 = E0

1 = I0
1 = I0

2 = E0
3 = I0

3 = I0
a = I0

d = 0,
model system (4.1-4.4) has an equilibrium point called the disease-free equilibrium,
X0. When solving for the equilibria equation (4.15) for the tick sub-model we
obtain

{S0
d , S

0
a} = {0, 0} or

{
(btα− δdt)bt

d2
t δ

,
btα− δdt

δdt

}
. (4.16)

The later is biologically significant whenever btα > dtδ. At equilibrium the birth
is equal to the death rate, hence the inequality btα > dtδ can be written as
α > δ ⇔ α

δ
> 1. 1/δ refers to the time ticks spend attached to the host and α/δ is

the rate that gives rise to the number of newly attached ticks. This shows that we
have two possible disease-free equilibria: one when we do not have a tick population
at all, that is a system without ticks; another one with the presence of ticks. Since
we are interested in studying the role of ticks in the spread of RVF among livestock,
we consider S0

d > 0 and S0
a > 0. Therefore the disease-free equilibrium of the

system is given by

X0 = (P 0
1 , 0, S

0
1 , 0, 0, S

0
2 , 0, 0, P

0
3 , S

0
3 , 0, 0, S

0
a, S

0
d , 0, 0)

=
(
µ1A0

θ1
, 0, A0, 0, 0, L0, 0, 0,

µ3C0

θ3
, C0, 0, 0,

btα−δdt
δdt

, (btα−δdt)bt
d2
t δ

, 0, 0
)
.

(4.17)
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In order to establish the linear stability of the model equilibria states, we employ
the next generation matrix approach of [101]. A reproduction number obtained in
this way determines the local stability of the disease-free equilibrium for R0 < 1
and instability for R0 > 1. Its definition follows the notation in [101] as done in
previous chapters and for details on the derivation of the matrices F and V see
Appendix C Section C.1.

Hence, the basic reproduction number, R0 is the largest eigenvalue of the spectral
radius of FV −1 and is given by

R0 =
1

2
R0,V +

1

2

√
R2

0,V + 4R2
0,H , (4.18)

where
R0,V =

µ1q1

µ1

(4.19)

and

R0,H =√
γ1

γ1+µ1

g3S0
2

µ1
× g1S0

1

ε2+m2+µ2
+ γ3

γ3+µ3

g4S0
2

µ3
× g5S0

3

ε2+m2+µ2
+
(

β2tS0
2α

dt(1+S0
a)δ

+
β2tS0

2

δN2

)
βt2S0

a

ε2+m2+µ2
,

(4.20)

where g1 = σ1σ2β12

σ1A0+σ2L0
, g3 = σ1σ2β21

σ1A0+σ2L0
, g4 = σ3σ2β23

σ3C0+σ2L0
and g5 = σ3σ2β32

σ3C0+σ2L0
.

In the absence of vertical transmission, q1 = 0, R0 is the geometric mean of the
number of new infections in livestock from infected Aedes, Culex mosquitoes and
ticks, and the number of new infections in both mosquitoes and ticks from an
infected ruminant in the limiting case that both livestock and vector populations
are fully susceptible.

4.3.1.2 Biological interpretation of R0

From the expression for R0,H we obtain the following sub-reproduction numbers:

R̄1
0 =

γ1

γ1 + µ1

g3S
0
2

µ1

× g1S
0
1

ε2 +m2 + µ2

is the basic reproduction number for the model without vertical transmission, Culex
mosquitoes and ticks;

R3
0 =

γ3

γ3 + µ3

g4S
0
2

µ3

× g5S
0
3

ε2 +m2 + µ2

is the basic reproduction number for the model without Aedes mosquitoes and
ticks, and

Rt
0 =

(
β2tS

0
2α

dt(1 + S0
a)δ

+
β2tS

0
2

δL0

)
βt2S

0
a

ε2 +m2 + µ2
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is the basic reproduction number for the model without Aedes and Culex mosquitoes.
R̄1

0 is the product of R21×R12, where R21 is the number of new infections in livestock
from one infected Aedes mosquito and is given by

R21 =
γ1

γ1 + µ1

× g3S
0
2

µ1

=
γ1

γ1 + µ1

× σ1σ2β21S
0
2

σ1A0 + σ2L0

× 1

µ1

,

representing the product of the probability that an Aedes mosquito survives the
exposed stage γ1

γ1+µ1
, the number of bites on livestock per mosquito σ1σ2

σ1A0+σ2L0
S0

2 ,
the probability of transmission per bite β21, and the infectious lifespan of an Aedes
mosquito 1/µ1. R12 is the number of new infections in Aedes mosquitoes from one
infected ruminant, and is given by

R12 =
g1S

0
1

ε2 +m2 + µ2

=
σ1σ2β12S

0
1

σ1A0 + σ2L0

× 1

ε2 +m2 + µ2

,

which describe the product of the number of bites a ruminant receives σ1σ2

σ1A0+σ2L0
S0

1 ,
the probability of transmission per bite β12 from an infected animal and the duration
of the infective period 1

ε2+m2+µ2
for a ruminant.

R3
0 is the product of R23 × R32, where R23 is the number of new infections in

livestock from one infected Culex mosquito and is given by

R23 =
γ3

γ3 + µ3

× g4S
0
2

µ3

=
γ3

γ3 + µ3

× σ3σ2β23S
0
2

σ3C0 + σ2L0

× 1

µ3

,

which is the product of the probability that a Culex mosquito survives the exposed
stage γ3

γ3+µ3
, the number of bites on livestock per mosquito σ3σ2

σ3C0+σ2L0
S0

2 , the prob-
ability of transmission per bite β23, and the infectious lifespan of a Culex mosquito
1/µ3. R32 is the number of new infections in Culex mosquitoes from an infected
livestock and is given by

R32 =
g5S

0
3

ε2 +m2 + µ2

=
σ3σ2β32S

0
3

σ3L0 + σ2L0

× 1

ε2 +m2 + µ2

.

This is the product of number of bites one ruminant receives σ3σ2

σ3C0+σ2L0
S0

3 , the
probability of transmission per bite β32 an infected ruminant and the duration of
the infective period 1

ε2+m2+µ2
for a ruminant. Rt

0 is the product of R2t×Rt2, where
R2t is the number of new infections in livestock from one infected attached tick
and is given by

R2t =
β2tαS

0
2

dt(1 + S0
a)

+
β2t

δ
,

which is the product of the probability of transmission β2t from an infectious tick,

number of ticks attached to the host
αS0

2

1+S0
a
, and the infectious lifespan of ticks 1/dt

together with new infections β2t/δ during the attached period. Rt2 represents the
number of new infections in ticks from one infected ruminant and is given by

Rt2 =
βt2S

0
a

ε2 +m2 + µ2

,
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which is the product of the probability of transmission βt2 from an infected ruminant
to attached susceptible ticks, number of susceptible ticks S0

a and the livestock
infective period 1/(ε2 +m2 + µ2).
The square root in the expression for R0 comes from the ’two generations’ required
for an infected vector or host to reproduce itself.
If q1 > 0, R0 increases because vertical transmission directly increases the number
of infectious mosquitoes and indirectly increases the transmission from livestock to
mosquitoes and back to livestock. Therefore, from [101] (Theorem 2), the following
result holds;

Lemma 4.1. The disease-free equilibrium X0, of the RVF model with ticks, given
by (4.1-4.4) is locally asymptotically stable if R0 < 1, and unstable if R0 > 1.

Note that, applying Theorem 2 in [101] we state that for R0 > 1 there exists an
endemic equilibrium (EE), a solution where the disease persists in the community.
However, we will not be investigating the stability of the EE for the following
reasons: the model is too complex to analytically derive expressions for the EE,
and it will be a daunting task to analyse its stability. This will be considered in
a subsequent study that will extend the model and then employ techniques of
numerical simulations.

4.3.1.3 Global asymptotic stability of DFE, X0

Following the approach and results obtained by [133] and successfully applied in
[134] and using the properties of DFE, we write the system (4.1-4.4) in the following
form

ẋS = A1(x)(xS − xDFE,S) + A12(x)xI
ẋI = A2(x)xI

(4.21)

where xS is the vector representing disease-free compartments (susceptible and
immune individuals) and the vector xI represents the state of infected compartments
(exposed and infectious individuals). Hence, we have xS = (P1, S1, S2, R2, P3, S3, Sa, Sd)

T ,
xI = (U1, E1, I1, I2, E3, I3, Ia, Id)

T and xDFE,S = (P 0
1 , S

0
1 , S

0
2 , R

0
2, P

0
3 , S

0
3 , S

0
a, S

0
d)
T .

Then we rewrite some equations of system (4.1-4.4) as follows:

Ṗ1(t) = −θ1(P1 − P 0
1 )− µ1q1A0

I1

N1
, (4.22)

Ṡ1(t) = θ1(P1 − P 0
1 )− g1I2S1 − µ1(S1 − S0

1), (4.23)

Ṡ2(t) = −µ2(S2 − S0
2)− g3I1S2 − g4I3S2 − β2tIaS2, (4.24)

Ṗ3(t) = −θ3(P3 − P 0
3 ), (4.25)

Ṡ3(t) = θ3(P3 − P 0
3 )− g5I2S3 − µ3(S3 − S0

3), (4.26)

Ṡa(t) =
αN2Sd

1 + Sa + Ia
− (βt2I2 + δN2)(Sa − S0

a)− (βt2I2 + δN2)S0
a, (4.27)

Ṡd(t) = bt(Sa + Ia) + δN2Sa −
(

αN2

1 + Sa + Ia
+ dt

)
(Sd − S0

d)−
(

αN2

1 + Sa + Ia
+ dt

)
S0
d .

(4.28)
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Thus, we obtain the following matrices for A1(x), A12(x) and A2(x)

A1(x) =


−θ1 0 0 0 0 0 0 0
θ1 −µ1 0 0 0 0 0 0
0 0 −µ2 0 0 0 0 0
0 0 0 −µ2 0 0 0 0
0 0 0 0 −θ3 0 0 0
0 0 0 0 θ3 −µ3 0 0

0 0 0 0 0 0 −(βt2I2+δN2)
αN2
1+S0

a

0 0 0 0 0 0 δN2 −(
αN2
1+S0

a
+dt)

 (4.29)

A12(x) =



0 0 −µ1q1A0
I1
N1

0 0 0 0 0

0 0 0 −g1S1 0 0 0 0
0 0 −g3S2 0 0 −g4S2 −β2tS2 0
0 0 0 ε2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −g3S3 0 0 0 0

0 0 0 −βt2S0
a 0 0 − αN2Sd

(1+Sa+Ia)2
αN2

1+Sa+Ia

0 0 0 0 0 0 bt−
αN2Sd

(1+Sa+Ia)2
0

 (4.30)

and

A2(x) =

−θ1 0 µ1q1A0
I1
N1

0 0 0 0 0

0 −(γ1+µ1) 0 g1S1 0 0 0 0
θ1 γ1 −µ1 0 0 0 0 0
0 0 g3S2 −(ε2+m2+µ2) 0 g4S2 β2tS2 0
0 0 0 g5S3 −(γ3+µ3) 0 0 0
0 0 0 0 γ3 −µ3 0 0

0 0 0 βt2Sa 0 0 −(
αN2Id

(1+Sa+Ia)2
+δN2)

αN2
1+Sa+Ia

0 0 0 0 0 0
αN2Id

(1+Sa+Ia)2
+δN2 −(

αN2
1+Sa+Ia

+dt)


.

(4.31)
Both A1(x) and A2(x) are Metzler matrices and the eigenvalues of matrix A1(x)
are real and negative. Thus, the system
ẋS = A1(x)(xS − xDFE,S) is globally asymptotically stable (GAS) at xDFE,S. In
order to proceed with the investigation of the GAS of the disease-free equilibrium,
X0 we base our results on the Theorem in [133], which was successfully applied in
[134].

Theorem 4.2. Let Φ ⊂ U = R8
+ × R8

+. The system (4.21) is of class C1, defined
on U if

1. U is positively invariant relative to (4.21),

2. The system ẋS = A1(x)(xS − xDFE,S) is GAS at xDFE,S,

3. For any x ∈ Φ, matrix A2(x) is Metzler irreducible,

4. There exists a matrix Ā2, which is an upper bound of the set
M =

{
A2(x) ∈M8(R)|x ∈ Φ̄

}
, with the property that if Ā2 ∈ M, for any

x̄ ∈ Φ̄, such that A2(x̄) = Ā2, then x̄ ∈ R8 × {0},

5. The stability modulus of Ā2, α(Ā2) = maxλ∈Sp(A2) Re (λ), satisfies α(Ā2) ≤ 0.

Then the DFE is GAS in Φ̄
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Proof. The proof of the theorem requires verification of its underlying assumptions:
it is obvious that condition (1-3) are satisfied. In particular for all x ∈ Φ, A2(x)
is irreducible if and only if (I + |A2(x)|)7 > 0. An upper bound of the set
of matrices M, which is the matrix Ā2 is given by matrix A2(x̄), where x̄ =
(P̄1, S̄1, S̄2, 0, P̄3, S̄3, S̄a, S̄d, 0, 0, 0, 0, 0, 0, 0, 0) ∈ R8 × {0}. Similarly matrix Ā2 is
irreducible. Recall that the Perron-Frobenius theorem for an irreducible matrix
states that one of the matrix eigenvalues is positive and greater than or equal to
all others, that is, the dominant eigenvalue. Thus, matrix A2 is exactly the matrix
used to compute the basic reproductive number, i.e., the dominant eigenvalue. For
more details or proof in general settings see [133].

Conditions (1-4) are now verified. The proof of the last condition is based on the
following Lemma in [133], also successfully applied in [134].

Lemma 4.3. Let H be a square Metzler matrix written in block form H =
(
A B
C D

)
, with A and D squares matrices. H is Metzler stable if and only if matrices A
and D − CA−1B are Metzler stable.

Thus, matrix A2(x) can be written in the following block form:

A =

 −θ1 0 µ1q1A0
I1
N1

0

0 −(γ1+µ1) 0 g1S1

θ1 γ1 −µ1 0
0 0 g3S2 −(ε2+m2+µ2)

 , B =

(
0 0 0 0
0 0 0 0
0 0 0 0
0 g4S2 β2tS2 0

)
,

C =

(
0 0 0 g4S2
0 0 0 0
0 0 0 βt2Sa
0 0 0 0

)
, D =

 −(γ3+µ3) 0 0 0
γ3 −µ3 0 0

0 0 −(
αN2Id

(1+Sa+Ia)2
+δN2)

αN2
1+Sa+Ia

0 0
αN2Id

(1+Sa+Ia)2
+δN2 −(

αN2
1+Sa+Ia

+dt)

 .

A is a stable Metzler matrix and

D − CA−1B =


−(γ3+µ3)

(µ1−µ1q1)(γ1+µ1)g5S̄3g4S̄2
1−R1

0

(µ1−µ1q1)(γ1+µ1)g5S̄3β2tS̄2
1−R1

0
0

0 −µ3 0 0

0
(µ1−µ1q1)(γ1+µ1)βt2S̄ag4S̄2

1−R1
0

−δN2+
(µ1−µ1q1)(γ1+µ1)βt2S̄aβ2tS̄2

1−R1
0

0

0 0 δN2 − δN2
1+S̄a

−dt


is a stable Metzler matrix if β2tS̄2

δN2

βt2S̄a
ε2+m2+µ2

<
1−R1

0

(µ1−µ1q1)(γ1+µ1)(ε2+m2+µ2)
(see Appendix

C Section C.2). It is worth noting that at disease-free equilibrium N1 = A0. Finally,
from Theorem 4.2 and Lemma 4.3, we deduce the following:

Theorem 4.4. If btα > dtδ, then the disease-free equilibrium of the system (4.1-
4.4),
(P 0

1 , 0, S
0
1 , 0, 0, S

0
2 , 0, 0, P

0
3 , S

0
3 , 0, 0, S

0
a, S

0
d , 0, 0) exists and is globally asymptotically

stable if R1
0 < 1 and β2tS̄2

δN2

βt2S̄a
ε2+m2+µ2

<
1−R1

0

(µ1−µ1q1)(γ1+µ1)(ε2+m2+µ2)
.

The above result is epidemiologically relevant, because it shows that even though
disease vectors such as Culex and H. truncatum and others, may play a significant
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role on amplifying the disease, the initial spread of RVF outbreaks depends on the
competence of the Aedes species. From Theorem 4.4 we observe that R0,V should
be kept below unity. This is an indication that if at any time, through appropriate
interventions (e.g. destruction of breading sites, herd vaccination, etc), we are able
to lower R1

0 below unity and Rt
0 below its critical value, then the disease will die

out. From R1
0 = 1

µ1−µ1q1
R̄1

0, which depends on both Aedes mosquitoes vertical and
horizontal transmission, the inequality, µ1q1 < µ1, shows that vertical infection effi-
ciency should be kept below the threshold, which can be accomplished by destroying
possible locations that may allow Aedes eggs to dessicate. R̄1

0 < 1 shows that
horizontal transmission can be controlled for instance through herd immunization.

Another important relation is βt2S̄2

δN2

β2tS̄a
ε2+m2+µ2

<
1−R1

0

(µ1−µ1q1)(γ1+µ1)(ε2+m2+µ2)
, the left

hand side is related to Rt
0 describing the host-ticks interactions while the right side

describes the Aedes ability to intermediate disease invasion. From this we learn that
if herd immunity is not attained and ticks are capable of transmitting the disease,
host-ticks interactions may serve as disease reservoirs or possibly disease amplifiers.
Therefore, we argue that if ticks are capable of carrying and transmitting RVFV,
ticks may play an important role in the spread of the disease and may also be more
responsible for RVF inter-epidemic activities.

4.4 Numerical Simulation

Figure 4.2: Time series plot of both mammalian and vector populations
against time of a model with and without ticks. The initial conditions are
S1 = 5000, P1 = 1000, U1 = 400, E1 = 0, I1 = 1, S2 = 1000, I2 = 1, R2 = 0, S3 =

5000, P3 = 1000, E3 = 0 and I3 = 1, Sa = 1000, Sd = 0, Ia = Id = 1.

To explore the behaviour of RVF when introduced into a naive population taking
into account ticks as RVF competent vectors, we conducted numerical simulations of
an isolated system (i.e. no immigration or emigration). The model uses a daily time
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step and high rainfall and moderate temperature (wet season) parameter values see
Table C.1. Figure 4.2.(a) depicts the time series plot of susceptible, infectious and
recovered livestock for a model with ticks while (b) shows the dynamics of disease
transmission in livestock within a model without ticks. The epidemic is very brief
lasting for only 20 and 30 days and reaching its peak at about 10 and 15 days for a
model with and without ticks respectively. This results indicate that ticks not only
increase the size of an epidemic but also accelerate it and reduce its duration. Data
about cases of infected livestock are very difficult to compile for several reasons:
(1) RVF cases are not clinically specific and laboratory confirmation is necessary;
(2) virus isolation techniques are costly and time consuming, and require high
biocontainment level facilities [11]; (3) RVF outbreaks occur in rural areas with low
accessibility to various needed services and during this period most of the areas
are flooded and cannot be accessed by road. However, information about human
cases is available although it is not representative as it only captures clinical cases
reported in some district level hospitals [58]. Human cases appear about one month
after infection in livestock and they reach a peak between the fourth and sixth
week after the onset of the epidemic [13, 58, 128, 129]. Figs.4.2(c) and (d) depict
the time series plot of infectious Aedes, Culex mosquitoes and infectious detached
ticks for a model with and without ticks respectively. Their population densities
reach their peak at approximately 25 and 30 days respectively. This results suggest
that by time mosquito population reaches its peak the peak of the disease in the
mammalian host is already passed, meaning that the presence of mosquitoes may
not be appropriate for timing the peak of the outbreak, highlighting the necessity
of continuous surveillance and communications with communities in endemic areas
as has been pointed out by empirical studies [13, 39, 58].

4.5 Sensitivity Analysis

To assess the impact of the parameters and decision rules within the model, uncer-
tainty in input parameters and their sensitivity analysis are performed to determine
how sensitive the model is to changes/shifts in the values of the parameters [84, 135].
Many of the parameters in disease epidemiological models can be found in the
literature, not necessarily as constants but as approximate values or intervals.
These intervals describe the range of values a parameter may assume with the
evolution of the disease [88]. In order to measure the sensitivity of the model,
two different approaches are considered. One is based on perturbation of the
model parameters, useful for determining the impact of local changes, while the
other is based on uncertainty in the model parameter estimation, which allows for
determining the impact of global changes [84].

4.5.1 Global sensitivity analysis

Here, we employed the Latin Hypercube Sampling (LHS) technique, which belongs
to the Monte Carlo class of sampling methods [136]. LHS technique is a stratified
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sampling without replacement, where each parameter distribution is divided in N
equal probable intervals, which are then sampled [83]. For each input parameter
we assumed uniform distribution [69] across the range listed in Table ?? (see
Appendix C Section C.3). We calculated R0 using N = 1000 sets of sampled
parameters as the model output. In the LHS scheme, all model parameters are
independent and varied simultaneously such that the Partial Rank Correlation
Coefficient (PRCC) is used to evaluate statistical relationships [83, 84], in order to
assess the significance of each parameter with respect to R0. PRCC indicates the
qualitative relationship, in particular the degree of monotonicity between specific
input parameter and model output [83] and it has been successfully applied in
other epidemic models [69, 88]. The results are shown in Figure 4.3. The PRCCs
for the parameters b2, q1, α, βt2, β2t, β12, β21, β23, β32, 1/ε2, S

0
a, S

0
1 , S

0
2 , σ1, σ2, σ3 are

all positive indicating an increase in R0 with an increase in livestock birth/death
rates, Aedes vertical transmission, ticks attachment, probabilities of transmission,
mosquito incubation periods, length of infection in livestock, initial number of
susceptible ticks, Aedes, Culex and mammalian host populations, number of times
a mosquito would bite host and number of bites a host can sustain respectively.
It is expected that at an early stage of an epidemic in a system without ticks,
RVF outbreaks may be highly influenced by numerous factors including: the
initial number of susceptible Aedes mosquitoes; competence of Aedes mosquitoes
in transmitting the disease transovarially and the initial number of available
susceptible hosts and mosquito death rates [5, 48, 69]. However, we observe that
in the presence of ticks (btα > dtδ) the situation changes. The ticks attachment
rate α, probability of transmission from ticks to host β2t and from host to ticks βt2,
length of infection in livestock, ticks detachment rate δ and ticks death rate have
greater impact on R0. This shows that if ticks are capable of transmitting RVF,
they may be playing a major role in RVF outbreaks and endemicity. Ticks spend
long periods feeding on the host, disease-bearing ticks may survive long periods
of dessication and an infected fully fed female H. truncatum tick can continue to
harbour RVFV post oviposition [28] enhancing virus circulation and maintenance.
As observed in our model analysis, the RVF tick-system only exists if the number
of ticks that attach to a host is greater than those that detach. This emphasizes
that the time ticks spend attached to a particular host is a critical factor in the
dynamics of the disease. Therefore, this calls for more attention to research with
strength to establish the role that H. truncatum, other ticks and biting insects play
in the transmission of RVFV in nature.

Figure 4.3: PRCC results and (∗) denotes PRCCs that have P-value < 0.01.
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Figure 4.4: Distribution of the basic reproductive number, R0 from a pool of
1000 sets of model parameters for R0 <= 1 and for R0 > 1.

In addition to the PRCCs results we show the distribution of R0 when it is less
and above unity see Fig.4.4. Very few parameter combinations would yield R0 < 1
as the disease is intermediated by more than one disease vector. In this situation
it is generally possible to have the overall R0 greater than unity even if either the
vector or host reproductive number is less than unity [137]. Averaging R0 when it
is above unit over all parameter sets gives a mean of 4.8497 and it ranges between
0.5822 and 26.5939.
Moreover, varying Aedes mosquito biting preference parameter, σ1 and ticks at-
tachment frequency, α in the host, results in significant changes in the values of
the basic reproductive number, R0. This is shown in Fig.4.6 (left) in which we note
that higher efficacy of σ1 and α result in higher probability of occurrence of RVF
outbreaks as expected. Given that the vectorial capacity of the vector is a critical
component of its ability to transmit the infection [138]. Hence, an increase in the
parameter σ1 results in an exponential increase in the basic reproduction number.
Another important observation is that a minimum of δ = 0.3 is necessary to keep
R0 around the average value, highlighting the role of ticks questing behaviour. In
addition, analysis of the parameter σ1, suggests that Aedes vertical transmission
efficiency may play a significant role at an early stage of the epidemic, which
eventually leads to a rapid spread of the disease as witnessed by Fig.4.2.

4.5.2 Local sensitivity analysis

Using uncertainty and Partial Rank Correlation Coefficient (PRCC) analysis we
were able to identify which parameters are important in contributing to variability
in the outcome of the basic reproductive number. However, in order to reduce
disease mortality and morbidity in livestock, focus should be oriented to disease
prevalence [48, 88]. Therefore, in this section we use localized sensitivity analysis
to determine the relative importance of some chosen parameters with respect to the
state variable I2. Many parameters are directly related to disease prevalence, but
for our analysis we focus on parameters related to the time ticks spend attached
to a host and the number of times an Aedes mosquito would bite a host. These
parameters are: σ1, α and δ. We simulate the system at a fixed value of the
parameter then plot I2 versus the entire range of values that the parameter assumes
along the evolution of the disease. The dynamical behaviour of disease prevalence
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in livestock, I2 along the range of these parameters is depicted in Fig.4.5. Clearly,
Fig.4.5 shows the zone where changes should be made for an input parameter to
determine the desired value of a predictor parameter.

Figure 4.5: Simulation of the system where maximum number of infected
livestock I2 is selected at each point of the ranges of the number of bites an
Aedes mosquito would bite a ruminant σ1, ticks attachment rate α and the ticks
detachment rate δ. (a)-(c) illustrate the changes in the local maximums of the
state variable (I2) with respect to model parameters σ1, α and δ. (d) shows the

contour plot of max(I2) in the (δ, α) plane.

The maximum density of infected livestock increases with any increment in the
number of bites an Aedes mosquito would bite a host and with the rate at which
ticks attach to a host (see Figs.4.5(a) and (b)); however, it decreases exponentially
with an increase in the rate at which ticks detach from a host (Fig.4.5(c)). In
Fig.4.5(d) we observe that even at very low values of ticks attachment rate, the
maximum number of infected hosts will rise to very high values. This suggests
that any amount of time ticks spend on the host represents a high risk factor in
the transmission of RVF. In addition we observe that there should be a balance
between the attachment and the detachment rates for the disease to persist.
Furthermore, we compute sensitivity indices for some chosen parameters previously
identified to contribute to the basic reproductive number variability. Thus we
derive an analytical expression for each R0 sensitivity index based on the concept
of the normalized sensitivity index [5, 88], given by

ΥR0
ψ =

∂R0

∂ψ

ψ

R0

for any parameter ψ.
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Figure 4.6: Left: This shows R0 as a function of the number of times an Aedes
mosquito would bite a ruminant, σ1 and the ticks attachment rate, α. The
curves are contours in the (σ1, α) plane along which R0 at early stage of disease
following an introduction of a single infectious livestock or vector (mosquito or
tick), is constant. Right: Distribution of R0 of the model without ticks from a

pool of 1000 sets of model parameters.

The sensitivity index results (see Figure 4.7 (left)) agree strongly with the above
uncertainty analysis. Increasing transmission rates of infection from livestock to
ticks βt2 and from ticks to livestock β2t, and initial number of susceptible livestock,
S0

2 , increases the basic reproductive number, R0. While decreasing livestock
recovery and disease-induced death rates as well as ticks death rate increase R0.
The former results from the fact that ticks may die before transmitting the infection,
thereby reducing R0.

4.5.3 Comparison of mean values of R0

In order to quantify the extent at which ticks may be contributing in the trans-
mission and spread of RVF, we review the overall mean of the basic reproductive
number, R0 obtained from different studies which did not include additional vectors
such as ticks. Figure 4.6 (right) represents the distribution of R0 derived from
our model without ticks. Fig.4.7 (right) is a table describing the review of R0

from previous studies, which did not include ticks in their models. From these
studies we observe that R0 varies from 1.19 to 3.5 on average while our model
with ticks predicts R0 = 4.8497 on average. However, it is worth noting that some
of the studies mentioned in the table used a different approach to compute the
expression of R0, by taking the sum of R0 from vertical transmission and R0 from
horizontal transmission [69, 71]. These differences on the computation of R0 imply
different values of R0 but do not influence the trend we observe in this comparison
of different values of R0. From these comparisons it appears that ticks may have a
significant contribution in the dynamics of the disease. Further, R0 computed in
the basis of the next-generation matrix for vector-borne disease such as RVF does
reflect the actual average number of secondary infections but rather the geometric
mean [87]. This leads to low values of R0 as this method estimates R0 at each
generation regardless of whether the generation is of mammalian host or vector.
Consider that at the first generation or infection event, a single Aedes infects
two ruminants, each of whom subsequently infect two Aedes, two Culex and two
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ruminants, then, a single infected Aedes will result in four Aedes, four Culex and
four ruminants. This leads to an exponential increase of R0, resulting in a rapid
spread of the virus if the target host is vulnerable to the disease, resulting in the
so-called exponential phase of the outbreak [21, 137].

Parameter Sensitivity index

1 β2t +0.4696
2 βt2 +0.4696
3 S0

2 +0.4319
4 dt −0.4557
5 ε2 −0.3528
6 m2 −0.1411

R0 in previous study Mean
Our model without ticks 2.3555
Our model with ticks 4.8497
Gaff et al.[69] 1.19
Chitnis et at.[5] 1.539
Mpeshe et al.[48] 2.64675
Niu et al.[71] 1.19
Mpeshe et al.[74] 3.5006

Figure 4.7: Left: Sensitivity indices of the model outcome R0 with respect to
some model parameters. Right: Mean values of R0 in previous models without

ticks.

4.6 Discussion and Conclusion

To the best of our knowledge this is the first time, compartments representing
epidemiological states of ticks are included in models of the evolution of RVF
epizootics. Using a mathematical epidemiological model via a system of nonlinear
ordinary differential equations we have formulated and analysed a RVF model that
includes ticks as disease vectors other than Aedes and Culex mosquitoes. Based on
the basic reproductive number, R0 Theorems in [101], analytical results establish
that when R0 < 1, the disease-free equilibrium (DFE) is locally asymptotically
stable while for R0 > 1 the endemic equilibrium (EE) is locally asymptotically
stable. This is a very important result in epidemiology if one seeks to control
vector-borne diseases via the control of the vector population, which remains an
alternative of RVF control strategies [4, 58, 74]. The above results suggest that
Rift valley fever virus (RVFV) is endemic if R0 > 1 and and more likely remains
at a very low level after an outbreak or between outbreaks. These findings are in
line with empirical studies in many endemic areas which have shown that 1-3 %
of domesticated livestock are being infected with RVFV in endemic areas during
the inter-epidemic period [39, 42, 118]. In addition to the overall model basic
reproduction number R0 other epidemiological thresholds have been derived and
interpreted. An example of this is the number of new infections resulting from
an introduction of an Aedes mosquito, R1

0 in the absence of Culex and ticks. The
derivation of such type reproductive numbers is of great epidemiological significance
since it is possible for the disease to persist even if the overall R0 is greater than
unity as long as either the vector or host type reproductive number is beyond unity
[137]. Global stability of the DFE was determined following the approach and
results obtained by [133]. The results showed that although host-ticks interactions
may serve as disease reservoirs or disease amplifiers, the values of R1

0 should be
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kept under unity if disease post epizootics activities are to be controlled. R1
0

encompasses two important informations: Aedes vertical transmission efficiency
and their competence for initial spread and endemicity of the disease. This results
from the fact that newly emerged transovarially infected mosquitoes will then
infect nearby vulnerable ruminants leading to persistence of the virus during the
endemic cycle [13, 35]. However, for this transmission cycle to take place after
large outbreaks resulting in sporadic disease activities in ruminants new pools of
susceptible livestock should be recruited into the population [77], given that after
the outbreak surviving ruminants may still be immune to the disease [11]. These
conclusions suggest that to prevent these low level transmission cycles appropriate
control interventions (for instance destruction of mosquito breading sites and herd
vaccination of newly recruited livestock) or integrated vector control programs [58]
should be employed. However, herd vaccination is almost impossible to sustain in
RVF affected countries for economic reasons [11, 74, 139]. Therefore, affordable and
effective integrated control interventions need to be developed in support of those
vulnerable African communities with low resilience to economic and environmental
challenges [1, 11, 14].

Global and local sensitivity analysis of R0 have been carried out to determine the
relative importance of each parameter in the disease transmission and prevalence.
Through PRCCs analysis we found that R0 increases with an increase in the follow-
ing model parameters, b2, q1, α, βt2, β2t, β12, β21, β23, β32, 1/ε2, S

0
a, S

0
1 , S

0
2 , σ1, σ2, σ3.

The fact that an increase in livestock birth rate b2 implies an increase in the
magnitude of R0 indicates that this parameter may be an important predictor for
determining the total size of livestock population and the prevalence of RVFV
after an outbreak. This result further confirms our findings through global sta-
bility analysis of the DFE highlighting the relative importance of recruitment of
new susceptible livestock after an outbreak and a study by [77] have arrived to a
similar conclusion. Moreover, results of sensitivity analysis have indicated that
ticks attachment and detachment rates α and δ, probability of transmission from
ticks to host β2t and from host to ticks βt2, length of infection in livestock and
ticks death rate dt have a greater impact on R0. Recall that R0 is a measure of
initial disease transmission. Hence, decreasing the time and the proportion of ticks
that attach to a host and reducing host-ticks interactions, disease transmission
probabilities reduce the magnitude of R0. The parameters α and δ are related
to ticks questing behaviour while the parameters β2t and βt2 correspond to ticks
feeding behaviour. Therefore, these results highlight the role that ticks questing
and feeding behaviour play in the transmission of the virus. These findings are
in good agreement with empirical studies indicating that ticks spend long periods
feeding on the host, disease-bearing ticks may survive long periods of desiccation
and an infected fully fed female H. Truncatum tick can continue to harbour RVF
virus post-oviposition [28]. Another important result is that increasing ticks death
rate dt substantially decreases R0. Hence, control strategies aiming to reduce the
tick population may help reduce the disease burden. Although our assumption
of constant tick death rate suggests that control of ticks implies eliminating their
population, [140] discuss several scenarios of optimal application of tick-killing
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treatment in controlling risk of tick-borne diseases without completely eliminating
their population. Despite that little is known about what mainly regulates tick
populations in the field, several studies demonstrate that host’s immune status
strongly affects tick survival and fecundity [131]. This deserves, on itself, further
investigation for determining specific features that regulates ticks population that
can then be targeted for disease management. Additionally, controlling the lifespan
and biting rates of the vectors will help control both the initial spread of disease
and ongoing infections, hence, reduce disease prevalence during an outbreak and
after. These results are in agreement with findings from other theoretical studies
[5, 48, 69, 77], which have highlighted the relative importance of both RVF related
death and natural deaths.

[58] discussed several RVF vector control programs and strategies with different
applications such as interrupting epidemic cycles, preventing emergence of new
cohorts of infected vectors and much more. Ticks questing and feeding behaviour is
a critical component of the vector’s ability to transmit diseases. Therefore, control
strategies targeting these features would be of great epidemiological significance.
In addition, other studies [140] have suggested that use of pesticides (acaricides)
to control tick population would enhance the effort made by hosts to avoid ticks
attaching. Moreover, results from sensitivity analysis have suggested that decreas-
ing the length of infection in hosts and decreasing the number of susceptible hosts
significantly reduces R0. Contours curves of the maximum of I2 in the (δ, α) plane
suggested that even at very minimum values of the attachment rate, α we obtain
high values of max(I2) if the detachment rate is very small, which is equivalent to
long periods of time ticks spend attached to the host. This result further confirm
the epidemiological implications of the time ticks spend attached to a host as
highlighted by empirical studies [26, 28].
Using the model parameter ranges to capture the entire history of disease evol-
ution and running 1000 stochastic simulations, we computed the mean value of
R0 which was found to exceed 4.5. This result is far beyond findings from other
epidemic models without ticks [5, 48, 69, 71], including our own model. These
results stem from the fact that ticks not only increase the size of an epidemic but
also accelerate the exponential phase of the outbreak. This calls for attention
in designing preventive measures to curtail and stop the epidemic in the event
of an outbreak [48]. Surveillance studies [39, 58] have highlighted that effective
and continuous surveillance in livestock is a critical factor in detecting and re-
sponding to both RVF outbreaks and inter-epidemic activities. These results are
important for controlling transient epidemics which are likely to take off even when
R0 < 1 [5, 137]. This is important in preventing the virus eventually building up
from disease inter-epidemic activities and halt any future outbreak [4, 39], as a
result of vertical transmission efficiency which was found to linearly increase R0.
These results further confirm our findings through analytical analysis of the global
asymptotic stability of the DFE, which indicated that the global stability of this
equilibrium can only be attained if the Aedes mosquito reproductive number, R1

0

with vertical transmission is kept under unity. This is the first time that global
stability of the DFE of a complex realistic RVF model is thoroughly analysed by
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means of analytical methods. This analysis has enabled us to obtain useful qualit-
ative insights about the necessary conditions for long-term stability of the DFE
which have shown dependence between tick-host interactions thresholds and Aedes
mosquito reproductive number. This highlights the role of vertical transmission in
some female Aedes mosquitoes and mammalian hosts in sustaining low levels of
disease activities between outbreaks as virus reservoirs. However, the reservoirs
and means of inter-epizootic maintenance are still subjects of further investigations.

Entomological studies have suggested that biting insects other than Aedes and
Culex mosquitoes are also involved in the transmission of RVF [7, 11, 29]. In this
chapter we have formulated a deterministic model of RVF transmission which
accounts for ticks as additional RVF potential vectors. The ticks species taken as
an example in this model have been indicated to be potential vectors of RVFV
[11, 28, 29]. Similar to [26, 124, 141] and other theoretical studies investigating the
hypothetical introduction of RVF in temperate countries [73, 142, 143], this study
does not by any means aim to demonstrate that ticks are actually involved in the
spread of RVF in endemic areas. Rather, we aimed by means of an epidemic model
to yield qualitative information for enhancing our understanding in the case when
ticks are assumed to be potential vectors of disease transmission. The analyses
of this model have provided critical insights on the mechanisms underlying the
possible role of ticks in the transmission of RVF. This was possible by structuring
the ticks population following their questing and feeding behaviour which is a
critical component of their ability to transmit and further disperse the virus [131].
Our results indicate that ticks not only increase the size of an epidemic but also
accelerate it and reduce its duration. These results implicate ticks as one of the
contributors to the exponential phase of the outbreak.

The results of all model analysis presented in this chapter should be interpreted as
qualitative and relative, as opposed to quantitative, until future data, obtained by
further interdisciplinary research studies focusing on RVF molecular epidemiology
and tick chemical ecology, can be used to parametrize, calibrate and validate the
model. Nevertheless, the current model framework and analysis enables us to gain
valuable insights regarding the epidemiology of the disease and its implications
and the model remains an important step towards the theoretical study of the
role of ticks on the dynamics of RVF. The value of the present research study is
not limited to only providing qualitative understanding of the systems underlying
processes but it is also useful in pointing out relevant model parameters that require
further attention from experimental ecologists and modellers. Such estimates would
be of great importance for parametrizing more refined predictive models which
would yield specific informative indicators useful for improving disease control
strategies [77, 120], by providing effective guidance to public health policy makers.
Furthermore, this model framework can be of great use to theoretical ecologists
and epidemiologists working on vector-borne diseases in which ticks are secondary
vectors or additional potential vectors.



Chapter 5

Predicting Rift Valley fever
Outbreaks from Inter-Epidemic
Activities. Insights from a
Stochastic host-vector Model 1

5.1 Introduction

Rift Valley fever (RVF) is an emerging zoonotic disease characterized by fluctuating
disease outbreaks that occur at irregular intervals throughout Sub-Saharan Africa
[1, 14]. Such outbreaks are driven by changes in climatic conditions and, between
outbreaks, disease activities are known to be maintained through vertical transmis-
sion on Aedes mosquitoes [11, 33]. This characteristic temporal pattern of disease
outbreaks adds an additional complication towards efforts for understanding and
predicting occurrence of outbreaks. Findings from a pioneering empirical study
in Tanzania on the subject of disease temporal and spatial patterns [3] suggest
that continuous endemicity of Rift Valley fever virus (RVFV) may lead to periodic
disease outbreaks. Similar observations have also been reported in Kenya [1] and
South Africa [2, 144]. Although correlation between RVF outbreaks and the warm
phase of El Niño/Southern Oscillation (ENSO) phenomena which lead to abnormal
rainfall has been reported [34], there have been instances where no outbreaks
were recorded following seasons of exceptionally above normal rainfall [3]. This
suggests that while rainfall might be the major determinant factor for the onset
and switch-off of an outbreak, it is likely to not be the only factor responsible for
this temporal characteristic pattern of disease outbreaks. The present research
study aims to investigate factors underlying the characteristic temporal patterns
of RVF outbreaks and to make predictions of the periodicity of these outbreaks.

1This chapter has been submitted to: PLOS Neglected Tropical Diseases
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Over the past decades mathematical models have been used to translate assump-
tions concerning transmission and spread of RVF at population level. From the
pioneer RVF models by Favier et al. [68] and Gaff et al. [69], several models
have been formulated and analysed using deterministic compartmental modelling
approach [4, 5, 48, 70–72, 74, 77, 142]. Although these models have potential for
examining factors underlying dynamics of the disease, they fail to capture observed
fluctuations on the occurrence of RVF outbreaks. Nevertheless, extending these
models to include seasonality yielded rich dynamics including chaotic behaviour [4].
In this situation such dynamics are attributed to climatic variations disregarding
the fact that interaction between the deterministic dynamics and demographic
stochasticity is central for explaining realistic disease patterns [145]. Deterministic
models are typically assumed to be reasonable approximations for infinitely large
homogeneous populations, and arise from the analysis of mean field stochastic
models, such that if one considers finite populations which is the case of livestock,
stochastic interactions even within a well-mixed system may introduce new phe-
nomena [146]. Therefore, it is more likely that these characteristic disease temporal
patterns can be captured by fully stochastic models [146, 147], which are known to
show large oscillations caused by the stochasticity exciting the system’s natural
frequency [148, 149]. Stochastic effects are known to show major impacts whenever
the prevalence of infection in either the host or vector population, or both are low
and can be highly significant during the period immediately after the introduction
of infection into a population [150].

In this study we formulate a full host-vector stochastic model which takes into
account mechanisms of vertical transmission on the vector population. Our aim is
to examine the impact of stochastic effects and virus endemicity on the invasion
and persistence of the disease. Stochastic effects can also lead to disease extinction
during endemic settings [151]. To investigate these situations we employ branching
process theory [152–154], which has been successfully applied in vector-borne
epidemic models (for more details see [150, 155]). Here we extend the analysis
presented in [150] to include vertical transmission while implementing infection
rates that depend on both host and vector populations. Our objective is to examine
the impacts of mosquito biting behaviour and host efforts to avoid the biting on
the invasion and persistence of the disease. Although stochasticity can cause large
departures from equilibrium, potentially allowing the number of infectives to fall
to low levels [150], it could act passively to kick the system between different
deterministic states [156], as well as interacting with the non-linearity to excite the
transients [147], leading to either periodic or non-periodic oscillations. Using power
spectra analysis we investigate the periodicity of fluctuations of RVF outbreaks as
was undertaken for avian influenza in [146]. This is accomplished by formulating
the model as a master equation which is then studied using van Kampen’s system
size expansion [157], to provide a prediction for the dominant period of disease
oscillations. Since the macroscopic dynamics can then be viewed as a sum of a
deterministic and a stochastic part, this approach provides a unique opportunity to
investigate the effects of stochasticity on disease endemicity and outbreaks. This
approach has been successfully applied while investigating the effects of stochastic
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amplification [149, 158] and seasonal forcing [147, 159, 160] on disease outbreaks
in particular in childhood diseases and more recently on avian influenza [146].
This analysis provides prediction of the dominant period of disease fluctuations
depending on the efficiency of vertical transmission. The results highlight the role
of continuous RVFV endemicity driven by vertical transmission on mosquitoes,
on the periodicity of disease outbreaks which agree with findings from empirical
studies [1–3]. Therefore, it is reasonable to argue that it could be possible to
reduce the frequency and intensity of RVF outbreaks by controlling transovarial
transmission.

5.2 RVF stochastic host-vector model with ver-

tical transmission

To analytically investigate temporal dynamics of a RVF model by means of
stochastic processes we formulate a simple but realistic stochastic host-vector
model that captures all important features of RVF dynamics. The present study
does not use primary data (medical records or public records), rather during model
development we calibrate the model towards temporal characteristic patterns of
RVF epidemic and inter-epidemic activities observed in East Africa and Southern
Africa. In particular, the data used reflect patterns observed in Kenya, Tanzania
and South Africa (see [1–3, 39, 45] and references therein). A description of all
model parameters and their respective values, ranges and sources is given in Table
5.1.
We investigate both disease epidemic and inter-epidemic activities in a livestock
population where the transmission of the infection is intermediated by Aedes mos-
quitoes only. Thus, neglecting the presence of Culex species which are known to be
the secondary vectors of the disease as in [5]. Aedes mosquitoes are responsible for
both initial spread and persistence of the disease since the female can transmit the
virus transovarially to her eggs [11, 33]. The mosquito sub-model is an SI type
model, that is, with only two compartments: susceptible and infectious. This way
we ignore the exposed class and mosquitoes once infected remain infected for life.
The livestock sub-model is an SIR type model, that is, susceptible, infectious and
recovered.
Mammalian hosts enter the susceptible class through birth at a constant rate, µ2.
When an infectious Aedes mosquito bites a susceptible ruminant, there is a finite
probability, β21 that the ruminant becomes infected. Once a ruminant is success-
fully infected by an infected vector, it moves from susceptible class S2 to infectious
class I2. After some time, the infectious ruminant either recovers at rate ε2 and
moves to recovered class, R2 or dies naturally at per capita rate of µ2. Female
Aedes mosquitoes (we do not include male mosquitoes in our model because only
female mosquitoes bite livestock for blood meals) enter the susceptible class through
birth at rate, b1. The term birth for mosquitoes accounts for and is proportional
to the egg-laying rate; and survival of larvae [5]. Since most density-dependent
survival of mosquitoes occurs in the larvae stage, we assume a constant emergence
rate that is not affected by the number of eggs laid; that is, all emergence of new
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adult mosquitoes is limited by the availability of breeding sites [5]. Susceptible
vectors, S1 are infected when they bite an infected ruminant with probability β12

and depending on the ambient temperature and humidity [99] the mosquitoes move
from S1 to the infectious class, I1. To reflect the vertical transmission in Aedes
mosquitoes a proportion of infected, q1 newly hatched mosquitoes joins class I1.
Mosquitoes leave the population through a per capita natural death rate, µ1.

Parameter Description Units Baseline Range Reference

1/µ1 Mosquito life span Days 20 10-30 [5, 57]
1/µ2 Livestock life span Days 2190 360-3600 [69]
q1 Probability of vertical transmission 0.1 0-1 [161]
α1 Number of times a mosquito would bite a host Days−1 0.33 0.1-0.5 [5, 91]
α2 Number of bites a host can sustain Days−1 19 0.1-50 [5]
α Biting rate Days−1 0.71 0.1-0.8 [162]
β21 Probability of successful infection in livestock 0.21 0.001-0.54 [5, 11, 99]
β12 Probability of successful infection in mosquitoes 0.51 0.3-0.9 [5, 11, 99]
1/ε2 Infectious duration in livestock Days 4 1-7 [5, 91, 163, 164]
m0 The ratio female mosquitoes to hosts 1.5 0-5 [165]

Table 5.1: The parameters for the RVF model for high rainfall and moderate
temperature (wet season) for model in Table 5.2 with values, range and references.
Note that all parameter units are days. The parameter α1 is a function of
the mosquito’s gonotrophic cycle (the amount of time a mosquito requires to
produce eggs) and its preference for livestock blood, while α2 is a function of the
ruminant’s exposed surface area, the efforts it takes to prevent mosquito bites
(such as swishing its tail), and any vector control interventions in place to kill

mosquitoes encountering cows or prevent bites [5].

Although births and deaths are intrinsically distinct events, we assume, for sim-
plicity, that the vector birth and death rates have the same values, which means
that the total population size N1 = S1 + I1 is kept constant. A key feature of the
model is that the rate at which new infections occur in both host and vector is
proportional to both host and vector population. That is, the total number of bites
varies with both the host and vector population sizes. This allows more realistic
modelling of situations where there is a high ratio of mosquitoes to livestock and
where livestock availability to mosquitoes is reduced through control intervention as
well as the efforts a host takes to prevent mosquito bites (such as swishing its tail)
[4, 5]. Thus, the force of new infections in livestock is λ21 = α1α2β21I1

α1N1+α2N2
and the force

of new infections in mosquitoes is λ12 = α1α2β12I2
α1N1+α2N2

, where α1 is the number of times
one Aedes mosquito would bite a host per day, if livestock were freely available
(for details on their derivation see Appendix D section D.1). This is a function
of the mosquitoes gonotrophic cycle (the amount of time a mosquito requires to
produce eggs) and its preference for livestock blood. α2 is the maximum number of
mosquito bites a host can sustain per day. This is a function of the hosts exposed
surface area, the efforts it takes to prevent mosquito bites (such as swishing its
tail), and any vector control interventions in place to kill mosquitoes encountering
hosts or preventing bites [5]. This formalism allow us to evaluate how mosquito
biting behaviour and vertical transmission in Aedes female mosquitoes impact both
the probabilities of disease invasion and extinction and disease fluctuations. The
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former is accomplished by employing branching process theory which is central
for determining critical epidemic behavioural thresholds [150], and for the later
we used system-size expansion technique [166] and Fourier analysis. However, a
standard incidence function used in mosquito transmitted diseases usually assumes
that mosquitoes bite a particular host at a constant rate irrespective of the number
of available hosts. Therefore, for very large N2 the above forces of infection can
be approximated by the following standard incidence functions λ′21 = β21αm0

I1
N1

and λ′12 = β12α
I2
N2

as the model forces of infections. In this case α is the mosquito
biting rate, such that α/N2 is the rate at which a particular host is bitten by a
particular mosquito, m0 = N1/N2 is the ratio female mosquitoes to hosts and β21

and β12 are the probabilities of successful transmission per bite [21, 167], for more
details see Appendix D section D.1. All the transitions of the host and the vector
associated with their corresponding rates are illustrated graphically in Fig5.1.

Figure 5.1: Flow diagram of RVF model with both vertical and horizontal
transmission. Susceptible livestock, S2, acquire infection and move to com-
partment I2 when they are bitten by an Aedes infectious mosquito I1. They
then recover with a constant per capita recovery rate to enter the recovered
compartment, R2, class. Susceptible mosquito vectors, S1, become infected
when they bite infectious livestock and progress to class I1. The solid lines
represent the transition between compartments and the dashed lines represent

the transmission between different species.

Setting the livestock population size to remain constant, we can omit the equation
containing R2, since it can be obtained when S2 and I2 are known. Therefore, the
basic ingredients of our new model framework are susceptible livestock S2, infected
livestock I2 and infected Aedes mosquitoes I1. Unlike in deterministic models the
numbers in these classes are no longer treated as continuous varying quantities
[150], but instead as integers since individual-based stochastic models consider
movements of individuals between classes to be discrete [168]. To be precise, these
transitions are assumed to take place in a small time interval (t, t+∆t) with inflows
and outflows of magnitude unity. If we denote the numbers in each class as s2, i2
and i1 respectively, the general state of the system is then written as σ = (s2, i2, i1).
Thus, T (σ′|σ) represents the transition probability per unit time from state σ to
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the state σ′. Note that we characterize the events taking place in the system into
three distinct groups:

1. Infection

T (s2 − 1, i2 + 1, i1|s2, i2, i1) = β21α
′m0

i1
N1
s2,

T (s2, i2, i1 + 1|s2, i2, i1) = β12α
′ i2
N2

(N1 − i1),
(5.1)

2. Birth/Death

T (s2 + 1, i2, i1|s2, i2, i1) = µ2N2,
T (s2 − 1, i2, i1|s2, i2, i1) = µ2s2,
T (s2, i2, i1 − 1|s2, i2, i1) = µ1i1.

(5.2)

3. Recovery

T (s2, i2 − 1, i1|s2, i2, i1) = (ε2 + µ2)i2. (5.3)

where α′ = α1α2

α1m0+α2
for general forces of infections λ21 and λ12, and α′ = α

for standard forces of infections λ′21 and λ′12.

For better illustration we summarize all of the processes taking place in the system
and their corresponding rates and probabilities of occurrence in Table 5.2. Note
that these rates are the conditional instantaneous stochastic rates of individuals
entering or leaving each compartment at time t and also depend on the sizes of
each compartment.
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Event Transition Rates of occurrence Probability in
[t, t+ dt]

Birth of uninfected Ae-
des

S1 → S1 + 1 µ1(N1 − q1I1) µ1(N1 − q1I1)dt

Infected Aedes birth I1 → I1 + 1 b1q1I1 b1q1I1dt

Infection of susceptible
Aedes from infectious
host

S1 → S1− 1, I1 → I1 + 1 β12α
′ I2

N2

S1 β12α
′ I2

N2

S1dt

Death of susceptible
Aedes

S1 → S1 − 1 µ1S1 µ1S1dt

Death of infectious Ae-
des

I1 → I1 − 1 µ1I1 µ1I1dt

Birth of susceptible
host

S2 → S2 + 1 µ2S2 µ2S2dt

Infection of susceptible
host from infectious
Aedes

S2 → S2− 1, I2 → I2 + 1 β21α
′m0

I1

N1

S2 β21α
′m0

I1

N1

S2dt

Infectious host recov-
ery

I2 → I2−1, R2 → R2 +1 ε2I2 ε2I2dt

Death of susceptible
host

S2 → S2 − 1 µ2S2 µ2S2dt

Death of infectious
host

I2 → I2 − 1 (m2 + µ2)I2 (m2 + µ2)I2dt

Death of recovered
host

R2 → R2 − 1 µ2R2 µ2R2dt

Table 5.2: Stochastic model for vector-host disease system. The parameter
m0 = N1/N2 is the ratio mosquitoes to hosts, and α′ = α1α2

α1m0+α2
is for general

forces of infections λ21 and λ12, and α′ = α is for standard forces of infections
λ′21 and λ′12.

Using the probabilities in Table 5.2, we can now construct the master equation in
its general form [149, 157, 169], describing temporal evolution of the probability
distribution of determining the system in state σ at time t.

dP (σ; t)

dt
=
∑
σ′ 6=σ

T (σ|σ′)P (σ′; t)−
∑
σ′ 6=σ

T (σ′|σ)P (σ; t), (5.4)

where σ = (s2, i2, i1) represents the state of the system, P (σ, t) is the probability
of the system in the state σ at time t. This can also be referred to as the forward
Fokker-Planck (or forward Kolmogorov) equation, which is a differential equation
for the probability density function P (σ, t) of determining the system in σ at time
t and it cannot be solved exactly. An alternative analytical approach can be the
derivation of the moments of the distribution of the state σ. However, for the
purpose of our study we analyse the master equation using van Kampen’s system-
size expansion [157], see Section 5.3.2. In the following sections we determine both
the probabilities of a major outbreak and extinction after introduction of a single
or few infectives into a population that is otherwise susceptible.
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5.3 Methods and Model Analysis

5.3.1 Estimating the probability of a major outbreak

In any disease model, a question of fundamental interest is to determine conditions
under which a disease if introduced into a community with no immunity will
develop into a large outbreak, and if it does, conditions under which the disease
may become endemic. For this purpose, a key threshold parameter called the basic
reproduction number, R0 is derived and analysed usually in deterministic epidemic
models. This epidemic threshold is such that for R0 < 1 each infected individual
will produce less than one infected case and the probable result is that the disease
will die out.

On the contrary, if R0 > 1 each individual will produce more than one case and
eventually the infection will invade the population. However, in the stochastic
models, invasion of an infection into a susceptible population is not guaranteed
by having R0 > 1: stochastic extinction can occur during the period immediately
following introduction, when there are few infective individuals [150]. Thus, rather
than the major outbreak that would be expected based on the behaviour of the
deterministic model, only a minor outbreak might occur. During this early stage
after the introduction of the pathogen, little depletion of susceptibles will have
occurred and so probabilities of major outbreaks can be derived using the linear
model that arises by assuming that the populations are entirely susceptible [170–
172]. Thus, in the resulting model, the number of infectives can be approximated
through a multi-type linear birth-death process [170]. In a multi-type branching
process, individuals in the population are categorised into a finite number of
types and each individual behaves independently [150]. An individual of a given
type can produce offspring of possibly all types and individuals of the same
type have the same offspring distribution [173, 174]. In our model the disease is
spread via two modes of infection transmission: vertical and horizontal. Thus, an
infectious mosquito produces an infected ruminant, and a proportion q1 of infectious
mosquitoes produce infectives of the same type while an infected ruminant produces
an infected mosquito. Therefore, by assuming that secondary infections arise
independently and at a constant rate over the infectious period of each infective,
then the distribution of secondary infections follow geometric distributions [150],
with means R11

0 , R
21
0 and R12

0 for mosquito-to-mosquito, mosquito-to-animal and
animal-to-mosquito transmission respectively (for more details see subsection D.2.2
of Appendix D).
In this settings, for horizontal transmission the probability generating functions
(PGF) for the joint distribution of the dynamic variables when a single infected
mosquito was introduced at time 0 can be obtained and it is given by

Gi(s) = E[
2∏
j=1

s
Xij
j ]. (5.5)
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For vertical transmission the PGF is simply G2
1 [175]. Note that {Xij, i, j = 1, 2}

is the number of infectives of type j produced by an infective of type i. G(s) is
the probability generating function of the distribution of secondary infections and
equation (5.5) can be solved to find the extinction probability if there is initially
one infective individual present. Extinction in the linear model is most likely to
occur early in the process, so this corresponds to the occurrence of minor outbreaks
in the nonlinear model, whereas non-extinction in the linear model corresponds to
a major outbreak in the nonlinear model [150]. Equation (5.5) can be expanded to
obtain the following formula [150],

Gi(s1, s2) =
∑
k1,k2

sk1
1 s

k2
2 P (Xi1 = k1, Xi2 = k2) =

1

1 +
2∑
j=1

Rji(1− sj)
(5.6)

where i is equal to 1 or 2. An infective livestock only directly give rise to secondary
infections in the vector population. Thus, we have that P (X21 = j,X22 = k) is
equal to P (X21 = j) when k = 0 and zero otherwise. Consequently the generating
function G2(s1, s2) is a function of s1 alone,

G2(s1, s2) =
1

1 +R12(1− s1)
. (5.7)

However, when effects of vertical transmission are included, infective mosquitoes
not only give rise to secondary infections in the livestock population but also to
secondary infection in the mosquito population through transmission from mother
to eggs. Therefore, the generating function G1(s1, s2) is a function of s1 and s2,

G1(s1, s2) =
1

1 +R11(1− s1) +R21(1− s2)
. (5.8)

Extinction probabilities can be calculated by solving the pair of equations,
G1(G2(s1)) = s1 and G2(G1(s1, s2)) = s2 resulting from composition of functions
in equations (5.7) and (5.8). The pair (s1, s2) = (1, 1) is always a solution. If
R0 ≤ 1 it is the only solution, whereas for R0 > 1 there is another solution with
both s1 and s2 being less than unity [153], where R0 = q1

2
+ 1

2

√
q2

1 + 4R12R21

with R12 = 1
ε2+m2+µ2

α1α2β12

α1N1+α2N2
S0

1 being the number of new infections in Aedes

mosquitoes generated by single infected ruminant and R21 = α1α2β21

α1N1+α2N2
S0

2
1
µ1

the
number of new infections in livestock generated by single infected Aedes mosquito.

5.3.2 System size expansion of the stochastic host-vector
model

So far we have formulated a fully stochastic host-vector model with both horizontal
and vertical transmission, under well-mixed conditions and constructed the master
equation (5.4). To analyse the model we apply two methods: one is to simulate
the system using the Gillespie algorithm [176], which gives the exact realization of
temporal disease evolution. The other is analytical and consists of performing van
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Kampen’s system-size expansion [149, 157] of the master equation, which allows for
quantitative prediction of the power spectrum of the time fluctuations of each of the
system variables, and, therefore, of the dominant period of disease outbreaks [146].
Full details of van Kampen’s system size expansion are discussed in Section D.3
of Appendix D. This method allows us to derive analytical approximate solutions
which involves making the following substitutions,

s2 = N2φ1 +
√
N2x1,

i2 = N2φ2 +
√
N2x2,

i1 = N1ψ +
√
N1x3,

where φ1, φ2, ψ are fractions of the susceptible livestock, the infected livestock and
infected Aedes mosquitoes respectively, with xl(l = 1, 2, 3) describing the stochastic
corrections to the variables s2, i2, i1. This expands the master equation in powers
of N

−1/2
1 and N

−1/2
2 , such that the probability distribution P (s2, i2, i1; t) is now

written in terms of the new variables x1, x2, x3 as follows:

dP

dt
=
∂Π

∂t
−
√
N2

dφ1

dt

∂Π

∂x1

−
√
N2

dφ2

dt

∂Π

∂x2

−
√
N1

dψ

dt

∂Π

∂x3

. (5.9)

Then, by introducing step operators and expanding them in N
−1/2
2 and N

−1/2
1 we

obtain

dP
dt ={
[(1 + 1√

N2

∂
∂x1

+ 1
2N2

∂2

∂x2
1
)(1− 1√

N2

∂
∂x2

+ 1
2N2

∂2

∂x2
2
)− 1]β21α

′m0i1s2 + (− 1√
N1

∂
∂x3

+ 1
2N1

∂2

∂x2
3
)

[β12α
′i2(N1 − i1) + µ1q1i1] + (− 1√

N2

∂
∂x1

+ 1
2N2

∂2

∂x2
1
)µ2N2 + ( 1√

N2

∂
∂x1

+ 1
2N2

∂2

∂x2
1
)µ2s2

+( 1√
N2

∂
∂x2

+ 1
2N2

∂2

∂x2
2
)(ε2 + µ2)i2 + ( 1√

N1

∂
∂x3

+ 1
2N1

∂2

∂x2
3
)µ1i1

}
Π(x1, x2, x3; t).

(5.10)

Then, by drawing a comparison with equation (5.9) order by order yields the
macroscopic equations such that at leading order we obtain the following set of
deterministic equations, describing the mean behaviour, which scale with the
system size N1 for vectors and N2 for hosts,

dφ1

dt
= −β21α

′m0ψφ1 + µ2(1− φ1),
dφ2

dt
= β21α

′m0ψφ1 − (ε2 + µ2)φ2,
dψ
dt

= β12α
′φ2(1− ψ) + µ1q1ψ − µ1ψ.

(5.11)

When integrating the above deterministic equations (5.11) with respect to t we
obtain trajectories of the mean behaviour which show damped oscillations tending
to a fixed point see Fig.5.2. This is eventually the expected long-term behaviour
for realistic parameter values for host-vector models. This further confirms the
results of system stability analysis (see subsection D.3 of Appendix D).
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Figure 5.2: Realization of the RVF host-vector stochastic model and its
deterministic counterpart. The trajectories of the deterministic counterpart are
generated by integrating the mean field equations (5.11). The values of the
parameters in years are as follows: q1 = 0.05, µ1 = (1/16) ∗ 360, µ2 = 1/10, β12 =
0.170, β21 = 0.116, ε2 = (1/4) ∗ 360, α′ = α = 256,m0 = 1.5 and their description

and sources is given in Table 5.1. This gives R0 = 1.0066.

Results of qualitative analysis of the system show that the above system has a
trivial fixed point, named the disease-free equilibrium E0:

φ0
1, φ0

2, ψ0,

and a unique non-trivial fixed point named the endemic equilibrium E∗:

φ∗1 =
a+ µ2R0

(a+ µ2)R0

, φ∗2 =
µ1µ2(1− q1)(R0 − 1)

b(a+ µ2)
, ψ∗ =

µ1µ2g(1− q1)(R0 − 1)

a(bµ2 + µ1g(1− q1))
,

where a = β21α
′m0, b = β12α

′, g = ε2 + µ2 and R0 = 1
1−q1

β21α′m0

µ1

β12α′

ε2+µ2
is the

basic reproductive number and the later equilibrium exists and is stable whenever
R0 > 1.

5.3.3 Periodicity of the stochastic host-vector model

A fundamental question is whether the existence of a stable fixed point in the
deterministic system generates oscillations and multi-year periodicity in the cor-
responding stochastic system [149]. In order to investigate this and describe the
stochastic fluctuations of the system by an analytical method, we introduce step
operators which allow us to express the master equation (5.4) in a more compact
form which further facilitates the expansion of the system. Details are given in
Section D.3.1 of Appendix D, where it is shown that the resulting master equation
can be written in a power series of N

−1/2
1 and N

−1/2
2 and the step operators in

terms of the fluctuation variables x1, x2 and x3. Then, at next-to-leading order
of the newly formed master equation (D.29) we obtain a linear Fokker-Planck
equation for the fluctuation variables xl(l = 1, 2, 3),

∂Π

∂t
= −

3∑
k,l=1

Akl
∂(xlΠ)

∂xk
+

1

2

3∑
k,l=1

Bkl
∂2Π

∂xk∂xl
. (5.12)
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This is equivalent to a set of Langevin equations [157] for the stochastic corrections
to the deterministic equations (5.11) having the form

dxk
dt

=
3∑
l=1

Aklxl + ξk(t), (k, l = 1, 2, 3), (5.13)

where ξk(t)(k = 1, 2, 3) is Gaussian white noise with zero mean and a cross-
correlation function given by 〈ξk(t)ξl(t′)〉 = Bklδ(t− t′). Note that system (5.13)
combines both the deterministic and stochastic contributions. Given that we
are interested in evaluating fluctuations of the system trajectories around the
non-trivial fixed point of the deterministic system, we evaluate the entries of the
Jacobian matrix Akl and Bkl of the noise covariance matrix at this stable fixed
point. Explicit expressions for these two matrices are given in subsection D.3.1 of
Appendix D.
The Langevin equations (5.13) describe temporal evolution of the normalized
fluctuations of variables around the equilibrium state. By Fourier transformation
of these equations, we are able to analytically calculate the power spectral densities
(PSD) that correspond to the normalized fluctuations, independent of community
size N . By taking the Fourier transform of equation (5.13), we transform them
into a linear system of algebraic equations, which can be solved. After taking
averages, in the three expected power spectra of the fluctuations of susceptible
livestock, infected livestock and infected Aedes mosquitoes around the deterministic
stationary values we obtain:

PS2(ω) = 〈|x̃1(ω)|2〉 =
B11ω4+ΓS2

ω2+χS2

|D(ω)|2 ,

PI2(ω) = 〈|x̃2(ω)|2〉 =
B22ω4+ΓI2ω

2+χI2
|D(ω)|2 ,

PI1(ω) = 〈|x̃3(ω)|2〉 =
B33ω4+ΓI1ω

2+χI1
|D(ω)|2 ,

(5.14)

The complete derivation of these PSDs and detailed descriptions about the way
the functions χi, Bkl,Γk and D(ω) depend on model parameters are discussed in
Subsection D.3.2 of Appendix D.

5.4 Model Simulations and Results

5.4.1 Probability of a major outbreak in the absence of
vertical transmission

In the absence of vertical transmission, that is, R11 = 0 the solutions of the
equations G1(s1, s2) = s1 and G2(s1, s2) = s2 are provided in [150] and for the case
of introduction of a single infectious vector, it is reproduced here as follows:
To obtain the extinction probability requires determining the smallest non-negative
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root of

s1 =
1

1 +R21[1− 1
1+R12(1−s1)

]
, (5.15)

which is obviously given by

1 +R12

R12(R21 + 1)
. (5.16)

Note that this is smaller than 1 if and only if the product R12R21 = R0,H is greater
than 1. Consequently, when R0,H ≤ 1, the relevant solution is 1 and so a major
outbreak can never happen [150, 171]. For R0,H > 1, both the probability of
extinction and of a major outbreak, are found by swapping the roles of R12 and
R21 in the preceding elaboration.

Figure 5.3: Solution of Eq.(5.15) when the product R12 ×R21 is greater than
unity. The curves in (a) and (b) are contours in the plane (R12, R21), along which
the probabilities of extinction and invasion respectively, after an introduction
of a single vector is constant. In (c) and (d) we plot probabilities of extinction
and invasion respectively, when varying parameters α1 and α2. The values of
the remaining parameters in days are as follows: q1 = 0.01, µ1 = 1/30, µ2 =

0.00046, β12 = 0.676, β21 = 0.28, ε2 = 0.25.

Lloyd et al.[150] concluded that the asymmetry observed within the relationship
between either probability of extinction or invasion with the reproductive numbers
may stem from the disparity between the sizes of the host and vector populations.
To further investigate this phenomenon we compute the probability of extinction
and invasion while varying the biting ability of the vector when host ability to
avoid a mosquito bite is taken into account. This is accomplished by varying
the parameters α1 (number of bites that a mosquito would bite a host) and α2

(number of bites a host would sustain) when plotting the extinction and invasion
probabilities. This is possible since in our approach we generalized the mosquito
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biting rates so that they can be applied to wider ranges of population sizes. Instead
of letting the total number of mosquito bites on livestock depend on the number
of mosquitoes as in [150], we set the total number of bites to vary with both
the livestock and mosquito population sizes. Results from Fig.5.3 (d) further
rephrase the roots of the observed asymmetry highlighting that although the high
ratio of mosquitoes to livestock is a major factor, any form of intervention to
reduce livestock availability to mosquitoes can lead to such disparity. And disease
extinction is only possible if the ratio mosquito to livestock is kept at a very low
level resulting in values of α1 less than 0.1 see Fig.5.3 (c). This explains why
when environmental conditions are satisfied, that is, during rainy seasons disease
outbreaks are expected as a result of the presence of massive numbers of potential
vectors. However, without virus reservoirs in either host or vector population
or virus introduction from the outside even in the presence of optimal climatic
conditions, disease activities are almost impossible. Therefore, in the following
section we examine the relationships of disease persistence, extinction and spread
when effects of vertical transmission efficiency are taken into consideration.

5.4.2 Probability of a major outbreak in the presence of
vertical transmission

In the presence of vertical transmission, determining the probability of extinction
requires solving equations (5.7) and (5.8) when R11 6= 0. In this regard, the
extinction probability following the introduction of a single infectious mosquito is
given by the smallest non-negative root [171] of

s1 =
1

1 +R11(1− s1) +R21[1− 1
1+R12(1−s1)

]
. (5.17)

After rearranging the above equation we obtain

R11R12(1− s1)2s1 + (R11 +R12 +R12R21)(1− s1)s1 −R12(1− s1) + s1 − 1 = 0,
(5.18)

which is a cubic polynomial in s1. Note that for R11 = 0 this equation reduces to
quadratic equation (5.15). It is evident that s1 = 1 is a solution to equation (5.18)
and the remaining solutions are found by solving the quadratic equation

R11R12s
2
1 − (R11 +R12 +R11R12 +R12R21)s1 +R12 + 1 = 0. (5.19)
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Figure 5.4: The curves represent contours in the plane (R12, R21), with varying
vertical transmission efficiency, along which the probability of invasion after an
introduction of a single vector is constant. These probabilities are obtained from

the solutions of equation (5.19).

Studies have shown that in the absence of vertical transmission in mosquitoes
RVFV dies out when R0 < 1 and becomes endemic when R0 > 1. However, in the
presence of vertical transmission the disease may persist even for R0 < 1 [4, 5, 77].
This situation stems from the fact that in host-vector systems, R0 results from
a complete cycle of host-vector-host or vector-host-vector transmission and does
not reflect the average number of secondary infections of a specific population
type [85]. For instance, R0 = 0.75 may result from a product of host reproductive
number R12 = 5 and vector reproductive number R21 = 0.15. Nevertheless, in
each generation, the number of host infections is proportional to the number of
infected mosquitoes, and decreases proportionally to the vertical infection efficiency.
However, if the host reproductive number is high it is likely to boost up new vector
infections in future generations. Figure 5.4 shows the dependency of probability of
disease invasion on R12, R21 and vertical transmission efficiency R11. The invasion
probability increases linearly with increments on vertical transmission efficiency
with significant impact when the proportion of vertical infection efficiency exceeds
20%. Other studies have found that it is only from this level of vertical transmission
efficiency that time of viral persistence is observed [80, 85]. Another interesting
relationship is that as the invasion probability increases with vertical infection
efficiency the horizontal transmission R0 = R12×R21 tends to decrease highlighting
an asymmetric relationship with R12 and R21 as highlighted in the previous section.



Chapter 5. Predicting RVF Outbreaks from Inter-Epidemic Activities 104

5.4.3 Temporal patterns of Rift Valley fever in Sub-Saharan
Africa

RVF is known to be endemic in Sub-Saharan Africa [9] with some differences in
temporal patterns characterized by long periods with no outbreaks in eastern and
southern regions of the continent [3]. However, a closer look at temporal patterns of
disease outbreaks in Tanzania and Kenya (East Africa) and South Africa (Southern
Africa) shows existence of some possible differences in the temporal characteristic
patterns of disease outbreaks. Figure 5.5 depicts temporal characteristic patterns
of disease outbreaks from 1930 to 2007 in Tanzania [3], from 1951 to 2007 in Kenya
[1] and from 1950 to 2011 in South Africa [2]. The prevalence shown for Kenya and
South Africa is artificial, it is only for representation purposes since real information
regarding prevalence of the disease at each year is not available. Although data
regarding reported cases for each outbreak exist [3], it is not complete. Data for
the years 1960, 1963 and 1968 is missing. The plots in Fig.5.5 are based on data
reported in [1] for Kenya, in [2] for South Africa and in [3] for Tanzania. According
to Pienaar and Thompson [2] during this period South Africa experienced only
three major outbreaks (1950-1951, 1974-1976 and 2010-2011) and the remaining
are considered smaller or isolated outbreaks. Interestingly the 1974 outbreak lasted
for 3 consecutive years, a situation which can be compared to the 1960 outbreak
that occurred in Kenya which continued until 1964 [1]. From the time series
Fig.5.5 (b) we observe that after each major outbreak including the outbreak in
1985-1986 in South Africa there are subsequent outbreaks occurring nearly each
year. According to findings by Murithi et al.[1] during the period 1950-2007 only
11 large scale outbreaks were recorded with an average inter-epizootic period of 3.6
years (range 1-7 years). However, for Tanzania an average inter-epizootic period of
7.9 years (range 3-17 years) is reported [3]. These disease post-epidemic activities
in ruminants are known to occur without clinical cases and can only be detected
where active surveillance is carried out[39, 46]. Could it be that these differences in
temporal patterns are results of a deficit of surveillance system to cover all remote
regions that are vulnerable to the disease or are due to differences in the ecology
of the vector? This question takes us to another question which is the driving
force of this study. Could it be possible that smaller or sporadic RVF outbreaks
occur every year after major outbreaks without noticeable outbreaks or clinical
cases due lack of active surveillance? Could the prevalence of these outbreaks show
multi-year periodicity? If disease prevalence data could be available we would
apply techniques of wavelet analysis which performs a time-scale decomposition of
a time signal to estimate spectral characteristics of the signal as a function of time
[146, 177].
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Figure 5.5: Temporal history of RVF outbreaks in some countries of Sub-
Saharan Africa. In (a) and (b) the circles represent years of outbreaks occurrence
in Kenya and South Africa [1, 2] and the prevalence indicated in the figure is not
real, it is just for representation only since data on prevalence is not available.
In (c) the circles represent the prevalence of disease outbreaks in Tanzania [3].

This would allow us to predict the dominant period of outbreak fluctuations when
varying some model parameters in particular, vertical transmission which is known
to be the driving force behind the continuous disease endemicity in these regions [3].
Since reliable information is not available, in the following section we theoretically
estimate the power spectra of disease oscillations taking into account effects of
demographic stochasticity and vertical transmission.

5.4.4 Effects of stochasticity and vertical transmission on
disease outbreaks

Figure 5.6 depicts the power spectrum density (PSD) for fluctuations of the total
number of susceptible livestock, infected livestock and infected mosquitoes as
derived in equations (5.14).

Figure 5.6: Theoretical prediction of the power spectrum density (PSD)
(Eq.5.14) for fluctutions of the total number of susceptible livestock, infected
livestock and infected mosquitoes. Values of the parameters in years are as
follows: q1 = 0.05, µ1 = (1/16) ∗ 360, µ2 = 1/10, β12 = 0.170, β21 = 0.116, ε2 =
(1/4) ∗ 360, α′ = α = 256,m0 = 1.5 and their description and sources are given

in Table 5.1.



Chapter 5. Predicting RVF Outbreaks from Inter-Epidemic Activities 106

Our derivation of exact expressions for the power spectrum of the stochastic
variables around the endemic equilibrium, see (Eq.5.14) gives additional benefits.
Using the expression for the power spectrum density (PSD) for variable I2 we
examine how changes in female Aedes vertical transmission efficiency affects the
periodicity of RVF outbreaks. In Fig.5.7 (a) we observe that an increase in
vertical transmission efficiency causes a significant increase in the frequency of
disease outbreaks. To better illustrate this phenomenon, we show that for vertical
transmission of q1 = 0.05 the dominant period of disease outbreaks is about 10
years while for q1 = 0.5 the dominant period is about 1 year. These results suggest
that with low efficiency of vertical transmission there is a high probability of disease
extinction after a major outbreak, followed by a long period without outbreaks.
This stems from the fact that the mosquito life cycle is relatively short and vertically
acquired infections are multiplicatively diluted with every generation such that the
virus is rapidly lost unless there is regular amplification in the host population. This
could be only possible if renewal of susceptible livestock would happen with high
frequency. Since the PSD formula (5.14) describes components of the deterministic
model we can examine effects of the nature of the basic reproduction number R0 on
outbreaks periodicity. If R0 is less than or equal to unity, with a high probability
the disease outbreak is relatively small. This is the reason why most studies would
rather concentrate on the complementary case. However, our analysis (see Fig.5.7(b)
and Fig.5.7(c)) shows that the most important and interesting case is where R0 is
near unity. We see that as R0 moves away from unity the PSD surface becomes
flatter, indicating that more frequencies are involved in the stochastic fluctuations.
This simply means that when increasing R0, the dominant period decreases (the
dominant frequency increases), however for larger values (R0 > 2) the PSD becomes
totally flat. In this region ’coherence resonance’, that is, a phenomenon in which
random fluctuations sustain nearly periodic oscillations around the deterministic
endemic equilibrium is lost and becomes white noise. Furthermore, we examine the
PSD surface for nearly extreme values of vertical transmission efficiency q1 = 0.05
and q1 = 0.5. For larger values of vertical transmission the frequency of system
fluctuation tends to increase, resulting in continuous endemicity of the disease as
has been observed in some of the endemic regions [3]. While for small values of
vertical infections the frequency of outbreaks is significantly reduced.

Figure 5.7: Power Spectra Density (PSD) for the variable I2 (Eq.5.14). a)
Effects of vertical transmission efficiency on the PSD. Three-dimensional rep-
resentation of the PSD when varying R0 and the frequency for q1 = 0.05 and
q5 = 0.5 in b) and c) respectively. Model parameter values used are as follows:
β12 = 0.170, β21 = 0.116, ε2 = (1/4) ∗ 360, α′ = α = 256, µ2 = 1/10,m0 =

1.5, µ1 = (1/16) ∗ 360. This gives R0 = 1.0066.
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5.5 Discussion and Conclusion

We have explored the use of analytical tools to measure and examine effects of
demographic stochasticity in host-vector models with two routes of transmissions.
Host-vector models are designed to explain the dynamics of diseases in which
transmission of the pathogen is mediated by a vector. For our study case which is
Rift Valley fever (RVF), the vector is a mosquito of genus Aedes with special ability
of transmitting the virus to its offspring transovarially. In disease dynamics, this
leads to two modes of transmission: horizontal and vertical. The analytical tools
applied are: branching process theory to examine the impact of stochastic effects on
the invasion and persistence of RVF infection when vertical transmission is taken
into account and van Kampen’s method to investigate effects of mosquito vertical
transmission on the characteristic temporal patterns of multi-year periodic disease
outbreaks. As found in Lloyd et al.[150], results obtained using branching process
methodology highlighted that the existing asymmetry relationship between the
disease transmission potentials from hosts to vectors and from vectors to hosts can
have significant epidemiological impacts. This stems from the fact that the disease
invasion probability starting from a single infective host and the invasion prob-
ability starting from a single infective vector can differ significantly, even though
the overall basic reproductive number of the infection is the same in both cases
[150]. This asymmetry can lead to a situation where the overall basic reproduction
number is greater than unity while either the vector or host reproductive number
is less than unity, resulting in dramatic implications for disease control efforts. To
further investigate the impacts of this asymmetry relationship in disease control
strategies we computed the invasion and extinction probabilities when varying the
mosquito biting ability α1 and the host ability to avoid mosquito bites α2. Our
findings suggest that although the ratio of mosquitoes to livestock is a major factor,
any form of intervention to reduce livestock availability to mosquitoes can lead to
such disparity.
Previous studies have shown that in the absence of vertical transmission in mosqui-
toes RVFV dies out when R0 < 1 and becomes endemic when R0 > 1. However,
in the presence of vertical transmission the disease may persist even for R0 < 1
[4, 5, 77]. To investigate this phenomenon we computed the invasion and extinction
probabilities while varying the intensity or efficiency of vertical transmission. Our
results suggested that invasion probability increases linearly with increments on
vertical transmission efficiency with significant impact when the proportion of
vertical infection efficiency exceeded 20% as found in other studies of vector-borne
diseases [80, 85]. Adams and Boots [85] found that vertical infection could only be
important in dengue ecology, if the efficiency in nature is substantially greater than
that found in empirical studies. On the contrary, vertically acquired infections are
multiplicatively diluted at every mosquito life-cycle generation, such that, the virus
is rapidly lost unless there is regular amplification in the host population. However,
regular amplification of the virus in the host population is not certain for several
factors. Recovered ruminants from RVF infection are immune for several days if
not months [178], and vaccinated livestock may produce a high level of neutralizing
antibodies, making them protected against subsequent RVF viral infections [179].
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However, how long do these neutralizing antibodies persist and other immune
responses such as innate, humoral and cell mediated are not known with good
degrees of certainty and require further investigation [11]. Another, interesting
factor is the viraemic phase whose intensity and duration may vary according to
the inoculated dose, the virus strain and the degree of natural susceptibility of
the infected ruminant [11]. Results from experimental studies have indicated that
depending on the host’s innate susceptibility or resistance the infection may be
classified as: severe acute lethal infection, delayed onset of complications or mild
to asymptomatic infection [180–182]. Low level asymptomatic circulation and host
re-introduction from external reservoir populations are also likely to be important
factors [4, 5, 85]. Chamchod et al.[77] concluded that re-introduction of susceptible
livestock from external sources (either through movement or buying) may lead to
a certain probability of some subsequent outbreaks if the renewal takes place every
year. Certainly in such a situation if vertical transmission is very low we are likely
to observe long intervals with no outbreaks just like the situation in Tanzania (see
Fig.5.5(a)); while for high values of vertical transmission we are likely to observe
frequent waves of disease outbreaks just like in South Africa Fig.5.5(b). In summary,
our results reveal that higher values of vertical transmission or vertical infection
efficiency increase the frequency of disease outbreaks and highlight the importance
of the interplay between horizontal and vertical transmission [4, 5, 69, 77] in the
spread of the disease.

A study of temporal and spatial patterns of RVF in Tanzania [3] concluded that
only continuous activity of virus circulation could lead to the observed characteristic
temporal pattern of disease outbreaks in Sub-Saharan Africa. Our results in Fig.5.4
further indicated that although invasion probability increases with vertical infec-
tion efficiency, the horizontal transmission reproductive number tends to decrease,
highlighting an asymmetric relationship between the host and vector reproductive
numbers. This further highlights the role of vertical transmission efficiency in
inducing complex behaviours in the dynamics of RVF outbreaks. Such complex
dynamics may partially be explained from the fact that effects of vertical infection
are further compounded by effects of the diapause phenomena in Aedes mosquitoes.

Previous RVF modelling studies [4, 5, 77] have relied on the use of seasonal type
functions in order to explain periodicity or subsequent waves of RVF outbreaks in
endemic regions as well as characterizing the nature of the resulting oscillations
when mosquito population varies according to seasons or climatic conditions [4].
This is the standard paradigm in the framework of deterministic models [146],
where seasonal and/ or climatic extrinsic forcing and intrinsic host-pathogen dy-
namics are both used in order to understand the nature of different types of disease
oscillations and system’s attractor structures [183]. However, more recently, it
has become clear that the interaction between the deterministic dynamics and
demographic stochasticity is fundamental to understand realistic patterns of disease
outbreaks [145]. To the best of our knowledge this is the first time a non seasonal
full stochastic host-vector model is used to explain the temporal characteristic
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pattern of disease multi-year periodicity depending on vertical transmission ef-
ficiency. This was accomplished by performing van Kampen [166] system size
expansion, which allows us to derive an approximate analytical solution of the
model. This method enables us to further view the population-level dynamics as
being composed of a deterministic part and a stochastic part, where the spectrum
of stochastic fluctuations is intimately related to the stability of the deterministic
level dynamics [147]. Through power spectra analysis we were able to calculate the
power spectrum of the stochastic fluctuations analytically and by comparison with
simulations we can gain general insights into mechanisms underlying the peaks.
Our analysis predicts complex fluctuations with a dominant period of 1 to 10 years
for acceptable parameter values, which essentially depends on the efficiency of
vertical transmission. These findings are in good agreement with observations,
which indicate that in endemic areas RVFV is known to circulate continuously
and outbreaks occur at irregular intervals of up to 15 years [1, 184], or 10-15 or
even 3-7 years [1, 51]. Note however, that these periods of disease outbreaks are
not known with exact details due to lack of appropriate infrastructure and active
disease surveillance.

Although, we do not reproduce the exact known patterns of RVF outbreaks fluctu-
ations, we provide a simpler and plausible explanation, showing that the interplay
between the stochastic component and vertical transmission is central to under-
standing the erratic patterns of disease outbreaks characterized by a dominant
period of 1 to 10 years. Our results indicated that an increase in the vertical
transmission efficiency increases the frequency of disease outbreaks, hence reducing
the periodicity of outbreaks to nearly a dominant period of one year. This further
confirms our findings through branching process theory as discussed above. When
vertical infection efficiency is higher RVFV is likely to circulate every year with
virus amplification at every rainfall season leading to yearly sporadic cases of
disease outbreaks. This situation can be compared with the observation of disease
outbreaks in South Africa as shown in Fig.5.5(b). According to a review by Pienaar
and Thompson [2] since the first outbreak in 1950, South Africa has experienced
only three major outbreaks (1950-1951, 1974-1976 and 2010-2011), with sporadic or
isolated outbreaks in between. Two interesting temporal patterns can be discussed:
(1) the post-epidemic disease activities or disease activities between two major
outbreaks are of one year cycle; (2) the second major outbreak lasted for three
consecutive years. Could it be that the efficiency of vertical transmission in South
Africa is relatively higher, sustaining continuous endemicity patterns? Our analysis
provides a simple but one of the most relevant explanations for this situation. An in-
crease in vertical transmission efficiency leads to low frequency of disease outbreaks
of nearly one year cycle which is in good agreement with findings from empirical
studies [2, 144]. The epidemic continued through the winter, spilling over into the
next rainfall season. It is believed that such spillover was possible due to warm tem-
peratures and wet conditions during winter, which are conductive for reproduction
of mosquitoes maintaining infection through winter. However, other dynamical
factors such as susceptible livestock recruitment (or movement), mosquito seasonal
abundance and livestock immune responses could play a role on fluctuations of RVF
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outbreaks [4, 5, 77]. Perhaps a combination of these factors was responsible for the
1974-1976 and 1960-1964 outbreaks in South Africa and Kenya respectively, which
lasted for at least three consecutive years [1, 2]. Such ’long-lasting’ consecutive
outbreaks are not common and their underlying factors are not yet fully understood.

On the other hand, our model predicts that for low levels of vertical transmission
the frequency of outbreaks becomes very low resulting in a dominant period of
disease outbreaks of nearly 10 years. These findings suggest that when efficiency
of vertical transmission is very low the virus may require a long period of time
to build up and eventually trigger an initial phase of the outbreak. This is a
reasonable explanation for why there have been instances with no records of out-
breaks following seasons of exceptionally above normal rainfall. This is likely
to be the situation in East Africa, for example Tanzania (see Fig.5.5(a)). The
outbreaks occur at irregular intervals followed by long periods (inter-epidemic
period) without records of disease outbreaks, however, RVFV activities have been
detected but with no clinical signs in the mammalian host [39, 45, 46]. During this
inter-epidemic period (IEP) the virus exists but it fails to further amplify within the
host during every wet season. Our explanation is that since the mosquito life cycle
is very short, if there is no regular amplification of the virus in the mammalian
host population, vertically acquired infections can be rapidly lost. Low virus
activities result in lower immunity in the host population and create conditions
for large outbreaks whenever the virus may have sufficiently built up. In sum-
mary, for low vertical infection efficiency we expect long intervals without outbreaks.

For a long time entomological studies have highlighted the relationship between
abnormal rainfall and RVF outbreaks [1, 13, 34, 185]. However, optimum climatic
conditions and the presence of mosquitoes have not completely explained the
epidemiology of RVF outbreaks [26]. For instance, abundant rainfall, which
normally correlates with increased number of mosquitoes in East Africa, was not
often associated with RVF outbreaks in West Africa [11], and even in East Africa
there have been instances where no outbreaks were recorded following seasons
of exceptionally above normal rainfall [3]. These observations suggest that while
rainfall might be the major determinant factor for the onset and switch-off of an
outbreak [3], it is likely to not be the only factor responsible for the characteristic
pattern of disease outbreaks. Other factors such as causal association between
local environmental factors, livestock density and movement, encroachment of
mosquitoes into new areas and livestock immune responses could be responsible
for the observed characteristic pattern of disease outbreaks [3]. However, in this
study we maintain the focus on the role of vertical transmission and chance event
on the oscillation of disease outbreaks and endemicity as we expect our results to
be valid even when the above factors have been taken into account. Nevertheless,
effects of livestock immune responses and livestock re-introduction or movement
deserve their own further investigation.



Chapter 6

An Individual-based Model of
Rift Valley fever Mosquito Life
Cycle for Predicting Abundance
of Mosquitoes

6.1 Introduction

Rift Valley fever is a mosquito-borne zoonotic disease causing fear in the majority
of most vulnerable communities in many regions of the African continent [1, 11, 14].
The majority of these communities are pastoralist, at least in East Africa and their
livelihood mainly depends on livestock production [45, 58]. In East Africa it is
estimated that the recent RVF outbreak in 2006/07 resulted in losses amounting
to more than 60 million US$ due to disruption in trade of domestic livestock,
including costs of livestock deaths [75], with an estimate of 27,500 human cases
[45]. Disease outbreaks (epidemic activities) are correlated with heavy rainfall
and excessive flooding, in particular in East, South and horn of Africa [1, 14, 34].
These events cause a massive emergence of Aedes mosquitoes [117], which trigger
the initial spread of the infection through vertically infected mosquitoes. Then,
they are succeeded by Culex species, which if infected when feeding on viraemic
livestock further disperse the virus [3].

Both climatic and weather conditions increase the number of breeding sites for
mosquitoes resulting in an increase in the number of vectors and therefore more
intense virus transmission and circulation [79], enhancing risk of vector-borne
disease infection. The two vectors species involved in the transmission of RVF
breed in fresh water [11]. The Aedes (mcintoshi,vexans, dentatus) species, usually
called floodwater mosquitoes are associated with freshly flooded temporary water-
bodies [31, 186], while Culex (pipiens,quinquefasciatus,antennatus) are associated
with more permanent fresh water-bodies [11, 33]. Female Aedes lay their eggs in the
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wet soil surrounding the pools. Once the embryonic development is completed, eggs
may either enter a period of diapause (withstanding up to four years of drought)
[187, 188] or hatch producing first stage larvae, when flooding and temperature
at the breeding sites are suitable [187, 189]. On the other hand, Culex females
lay their eggs on the water surface [189]. Therefore, fluctuations of these vector
populations are strongly correlated with the flooding regimes of the breeding sites
and atmospheric temperature which govern their development [189]. This is also a
function of both the flooded area and water permanence during the time required
for the mosquito to complete its preimaginal development [190]. The extension of
the flooded area is directly related to rainfall volume and inversely related to the
time elapsed since the last rain event, owing to evaporation and/or infiltration [191].
An increase in temperature increases the development rate of each stage of the
mosquito, hence reducing its time from egg to adult. Therefore, a rapid emergence of
young adults is triggered, which leads to abundance of mosquitoes during favourable
seasons. In spite of all these inherent complexities, modelling has proven to be a
very useful approach for handling complex systems and for years it has impacted
both our understanding of vector ecology and disease management. Complex
systems are often formulated and analysed on the basis of simulation models, with
particular emphasis on agent-based or individual-based models thanks to recent
advances in computer technology (in both hardware and software). Individual-
based models (IBM) compared to equation-based models, offer certain unique
features which include the ability to incorporate individual variability of agents and
to investigate macroscale properties by integrating microscale interactions [192].
Several simulation models have been developed to investigate correlation between
weather conditions and abundance of mosquitoes. The majority of these models
have dealt with mosquitoes involved in the transmission of: malaria infections (for
more details see [193–195] and references therein); dengue and/or chikungunya
viruses [196–199]; West Nile viruses [200] and also RVFV [79]. However, most
of these models either include effects of rainfall or temperature alone with little
effects on individual’s variability. In this chapter we present an individual-based
model (IBM) of RVF mosquito life cycle following the framework proposed in [65].
This modelling framework presents several benefits as it provides modellers with
complete guidance while in model development, analysis and application [201].
This approach has been successfully adopted by several researchers while addressing
a variety of research questions [65, 202–204]. Our model builds upon daily rainfall
and temperature data sets which govern the development of mosquitoes. The
model simulates the population of all stages of Aedes and Culex mosquito life cycle.
This includes all important features of both mosquito life cycle such as: oviposition,
egg maturation, diapause, developmental stages (egg, larva instar 1 to 4, pupa and
adult), development and mortality in all different stages, aquatic habitats, host
seeking, engorgement and oviposition site seeking, adults age-dependent mortality
and flight behaviour. Transition in all aquatic/immature stages (egg, larva and
pupa) is modelled using the concept of degree days [205, 206]. Mosquitoes are
exothermic organisms and their development mainly depends on environmental
temperature. Therefore, their physiological time can be approximated by heat
accumulation in units measured in degree days [207–209]. Our objectives are to
correlate abundance of mosquitoes with weather conditions for predicting temporal
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patterns of mosquito population dynamics. Our efforts will be capitalized on
answering the following questions: (1) Is there any synchronization between rainfall
and abundance of mosquitoes? (2) What features of the mosquito life cycle affect the
mosquito population dynamics? The weather data (precipitation and temperature)
used to investigate the performance of the model were collected from a weather
station in Ijara district of Kenya from 2009 to 2010. This model differs with other
related models in many important ways:

1. The mosquito species involved here are floodwater and not indoor. Thus, their
breeding habitats only depend on rainfall [186, 189]. The time it takes while
the water persists in these habitats is inversely related to air temperature
[191]. Thus, we include the effects of evaporation by assuming that water
persists for about 20 to 40 days [210, 211].

2. Hatching of mature eggs (those with embryonic development completed)
depends on the amount of precipitation accumulated in the larval habitat
[187, 189]. The minimum level of water required for egg hatching and
development of all aquatic stages is assumed to be 16 mm [212].

3. We implement diapause in both mosquito species to ensure long-term survival
of the vectors. Aedes survive unfavourable seasons through dessication of the
eggs, while Culex survive on the adult stage [189].

4. In addition to temperature and rainfall dependent mortality, we include the
effects of drought or long periods of dessication in the survival of immature
stages [213].

5. Survival of both Aedes and Culex adults is age dependent [214].

6. The mosquito dispersal behaviour used for host blood-meal seeking is of type
oriented [189, 215] and it depends on the distance to the host within vision
radius [189].

A model with all the above features built into the framework of IBM is an unique
tool for: predicting both short and long-term patterns of RVF mosquito population
and investigating how both temperature and rainfall contribute to the intra- and
inter-annual variations observed in the dynamics of adult mosquitoes. Analysis
of the model provides general insights and valuable informative indicators of
mosquitoes life cycle stages such as gonotrophic cycle, longevity of adults, number
of eggs laid by each adult and adults flight behaviour that could be targeted for
vector control. Additionally, this type of model offers an excellent opportunity for
investigating a broad range of vector related biological questions and the model is
extendible to include to fit several application such as disease transmission, disease
management among others.
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6.1.1 Study site and data collection

Ijara is one of the semiarid districts of North Eastern Kenya with low erratic rainfall
but prone to flooding in times of heavy persistent rainfall [46]. The majority of
its inhabitants are nomadic pastoralists and over 90% of the population depends
on livestock for daily nourishment and as a source of income [45]. Sangailu is its
main town and it is located 1◦19′0′′ S and 40◦44′0′′ E, with temperatures ranging
between 15◦C and 38◦C, bimodal rainfall ranging between 700 and 1000 mm per
annum, average relative humidity of 68 mm and altitude range of 0 to 90 m above
sea level [45]. We focus in this area for two reasons: (1) availability of weather
data; (2) availability of detailed studies about occurrence of RVF disease activities
during the inter-epidemic period which we would like to focus on in subsequent
studies. Both temperature and precipitation were recorded daily.

6.2 The Model

The model was developed using Netlogo 5.2 software (http://ccl.northwestern.edu/netlogo/.)
[216], combined with R extension (RNetlogo) for model analysis [217, 218] and
Matlab was used for graphical outputs. The model description follows the ODD
(Overview, Design concepts, Details) protocol for describing individual- and agent-
based models [219]. A complete schematic representation outlining all processes
and algorithms of the RVF mosquito life cycle model which consists of both aquatic
and terrestial (adult) mosquitoes is shown in Figure 6.1. A summary of all model
input parameters included within the simulation model is given in Table 6.2.
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Figure 6.1: Outline of model processes and scheduling of the sub-models
algorithms. The rectangular boxes represent the process (a state) of a given
entity while the rhombus represents a decision point. Details on the decision

processes are discussed in Section 6.2.7.

6.2.1 Purpose

This model aims to predict the temporal abundance of RVF mosquitoes based on
the synchronization and de-synchronization between a mosquito’s life cycle and
both temperature and rainfall patterns.

6.2.2 Entities, State Variables and Scales

We have five groups of entities in the model: aquatic mosquitoes (eggs, larvae and
pupae), terrestrial mosquitoes (adult mosquitoes), livestock, mosquito habitats
(water-bodies and edges of water-bodies) and the model environment. Note that
we have two types of mosquito species, Aedes and Culex, hence we have ten entities,
also referred to as breeds in the Netlogo terminology: Aedes-Eggs, Aedes-Larvae,
Aedes-Pupae, Aedes-Adult, Culex-Eggs, Culex-Larvae, Culex-Pupae, Culex-Adult,
Livestock and Habitats. Transitions from one stage to another of the mosquito
life cycle is modelled using the concept of degree days. Degree-days (DD) are
used to compute the total amount of heat required, between the lower and upper
temperature thresholds, for a poikilothermic organism to develop from one stage
to another in its life cycle [207–209]. Aquatic stages of both mosquito species with
exception of Aedes eggs breed in fresh temporary water and the minimum accumu-
lated rainfall required to initiate the first cohort of mosquitoes is 16 mm in each
breeding site [212]; for more details (see Table 6.1). These two mosquito species
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differ only in terms of egg adaptation, adult adaptation, oviposition behaviour and
identification of oviposition site [189]. Aedes eggs are laid in damp soil (here called
edges of water-bodies) singly and they have one static variable for their location
(edge of the water-body) and other dynamic variables such as: accumulated-DD
for embryonic development to be compared with the minimum accumulated-DD
required for embryonic development, a counter of time it takes for eggs to mature
and diapause. Culex eggs have the same state variables with exception of diapause
and their habitat which is the water-body.
Both Aedes and Culex larvae and pupae develop in water, thus, they have one static
variable for their location (water-body). The larvae go through four intermediate
developmental stages: instar 1, instar 2, instar 3 and instar 4. They have the follow-
ing dynamic variables: accumulated-DD to develop from one stage to another to be
compared to the minimum accumulated-DD required to complete the development
at each stage. Once the stage of pupae has been completed they become adults
and the adults consist of immature adults, blood-seeking and engorged. Adult
mosquitoes emerge from the water and begin flying a short time after they have
dried out and their body parts have hardened. This period in the model sense
takes 1 or 2 days as it also accounts for the mating period [189]. After a successful
blood meal the time elapsed to the next blood feeding activity is a function of the
mosquito’s gonotrophic cycle. Livestock only have one static state variable, which
is their location since in this model they are just a source of blood for the mosquitoes.

The model does not use real geographic space, but instead represents the environ-
ment as a two-dimensional space of 10201 m2 grid with 20 m x 20 m grid squares
corresponding to an area of 2 km x 2 km. A scale of 20 m x 20 m grids (patches
in the Netlogo language) was chosen, since a mosquito can identify a host from a
distance of > 20m [189]. Hence, mosquito host-seeking behaviour is approximated
at this scale. In this environment we then define water-bodies and water-body
edges representing larval habitats. Water-bodies are patches representing pools
that are intermittently flooded depending on rainy regimes and water-body edges
are patches surrounding water-bodies representing damp soil for Aedes adults to
lay their eggs. Each water-body has a state variable the ’daily water level’ and the
’water-body depth’ which varies between 16 mm and 100 mm. The surface area
of each water-body is set identical since it does not affect flooding regimes of the
water-bodies. The model is set so that one time step in the model represents one
day and it is run for almost two years from 15 January 2009 to 15 October 2010.
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Minimum Accumulated Degree Days for Development
Stages Value References

Aedes Eggs 90 [220]
Aedes Instar 1 20 [6]
Aedes Instar 2 17 [6]
Aedes Instar 3 18 [6]
Aedes Instar 4 35 [6]
Aedes Pupae 25 [6]
Aedes Instar 1 to Pupae 90 [6]
Culex Eggs 30 [189]
Culex Instar 1 20 [6]
Culex Instar 2 17 [6]
Culex Instar 3 22 [6]
Culex Instar 4 44 [6]
Culex Pupae 34 [6]
Culex Instar 1 to Pupae 100 [6]
Base Temperature 10 [6, 189]

Table 6.1: Minimum accumulated Degree-Days and water levels required for
development of each stage of the aquatic mosquito life cycle.

6.2.3 Process Overview and Scheduling

This model simulates complete RVF mosquito (Aedes and Culex spp.) life cycle
stages for predicting patterns of mosquito abundance. Time is modelled in discrete
time steps where each time step corresponds to a one day of activities. A time step
of one day was chosen because important features of mosquito life cycle can be
captured with daily units of measurements and observations [6, 189, 199]. Within
each time step in the mosquito life cycle model, each entity will go through its
developmental stages, while first checking survivability followed by its underlying
life cycle activities. At each time step mosquito habitats update the level of
accumulated water as temperature and rainfall update their values. A detailed
description of all model processes is given in Section 6.2.7.

6.2.4 Design Concepts

6.2.4.1 Basic Principles

Construction of the mosquito life cycle model and its underlying design concepts
follows the framework of Pattern Oriented Modelling (POM) [65, 201, 202], in
combination with experimental data. This approach has been successfully used in
other mosquito population predictive models [195, 199]. The dynamics of mosquito
life cycle basically are driven by interactions between temperature and precipitation.
Temperature directly influences the rate of mosquito development and population
increase. Precipitation is the main factor that triggers the hatching of Aedes eggs
[187, 189] and is responsible for creating breeding sites for both Aedes and Culex
since these are outdoor species and they breed in temporary shallow fresh water-
bodies [186, 189]. However, rainfall may reduce survival of aquatic mosquitoes
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through flushing effects [221], hence, reducing abundance of adult population [222].
In addition, extended periods of dessication, that is, lack of precipitation, affects
survival of aquatic mosquitoes while survival of adults is age-dependent.

6.2.4.2 Emergence

Both rainfall and temperature affect different stages of the mosquito life cycle
leading to appearance and development of new cohorts of adult mosquitoes showing
seasonal patterns.

6.2.4.3 Adaptation

The eggs of Aedes mosquitoes have a specific adaptive behaviour. They need water
to hatch, so if there is no rain they will go diapause (dormant) until when they are
flooded enough to hatch [187]. This adaptive behaviour ensures survival during dry
season. They accomplish this, within our model, by measuring the daily water level
in the water-body. When the level is above the minimum required for hatching they
hatch otherwise they go diapause. Within variability to water-flow in the water-
body both Aedes and Culex eggs have another sophisticated adaptive behaviour
referred to as ”hatching in instalments”, that is, not all eggs hatch uniformly [189].
We implement this as follows: if the daily water level and that of the 6 following
days is above the minimum required for the eggs to hatch with a given probability
depending on daily precipitation. Otherwise, either 50% or 25% of eggs may hatch
according to the level of the four consecutive days and one day respectively. This
adaptive behaviour also ensures long-term survival of the species in situations of
dry spells which may interrupt complete development of the mosquito [189]. Culex
adults adapt their longevity according to the length of the dry period. The longer
the dry period, the higher their survival, hence their longevity. This ensures their
survival during periods in which they cannot reproduce [189]. This is accomplished
by computing their survival probability based on age-dependent function [214, 223]
coupled with dependence on the number of consecutive days with no rain.

6.2.4.4 Fitness

Diapause allows Aedes to survive long periods of dry season and long-term survival.
Culex take advantage of wet season to reproduce massively and use an age-dependent
survival probability function coupled with dependence on the number of consecutive
days with no rain in order to ensure long-term survival of the species [189].

6.2.4.5 Sensing

Aquatic mosquitoes sense the daily temperature, total precipitation and daily water
level of the breeding site for their daily decision-making processes by ”reading”



Chapter 6. Individual-based Model of Rift Valley fever Mosquito Life Cycle 119

temperature and precipitation each day. Adult mosquitoes are assumed to know
distances to all livestock locations within their search radius.

6.2.4.6 Interaction

The interaction between aquatic Aedes and aquatic Culex takes place when they
share a common breeding site, but this does not affect the dynamics of abundance
of mosquitoes since we do not implement density dependent mechanisms. Both
adults interact while feeding from the same mammalian host.

6.2.4.7 Stochasticity

Both survival and development of both aquatic mosquitoes are simulated as
stochastic events with probabilities that are deterministic functions of both tem-
perature, rainfall and duration of drought days. This is to account for other factors
leading to death or development of the mosquito or incomplete knowledge with
respect to factors leading to these events. Blood feeding is modelled as stochastic
process in which proximity to a host is a factor. Gonotrophic time, that is, the
time an adult mosquito waits until the next blood feeding is drawn from a normal
distribution with a mean of eight days [213] and a standard deviation of a quarter
of the mean. This is to ensure that other factors leading to variability in the
gonotrophic cycle are captured and incorporated in the model.

6.2.5 Initialization

In order to be able to perform simulations, a model environment of 10201 m2 grid
with 20 m x 20 m grid squares is set. Then water-bodies and water-body edges are
created and distributed over the world with different depths ranging from 16 mm
to 100 mm. Both aquatic and terrestrial (only Aedes eggs and Culex adults) and
livestock breeders are created when the model is initialized; the total number of each
is specified via parameters: initial-number-aedes-eggs, initial-number-aedes-adult,
initial-number-culex-adult and initial-number-livestock. Note that these quantities
represent only female mosquitoes since only females bite for blood meal. Aedes
eggs are initialized and distributed uniformly in water-body edges while both Aedes
and Culex adults are initialized and distributed uniformly over the entire world.
Note that Culex eggs are not initialized since they only breed in water. A complete
description of all model parameters is given in Table 6.2.
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Agent/Individual Parameter Baseline Value Range Units References
Aedes & Culex adults Gonotrophic time 8 4 - 12 Days [138, 213]

Aedes number of eggs 59 50 - 150 - [195]
Culex number of eggs 60 50 - 200 - Estimated
Resting time after emergence - 1 - 3 Days [189]
Resting time after oviposition - 1 -3 Days [189]
Search radius 60 20 - Meters [189]
Successful blood feeding 0.8 0.5 - 1 - Estimated

Livestock No parameter - - - -
Water-bodies Evaporation rate 0.1 0.05 - 0.20 Days−1 [210, 211]

Table 6.2: Model input parameters: calibrated and non-calibrated.

6.2.6 Input Data

Rainfall and temperature daily time series data are used for quantifying the
development, hatching of eggs, survival of aquatic mosquitoes (egg, larvae and
pupae), water level of water-bodies and moisture index.

6.2.7 Submodels

Regarding traits taking place on the phenology model, many have been modelled
using logistic functions. Logistic curve is a sigmoid curve named after Pierre
Verhulst [224], and well known for studying species population growth. These
curves have been successfully used in other studies of mosquito population dynamics
[6, 74, 212, 213, 220].

6.2.7.1 Aedes and Culex eggs mortality

For both Aedes and Culex species the survival of eggs depends on both temperature
and rainfall. However, in addition, survival of Culex is also affected by long
periods of dessication [213]. This daily survival probability is assumed to depend
independently on temperature, precipitation/rainfall and droughts [74]. For Aedes
eggs it is given by

ρ(T, P ) = ρ(T )ρ(P ), (6.1)

while for Culex eggs it is

ρ(T, P,D) = ρ(T )ρ(P )ρ(D), (6.2)

where ρ(T ) is the daily survival probability of eggs due to temperature effect T ;
ρ(P ) is the daily survival probability of eggs due to precipitation effect P ; and
ρ(D) is the daily survival probability of eggs due to desiccation effect D.

Daily survival probability of eggs due to temperature effect ρ(T )
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Bayoh et al.[220] using the data of Aedes mosquitoes, obtained a nonlinear model
that best describes the development time of eggs,

Da(T ) = 0.02×
[
a+

b

1 + (T/c)d

]
, (6.3)

where Da(T ) is the development time (in days) at temperature T (◦C) for Aedes
eggs. The parameters are a = 48.549,
b = 970.200, c = 12.096 and d = 4.839. Hence, we obtain the following temperature-
dependent survival probability for both immature and mature Aedes eggs,

ρ(T ) =
1

1 + 5e−5.7(1/Da(T ))
. (6.4)

Using patterns of Culex eggs development time given in [189], we modify equation
(6.3) to read Dc(T ) = Da(T )/0.02 with the parameters set to be a = 1, b = 12, c =
12.096 and d = 4.839. Therefore, the temperature-dependent survival probability
for Culex eggs is,

ρ(T ) =
1

1 + 5e−5.7(1/Dc(T ))
. (6.5)

Daily survival probability of eggs due to precipitation effect ρ(P )
Precipitation or rainfall is important in creating breeding sites for mosquitoes and
it can cause massive hatching of eggs. But excessive rainfall may increase mortality
of immature stages due to flushing effect [221, 222]. Since rainfall has two effects,
that is, positive and negative effect, we use the idea from [225] and assume the
daily survival probability of both Aedes and Culex immature and mature eggs due
to precipitation effect to be

ρ(P ) = e(−(daily-water-level−30)2)/1500. (6.6)

Daily survival probability of immature eggs due to dessication effect ρ(D)
Extended periods of drought, make immature development sensitive to the lack of
precipitation such that eggs may dry before embryonic development is completed
[187]. Following the approach in [213], we model the effect of droughts on immature
Culex according to the number of consecutive days of drought dt as follows:

ρ(D) =
e−ωdt

c+ e−ωdt
(6.7)

where ω is a shape parameter controlling the sensitivity of ρ to dt and c is a
constant that assures that at small values of dt, ρ is close to 1. Once the survival
probability has been computed, the next step is to check for their death. The death
of eggs is simply a stochastic function of their survival probability. A uniform
random number between zero and one is drawn, and if it greater than the survival
probability then the eggs die.
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6.2.7.2 Aedes and Culex aquatic mosquitoes development

RVF mosquitoes are exothermic or poikilothermic, that is, they cannot regulate
their body temperature [189]. Therefore, their development is somewhat completely
temperature-dependent. In this case, using heat accumulation procedures we can
estimate their development time [205, 206]. These approximations of physiological
time are often expressed in units called degree-days [207–209]. Degree-days are the
accumulated product of time and temperature above a particular developmental
threshold and below a maximum threshold for an organism to develop. The lower
developmental threshold for an organism is the temperature at which development
is not possible [189]. The upper developmental threshold is hardly known, but
estimates thresholds from which development starts decreasing [6]. We assume
that the lower threshold is 10◦C and the upper threshold is 35◦C [6, 189, 220]. The
development of all aquatic stages follows the steps below:

a) Degree-days
One degree-day is one day (24 hours) with the temperature one degree above
the lower developmental threshold. There are several methods for calculating
degree-days. Here we use the method based on averages:

DD = max{0, Tmax + Tmin
2

− Tbase}. (6.8)

Here DD is the degree-days accumulated for the day, Tmax is the maximum
temperature for that day, Tmin is the minimum temperature for that day,
and Tbase is the lower developmental threshold (10) [6, 189].

b) Accumulated degree-days
This is the literal accumulation of daily Degree-days.

c) Evaluate accumulated degree-days
If accumulated DD is greater than or equal to the minimum accumulated
heat required for development at each stage (egg, instar 1, instar 2, instar
3, instar 4 or pupa), then a probability of transition is computed and if
satisfied transition occurs. Description of required accumulated degree-days
for development at each aquatic stage can be found in Table 6.1.

6.2.7.3 Aedes and Culex eggs transition probability

When the minimum accumulated degree-days required for development at each
stage has been satisfied, a transition probability is calculated. The transition
probability relative to the embryonic development of eggs is computed based on
their development rate. The embryonic development of Aedes eggs usually takes a
significantly longer time compared with that of Culex species. Larvae of Aedes are
ready to hatch in 4-8 days after egg oviposition when the eggs are kept between
20◦C to 25◦C while at a temperature of 30◦C, the Culex larvae hatch 1 day after
the eggs have been laid [189]. Thus, the transition probability for Aedes and Culex
eggs is given by equations (6.4) and (6.5) respectively.
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6.2.7.4 Aedes and Culex eggs hatching

When eggs are matured, the next step is hatching. However, Aedes eggs need to
be flooded enough to hatch, while Culex eggs are laid on the water surface [189].
Therefore, the number of newly hatched eggs will depend on the amount of rain
accumulated. However, within variability to water-flow in the water-body both
Aedes and Culex eggs have another sophisticated adaptive behaviour referred to
as ”hatching in instalments”, that is, not all eggs hatch uniformly [189]. This
mainly ensures their long-term survival even in the presence of dry spells. Below
we outline the steps involved:

a) Accumulated total precipitation
This is the accumulated amount of rainfall up to the current day when
evaporation effects have been taken into account.

b) Compute moisture index
Here we compute the current water level and that of the following 4 and
6 days. Note that the current water level is given by the parameter ’daily
water level’ (see sub-section 6.2.7.17 for its derivation).

c) Evaluate moisture index
Here we check if the current water level and that of the following 6 days
is greater than or equal to 16 mm (the minimum amount of water for egg
hatching). If this condition is satisfied, then the probability of egg hatching
given by equation (6.9) is computed and evaluated. Otherwise, either 50% or
25% of eggs may hatch according to the level of the four consecutive days or
one day respectively.

d) Compute probability of egg hatching
This probability is given by

ρh(P ) =
1

1 + e−0.09×daily-water-level . (6.9)

e) Decide to hatch
This is simply a stochastic function of the probability of hatching. A uniform
random number between zero and one is drawn, and if it less than the
probability of hatching, eggs are hatched into larvae instar 1. Otherwise
Aedes egg will go diapause while Culex eggs will die.

6.2.7.5 Aedes eggs diapause

During periods of droughts Aedes eggs go diapause if already matured or embryonic
development is completed. They can stay dormant in the ground from days up to
four years [187].
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6.2.7.6 Aedes and Culex : larvae and pupae mortality

After hatching, the emerged larvae and pupae feed on organic particulate matter
in the water, such as algae and other microscopic organisms [189]. The larval and
pupal stage of both Aedes and Culex are spent at the water’s surface, and their
daily survival probability is assumed to depend independently on temperature,
precipitation/rainfall and droughts [74], and it is given by equation (6.2).

Daily survival probability of larvae and pupae due to temperature effect ρ(T )
Rueda et al.[6] used data of both Aedes and Culex mosquitoes to fit the Sharpe
& DeMichele nonlinear model of temperature-dependent poikilothermic processes,
obtained the following development rate:

r(K) =
RH025 K

298.15
exp{ HA

1.987
( 1

298.15
− 1

K
)}

1 + exp{ HH
1.987

( 1
TH
− 1

K
)}

, (6.10)

where r(K) is the median development rate (days−1) at temperature K(◦Kelvin) =◦

C + 273.15. RH025, HA, TH, and HH are parameters estimated and given in
Table 6.4 [6]. Using this development rate formula we give temperature-dependent
survival probabilities for instar 1, instar 2, instar 3, instar 4 and pupa. These
survival probabilities are given by logistic curves of the type

ρ1(T ) =
1

1 + a× e−b×r(K)
(6.11)

where r(K) is the development rate in days−1 and parameter values of a and b for
each larval stage are given in table 6.3.

Larval stage survival probability a b
”aedes instar1 survival probability” 10 -6.3
”culex instar1 survival probability” 60 -6.5
”aedes instar2 survival probability” 10 -5.7
”culex instar2 survival probability” 60 -5.3
”aedes instar3 survival probability” 3.1 -4.1
”culex instar3 survival probability” 55 -7.4
”aedes instar4 survival probability” 2.6 -6.9
”culex instar4 survival probability” 8 -9.8
”aedes pupae survival probability” 270 -14
”culex pupae survival probability” 270 -14
”aedes instar1 to instar4 survival probability” 2.6 -18.7
”culex instar1 to instar4 survival probability” 10 -25.8

Table 6.3: Parameter values of the larval stages survival probabilities. The
last two lines refer to the comulative development from egg hatching to instar 4.
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Daily survival probability of larvae and pupae due to precipitation effect ρ(P )
This probability is given by

ρ(P ) = e−(daily-water-level−15)2/100, (6.12)

for ’daily water level’ less than or equal to 17 mm while for above this threshold
the survival probability is uniform and above 0.7. This is intended to capture the
fact that above the minimum water level survival of larval stages is high [212].

Daily survival probability of larvae and pupae due to dessication effect ρ(P )
Note that this is only applied for Culex species and it is given by equation (6.7) in
sub section 6.2.7.1. After we have calculated the survival probability ρ(T, P,D) we
check for death. The death of both Aedes and Culex larvae and pupae is simply
a stochastic function of their survival probability. A uniform random number
between zero and one is drawn, and if it is greater than the survival probability
then they die.

Life stage RH025 HA TH HH
Aedes

Instar 1 0.68007 28,033.83 304.33 72,404.07
Instar 2 1.24508 36,400.55 301.78 81,383.14
Instar 3 1.06144 41,192.69 301.29 60,832.62
Instar 4 0.57065 34,455.89 301.44 45,543.49

Instar 1 to 4 0.20429 36,072.78 301.56 59,147.51
Pupa 0.74423 19,246.42 302.68 5,954.35

Culex
Instar 1 1.23439 27,534.92 301.00 37,071.82
Instar 2 1.42950 28,219.93 301.37 39,340.77
Instar 3 0.94308 20,767.22 304.00 36,213.96
Instar 4 0.31230 12,629.46 308.31 140,281.42

Instar 1 to 4 0.21554 24,689.00 301.82 37,270.21
Pupa 0.55490 15,648.63 306.60 43,983.41

Table 6.4: Here we reproduce Table 3 in [6] describing parameter estimates for
the Sharpe & DeMichele model, see equation 6.10.

6.2.7.7 Aedes and Culex larvae and pupae transition probability

When the minimum accumulated degree-days required for development at each
stage has been satisfied, a transition probability is calculated. The transition
probabilities relative to the development at each stage of larvae and pupae are
computed based on their respective development rates (see equation (6.10)) and
are given by corresponding temperature-dependent survival probabilities.
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6.2.7.8 Adult Aedes and Culex resting time after emergence

After emergence, adults increase their haemolymph pressure which causes legs and
wings to stretch [189]. This process allows their body to dry and harden before
they can fly and it takes 1 to 2 days [226]. Hence, this is modelled by a discrete
random number uniformly distributed between 1 and 2 inclusive.

6.2.7.9 Adult mortality

The daily survival probability of adults is age-dependent and it is described by a
Gompertz model [214, 223] with a corresponding hazard function given by
λ(x) = aebx, such that

S(x) = e−
∫ x
0 λ(s)ds, (6.13)

where S(x) is the survival function and x represents age of the mosquito and
parameters a = 0.0005 and b = 0.079 for Aedes. Once an adult emerges a counter
(variable representing age) is created and updated daily. Given that Culex species
survive a dry season in adult form, this survival probability is modified to include
effects of droughts on parameter a. For Culex adults
a = 0.001× number of dry days such that the parameter ’number of dry days’
has a default value of 1.
The baseline mortality rate a can be written as a function of its degree of mortality
deceleration c, such that

a =
c

10000
for Aedes and a =

c

1000× number of dry days
for Culex ,

(6.14)
with a baseline value of c = 5 for Aedes and c = 1 for Culex.

6.2.7.10 Adult Aedes and Culex search for host

Both Aedes and Culex adults use odour of carbon dioxide emanating from a host
(livestock) to identify their feeding host. They orient their flight pattern upwind
to follow air currents containing a filamentous plume of carbon dioxide [189]. As
they get closer, odours of other components especially lactic acid emitted from
the skin surface, allow them to find and identify a host [189, 227] at a distance of
above 20 meters [189]. Given that the factors affecting flight patterns would be
difficult to predict in a model we use flight distance range to model this based on its
oriented dispersal behaviour [189, 215]. We assume that adult mosquitoes are able
to evaluate and identify a host within a distance between patch midpoints less than
or equal to the parameter ’search radius’. This parameter has a standard value
of 60 m. This is implemented as follows: check if within the radius determined
by the parameter ’search radius’ there is a host; if yes go to the host within the
minimum distance. Otherwise repeat the search to a maximum of three times.
This corresponds to the assumption that per day an adult mosquito flies up to
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500 m [189]. If no host is found even after moving approximately 200 m the adult
stops the search until the next day.

6.2.7.11 Adult Aedes and Culex blood feeding

Blood and its protein ingredients are essential for egg-production [189]. Blood
feeding takes place once a female adult mosquito has found a host, that is, sharing
the same patch with the domestic livestock. Then a uniform random number
between zero and one is drawn, and if it is less than the parameter ’successful
blood feeding’, then the mosquito has successfully acquired a blood meal enough
for egg maturation such that it becomes engorged and will only take another blood
meal after egg oviposition.

6.2.7.12 Adult Aedes and Culex blood digestion

After a successful blood meal the female requires 2 to 4 days for digesting the blood
before egg oviposition [189]. This is the number of days a female adult mosquito
stays engorged. Therefore, it is defined as gonotrophic time minus the time a
female adult mosquito would rest after egg oviposition. This later may take 1 to 2
days (for more details see 6.2.7.16).

6.2.7.13 Adult Aedes and Culex Oviposition site

Aedes females lay their eggs on damp soil (water-body edges) with a high degree of
soil moisture which protects the sensitive of eggs from drying-out during embryo-
genesis [187], while Culex females lay their eggs on the water surface (water-body).
However, factors determining their choice of this breeding site are still unknown
[189]. But cues such as water quality, incidence of light, existing eggs, available
food, temperature, water depth, presence of competitors and local vegetation are
decisive factors in selecting a favourable breeding site [189, 228]. For simplicity, we
model this behaviour as a function of the distance to the nearest water-body and
its depth. The more the depth is higher than 16 mm the better for Culex as it
is likely that when flooded the water will persist longer, while Aedes prefer those
with depth close to 16 mm. The adults move at steps of 50 m and check above
condition on a visual radius of 50 m and if these conditions are not met they repeat
the search for four times such that per model time step they move for about 200 m
which is the limit. If the conditions are met adult Aedes lay eggs on the edges of
the water-body, while Culex lay eggs on the water-body. If no suitable oviposition
site is found, the adult stops moving until the following day. Note that in addition
to the above conditions Culex females are supposed to check whether the minimum
water level is satisfied. However, given that precipitation is uniformly distributed
within the environment this condition is irrelevant while searching for a suitable
oviposition site.
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6.2.7.14 Adult Aedes and Culex egg laying

Once an oviposition site has been selected, then it is time to lay eggs. Rainfall
is known to alter the abundance and types of aquatic habitats available to the
mosquito for egg oviposition and subsequent development of immature stages [200].
Female adults lay eggs depending on the moisture index. High moisture index
correlates with high egg laying rate [200]. To model the daily egg laying probability
we follow the steps below:

a) Check moisture index: Moisture Index is given by the daily-water-level see
subsection 6.2.7.17. For Culex species the daily-water-level should be greater
than or equal to 16 mm which is the minimum water level required for larval
development since these species lay their eggs on the water surface.

b) Compute the probability of laying eggs: This probability is a function of the
moisture index and it is given as follow:

b(P ) = e−(daily-water-level−40)2/3800. (6.15)

c) Calculate the number of eggs to be laid: The number of eggs laid by each
adult is drawn from a normal distribution with average controlled by the
parameter ’average number eggs’ with a standard deviation of a quarter of
the ’average number eggs’. However, the number of eggs laid by an Aedes
adult should fall between 50 and 150 while for Culex it should be between 50
and 200 eggs.

d) Decide to lay eggs.
This is simply a stochastic function of the probability of laying eggs. A
uniform random number between zero and one is drawn, and if it is less than
the probability of laying eggs, then eggs are laid.

6.2.7.15 Adult Aedes and Culex resting time after oviposition

After egg oviposition, adults require 1 to 2 days for resting before they can look
for another blood meal[226]. Hence, this is modelled by a discrete random number
uniformly distributed between 1 and 2 inclusive.

6.2.7.16 Adult Aedes and Culex gonotrophic time

RVF female mosquitoes are blood sucking insects. However, blood is mainly used
for egg production such that eggs are laid each time a successful blood meal has
been taken [189, 229]. This is known as gonotrophic cycle and it can be repeated
several times throughout the lifespan of the mosquito [230]. Hence, gonotrophic
cycle duration may then be defined as the time interval between two consecutive
blood-meals (or the time interval between two consecutive acts of egg-laying) [138].
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Although very difficult to measure the gonotrophic cycle duration, it has been
observed that both Aedes and Culex females require 6-8 days to complete this
cycle: 1-2 days searching for a blood meal, 2-4 days digesting the blood meal, 1-2
days searching for an oviposition site, 1 day to oviposit and, two additional days
recovering and searching for a new host [189, 213]. Therefore, in this study the
duration of gonotrophic cycle is drawn from normal distribution with mean = 8
and standard deviation equal to a quarter of the mean with boundaries at 6 and
twice the mean.

6.2.7.17 Daily water level

Combined effects of both rain and temperature are major determinants of the
quantity and permanence of temporary water bodies [212]. The variable ’daily water
level’ of the water-bodies increases with an increase of rainfall and decreases with
increments on temperature. Thus, ’daily water level’ is equal to the accumulated
total precipitation minus evaporation rate times accumulated total precipitation.
Evaporation rate is a function of several factors including temperature, rainfall
and soil type. However, we implicitly model these effects by assuming that water
persists for about 20 to 40 days [210, 211]. Therefore, evaporation rate (E0), is set
by the parameter ’evaporation rate’ and should be between zero and 20%.

6.2.8 Model predictions and observations

The mosquito life cycle features are the cores of a predictive model of mosquito
abundance. Construction and parametrization of the model follows ”model cycling”
with a pattern oriented modelling (POM) approach [65, 201, 202], in combination
with results from experimental studies [6, 189, 220]. Parametrization is the main
process that differentiates one model from another [21] such that adequate model
parametrization makes the model yield quality information useful for vector and
diseases management. Although several models characterizing important features
of RVF mosquito life cycle exist, the majority of them have been calibrated using
laboratory data [6, 220] which generally do not capture the entire spectrum of the
dynamics of these mosquitoes in field conditions [214]. Furthermore, features such
as number of eggs each adult lays after a successful blood meal, survival of adults
and gonotrophic cycle are very complicated to determine either in laboratory or
field conditions [6]. Using the POM approach we compared patterns of behaviour
from our model with selected performance criteria that are geared towards aspects
of a predictive model that is able to capture seasonal variations observed in RVF
mosquito population dynamics by incorporating important features of mosquitoes
life cycle in a model that runs under daily real data sets of temperature and rainfall.
The most determinant factors of the mosquito life cycle used for model perform-
ance criteria are number of eggs laid per successful blood meal, eggs hatching in
instalments, survival of adults, gonotrophic time and diapause during unfavourable
seasons. Aedes survive dry season in the form of eggs which are able to withstand
long periods of dessication [187], while Culex survive this unfavourable season in the
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adult stage [189]. Gonotrophic time and number of eggs laid per successful blood
meal were drawn from normal distribution each time after a successful blood meal.
Gonotrophic time can also be determined when information such as parity and
survival probability of adults is known [138, 231]. However, after several attempts
this approach did not yield the desired results and made the simulation very slow
as at each model time step we had to keep track of female adults that were either
parous or nulliparous. Drawing these values from a normal distribution we were
able to determine optimum values that satisfied selected performance criteria. The
timing of larval hatching to coincide with the presence of ideal developmental
conditions, is a prerequisite for successful development of RVF mosquitoes as
they breed in temporary water bodies which mainly depend on rainfall. These
mosquitoes have developed a very sophisticated adaptation behaviour to ensure
that the brood will not dry out due to rapid changes in water levels by allowing eggs
to hatch in instalments [189]. Using a simple rule for computing the probability
of eggs hatching depending on the moisture index of up to six days allowing eggs
to hatch in three options of less than 40%, between 40% and 70% and above
70%, we were able to capture expected trends observed in the field. Another two
important features are survival of adults and diapause mechanisms. We modelled
survival of adults to depend on the age using a logistic function of Gompertz type.
Age-dependent mortality of adult mosquito has been confirmed to best describe
mortality in the field [214, 232]. By incorporating effects of drought in this survival
function we were able to model the effects of diapuase for Culex and reproduce
observed intra- and inter-annual variation in the population dynamics of mosquitoes.

Besides, we also found patterns that we did not expect in our simulation model but
that have been observed in the dynamics of RVF mosquito populations. Periods of
greater mosquito abundances coincide with those of heavy rainfall [34, 42, 117] and
the maximum number of Culex is attained a couple of months after that of Aedes
[79]. By implementing the above assumptions regarding the inclusion of important
features of RVF mosquito life cycle such as number of eggs laid per successful
blood meal, eggs hatching in instalments, survival of adults, gonotrophic time
and diapause we were able to reproduce peaks of Aedes abundance of mosquitoes
coinciding with elevation on precipitation and those of Culex two months later
on average. Furthermore, our model predicts appearance of the first cohort of
adult Aedes and Culex 6 and 27 days respectively after enough first rain for larval
development see Fig.6.3.

6.2.9 Effects of stochasticity and model parametrization

Before proceeding into proper model analysis it is important to assess the effects
of stochasticity in our model. Variables of most of the processes underlying our
model are represented by stochastic processes. For instance, the gonotrophic
time, the number of eggs laid by each adult mosquito are drawn from normal
distributions. To do this we run 200 replicates and we estimate the average results
and their variability around this average. Then the average results were compared
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with our performance criterion based on seasonal variations in the abundance of
mosquito adult populations. This approach then enabled us to determine reasonable
parameter values that make the model reproduce the desired patterns. This process
is known as model parametrization or model calibration. Parametrization is the
main process that differentiates one model from another [21] such that detailed
useful informative indicators can be generated. Note however, that this process
does not quantify the uncertainty of the model but only the effects of stochasticity
in the model [201]. Figure 6.3 shows how robust our model is with the chosen set
of parameters to stochasticity as the trajectories clearly show the same patterns.
This was further confirmed by estimating the distribution of the appearance of the
first cohort of adults (see Fig.6.3) which was found to be in good agreement with
observations [29].

6.3 Model Analysis

We used our model to address the following questions: (1) Is there any correlation
between rainfall and abundance of mosquitoes? (2) What features of the mosquito
life cycle affects mosquito population dynamics? These questions were addressed
by: inspecting the correlation between the intra- and inter-annual variation of both
temperature and rainfall with periods of greater mosquito abundances; computing
the distribution of appearance of first cohort of both Aedes and Culex adults;
investigating how variations on the mosquito life cycle features contribute to
variations in adult mosquito abundances by evaluating the output for different
parameter values.

6.4 Results and Discussion

6.4.1 Effects of temperature and rainfall

We used real daily temperature and rainfall data from the Ijara district for the
period between 15.01.2009 and 15.10.2010. Temperature in this region shows
little variation with a daily average minimum of 15◦C and maximum of 38◦C
throughout the entire period. Peaks are observed during the months of March
and April and low temperatures are registered in the months of June, August
and September. However, the same cannot be expected for rainfall which shows
substantial variations with a daily minimum of zero and maximum of 70.8 mm
throughout this entire period. Temperature influences every aspect of the mosquito
life cycle since temperature affects both development and mortality of all larval
stages (see equations (6.3) and (6.10)). Increasing the value of accumulated
degree-days required for transition from one stage to another linearly increases
the developmental time, but the overall relationship between temperature and
development rate of immature stages is nonlinear [220]. These fluctuations on
temperature significantly induce variations in the development of immature stages
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and emergence of adults. However, temperature was not responsible for creating the
intra- and inter-annual variation on abundance of adults. This was mainly driven by
variations on rainfall regimes. Rainfall affects dynamics of the mosquito population
in two aspects: creates suitable breeding sites for immature stages and influences
their survival. A daily water level of 16 mm was set as the minimum amount of
water required to keep water-bodies suitable for immature stages development.
However, periods of drought would reduce their survival and Culex appeared to
be more sensitive to drought compared to Aedes. This phenomenon may result
from the fact that during unfavourable seasons Aedes go diapause in the form
of egg and the adult is able to continue laying eggs even if the water-bodies are
not flooded [189], while Culex adults can only lay eggs if water-bodies are flooded
[187, 189]. Therefore, successful development of new cohorts of both Aedes and
Culex is dependent on two main factors: temperature and rainfall.

Figure 6.2: A one time simulation model output under baseline parameter
settings. Left we represent the dynamics of Aedes mosquito life cycle; center is
the weather data and at the right is the dynamics of the Culex mosquito life

cycle.

6.4.2 Abundance of adult Aedes and Culex

In this simulation, the result produced gives daily temporal dynamics of the
population of each stage (egg, larva, pupa and adult) based on real daily data
sets of temperature and rainfall (see Fig. 6.2). This one time simulation output is
ideal for understanding and investigating how both temperature and rainfall affect
the development of the brood from egg to adult and appearance of new cohorts
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of mosquitoes. It appears that seasonal variations on mosquito abundances are
driven by seasonal changes in temperature and rainfall, as expected. However,
rainfall demonstrates to be the major driver of the observed trends. Abundance
of adult Aedes is observed throughout all the rainy events with large numbers of
mosquitoes being observed during the long rainy season. In addition, considerable
peaks of Aedes abundance appear during a relatively dry period following a rainfall
event. This concurs with findings by other studies [79, 212, 213] and may be
explained by the joint eclosion of large quantities of eggs accumulated during the
dry period. However, Culex adults are only abundant during long rainy season.
This results from the fact that during short rains their population is heavily affected
by the occurrence of dry spells which result in death of many of immature stages
before completing their life cycle. Additionally, the number of eggs each adult lays
per blood meal and the gonotrophic time heavily affect the abundance of these
mosquitoes. However, an increase in these parameters does not change the trend
of the abundance of the adults; hence for this reason we keep standard values such
that the average number of eggs laid per blood meal by an Aedes is 59 while for
Culex it is 60 with equal average gonotrophic time of 8 days (for more details
see Section 6.4.4). Note, however that as pointed out in Section 6.2.8 we do not
aim to simulate the actual number of abundance of these broods, but rather we
aim to reproduce the patterns observed in field trials for investigating various
features of the mosquito life cycle underlying emergence of these patterns. While
exploring the population dynamics of abundance of mosquito populations it is of
great importance to investigate the periods of appearance of the first cohorts of
adults after a rainy event. Figure 6.3 shows the distribution of appearance of the
first cohort of both Aedes and Culex adults to be approximately 6 and 27 days
respectively. Aedes rapidly disappear with the decrease in the amount of water
in the water-bodies, while Culex tend to increase at the end of the rainy season.
Similar results were obtained by Fontenille et al.[29] while studying vectors of
RVFV.
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Figure 6.3: Top: Population dynamics of Aedes and Culex adult mosquitoes.
The dark line represents the average of 200 replicates. Bottom: Distribution of

appearance of the first cohorts of both Aedes and Culex adults.

6.4.3 Effects of gonotrophic time

The duration of the gonotrophic cycle constitutes a major determinant of the
vectorial capacity of a mosquito vector [138] as it determines how many times a
female mosquito would bite its host for blood meal. Shorter lengths of gonotrophic
cycle not only contribute to the number of bites but also to the reproduction
behaviour of the female. Hence, shorter lengths of gonotrophic cycle may imply
rapid reproduction of the population increasing the abundance of adults. However,
sensitivity analysis of this parameter further expand its relationship with mosquito
abundance suggesting that their relationship might not be exactly linear (see Fig.
6.4). Indeed increasing the length of this parameter decreases the abundances
of mosquitoes but also shorter durations seems to decrease the population of
adult mosquitoes. A length of 8 days happens to be the optimal duration of the
gonotrophic cycle. This result may stem from the fact that 8 days is the minimum
length of time required to accommodate the time for resting after egg oviposition,
time for blood digestion, time for searching for a host and for searching for the
oviposition site [213].
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Figure 6.4: Population dynamics of Aedes and Culex adult mosquitoes with
varying the length of the gonotrophic cycle.

6.4.4 Effects of the number of eggs laid

Fig. 6.5 shows results of the effects of varying the number of eggs laid by each
female Aedes and Culex adult per blood meal. Similarly to the length of the
gonotrophic cycle, the number of eggs laid per blood meal directly correlates
to the abundance of adults. We observe that even with possible occurrence of
dry spells, if the amount of eggs laid by each female adult per blood meal is
large enough, some will be able to survive and complete their development cycle.
Besides, large densities of adults contribute to fitness mechanism such that a large
proportion of them will survive to the next generation. For Aedes (see Fig. 6.5
(left)) we obtain that an increase in the number of eggs implies an increase in the
abundance of adults for the chosen parameter values even if other factors remain
the same. However, an interesting feature is observed for Culex species (see Fig.6.5
(center)). For parameter values less than 85 an increase in the number of eggs
results in an increase in the abundance of adults, but for values greater than 85
we obtain a negative correlation. This result suggests that for given biotic and
abiotic conditions there exists an optimal level of the number of eggs to be laid
since we do not implement density dependent functions in this model. To further
verify these results we rerun the model while varying the number of eggs around
the value 85 (see Fig.6.5 (right)). This result may also be explained by the fact
that eggs inherent adaptability behaviour in which eggs laid at the same time do
not hatch uniformly but in instalments [189]. This adaptive behaviour is common
within mosquitoes that develop in temporary bodies of water and it is used to
ensure their long-term survival. It was implemented based on the moisture index
derived according to the ’daily water level’ of subsequent days up to six days (for
more details see Section 6.2.7.4).
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Figure 6.5: Effects of varying the number of eggs laid by each female adult
Aedes and Culex mosquito.

6.4.5 Effects of mosquito’s age-dependence mortality

The survival of adult female mosquitoes is a critical component of their ability to
reproduce and transmit diseases. Increased survival allows the vector to produce
more offspring, to increase the chances of them becoming infected, to disperse
over greater distances, to survive long enough to become infectious, and then to
deliver more infective bites during the remainder of their lifetime [214]. Using age-
dependent survival probability we have examined how longevity of adult mosquitoes
affects the dynamics of population abundance. The impacts of this parameter
on disease transmission will be investigated in future studies that will attempt
to assess effects of mosquito life cycle features to the spread of the disease. The
survival probability function takes the form of a logistic function (Gompertz model)
[223] such that mortality increases exponentially with age [233]. One parameter
heavily influences the survival probability function and it is linked to the degree of
mortality deceleration, c (for more details see equation (6.14) in Section 6.2.7.9).
Varying this factor from 1 to 20 we investigated the effects of adult mosquito’s
longevity on mosquito population dynamics. For Aedes, increases in this factor
reduces the mortality of adults, hence increasing their reproduction capacity (see
Fig.6.6 (left)). However, if we decrease this parameter from its baseline value 5 to 1
we substantially increase the abundance of adult Aedes mosquitoes. These results
follow from the fact that reducing the degree of mortality deceleration increases
the baseline mortality rate and vice versa such that when the degree of mortality
deceleration is very small the longevity of the mosquito is expanded. This allows
mosquitoes to survive longer, hence enhancing their reproducibility. However, the
effect of the longevity of adult Culex in relation to their abundance is not completely
linear rather it is nonlinear (see Fig.6.6 (right)). This nonlinearity results from the
interplay between degree of mortality deceleration and their adaptive behaviour for
surviving during dry spells. For more details see equation (6.14) in Section 6.2.7.9,
which gives the relation of the baseline mortality rate with respect to degree of
mortality deceleration and effects of droughts.
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Figure 6.6: Here we vary the degree of adult mosquito’s deceleration parameter
for analysing the effect of age-depence on the abundance of both Aedes and

Culex mosquitoes.

6.4.6 Effects of evaporation rate on mosquito larval habit-
ats

Combined effects of both rain and temperature are major determinants of the
quantity and permanence of temporary water bodies [212]. Temperature affects
the evaporation velocity and water permanence in the pools. Nevertheless, a
combination of less abundant rainfalls with low temperatures, may produce water-
saturation of the soils, thus maintaining relatively stable flooding levels [212].
Stable flooding level highly contributes to complete development of immature
stages implying an increase in the abundance of adults. Thus, in order to capture
different effects of both temperature and rainfall on the evaporation phenomenon,
we define this parameter as a daily rate (see Section 6.2.7.17 for more details).
This parameter varies between zero and 20% and it indicates daily reduction of
the amount of accumulated precipitation due to evaporation effects. Ten percent
is the baseline value meaning that water persists in the water-bodies for about
ten days. Figure 6.7 depicts the effects of this parameter in abundance of adult
Aedes and Culex mosquitoes by setting the evaporation rate to be 0.066, 0.083
and 0.1 which correspond to 15, 12 and 10 days respectively of water persistence.
The more the water persists the higher the abundance of mosquitoes. This is
explained by the fact that availability of water is a determinant factor of successful
mosquito reproductivity. Larval habitat studies [210, 211], have suggested that
these larval habitats (temporary water-bodies) persist for about 20 to 40 days if
rain is the main source of water. However, according to our model performance
criteria a minimum of 10 days and a maximum of 15 days were chosen, such that
the minimum was used as baseline value. There have been several attempts for
developing formulas that give evaporation rates. Most of the existing ones can
be grouped into two categories: empirical and physical [234]. Either empirical or
physical have some limitation with inherent difficulties in either making empirical
connections between climate and evaporation for different realities or gathering
sufficient information for feeding all variables required in physical formulas such
as those of the Penman equation. Linacre [234] further developed this formula
reducing it from four input variables to only include temperature accompanied by
two other parameters; elevation and latitude of the location. However, this formula
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is more suitable for stagnant water such as a lake and in addition it presents
differences between measurements of about 1.7 mm per day for a day resolution.
Therefore, in order to overcome this complication we estimate the evaporation
rate based on the knowledge regarding the time the water persists in temporary
water-bodies with rain being the main source. This approximation appears to
be more reasonable as witnessed by our model predictions and results in various
features of the model.

Figure 6.7: Determining the effects of evaporation rate of mosquito larval
habitats on the abundance of Aedes and Culex. The evaporation rate is an
indicator of the time the water persists in the water-bodies where 0.066, 0.083

0.1 correspond to 15, 12 and 10 days respectively.

An interesting phenomenon can be observed from Fig.6.7(left) which indicates that
when the length of water persistence is increased an abundance of adults is likely
to increase even when daily total precipitation is low. Such substantial increase in
the abundance of adults during periods of low precipitation result from the fact
that during this period temperatures are high which facilitates rapid development
of broods, hence their efficient reproductivity. This result mainly highlights that to
better capture the effects of water persistence on mosquito population dynamics,
evaporation should be temperature dependent.

6.4.7 Effects of diapause and mosquito flight behaviour

Environmental fluctuations form a critical component of an ecosystem’s ability
to sustain a broad range of living species. This may consist of temperature
fluctuations, varying degrees of moisture in the air and soil, varying day length,
seasonal variations and varying flooding regimes. Mosquitoes need to be able to
adapt to such environmental fluctuations in order to survive unfavourable seasons
and this phenomenon is called diapause [187]. This complex adaptive behaviour
allows mosquitoes to distinguish between favourable developmental conditions in
one season, and unfavourable conditions in the other [189]. The Aedes survive
during unfavourable conditions through diapause in their eggs, which can stay
dormant in moisture soil for at least several days up to 4 years [187]. Culex species
go diapause in the adult stage when conditions are not favourable [189], which
mainly depends on flooding regimes. Since both species breed in fresh temporary
water we implement this phenomena according to variations in flooding regimes by
reading the ’daily water level’ parameter. This is the back bone of the mechanism
that ensures long-term survival of the species (see Fig.6.2). This can be further
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justified from lack of stochastic extinction even within repeated simulations (see
Fig.6.3 (top)). Mosquito species involved in this study require blood meal to allow
oogenesis to be completed. Successful blood feeding depends on the ability of a
mosquito to search for a host which is a critical component of the mosquito’s flight
behaviour. Primarily, the location of the host is based on olfactory, visual and
thermal stimuli [189]. This behaviour can either be non-oriented dispersal which
enhances the likelihood of the female coming into contact with stimuli derived from
a potential host or oriented meaning it results from contact with host stimuli in
which the strengths of the stimuli are increased as the mosquito and host come
closer to each other or attraction to a suitable candidate host, once the female has
identified it in her immediate vicinity [189, 215].

Figure 6.8: Effects of mosquito’s flight dispersal behaviour by varying its vision
range on mosquito population dynamics.

In this model we have implemented the oriented dispersal behaviour where the
success of finding a host is a function of the distance to that host according to
the mosquito’s vision which is at least 20 m [189]. Figure 6.8 shows the effects
of varying the parameter ’mosquito vision’ on the mosquito population dynamics
by setting this parameter to 2, 3 and 5 corresponding to 40, 60 and 80 meters
respectively based on the scale of the model environment. The results indicate that
the ability of a mosquito to search and identify a host for sucking blood is critical
for the mosquito’s reproduction capacity, which directly influences the abundance
of the species. These results similarly may have influence on the prevalence of the
disease given that ability to find a host and take blood meal is directly correlated
to the vector’s vectorial capacity. Therefore, mosquito’s flight behaviour is of great
epidemiological significance and interventions may target this feature if one wishes
to control the disease through vector control.

6.4.8 Effects of varying water-body depths

Apart from vector and ruminants movements the spatial distribution of RVF can be
attributed to the influence of landscape factors on the locations of aquatic habitats
of the vector mosquito larvae. Such spatial distribution of the larval habitats
has for long been known to partially determine the spatial distribution of the
adult mosquitoes in many landscapes [235, 236]. Thus, investigating factors that
affect the spatial distribution of larval habitats is central to our understanding of
spatial determinants of disease transmission. We examine such situations by simply
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varying the depth of water-bodies randomly distributed in our environment given
that the daily total precipitation is uniformly distributed over the entire landscape.
These differences on the size of water-body depths will simply create differences
in larval habitat’s flooding regimes. Such that some will be flooded before others
based on the fact that a larval habitat is said to be flooded if the ’daily water level’
is greater than or equal to 16 mm. Note that this setting is not meant to capture
the spatial distribution of adults but rather effects of spatial distribution of the
larval habitats in the abundance of adults and it is only implemented for Aedes
species as their eggs are laid in damp soil and only hatch if flooded. In our model
the variability of water-body depths is achieved by setting the variable ’water-body
depth’ to assume random values uniformly distributed between two limits such
that the upper limit is always less than or equal to the overall maximum of the
variable ’daily water level’.

Figure 6.9: Effects of water-body depth variability on mosquito population
dynamics.

Figure 6.9(a) depicts the distribution of adult Aedes when the depths of water-
bodies vary between 0 and 100 mm. The trajectories of abundance of adults
follow patterns of rainfall as expected but with much lower densities. The observed
low densities result from the fact that with water-body depths varying between
0 and 100 mm there is only a 15% chance of a particular site to be flooded.
That is, only 15% of larval habitats would have a chance to satisfy the condition
depth minus ’daily water level’ less than or equal to zero. In these settings it
is as if we have reduced locations suitable for development of immature Aedes
mosquitoes, that is, location with sufficient accumulated precipitation . This is in
good agreement with findings from empirical studies of mosquito larval habitats
[237], which have found that the probability of larval habitat presence increased
with increasing accumulated precipitation. This can be illustrated by reducing the
variability of water-body depths to vary between 0 and 50 mm as well as between
0 and 20 mm. Figures 6.9(b) and 6.9(c) clearly depict the increase on the density
of the distribution of the abundance of adult Aedes when decreasing the variability
of water-body depths.

6.4.9 Model extension and other applications

Although the model presented here is a comprehensive simulation model of the
mosquito life cycle for predicting temporal abundance of mosquitoes, there is still
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room for model extension. For example, in the current model mosquito larval
habitats are all equally distributed with little modification to account for spatial
effects by incorporating variability in the depth of water-bodies. This was meant to
extend the model to include variability in the spatial distribution of larval habitats
which are known to affect the spatial distribution of adults in order to able to
examine its effects on the abundance of adults. Therefore, in order to be able to
fully examine the impact of spatial distribution of larval habitats on the spatial
distribution of the adult vectors, it would be necessary to extend the model to use
a heterogeneous spatial arrangement of the environment with detailed information
about the landscape variables. Landscape factors such as topographic wetness
index, soil type, land use-land cover, and distance to stream are known to influence
the spatial distribution of vectors [237, 238]. With availability of this information it
would be possible to embed Geographic Information System (GIS) capabilities with
our model such that the model could run based on a real landscape. This could
lead to further extension of the model by moving from local spatial scale to a more
larger scale with detailed data of weather variables (temperature, precipitation,
humidity) and landscape variables of each local site. Such extensions could be
useful for analysing the spatial distribution of abundance of RVF mosquitoes
for instance at a scale of a country providing useful informative indicators for
preventing and controlling disease outbreaks by providing guidance for specific site.
In addition, this model could be extended to include variability in the number
of mosquito larval habitats driven by seasonal differences in rainfall. This would
allow one to investigate links between mosquito larval habitat distribution and
RVF adult vectors across seasons. Further, the model could be extended to include
livestock and detailed information underlying disease progress in both vector and
host. Such a model could be useful for correlating abundance of mosquitoes and
disease incidences providing a basis for predicting RVF outbreaks and estimation
of important epidemiological parameters.

6.5 Conclusion

In this study we have introduced an IBM phenology model which included im-
portant features of the mosquito life cycle such as egg oviposition, egg maturation,
diapause phenomenon, developmental stages (egg, larva instar 1 to 4, pupa and
adult), temperature, rainfall and dessication dependent survival of immature stages,
aquatic habitats, host seeking, engorgement, oviposition site seeking and adults
age-dependent survival. Running the model under real daily data sets of tem-
perature and rainfall led us to predict the mosquito population dynamic that
closely resembles observations in the field [29, 34]. Combined effects of temperat-
ure and rainfall seasonal variations were responsible for creating the intra- and
inter-annual variations observed in the abundance of adult mosquitoes which is in
good agreement with findings from other studies [79, 213]. Temperature heavily
affects the development time of these mosquitoes, while rainfall mainly controls
their seasonal variations by controlling the availability of breeding sites, given
that these mosquitoes are fresh water breeders. The approximations of their
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physiological time by means of heat accumulation in units measured in degree
days has enabled us to model the development of immature stages in a manner
that closely resembles their growth in nature. This approach has successfully been
used for decades for modelling development of exothermic organisms, since their
development is highly controlled by environmental temperatures [205, 206]. Low
temperatures reduce the rate of development of mosquitoes in a way that if it
falls below the critical threshold 10◦C, development stops [6, 189]. On the other
hand an increase in temperature directly influences the growth rate of insects with
optimal development being achieved around a daily temperatures of 30◦C [6], such
that beyond this threshold, decreases on the rate of development are likely to be
registered [239]. Such variability among individuals and high mortality near the
lower and upper threshold temperatures poses substantial challenges for measuring
temperature-dependent development responses. Hence, models of the mosquito
life cycle built under the concept of heat accumulation are of great importance in
understanding the ecology of mosquito life histories as they offer unique opportunity
for examining the impacts of temperature and other factors on the population
dynamics and management of insects. Moreover, both Aedes and Culex species
considered in our model are outdoor species which breed in fresh temporary water
[31, 33, 186]. This additional characteristic feature of these mosquitoes calls for a
close eye on the impact of rainfall regimes on the population dynamics of these
mosquitoes. Reason why RVF outbreaks are highly correlated to heavy rainfall
and flooding regimes [1, 14, 34]. These flooding conditions increase the number of
breeding sites for mosquitoes, resulting in hatching of dormant Aedes eggs with
subsequent elevation of Culex mosquitoes [13]. Flooding regimes result from a
combination of temperature and precipitation effects which leads to permanence
of water in the water-bodies [212]. Available information suggests that due to
evaporation effect, rainy water may persist in the water-bodies for about 20 to 40
days [210, 211], which is an appropriate time interval for developmental of broods.
We have examined the effects of evaporation phenomenon by varying its parameter
value. Low values of evaporation rates lead to more days of water persistence, hence
facilitating complete development of the insect. This highlights that successful
development of Aedes and Culex mosquitoes mainly depends on a combination of
two factors: the presence of water and temperatures at that period [188, 189, 212].
Our results have suggested that even water persistence of about 20 days is sufficient
for reproductive ability of the brood, as this duration was found to surpass the
effects of dry spells. To further examine the role of precipitation on abundance
of mosquitoes, we have examined the time of appearance of the first cohorts of
mosquitoes after suitable climatic conditions. Our findings suggest that the first
cohort of both Aedes and Culex adults is likely to be observed around the 6th
and 27th day respectively after rainfall which is in good agreement with findings
from empirical studies [29]. These results are of great epidemiological importance
as they provide crucial knowledge about the timing of appearance of mosquitoes
which is essential for vector control. It is worth noting that this control method
remains the most important one given that use of vaccine in livestock is not yet
reliable for affected countries due to economic reasons [11].
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The core part of this study was to thoroughly analyse how each feature of the
mosquito life cycle contributes to abundance of adults. The selected features
are gonotrophic cycle, number of eggs each adult lays, age-dependence survival,
diapause and flight behaviour. Gonotrophic cycle determines how many times
a female mosquito would bite its host for blood meal, such that shorter lengths
of the gonotrophic cycle increases the frequency of mosquito biting. Hence, the
vector’s reproductive ability since the female takes blood for egg production which
in turn enhances its vectorial capacity [138]. Our analysis on this factor has shown
that increasing the duration of the gonotrophic cycle substantially decreases the
abundance of the adults and our results highlight an optimal duration of about 8
days. This is in good agreement with results from other studies [138, 213], although
in nature this length is likely to vary according to variations in temperature among
other factors [138]. In these settings if temperature-dependent survival of adults is
known and track of vector parity status is recorded, the length of the gonotrophic
cycle can be determined based on these two parameters [231]. The gonotrophic
cycle can also be thought of as the time between two acts of egg oviposition. There
are a number of factors affecting the number of eggs laid per each gonotrophic cycle
including the parity status of the female, egg-laying behaviour, temperature, and
availability of several larval habitats [189, 240–242]. Results of the simulation have
shown that there is a link between the number of eggs laid at each gonotrohic cycle
and abundance of adults such that large numbers of eggs laid are likely to increase
the chance of many broods to complete their life cycle up to the adult stage. In
addition to this, an important factor is the diapause which allows the survival
of broods across generations. Our analysis has shown that without diapause,
stochastic extintion of the species is certain and that the time each species goes to
diapause it is critical for successful long-term survival of the vectors. However, this
aspect itself deserves further investigation.
Several studies have highlighted the importance of vector age-dependent mortality
on both abundance and transmission of vector-borne diseases [232, 233, 243]. In
fact, small changes in daily mortality can result in relatively large changes in the
pathogen transmission cycle [195] and on the population dynamics of the vector.
To partially capture the effects of vector senescence on abundance of the adults
age-specific mortality rates for all, the adult stages have been implemented. Our
findings have suggested that this factor directly correlates with the abundance of
adults through a linear relationship in particular for Aedes while for Culex the
relationship was found to be nonlinear. This nonlinearity was found to result
from the interplay between degree of mortality deceleration and their adaptive
behaviour for surviving during dry spells. The longer a mosquito stays alive not
only contributes to its ability to reproduce, but also to its ability to disperse over
greater distances. Through its flight behaviour there is high chance of spreading
diseases across sites including the virgin ones. We have assessed the impacts of
this factor on the abundance of adults, and our findings indicated the ability of a
mosquito to find a host for a blood meal enhances the reproduction of the species
as expected. However, the success of this adaptive behaviour was found to be
linked to the scale of the environment and vector vision’s radius. Studies aiming
to investigate spatial patterns in the distribution of adult mosquitoes are required
to further explore effects of vector flight behaviour on spatial abundance of adults
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over different spatial arrangements.

The importance of this study does not rest only on determining the impacts of
climatic conditions on a mosquito’s life histories, rather it is aimed to establish a
holistic framework that can serve as a research tool for entomologists, epidemiolo-
gists, ecologists and other expert personnel involved in the fight against the fear
posed by these mosquito vectors. Similar tools have been developed for malaria
[193–195], and have been successfully used to study several biological questions
(for more details see [195] and references therein). Following this perspective we
have examined several biological and epidemiological questions, which are of great
importance for improving our understanding of vector ecology to better ameliorate
vector and disease control interventions. We mainly focussed on major contribu-
tions of the mosquito life cycle features on population dynamics of the vectors
and on how these are impacted by weather conditions. Within this realm we have
systematically investigated the role of the length of the gonotrohic cycle, number
of eggs laid by each adult per blood meal, flight behaviour, diapause and adults
age-dependent survival. These features are major determinants of species ability
to reproduce and survive for the next generation by optimizing the length of time
between consecutive blood meals, number of eggs to lay and their diapause ability.
By including these features in our model we have laid a foundation reliable for
examining other important determinants of the pathogen transmission cycle such
as biting rate, infection rate, and more.



Chapter 7

Rift Valley fever Disease
Inter-Epidemic Activities in
Livestock. Insights from an
Individual-based Model of Rift
Valley fever Mosquito Life Cycle

7.1 Introduction

Rift Valley fever (RVF) outbreaks (epidemic activities) occur at irregular intervals
following heavy rainfall and excessive flooding, in particular in East, South and
horn of Africa [1, 14, 34]. However, there is more and more evidence of disease
transmission between outbreaks [3, 39, 44–46], which are hereafter referred to as
inter-epidemic activities. Such inter-epidemic activities generally pass undetected
clinically, but can be revealed where active serological surveillance is regularly
carried out in livestock [39]. For instance, RVF virus (RVFV) transmission has
been reported without noticeable outbreaks or clinical cases in cattle in Mayotte
[40, 41], in sheep and goats in Senegal [42] and Mozambique [43], in cattle, sheep
and goats in Tanzania [3, 39] and Kenya [44–46]. Despite this detection of virus
activities through molecular epidemiology, RVF maintenance in nature between
epidemics both in the mammalian host and vector populations has not yet been
fully explained [45, 46]. This is partly due to the limited evidence that has been
gathered and the knowledge of the other factors driving its maintenance in a
particular geographical scale. For example, the vectors thought to maintain virus
circulation during inter-epidemic periods in East Africa belong to Aedes subgenus
Neomelaniconion, however in West Africa they are a combination of this and
subgenus Aedimorphus [42]. Furthermore, heavy rainfall which normally correlates
with disease outbreaks in eastern and southern Africa was not often associated with
RVF outbreaks in West Africa [11]. Hence, the interplay between the changing
ecosystems, climate, emergence of infections and vector ecology pose a substantial
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challenge for identifying viable control options against RVF [45].

The present study makes use of an individual-based model (IBM) of RVF mosquito
life cycle (see Chapter 6) to incorporate effects of vertical transmission on Aedes
mosquitoes including livestock for investigating disease activities between outbreaks.
The core model includes important features of both the mosquito life cycle such as:
oviposition, egg maturation, diapause, developmental stages (egg, larva instar 1 to 4,
pupa and adult), development and mortality in all different stages, aquatic habitats,
host seeking, engorgement and oviposition site seeking, adults age-dependent
mortality and flight behaviour. Our goal in conducting this research is to examine
how the above important features of the mosquito life cycle and effects of vertical
transmission in Aedes mosquitoes contribute to disease transmission in livestock
during the inter-epidemic period (IEP). The IBM allows one to include detailed
processes of disease development in both vector and livestock populations which is
important for estimating important epidemiological parameters. Additionally, we
aim to examine impacts of the interplay between vertical transmission and mosquito
diapause mechanism on the prevalence of disease inter-epidemic activities. Based on
RVF reported cases during the IEP between 2009 and 2011 (after the major 2006-
2007 outbreak in East Africa) collected from Sangailu, Ijara District of Kenya [46]
including weather data (temperature and precipitation), our focus is to correlate
abundance of mosquitoes with the number of RVF reported cases in livestock during
the inter-epidemic period. Our efforts will be capitalized on answering the following
four questions: (1) Is there any correlation between abundance of mosquitoes and
RVF incidences? (2) What are the factors during the mosquito life cycle that
contribute to transmission of the disease? (3) What are the necessary levels of
vertical transmission to maintain the disease between outbreaks? This way not
only are we interested in obtaining knowledge about mechanisms underlying disease
inter-epidemic activities but also to establish the type of feedback mechanisms
that exist within entities involved in the transmission of RVF during the IEP. Our
results provide important insights regarding the correlation between abundance of
Aedes mosquitoes and RVF incidence cases during the IEP. Additionally, we have
found important features of the RVF mosquito life cycle that heavily influence the
dynamics of the disease.

7.1.1 Study site and data

Our focus is Sangaiulu, where detailed studies on vector abundance and virus
circulation on sheep and goats have been conducted, for the period between 2009
and 2011 [45, 46]. Minimum, average and maximum temperature and precipitation
were recorded daily. Selected domestic livestock were tagged with identification
collars and then left to continue grazing together with the rest of the ruminants
and the sero-survey activities were scheduled during the rainy season when the
mosquito’s activity was presumed to be higher [45, 46]. Row data about the
sero-prevalence of the disease on livestock was provided by Drs Sang and Kasiiti,
which was then used to compare with model disease predictions.
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7.2 The Model

The model was developed using Netlogo 5.2 software (http://ccl.northwestern.edu/netlogo/.)
[216], combined with R extension (RNetlogo) for model analysis [217, 218] and
Matlab was used for graphical outputs. The model description follows the ODD
(Overview, Design concepts, Details) protocol for describing individual- and agent-
based models [219]. A complete schematic representation outlining all processes
and algorithms of the RVF mosquito life cycle model which consists of both aquatic
and terrestial (adult) mosquitoes coupled with disease dynamics within livestock is
shown in Figure 7.1. A summary of all model input parameters included within
the simulation model is given in Table 7.1.

Figure 7.1: Outline of model processes and scheduling of the sub-models
algorithms. The rectangular boxes represent the process (a state) of a given
entity while the rhombus represents a decision point. Details on the decision

processes are discussed in Section 6.2.7 of Chapter 6.

7.2.1 Purpose

This model aims to apply an IBM of the RVF mosquito life cycle to assess correlation
between abundance of mosquitoes and RVF incidences for investigating mosquito
life cycle features leading to disease circulation in livestock during the inter-epidemic
period.

7.2.2 Entities, State Variables and Scales

We have five groups of entities in the model: aquatic mosquitoes (eggs, larvae and
pupae), terrestrial mosquitoes (adult mosquitoes), livestock, mosquito habitats
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(water-bodies and edges of water-bodies) and the model environment. Details about
entities and state variables of the mosquito life cycle model can be found in Section
6.2.2 of Chapter 6). Regarding the dynamics of the disease adult mosquitoes are
categorized in three groups: susceptible S, exposed but not yet infectious E and
infectious I as an SEI type model [4, 69, 244]. Once a mosquito is infected it
remains infected for life and disease persistence is driven by female Aedes mosqui-
toes. Hence, in turn Aedes immature stages are either infected or not. Livestock
are the source of blood meals for adult mosquitoes and they have a static variable,
that is, their location. Additionally, livestock entities in terms of the infection are
considered to be in one of four states representing the progression of the disease,
based on an SEIR type model [21, 59, 167], where S is for susceptible to infectious
mosquitoes, E exposed but not yet infectious, I infectious to susceptible mosquitoes,
and R recovered with immunity developed against RVF virus. For the period that
the model is simulated we ignore birth and death processes so that the population
of livestock is in equilibrium.
The model does not use real geographic space, but instead represents the environ-
ment as a two-dimensional space of 10201 m2 grid with 20 m x 20 m grid squares
corresponding to an area of 2 Km x 2 Km. A scale of 20 m x 20 m grids (patches
in the Netlogo language) was chosen, as 20 m represents the minimum distance
from which mosquito can identify a mammalian host [189] such that mosquito
host-seeking behaviour is approximated at this scale. The model is set so that one
time step in the model represents one day and it is run for almost two years from
15 January 2009 to 15 October 2010.

7.2.3 Process Overview and Scheduling

This model simulates a complete RVF mosquito (Aedes and Culex spp.) life cycle
and transmission of the RVF virus in livestock during the inter-epidemic period.
Time is modelled in discrete time steps where each time step corresponds to one
day of activities. A time step of one day was chosen because the mosquito life cycle
model is on daily time steps and disease progression patterns in both livestock and
mosquitoes are better described on a daily basis [5, 69]. Within each time step for
the mosquito life cycle model each entity will go through its developmental stages,
while first checking survivability followed by its underlying life cycle activities (for
more details see Section 6.2.7 of Chapter 6). For disease transmission an entity
either contracts infection or recovers from infection and Aedes eggs may acquire
infection transovarially. A detailed description of all model processes is given in
Section 7.2.7.
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7.2.4 Design Concepts

7.2.4.1 Basic Principles

The construction of the mosquito life cycle model and its underlying design con-
cepts followed the framework of Pattern Oriented Modelling (POM) [65, 201, 202].
However, the disease dynamics added to this model are based on results from
surveillance and experimental studies of both vector and host ecology and epidemi-
ology. A summary of detailed information about the ecology and epidemiology
of both the vector and host is given in [11]. This approach has been successfully
applied in other simulation models of disease dynamics [67, 204]. The dynamic
of disease spread and persistence is strongly affected by vertical transmission on
Aedes species, diapause, mosquito’s flight behaviour and presence of cohorts of
adult mosquitoes which in turn affect transmission rates.

7.2.4.2 Emergence

Vertical transmission and diapause combined with a mosquito’s flight behaviour
when searching for a host lead to emergence of adult infected mosquitoes and
infected livestock. Disease spreads among livestock through proximity of infected
adult mosquitoes with susceptible mammalian hosts. Livestock are not mobile in our
model and contract infection when bitten by an infectious adult mosquito moving
around looking for a blood meal. This results in the emergence of host-vector
disease dynamics.

7.2.4.3 Adaptation

For details regarding adaptive behaviour see Section 6.2.4 of Chapter 6.

7.2.4.4 Fitness

For details regarding entities fitness mechanism see Section 6.2.4 of Chapter 6.

7.2.4.5 Sensing

For details regarding sensing see Section 6.2.4 of Chapter 6.

7.2.4.6 Interaction

Both adult species interact with the host through feeding behaviour. An infected
adult mosquito may infect a given susceptible host and a susceptible mosquito



Chapter 7. Rift Valley fever Disease Inter-Epidemic Activities in Livestock 150

may acquire infection while feeding on the same host. For more details regarding
host-vector interactions see Section 6.2.4 of Chapter 6.

7.2.4.7 Stochasticity

Disease transmission from infected vector to susceptible host and from infected host
to susceptible vector occurs when a vector feeds on a host and it is probabilistic.
Progression of infection and recovery are also stochastic processes. This represents
our uncertainty in the events leading to successful transmission or recovery from
the virus.

7.2.5 Initialization

In order to be able to perform the simulation a model environment of 10201 m2

grid with 20 m x 20 m grid squares is set. Then water-bodies and water-body
edges are created and distributed over the world with different depths ranging from
16 mm to 100 mm. Both aquatic and terrestrial (only Aedes eggs and Culex adults)
and livestock breeders are created when the model is initialized; the total number
of each is specified via parameters: ’initial-number-Aedes-eggs’, ’initial-number-
Aedes-adult’, ’initial-number-Culex-adult’ and ’initial-number-livestock’. Note that
the mosquito variables represent only female mosquitoes since only females bite
for a blood meal. A proportion of Aedes infected eggs is also initialized and is set
by the parameter ’vertical transmission’. A total of 200 susceptible livestock is
initialized as we aim to reproduce the distribution of infection patterns observed
from the data [45, 46]. Note however, that during the sero-survey study about
only 90 domestic livestock were monitored for virus detection but were left to
continue grazing with the others. Therefore, our assumption of 200 ruminants
is reasonable to account for the contribution of other ruminants that were not
targeted during the study. At the start of simulation a certain proportion of Aedes
eggs governed by the parameter ’vertical transmission’ is randomly given a chance
to start off infected in order to initiate the disease transmission process. Aedes eggs
are initialized and distributed uniformly in water-body edges while both Aedes
and Culex adults are initialized and distributed uniformly over the entire world.
Note that Culex eggs are not initialized since they only breed in water. A complete
description of all model parameters is given in Table 7.1.
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Agent/Individual Parameter Baseline Value Range Units References
Aedes & Culex adults Gonotrophic time 8 4 - 12 Days [138, 213]

Aedes number of eggs 59 50 - 150 - [195]
Culex number of eggs 60 50 - 200 - Estimated
Resting time after emergence - 1 - 3 Days [189]
Resting time after oviposition - 1 -3 Days [189]
Search radius 60 20 - Meters [189]
Successful blood feeding 0.8 0.5 - 1 - Estimated
Incubation period 6 4 - 8 Days [69, 245]
Vector to host probability
of transmission 0.38 0.1 - 0.54 - [11, 23, 99]
Vertical transmission 0.1 0.01 - 1 - [? ]

Livestock Incubation period 4 1 - 6 Days [76]
Recovery time 6 3 - 7 Days [11]
Host to vector probability
of transmission 0.61 0.3 - 0.9 - [11, 23, 99, 246]

Water-bodies Evaporation rate 0.1 0.05 - 0.20 Days−1 [210, 211]

Table 7.1: Model input parameters: calibrated and non-calibrated.

7.2.6 Input Data

Rainfall and temperature daily time series data are used for quantifying the
development, hatching of eggs, survival of aquatic mosquitoes (egg, larvae and
pupae), water level of water-bodies and moisture index.

7.2.7 Submodels

Here we present details of the model processes. It is worth noting that sub-models
regarding the mosquito life cycle model are not included but they are given in
Section 6.2.7 of Chapter 6.

7.2.7.1 Adult Aedes and Culex blood feeding and disease transmission

Blood and its protein ingredients are essential for egg-production [189]. Blood
feeding takes place once a female adult mosquito has found a host, that is, sharing
the same patch with the ruminant. Then a uniform random number between zero
and one is drawn, and if it is less than the parameter ’successful blood feeding’ then
the mosquito has successfully acquired a blood meal enough for egg maturation
such that it becomes engorged and will only take another blood meal after egg
oviposition. Disease transmission occurs during this process of biting a livestock
for a blood meal and details about rules governing either livestock infection or
mosquito infection are given in sections 7.2.7.2 and 7.2.7.3.
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7.2.7.2 Vertical transmission and vector to host transmission

The virus is introduced into our system through vertical transmission by a female
Aedes mosquito as she is capable of passing the virus to its eggs [11, 33]. Vertical
transmission efficiency is set as a proportion of Aedes infected laid eggs and it is
governed by the parameter ’vertical transmission’ see Table 7.1. Once the virus
has been introduced, newly emerged infected adults will successively spread the
disease by infecting susceptible livestock while biting for a blood meal according
to a transmission probability parameter (see Table 7.1). A uniform random
number between zero and one is drawn, and if it is less than the parameter ’vector
to host probability of transmission’ the livestock becomes infected, otherwise it
remains susceptible. Once transmission has occurred, the livestock will go through
its incubation period only becoming infectious after the incubation period has
elapsed. This period is drawn from a normal distribution with mean = 3 and
standard deviation = 1 within a minimum of 1 day and a maximum of 6 days [76].

7.2.7.3 Host to vector transmission

After the virus has been introduced into the livestock community this in turn
amplifies spread of the disease by infecting other mosquitoes. A susceptible adult
mosquito may become infected when feeding on an infected ruminant according to
a transmission probability (see Table 7.1). A uniform random number between zero
and one is drawn, and if it is less than the parameter ’host to vector probability
of transmission’ the mosquito becomes infected, otherwise it remains susceptible.
Once transmission has occurred, the mosquito will go through its incubation period
only becoming infectious after the incubation period has elapsed. This period is
drawn from a normal distribution with mean = 4 and standard deviation = 2
within a minimum of 4 days and a maximum of 8 days [245]. Once a mosquito is
infected it remains infected for life and infection is not harmful to them [4, 69].

7.2.7.4 Host recovery

In this study we do not model vital dynamics in livestock, that is, we ignore birth
and death processes since our aim is to compare the distribution of infected livestock
from our model with those of reported cases in Sangailu during the inter-epidemic
period after the 2006-2007 major outbreak in East Africa. In this setting infected
livestock recover from infection after the recovery time has elapsed. This time is
accumulated since the day of virus infection, and the virus is cleared after about 15
days [11] and it is drawn from a normal distribution around this value We assume
that infection with RVFV induces life-long immunity in livestock population since
the duration of this immunity is not known with certainty [11].
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7.2.8 Model predictions and observations

The mosquito life cycle model was built and parametrized based on two approaches:
’model cycling’ and pattern oriented modelling (POM) [65, 201, 202]. This methodo-
logy allowed us to compare patterns of the simulation model to selected performance
criteria which are geared towards aspects of a predictive model that is able to
capture seasonal variations observed in RVF mosquito population dynamics (for
details see Section 6.2.8 of Chapter 6). When disease dynamics are included further
model performance criteria are defined and evaluated. Vertical transmission in
Aedes is the main mechanism by which disease is introduced in the eco-system
[11, 33], leading to occurrence of epizootics/epidemics and virus circulation between
outbreaks [3, 39, 44–46]. Using this parameter we evaluate our disease transmission
model in two important ways: 1) Do RVF inter-epidemic activities correlate to
abundance of adult mosquitoes and weather conditions? 2) What are the neces-
sary levels of vertical transmission for sustaining disease inter-epidemic activities?
The latter is mainly examined by comparing our model prediction with data of
ruminants that tested positive for RVFV in Sangailu, Ijara district of Kenya during
2009 and 2010. This way we were able to test that our simulation model could
adequately reproduce patterns of disease inter-epidemic activities in Ijara district
(see Fig.7.4).

7.3 Model Analysis

We used our model to address the following questions: (1) What are the factors
during the mosquito life cycle that contribute to transmission of the disease during
the IEP leading to sporadic outbreaks? (2) What are the necessary levels of vertical
transmission to maintain disease activities between outbreaks? These questions
were addressed by: investigating how specific the mosquito life cycle features
affect spread of the disease; the correlation between abundance of mosquitoes and
RVF incidences; examining effects of vertical transmission, diapause and disease
progression factors (incubation and recovery) in the spread and maintenance of
the virus between outbreaks.

7.4 Results and Discussion

7.4.1 Effects of temperature and rainfall

Temperature influences every aspects of the mosquito life cycle since temperature
affects both development and mortality of all larval stages (see equations (6.10)
and (6.11) in Chapter 6). Increasing the value of accumulated degree-days required
for transition from one stage to another linearly increases the developmental
time, but the overall relationship between temperature and development rate of
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immature stages is nonlinear [220]. These fluctuations on temperature significantly
induce variations in the development of immature stages and emergence of adults.
However, temperature was not responsible for creating the intra- and inter-annual
variation on adults abundance. This was mainly driven by variations on rainfall
regimes. Rainfall affects the dynamics of the mosquito population in two aspects:
creates suitable breeding sites for immature stages and influences their survival.
A daily water level of 16 mm was set as the minimum amount of water required
to keep water-bodies suitable for immature stages development. However, periods
of drought would reduce their survival and Culex appeared to be more sensitive
to drought compared to Aedes. This phenomenon may result from the fact that
during unfavourable seasons Aedes go diapause in the form of eggs and the adult
is able to continue to lay eggs even if the water-bodies are not flooded [189], while
Culex adults can only lay eggs if water-bodies are flooded [187, 189]. Therefore,
successful development of new cohorts of both Aedes and Culex is dependent on
two main factors: temperature and rainfall.

Figure 7.2: A one time simulation model output under baseline parameter
settings. The output outines the abundance of both Aedes and Culex mosquitoes
and the dynamics of the disease on both mosquitoes and livestock. Temperature

and rainfall data are also plotted.

7.4.2 Correlation between abundance of mosquitoes and
RVF incidences

To investigate the correlation between abundance of mosquitoes and RVF incidences
we plot times series of the dynamics of the disease in both vector and mammalian
host. Figure 7.3 (left) shows the dynamics of infected adult Aedes mosquitoes which
are highly correlated to patterns of the species population dynamics. Similar trends
are observed within Culex mosquitoes see Fig. 7.3 (right) confirming that disease
activities correlate with abundance of mosquitoes even during inter-epidemic period
[44]. These results highlight that the distribution of infections follows the patterns
of temperature and rainfall with major emphasis on rainfall seasonal variations. A
striking feature is observed within the distribution of RVF cases in livestock Fig.
7.3 (center). The dynamics of RVF cases heavily follows the dynamics of Aedes
mosquito population such that abundance of infected mosquitoes correlates the
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abundance of disease cases. This feature highlights the importance of Aedes species
as disease primary vectors for the spread of the disease. This feature is central
for initiating and maintaining the spread of the disease [44] even in a situation
of short rains with dry spells such as the period between day 100 and day 200.
Another interesting feature is that the peak of disease cases in livestock coincides
with that of both infected Aedes and infected Culex adults. This emphasizes the
contribution of the latter species as secondary vectors or disease amplifiers [13].
The emergence and abundance of the Culex result from the fact that during this
period the rainfall persisted long enough to ensure complete development of species
which leads to subsequent emergence of new cohorts of adults. These adults when
feeding on infected ruminant further spread the virus.

Figure 7.3: Dynamics of the spread of RVF in both vector and mammalian
host population. (Left:) Distribution of the number of infected Aedes adults
and distribution of the number of infected Culex adults (right). Distribution of
the number of infected livestock and the red dots represent the data (center).

The dark line represents the average of 200 replicates.

7.4.3 Effects of vertical transmission and diapause

Vertical transmission is a mechanism by which the RVFV is introduced into
the host-vector community. The Aedes species are the ones responsible for this
process. With their eggs which are able to withstand several periods of dessication
from days to years [187], if carrying the virus new cohorts of infected adult
mosquitoes will emerge when suitable flooding conditions are met. Then, the virus
is amplified when these adults feed on vulnerable mammalian hosts leading to
disease endemicity. Furthermore, it likely that an independent transmission loop
within the mosquito population can maintain the virus even in situations where
mammalian host infections are absent. However, the actual contribution of vertical
transmission to virus persistence is less clear. Hence, understanding the efficiency
of this parameter for initiating and maintaining disease transmission is central
to our understanding of disease inter-epidemic activities. Figure 7.4 shows the
results of the effects of different vertical transmission levels to disease prevalence.
The trajectories show seasonal fluctuations followed by periods of zero incidences
during unfavourable seasons. There are a number of factors underlying these
fluctuations: (1) the stochasticity underlying the model processes of both mosquito
life cycle and disease features. (2) the virus must incubate in the mosquito gut
to generate sufficient levels for onward transmission as well as in the mammalian
host. A combination of mosquito incubation period and mosquito life expectancy
may lead to fluctuations in transmission efficacy. Therefore, leading to variation
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in the number of infected livestock. Another interesting feature is that vertical
transmission efficiency correlates with the size of the epidemic such that high levels
of this parameter imply high prevalence of the disease. Additionally, very low levels
of vertical transmission efficiency may lead to stochastic extinction, suggesting that
a minimum of 10% may be required to keep disease circulation going. This might
result from the fact that the mosquito life-cycle is relatively short and vertically
acquired infections are likely to be diluted with every generation [85]. On the other
hand the periods of zero incidences are due to the recovery time in livestock which
is very rapid and during the unfavourable season the hosts rapidly clear the virus
as it quickly develops adaptive immune responses [11]. Additionally, availability of
susceptible hosts for subsequent transmission is critical for maintaining the virus,
otherwise the virus will go extinct at the end of the favourable season during which
mosquitoes go diapause. Diapause is another of the mosquito’s adaptive behaviour
that further compounds the effects of vertical transmission, since survival of eggs
during diapause is higher [187, 189] leading to disease inter-epidemic activities.

Figure 7.4: Effects of varying vertical transmission efficiency on the prevalence
of the disease in livestock. (Left) Individual-based model output and (right)

deterministic equation-based model output [4].

To further demonstrate the potential of our model compared to equation-based
deterministic models, we also plot effects of varying vertical transmission using a
deterministic model [4] see Fig.7.4 (right). These results show that effects of this
parameter are almost unapparent when using deterministic models and can only be
revealed when the effect of this parameter is evaluated using the basic reproduction
number (see [80]). This highlights the important role of individual-based models
for investigating biological questions as we can easily monitor how macroscale
properties emerge form micro dynamics.

7.4.4 Effects of loss of immunity in livestock

The dynamics of disease incidences in livestock is highly sensitive to the recovery
time. The recovery time is a function of the virus induced immunity and the time
the ruminant stays infected. From the date of infection the virus may persist
in the livestock’s body for at most for 20 days [11], and after that the ruminant
recovers, however, it is not well known for how long the ruminant stays immune
and this remains to date an open question. Available information indicates that
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the ruminant may stay immune for more than five months [11]. Therefore, to
investigate how does the duration of acquired immunity influence the dynamics
of the disease, we run the model for four different settings regarding the loss of
immunity such that immunity either wanes after 180 days or 365 days or 545
days or 635 days (immune for life in the model sense). For the first 300 days the
trajectories overlay each other due to the fact that for the first six months the
parameter ’loss of immunity’ does not have any effect (see Fig.7.5(left)). One may
wonder why even after 200 days trajectories still over lay such that the effect of
loss of immunity is unapparent. These results emerge from the fact that during
the period between 200 and 300 days there are no adult mosquitoes, it is the
unfavourable season and new infections are at a minimum. However, irrespective
of this situation differences in the period above 300 days are still not paramount.
The results stem from the fact that within this period there is a substantial decline
in the number of susceptible individuals. In addition, inherent complexities arising
from the ecology of the vector further compounds this situation, suggesting that
host immunity waning cannot be evaluated as a single factor but rather as a whole
including changes in the environment.

Figure 7.5: Left: Effects of varying the time of loss of immunity in livestock
disease dynamics. Right: Effects of varying adult mosquito’s degree of mortality

deceleration on disease prevalence in livestock.

7.4.5 Effects of mosquito’s age-dependence mortality

The survival of adult female mosquitoes is a critical component of their ability to
transmit diseases. This allows mosquito to survive longer, hence enhancing their
reproductivity. To investigate the link between an adult mosquito’s longevity and
its ability to transmit the virus, we analyse the effects of the degree of mortality
deceleration on disease prevalence see Fig.7.5 (right). The relationship between this
parameter and the number of infected livestock is somewhat linear and nonlinear,
which results from inherited linear and nonlinear effects from Aedes and Culex
respectively. Nevertheless, it is apparent that for small values of the degree of
mortality deceleration there is a tendency of expanding the size of the epidemic
at least for the first and second waves. This is due to the fact that lower degree
of mortality deceleration increases survival of mosquitoes such that they live long
enough to become infectious, and then to deliver more infective bites during the
remainder of their lifetime. However, for the last wave the same cannot be concluded.
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This results from the fact that at this point the decline in the number of susceptible
individuals is very substantial in such a way that there are few susceptible hosts and
those who have recovered from previous infectious are immune from the virus. Our
results indicate that longevity of adult mosquitoes is of considerable epidemiological
importance because older mosquitoes are more likely to have survived beyond the
virus extrinsic incubation period, which enhances their ability to further disperse
the virus.

7.4.6 Disease incidence rates and basic reproduction num-
ber, R0

An important benefit of the IBM relies on its ability to estimate important epi-
demiological parameters since its model parameters are defined at an individual
level and can be related to field measurements. At each model step we estimate
the basic reproduction number, R0 which gives the average number of secondary
cases arising as a result of introducing one infected individual into a wholly sus-
ceptible population, over the course of the infected individual’s contagious period.
If R0 > 1 the virus can invade the population, otherwise it cannot. This results
from the fact that if an infected individual on average cannot successfully transmit
the virus to more than one individual, then the disease cannot spread over the
population. At the end of the simulation the quantity R0 reflects an estimate of the
reproduction number, the final size relation that indicates whether there will be (or
there was, in the model sense) an epidemic [247]. The basic reproduction number
is directly related to the size of susceptible individuals such that for an epidemic
to occur the fraction of the initial number of susceptible individuals should be
greater than the inverse of this threshold parameter. Therefore, it possible for the
livestock population to determine the rate at which new cases are produced by an
infectious individual, given that the entire population of livestock is susceptible
at the beginning of the simulation [21]. In such a situation the host reproductive
number can be estimated from the final size of the epidemic [248] (for more details
on the derivation of this threshold see equation (E.4) in Appendix E). Figure 7.6
shows the distribution of this parameter here named host-reproductive rate which
gives the maximum reproductive potential of the disease [249]. From this figure we
can confirm that the host-reproductive number is above 1 exactly during periods
where we have waves of disease outbreaks (see Fig.7.2(center) ’Dynamics of the
disease in livestock’). The latter depicts the temporal dynamics of the disease in
livestock in which we see the typical ’S curve’ where the fraction of susceptible
decreases as the fraction of recovered increases and the peak of infected at around
the intersection between the susceptible and recovery curves. Another important
observation is that the breaks in the chain of transmission does not necessarily occur
because of lack of susceptibles, but rather due to the decline or lack of infectives
[21], which for our cases are mosquitoes. This decline in mosquito population is
due to seasonal variations. In regard to this, the very same principle cannot be
applied for obtaining the vector reproductive number in the settings of our model
since their population varies with time according to factors that influence their
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life cycle. Instead we determine incidence and infection rates that indicate the
frequency at which the disease spreads over the population and the average number
of new secondary infections per day respectively. Both host and vector infection
rates emerge essentially from interactions among the following mosquito life cycle
features: duration of gonotrophic cycle, blood feeding behaviour, flight behaviour
and longevity which all together contribute to a mosquito’s ability to transmit and
spread the disease.

Figure 7.6: Top: Distribution of host reproductive rates, host infection rate and
host recovery rate respectively. Bottom: Distribution of both Aedes and Culex
infection rates and quantification of the effects of varying vertical trasmission on

host reproductive numeber (center).

7.4.7 Model extension and other applications

Here we have extended a comprehensive IBM model of the mosquito life cycle to
investigate RVF transmission in livestock during the IEP. This has enabled us to
study important biological questions regarding disease inter-epidemic activities at
a particular site under changing environmental settings. However, as pointed out
in Chapter 6 that extending the model to include Geographic Information System
(GIS) capabilities could lead to further important extensions. It was highlighted
that with such extension we could move from local spatial scales to much larger
scales with realistic landscape variables such as vegetation index which has proven
to be an important epidemiological factor. Allowing us to thoroughly study the
spatial and temporal variability of emergence of the disease. RVF outbreaks do
not start at the same time in every part of a particular country, but rather start
from a foci location (local hot spots regions) then progress spatially until reaching
virgin areas within a single outbreak. With detailed spatial arrangement such
important questions can be further investigated including creation of disease risk
maps at different spatial and temporal scales. This presumes that both host and
vector population are not uniformly distributed and do not mix homogeneously.
Therefore, in this setting we could estimate important parameters such as host-
vector ratio which is a critical component of vectorial capacity to transmit diseases
[250]. It is believed that outbreaks in virgin areas are mainly introduced by either
vector or livestock from sites where the outbreaks started earlier [13]. Additionally,
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this phenomenon is stimulated by the direction of climatic gradients which cause
patterns of precipitation such that the rain starts at a certain point and with time
progresses to other areas [68]. Most RVF outbreaks occur in arid and semi-arid
lands where the majority of the population is pastoralist with a nomadic lifestyle
such that with the onset of rains, many pastoralists move their herds to areas with
new grass growth and water-filled dambos (temporary water bodies) [58]. Through
these movements the virus may be introduced in uninfected areas. Therefore,
a model with such capabilities could be of great importance for investigating
the impacts of migration and migration organization on disease outbreaks and
inter-epidemic activities. Also it is of great epidemiological interest to study in
detail RVF mosquito larval habitats which are fundamental in providing a basis
for understanding the spatial determinates of disease transmission.
In the framework of this transmission model one can be interested in whether
after an epizootic takes off, the dominant disease transmission mechanism is still
ensured by mosquitoes or is simply by aerosol [11, 68]. Many mammalian species
are susceptible to infection with RVFV, including livestock such as cattle, goats,
sheep and camels [11], but also wildlife such as giraffe and African buffalo [251],
but they do not have the same degree of susceptibility. This variation in their
differences on innate immunity can lead to further extensions of the model to
investigate how this impacts disease transmission and persistence. When several
types of mammalian hosts are taken into consideration we can examine effects of
host preference of the vector.

7.5 Conclusion

There is more and more evidence of RVF transmission during the inter-epidemic
period (IEP) in some parts of endemic regions [39]. Such virus activities generally
occur without clinical cases and with frequency in RVF hotspots. However, factors
leading to disease occurrence between outbreaks are not yet fully understood [45, 46].
This situation highlights the necessity of developing comprehensive models to assess
and predict potential epidemiological and ecological risks of disease emergence
and its maintenance in nature by following reliable informative indicators [79].
For this reason, we have incorporated effects of disease transmission in livestock
on an individual-based model (IBM) of the RVF mosquito life cycle (Chapter 6)
for correlating abundance of mosquitoes with RVF incidences while investigating
disease inter-epidemic activities. We aimed to examine how important features
of the mosquito life cycle affects the spread of the disease during the IEP under
changing environmental conditions. Our results are summarized with the followings
points: (1) disease inter-epidemic activities follow patterns of seasonal abundance of
Aedes mosquitoes; (2) diapause compounds with vertical transmission mechanisms
to sustain sporadic outbreaks during the IEP and a minimum level of 10% of
vertical transmission efficiency is necessary to avoid stochastic extinction; mosquito
life cycle features such as vector longevity, gonotrophic cycle and flight behaviour
heavily affect the dynamics of the disease in livestock; the time livestock stay
infectious and immune are important factors for both short and long-term disease
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dynamics. Therefore, abundance of Aedes mosquitoes can be used as a signal of
disease activities and appropriate interventions targeting specific features of the
mosquito life cycle should be developed to reduce the burden caused by RVFV.



Chapter 8

Conclusions, Recommendations
and Future Directions

8.1 Conclusions

The emergence and re-emergence of infectious diseases have become a great epi-
demiological concern, especially in the case of vector-borne viral zoonoses that
occasionally give rise to human epidemics such as West Nile fever and Rift Valley
fever (RVF) [7] just to mention a few. Being able to better understand how vector-
borne diseases are propagated and how they may be contained requires knowledge
of the many factors that influence their success or failure [15]. The success of
vector-borne diseases to invade and persist in a given community poses a unique
challenge to public health and veterinary authorities because their epidemiology
and ecology are closely linked with environmental factors such as climate, popula-
tion migration, landscape, and complicated transmission mechanisms [252, 253].
These factors interact in diverse ways such that development and analyses of
epidemiological models that would take into account the combination of chance
events, time delays, and nonlinearities in varying environmental settings make
predicting spread of diseases a daunting task. To tackle this challenge we have
used different modelling approaches for answering different biological questions,
giving our audience and scientists an opportunity to engage in cross-disciplinary
and cross-cultural dialogue about the dynamics of RVF. The methods we have
used range from classic deterministic models, stochastic models, to bottom up
modelling approaches based on individual-based models. Our efforts have been
concentrated on factors underlying disease epidemic and inter-epidemic activities,
the temporal characteristic pattern of disease outbreaks (irregular intervals of up
to 15 years) and the role of climatic conditions and mosquito life cycle features on
the characteristic pattern of disease outbreaks.

In Chapter 2, a deterministic model [4] taking into account Aedes mosquito, Culex
mosquito and livestock populations, mechanism of vertical transmission from Aedes
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mosquitoes and a class of asymptomatic livestock was proposed. To investigate the
role and contribution of vertical transmission from Aedes mosquitoes for both dis-
ease epidemic and endemic activities a reduced model of juveniles Aedes mosquitoes
[80] was applied. We found that for low moisture parameters the response of the
basic reproduction number, R0 with respect to vertical transmission was initially
very small but strengthened rapidly when the vertical infection efficiency exceeded
20%, while for high moisture parameters the host type reproductive number quickly
accelerated even for proportion vertical infection less than 5%, highlighting the
importance of vertical transmission and effects of climatic conditions for initial
spread and persistence of the disease during endemic activities. Then, uncertainty
and sensitivity analysis techniques were employed for quantifying the attribution
of model output variations to input parameters over time, providing important
information for improving disease management. Furthermore, time varying sensit-
ivity analysis was explored for providing a comprehensive overview of the effects of
each model input parameter at all important stages of the epidemic. For deriving
conditions for existence of model steady states in Chapter 3 [4], the model in
Chapter 2 was used to analytically investigate the stability of both the disease-free
and endemic equilibrium. Then, employing techniques of numerical simulations
we performed bifurcation and chaos analysis of the model under periodic environ-
ment for evaluating the effects of rainfall on the characteristic pattern of disease
outbreaks. Studies have revealed that optimum climatic conditions, presence of
mosquitoes, international trade of livestock and their products have not completely
explained the RVF outbreaks [26], such that other potential vectors such as ticks
have been implicated in the transmission of RVFV [28, 29]. In Chapter 4 we pro-
posed a model that extends the model in Chapter 2 to hypothetically evaluate this
possibility, pointing out relevant model parameters that require further attention
from experimental ecologists and modellers to further determine the actual role of
ticks and/or other biting insects in the transmission and endemicity of RVF.

RVF outbreaks occur in irregular intervals of up to 15 years in particular in
East Africa and this characteristic pattern of disease outbreaks makes prediction
and effective preparedness for disease control a complicated task. In Chapter 5
we proposed a RVF stochastic host-vector model with vertical transmission and
analytically determined the dominant period of disease outbreaks with respect
to vertical transmission efficiency. These predictions will then be compared with
observations if reliable data become available. Using this model we determined novel
relationships among vertical transmission, invasion and extinction probabilities and
the basic reproduction number. In Chapter 6 we introduced a novel individual-based
model (IBM) of the complete mosquito life cycle, built under daily temperature
and rainfall data sets. The model was applied for determining correlation between
abundance of mosquito populations and rainfall regimes and determining important
mosquito life cycle features that influence the population dynamics of mosquitoes.
We found that rainfall is indeed responsible for creating the intra- and inter-annual
variations observed in the abundance of adult mosquitoes. Regarding mosquito life
cycle features, our results showed that the length of gonotrophic cycle, number of
eggs laid per blood meal, adults age-dependent survival and flight behaviour are
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among the most important features of the mosquito life cycle that substantially
induces variability in the abundance of adult mosquitoes. Further, in Chapter 7 we
applied the model in Chapter 6 for studying the dynamics of disease inter-epidemic
activities in livestock for the period between 2009 and 2011. The model reproduced
the observed trend of disease activities during this period and the minimum level
of vertical transmission efficiency leading to disease inter-epidemic activities was
determined. Abundance of mosquitoes, in particular Aedes, was found to have
strong correlation with disease incidence cases and mosquito life cycle features
such as length of gonotrophic cycle, number of eggs laid per blood meal, adults
age-dependent survival and flight behaviour were found to have important influence.
These indicators could be of great epidemiological significance by allowing disease
control program managers to focus their efforts on specific features of vector life
cycle including vertical transmission ability and diapause. With no doubt we affirm
that the use of different modelling approaches has enabled us to discuss a broad
range of biological questions regarding RVF disease epidemic and inter-epidemic
activities providing useful information for improving disease management strategies.
Furthermore, we argue that our IBM is an ideal extendible framework useful for
further investigations of other relevant host-vector ecological and epidemiological
questions for providing additional knowledge important for improving the length
and quality of life of humans and domestic livestock.

8.2 Recommendations

The goal of this research study was to develop and analyse mathematical models for
improving our understanding of RVF epidemic and inter-epidemic activities and use
the outcome for providing knowledge-based disease management strategies. Math-
ematical epidemic models are formulated in terms of state variables (representing
different individuals epidemiological status) and parameters quantifying the rate of
change between individuals epidemiological status. Therefore, all the recommenda-
tions stated in this section are based on the model structure and its underlying
assumptions. All the models developed in this research study (equation-based,
stochastic and individual-based models) involve only mosquitoes and mammalian
hosts (without differentiating if cattle, sheep or goats). Hence, all disease control
strategies discussed are targeting mosquitoes and livestock but they can be exten-
ded to humans where applicable. All the three implemented modelling approaches
(equation-based, stochastic and individual-based models) outline important disease
progression stages which can then be targeted for disease control. An important
threshold epidemiological parameter is the basic reproduction number, R0 which
is used for determining the rate at which the disease spreads. In addition, effects
of disease control can be assessed using disease related model state variables. We
summarize important disease control strategies targeting both mosquitoes and
mammalian hosts.
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8.2.1 Larval Vector Control

Immature mosquito control is an important component of mosquito control strategies.
This is due to the fact that RVF primary vectors such as mosquitoes of genus Aedes
can also transmit the virus to their eggs which can persist in the ground for long
periods of dessication. Analysis of the relationship between vertical transmission
and R0 indicated that for low moisture parameters the response was initially very
small but strengthened rapidly when the proportion of vertical infection efficiency
exceeded 20% and using a vector type reproductive number, T v1 we found that
vertical infection of about 20% can be responsible for more than 80% of required
effort to eliminate the disease. One way to reduce effects of vertical transmission is
to implement control programs that target immature mosquitoes. Alternatively,
efforts can be directed to factors in the biology of the female adult mosquito that
are critical to her ability to pass the virus to her eggs. Further analysis highlighted
that the impact of vertical transmission is further compounded with diapause and
weather/climatic conditions. For high moisture parameters we found an exponen-
tial relationship between vertical transmission and R0 even for vertical infection
efficiency of less than 0.1. Hence, larval mosquito control should take into account
how climate variability and climate change impacts vector population dynamics.
Anyamba et al.[13] stated that larval mosquito control is useful for preventing any
emergence of adult mosquitoes if used prior to flooding or preventing additional
production of adults if applied after flooding. Furthermore, applying the mosquito
life cycle IBM for studying RVF inter-epidemic activities and fitting the model to
livestock incidence data collected in Sangailu, Kenya we determined an optimal
proportion of vertical transmission efficiency of 10%. Therefore, efforts that aim
to reduce the probability of vertical transmission efficiency below 10% are viable
disease control strategies.

8.2.2 Adult Vector Control

Adult mosquitoes-livestock and adult mosquitoes-humans are the predominant
mode of RVF transmission during and after the outbreak. One of the most
important moments of disease spread is the exponential phase of the outbreak
and it can best be analysed by using R0. Sensitivity analysis of R0 to disease
characteristic parameters can provide important information useful for guiding
disease control efforts. Using this technique we found that vertical transmission
efficiency (q1), probability of infection transmission from Aedes to livestock per bite
(β21), Aedes biting rate (σ1), initial number of susceptible adult Aedes mosquitoes
(N0

1 ) and initial number of susceptible livestock (N0
2 ) highly influenced changes in

the magnitude of R0. We discuss the first four parameters (q1, β21, σ1, N
0
1 ) which

are related to mosquitoes and positively correlate with R0. Hence, these are the
features that should be targeted in order to quickly reduce spread of the disease.
β21 and σ1 are related to mosquitoes vectorial capacity. Hence, factors contributing
to their ability to transmit the infection should be targeted through appropriate
interventions. N0

1 refers to the number of adult mosquitoes that are available at
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the beginning of the outbreak. Here adult mosquito control interventions that
quickly reduce their population are more effective. Reducing the abundance of
adult mosquitoes has the potential to reduce RVFV transmission to livestock and
humans by interrupting the transmission cycles. Being able to reduce the number
of infected adult mosquitoes able to transmit RVFV to livestock and humans and
reducing the number of adult mosquitoes able to deposit eggs after a blood meal
into immature habitats is critical to success [13]. Using the framework of IBM
we found that mosquito life cycle features such as mosquito longevity (effects of
vector senescence), gonotrophic cycle, flight behaviour and number of eggs each
female lays per blood meal are critical for mosquito population fitness. Therefore,
mosquito control efforts targeting these features can be effective adult mosquito
control strategies that can effectively reduce their population regardless of either
rainy or dry season. In addition to weather conditions the time when potential
RVF vectors are active is an important factor when planing interventions.
Applying time dependent sensitivity analysis we found that the effect of some
parameters (for example β21 and σ1) change over time. This may be the case
when after a certain period of time after the start of the outbreak, other modes
of transmission such as livestock to livestock, livestock to human, etc, come into
play. This suggests that it is important to also focus attention of control strategies
on various infection agents during the course of an outbreak. Further preventive
and control measures to mitigate the impact of RVF and reduce its transmission
to domestic livestock and humans are discussed in detail in [13].

8.2.3 Livestock control

Unlike other diseases, RVF has no specific treatment. Therefore, efforts to re-
duce the impact of RVFV transmission in livestock rely on vector control and
vaccination of livestock. Currently, two types of vaccines are available for domestic
livestock: inactivated whole-virus and live-attenuated Smithburn vaccines [11, 27].
Inactivated vaccines can be applied to ruminants of all ages without causing abor-
tions but they are expensive and repeated doses are required to provide sustained
protection, which is difficult to achieve with nomadic herds. Also it is difficult to
sustain this vaccine in affected countries for economic reasons. On the other hand,
live-attenuated vaccines are cheap and effective. They confer lifelong immunity
with a single dose. However, they may lead to fetal abnormalities and abortions
in pregnant ruminants and there is the safety concern of reversion to virulence
[78]. Therefore, other alternatives are required to help mitigate the impact of
the disease in domestic livestock. Sensitivity analysis indicated that their initial
number of susceptible livestock (N0

2 ) is negatively correlated to R0, meaning that
increasing the size of livestock density that is vulnerable to the disease decreases
the magnitude of R0. This could mean that if livestock remain in herds of large
numbers there is a high probability of reducing their vulnerability to infected biting
mosquitoes. Thus, in addition to using the inactivated vaccine pastoralists can
be advised to keep their herds is large groups. This control option and others
including slaughter bans, livestock movement restrictions and vaccination, require
pastoralist’s cooperation [254].
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Another important disease characteristic parameter is the duration of the infec-
tious period in livestock. Our analysis showed that reduction in this parameter
significantly reduce the spread of the disease. Thus, control efforts that would
target the immune system of a host in order to keep the infectious period much
shorter can significantly reduce the impact of RVF transmission. Concluding, RVF
prevention and control measures should include active disease surveillance, an
early warning system for outbreak predictions, targeted vaccinations in high-risk
areas, improved coordination between livestock owners and public health teams
and health education and social mobilization programs [13, 254].

8.3 Future Directions

The research presented in this thesis aimed to investigate the dynamics of RVF
epidemic and inter-epidemic activities employing a variety of modelling approaches.
The methods applied ranged from deterministic models, stochastic models to bot-
tom up modelling techniques belonging to agent-based models. Each approach
investigated a specific set of well-defined biological research questions across a
variety of dimensions. In Chapter 2 [80] a systematic sensitivity analysis of the
deterministic model was undertaken using the Partial Rank Correlation Coefficient
(PRCC) technique. The time invariant sensitivity analysis was carried out by
considering only one time point corresponding to the peak of the outbreak. Future
work could consider not only extending the methods to include others such as
Extended Fourier Amplitude Sensitivity Test (eFAST), but could also extend
the analyses by considering other time points before and after the peak of the
outbreak. This could allow to have estimates of the relative importance of each
model parameter before the peak of the outbreak and after the effects of initial
conditions have been discarded. Time varying sensitivity analysis could also be
extended to include time points beyond the transient region.
While the following Chapters are an extension of the work presented in Chapter 2
there is still room for further work. The model structure in Chapter 4 could be
extended to include juveniles stages of ticks and to include other biting insects
other than mosquitoes, while Chapter 5 could be extended to consider comparison
of the analytically predicted dominant period of disease outbreaks with data if they
become available, by using techniques of wavelet analysis. Chapter 6 presented
a holistic framework for studying the dynamics of vector-borne diseases under
varying environmental conditions while taking into account individual’s variability
and interactions. In the current model mosquito larval habitats are all equal with
differences in the depth of water-bodies. Future work may instead consider a
heterogeneous spatial arrangement of the environment with detailed information
about the landscape variables (topographic wetness index, soil type, land use-land
cover, and distance to stream) [237]. With availability of this information it would
be possible to embed Geographic Information System (GIS) capabilities with our
model such that the model could run based on a real landscape. This could lead to
further extension of the model by moving from local spatial scale to a much larger
scale with detailed data of weather variables (temperature, precipitation, humidity)
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and landscape variables of each local site. Such extensions could be useful for
analysing the spatial distribution of abundance of RVF mosquitoes for instance
at a scale of a country providing useful informative indicators for preventing and
controlling disease outbreaks by providing specific guidance for a specific site.
Further, studies focussing on the impacts of livestock movement and migration are
to be explored to better evaluate the potential of the disease to invade temperate
countries and North America, as well as its potential for expanding its geographical
distribution at local scale in endemic countries.
In Chapter 7 the model in Chapter 6 was applied for studying disease inter-epidemic
activities in livestock. Future applications could include implementation of hypo-
thetical vector control interventions to target specific activities in the mosquito
life cycle, then evaluate their impacts with the aim to improve disease control
strategies. Further, the model could be extended to include demographic livestock
details and detailed information underlying disease progress in both vector and host.
Such a model could be useful for correlating abundance of mosquitoes and disease
incidences providing a basis for predicting RVF outbreaks as well as evaluating
other transmission mechanisms such as direct contact with infected livestock body
fluids.

Another very interesting question would be to investigate the interplay between
livestock recruitment (or movement) and Aedes vertical transmission mechanism in
maintaining low level disease activities or small outbreaks after a major outbreak. If
recruitment of susceptible susceptible livestock coincides with the next rainy season,
this would lead to subsequent waves of disease outbreaks [1]. It would be interesting
to extend the IBM model to include recruitment of susceptible livestock and
investigate the role of recruitment timing on driving subsequent disease outbreaks.
Could livestock births play a significant role in disease endemicity and appearance
of subsequent waves of disease activities by introducing susceptible livestock into
the system?
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Appendix A

Model parameter descriptions
and their values and ranges

High Parameters Low Parameters
Parameters Baseline Range Baseline Range Reference

1/d1 & 1/b1 30 7-50 14 7-20 [57, 74]
1/d2 & 1/b2 2190 360-3600 2190 360-3600 [69]
1/d3 & 1/b3 30 7-50 14 7-20 [57, 74]
q1 0.1 0-1 0.1 0-1 [161]
θ1 0.20 0.1-0.3 0.10 0.1-0.3 Assumed
1− θ2 0.4 0.3-0.6 0.4 0.3-0.6 [5, 11, 255]
θ3 0.20 0.1-0.3 0.20 0.1-0.3 Assumed
σ1 0.33 0.1-0.5 0.25 0.1-0.5 [5, 91]
σ2 19 0.1-50 19 0.1-50 [5]
σ3 0.33 0.1-0.5 0.25 0.1-0.5 Assumed
β12 0.7 0.3-0.9 0.7 0.3-0.9 [5, 11, 99]
β21 0.21 0.001-0.54 0.21 0.001-0.54 [5, 11, 99]
β23 0.21 0.001-0.54 0.21 0.001-0.54 Assumed
β32 0.3 0.3-0.9 0.3 0.3-0.9 Assumed

β̃12 0.3 0.1-0.5 0.3 0.1-0.5 [5, 11]

β̃32 0.3 0.1-0.500 0.3 0.1-0.500 Assumed
1/γ1 6 4-8 6 4-8 [69, 246]
1/γ3 6 4-8 6 4-8 [69]
1/ε2 4 1-7 4 1-7 [5, 91, 164, 255]
1/ε̃2 4 1-7 4 1-7 [5, 57, 255]
m2 0.2 0.05-0.3 0.1 0.05-0.3 [5, 57, 255]

Table A.1: Parameters for high and low rainfall patterns for the RVF model
(2.1-2.3) with values, range and references.
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Parameters Description and dimension

b1/µ1 Per capita birth/death rate of Aedes mosquito species,
Day−1

b2/µ2 Per capita birth/death rate of livestock, Day−1

b3/µ3 Per capita birth/death rate of Culex mosquito species,
Day−1

q1 Probability of vertical transmission from an infectious
female Aedes mosquito mother to its eggs, dimensionless

θa Development rate of mosquitoes, Day−1, where a = 1
and a = 3

θ2 Probability of an infected host moving to the sympto-
matic stage, dimensionless

(1− θ2) Probability of an infected host moving to the asympto-
matic stage, dimensionless

σ1, σ3 Number of times one Aedes, Culex mosquito would want
to bite a host per Day, if livestock were freely available.
This is a function of the mosquito’s gonotrophic cycle
(the amount of time a mosquito requires to produce eggs)
and its preference for livestock blood, Day−1

σ2 The maximum number of mosquito bites a host can
sustain per Day. This is a function of the host’s exposed
surface area, the efforts it takes to prevent mosquito
bites (such as switching its tail), and any vector control
interventions in place to kill mosquitoes encountering
hosts or prevent bites, Day−1

β2a Probability of transmission of infection from an infec-
tious mosquito to a susceptible host given that a contact
between the two occurs, dimensionless, where a = 1 and
a = 3

βa2 Probability of transmission of infection from an infec-
tious host to a susceptible mosquito given that a contact
between the two occurs, dimensionless, where a = 1 and
a = 3

β̃a2 Probability of transmission of infection from an asympto-
matic host to a susceptible mosquito given that a contact
between the two occurs, dimensionless

γa Per capita rate of progression of mosquitoes from the
exposed state to the infectious state, Day−1.
1/γa is the average duration of the latent period, Days,
where a = 1 and a = 3

ε2 Per capita recovery rate for livestock from the infectious
state to the recovered state, Day−1.
1/ε2 is the average duration of the infectious period,
Days

ε̃2 Per capita recovery rate for livestock from the asympto-
matic state to the recovered state. 1/ε̃2 is the average
duration of the infectious asymptomatic period, Day−1

m2 Per capita disease-induced death rate for livestock, Day−1

Table A.2: The parameters for the RVF model (2.1-2.3) and their dimensions
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Computation of the basic
reproduction number

B.1 Computation of the basic reproduction num-

ber in a non-periodic environment

First, we calculate the basic reproduction number for the vertical transmission
route, R0,V . For this case, the only compartments involved are the infected eggs,
exposed adults, and infectious adults of the Aedes population. Thus we have, in
the notation of reference [101],

d

dt

U1

E1

I1

 = Fv − Vv =

 0
0

θ1U1

−
 θ1U1 − b1q1I1

γ1E1 + d1
E1N1

K1

d1
I1N1

K1
− γ1E1

 (B.1)

The corresponding Jacobian matrices at the disease free equilibrium of the above
system are

F 0
v =

 0 0 0
0 0 0
θ1 0 0

 , V 0
v =

θ1 0 −b1q1

0 γ1 + µ1 0
0 −γ1 µ1

 (B.2)

The basic reproduction number for the vertical transmission is calculated as the
spectral radius of the next generation matrix, (FvV

−1
v )

R0,V =
b1q1

µ1

=
b1q1K1

d1N1

.

Next, we calculate the horizontal transmission basic reproduction number, R0,H .
For this mode of transmission we must evaluate the exposed and infectious com-
partments of the Aedes, Culex and asymptomatic and infectious compartments
of the livestock populations. To simplify the calculation of R0, we transform our
system to consider the percent of the population made up by each compartment,
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xi = Xi
Ni

, where Xi is a compartment of population i,

d

dt

 e1
i1
a2
i2
e3
i3

 = FH − VH =


l1β12i2N2(1−e1−i1)+l1β̃12a2N2(1−e1−i1)

0
(1−θ2)l1β21i1N1(1−a2−i2−r2)+(1−θ2)l3β23i3N3(1−a2−i2−r2)

θ2l1β21i1N1(1−a2−i2−r2)+θ2l3β23i3N3(1−a2−i2−r2)

l3β32i2N2(1−e3−i3)+l3β̃32a2N2(1−e3−i3)
0

−


(γ1+d1)e1
b1i1−γ1e1−θ1u1

(ε̃2+d2)a2−m2i2a2

(ε2+d2+m2)i2−m2(i2)2

(γ3+d3)e3
b3i3−γ3e3


(B.3)

where l1 = σ1σ2

σ1N1+σ2N2
and l3 = σ3σ2

σ3N3+σ2N2
.

The corresponding Jacobian matrices at the disease free equilibrium of the above
system are:

F 0
H =


0 0 l01β̃12N0

2 l01β12N0
2 0 0

0 0 0 0 0 0
0 (1−θ2)l01β21N0

1 0 0 0 (1−θ2)l03β23N0
3

0 θ2l01β21N0
1 0 0 0 θ2l03β23N0

3

0 0 l03β̃32N0
2 l03β32N0

2 0 0
0 0 0 0 0 0

 ,

V 0
H =


γ1+b1 0 0 0 0 0
γ1 b1 0 0 0 0
0 0 ε̃2+b2 0 0 0
0 0 0 ε2+b2+m2 0 0
0 0 0 0 γ3+b3 0
0 0 0 0 −γ3 b3


(B.4)

where l01 = σ1σ2

σ1N0
1 +σ2N0

2
and l03 = σ3σ2

σ3N0
3 +σ2N0

2
.

The spectral radius of F 0
H(V 0

H)−1 is given by:

R0,H =√
(1−θ2)(l03)2β23β̃32γ3N

0
2N

0
3

b3(ε̃2+b2)(γ3+b3)
+

(1−θ2)(l01)2β21β̃12γ1N
0
1N

0
2

b1(ε̃2+b2)(γ1+b1)
+
θ2(l03)2β23β32γ3N

0
2N

0
3

b3(ε2+b2+m2)(γ3+b3)
+
θ2(l01)2β21β12γ1N

0
1N

0
2

b1(ε2+b2+m2)(γ1+b1)

(B.5)

When strictly defined as the reproductive rate of the pathogen, R0 for the overall
model that accounts for both vertical infection and horizontal transmission is given
by:

R0 =
b1q1

2µ1

+
1

2

√
R2

0,V + 4R2
0,H (B.6)

B.2 Computation of the basic reproduction num-

ber in a periodic environment

The concept behind the definition of R0 in a periodic environment as the spectral
operator on space of periodic functions is described below, and for more details see
[103, 104].
For all t ∈ R and x ≥ 0, let K(t, x) be a nonnegative n × n matrix. Assume
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that K(t, x) is a periodic function of t of period α for all x ≥ 0. The idea be-
hind the function K(t, x) is an epidemic model with n “infected” compartments
(I1, I2, · · · , In), which may be infectious or latent. The coefficient Ki,j(t, x) in row i
and column j represents the expected number of individuals in compartment Ii that
one individual in compartment Ij “generates” at the beginning of an epidemic per
unit time at time t if it has been in compartment Ij for x units of time. The verb
’generates’ cover the case where individuals in compartment Ij infect individuals in
compartment Ii, but also the case where individuals in compartment Ij just move
to compartment Ii [104].

By linearising the system (3.1-3.3) near the disease-free equilibrium point

(
b1N1

θ1

, 0,
b1K1

d1

, 0, 0,
b2K2

d2

, 0, 0, 0,
b3N3

θ3

,
b3K3

d3

, 0, 0)

we have:

U̇1(t) = bs1(t)q1I1 − θ1U1

Ė1(t) =
σ1σ2β12

σ1N1 + σ2N2

I2S
0
1 +

σ1σ2β̃12

σ1N1 + σ2N2

A2S
0
1 − (γ1 − d1

N1

K1

)E1

İ1(t) = γ1E1 + θ1U1 − d1
I1N1

K1

,

Ȧ2(t) = (1− θ2)
σ1σ2β21(t)

σ1N1 + σ2N2

I1S
0
2 + (1− θ2)

σ3σ2β23(t)

σ3N3 + σ2N2

I3S
0
2 − (ε̃2 − d2

N2

K2

)A2

İ2(t) = θ2
σ1σ2β21(t)

σ1N1 + σ2N2

I1S
0
2 + θ2

σ3σ2β23(t)

σ3N3 + σ2N2

I3S
0
2 − (ε2 +m2 + d2

N2

K2

)I2

Ė3(t) =
σ3σ2β32

σ3N3 + σ2N2

I2S
0
3 +

σ3σ2β̃32

σ3N2 + σ2N2

A2S
0
3 − (γ3 + d3

N3

K3

)E3

İ3(t) = γ3E3 − d3
I3N3

K3

,

(B.7)
The transmissibility number R̄0 is defined through the spectral radius of a linear
integral operator on a space of periodic functions, thus the operator K(t, x) is
given by:

0 0 b1q1e−µ1x 0 0 0 0

0 0 0 l01β̃12S0
1e
−v1x l01β12S0

1e
−v2x 0 0

θ1e−θ1x γ1e−v3x 0 0 0 0 0
0 0 (1−θ2)l01β21S0

2e
−µ1x 0 0 0 (1−θ2)l03β23S0

2e
−µ3x

0 0 θ2l01β21S0
2e
−µ1x 0 0 0 θ2l03β23S0

2e
−µ3x

0 0 0 l03β̃32S0
3e
−v1x l03β32S0

3e
−v2x 0 0

0 0 0 0 0 γ3e−v4x 0


(B.8)

where v1 = (ε̃2 + µ2), v2 = (ε̃2 +m2 + µ2), v3 = (γ1 + µ1), v4 = (γ3 + µ3).
Thus the integral operator Gj gives:

Gj = b1q1
µ1+2πji

• θ1
θ1+2πji

+
γ1

γ1+µ1+2πji
• (l01)2β21S

0
2S

0
1

µ1+2πji

[
(1−θ2)β̃12
ε̃2+µ2+2πji

+
θ2β12

ε2+m2+µ2+2πji

]
+ γ3

γ3+µ3+2πji
• (l03)2β23S

0
3S

0
2

µ3+2πji

[
(1−θ2)β̃32
ε̃2+µ2+2πji

+
θ2β32

ε2+m2+µ2+2πji

] (B.9)



Appendix C

Basic reproduction number,
Stability analysis and Parameter
values

C.1 Computation of the basic reproduction num-

ber

To compute the analytical expression of R0, we express the model equations (4.1-4.4)
in vector form as the difference between the rate of new infection in compartment
i, Fi and the rate of transfer between compartment i and all other compartments
due to other processes, Vi [101]. In this settings only disease compartments are
involved in the computation of the next-generation operator, which are: Aedes
infected eggs U1, Aedes exposed and infectious adults, infectious livestock, Culex
exposed and infectious adults and the infectious compartments of tick populations
with respect to their attachment status. Thus, the corresponding system in matrix
form is

˙

U1

E1

I1

I2

E3

I3

Ia
Id


= Fi − Vi =



µ1q1I1

g1I2S1

0
g3I1S2 + g4I3S2 + β2tIaS2

g5I2S3

0
βt2I2Sa

0


−



θ1U1

(γ1 + µ1)E1

µ1I1 − γ1E1 − θ1U1

(ε2 +m2 + µ2)I2

(γ3 + µ3)E3

µ3I3 − γ3E3

δN2Ia − αN2Id
1+Sa+Ia

αN2Id
1+Sa+Ia

+ dtId − δN2Ia


,

(C.1)

where g1 =
σ1σ2β12

σ1A0 + σ2L0

, g3 =
σ1σ2β21

σ1A0 + σ2L0

, g4 =
σ3σ2β23

σ3C0 + σ2L0

and g5 =

σ3σ2β32

σ3C0 + σ2L0

.

The corresponding Jacobian matrices at the disease free equilibrium of the above
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system are:

F =



0 0 µ1q1 0 0 0 0 0
0 0 0 g1S

0
1 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 g3S

0
2 0 0 g4S

0
2 β2tS

0
2 0

0 0 0 g5S
0
3 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 βt2Sa 0 0 0 0
0 0 0 0 0 0 0 0


,

V =



θ1 0 0 0 0 0 0 0
0 γ1 + µ1 0 0 0 0 0 0
−θ1 −γ1 µ1 0 0 0 0 0

0 0 0 ε2 +m2 + µ2 0 0 0 0
0 0 0 0 γ3 + µ3 0 0 0
0 0 0 0 −γ3 µ3 0 0
0 0 0 0 0 0 δN2 − αN2

1+S0
a

0 0 0 0 0 0 −δN2
αN2

1+S0
a

+ dt



.

(C.2)

C.2 Global stability analysis

To check whether matrix D − CA−1B is Metzler stable we repeat lemma 4.3. In
our case we have,

A =

(
−(γ3 + µ3) 0

0 −µ3

)
, B =

(
(µ1−µ1q1)(γ1+µ1)g5S̄3β2tS̄2

1−R1
0

0

0 0

)
,

C =

(
0 (µ1−µ1q1)(γ1+µ1)βt2S̄ag4S̄2

1−R1
0

0 0

)
, D =

(
−δN2 + (µ1−µ1q1)(γ1+µ1)βt2S̄aβ2tS̄2

1−R1
0

0

δN2 − δN2

1+S̄a
− dt

)
.

Clearly, A is a Metzler stable matrix and D − CA−1B = D, which is a stable

Metzler matrix if
(
−δN2 + (µ1−µ1q1)(γ1+µ1)βt2S̄aβ2tS̄2

1−R1
0

)
×
(
− δN2

1+S̄a
− dt

)
≥ 0.
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C.3 Model parameter values

Parameter Baseline Range Reference

βt2 0.03 0.001-0.05 Assumed
β2t 0.0125 0.005-0.02 Assumed
α 0.165 0.03-0.5 Assumed
δ 0.275 0.05-0.5 Assumed
bt 0.05 0.01-0.1 Assumed
dt 0.01 0.01-0.1 Assumed

Table C.1: Parameters for the RVF model for high rainfall and moderate
temperature (wet season) for equations (4.1-4.4) with baseline values, range and
references. Details of other model parameters are given in Table A.1 in Appendix

A.



Appendix D

Stochastic Processes and Analysis

D.1 Forces of Infection Approximation

Following the approach in Chitnis et al [5] we derive disease forces of infection. Let
α1 be the rate at which a mosquito would bite a ruminant, defined as a function of
its gonotrophic cycle. Let also α2 be the maximum number o bites a particular
ruminant can sustain per unit time. Thus, α1N1 gives the total number of bites
that a mosquito would achieve per unit time and α2N2 gives the availability of
livestock. Assuming that the total number of mosquito-livestock contacts is defined
as half the harmonic mean of α1N1 and α2N2,

a = a(N1, N2) =
α1N1α2N2

α1N1 + α2N2

. (D.1)

Hence, the number of bites per livestock per unit time and the number of bites per
mosquito per unit time can be defined as

a2 = a2(N1, N2) = a(N1, N2)/N2 =
α1α2N1

α1N1 + α2N2

, (D.2)

a1 = a1(N1, N2) = a(N1, N2)/N1 =
α1α2N2

α1N1 + α2N2

, (D.3)

respectively. Therefore, the force of infection from mosquitoes to livestock, λ21,
can be defined as the product of the number of mosquito bites that a ruminant
can sustain per unit time, a2, the probability of successful infection transmission
from an infected mosquito to a susceptible ruminant, β21, and the prevalence of
infectious mosquitoes,I1/N1. Then, λ21 is given as follows,

λ21 = β21
α1α2N1

α1N1 + α2N2

I1

N1

. (D.4)

The force of infection from livestock to mosquitoes, λ12, can be defined as a product
of the number of livestock bites one mosquito has per unit time, a1, the probability
of successful infection transmission from n infected ruminant to a susceptible
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mosquito, β12, and the prevalence of the disease in livestock, I2/N2. Then, λ12 is
given as follows,

λ12 = β12
α1α2N2

α1N1 + α2N2

I2

N2

. (D.5)

These forces of infections assume in principle that the total number of mosquito-
livestock bites depend on the size of both population species. This formalism
implies that both species contributes to the structure of contact rates mainly
driven by the ratio mosquitoes to livestock and livestock availability to mosquitoes.
However, if we are interested in the situation where mosquitoes bite hosts at a
constant rate distributed uniformly among all hosts within an area, we obtain a
frequency-dependent transmission mechanism with respect to the host population
[21]. Thus, the above forces of infections λ21 and λ12 can be collapsed into simplified
versions, by changing the contact structure,

a = a(N1, N2) =
α1N1α2N2

α1N1 + α2N2

=
α1α2N1

α1(N1/N2) + α2

. (D.6)

Since, we are interested on forces of infections in which contact rates or biting rates
are expected to be constant irrespective of the number of available hosts, then it is
reasonable to find the approximation as N2 tends to infinity. That is,

a′ = lim
N2→∞

a′ = lim
N2→∞

α1α2N1

α1(N1/N2) + α2

= α1N1. (D.7)

Hence, the corresponding number of bites per livestock per unit time is then given
by a′2 = a′/N2 = α1N1/N2 = α1m0, where m0 is the ratio female mosquitoes to
livestock. Similarly, the mosquito biting rate, that is, the number of bites per
unit time is given by a′1 = a′/N1 = α1. Denoting, α1 = α, yield the following
standard forces of infections for mosquito transmitted diseases, λ′21 = β21αm0

I1
N1

and λ′12 = β12α
I2
N2

.

D.2 Stochastic Processes

D.2.1 Branching process approximation

Branching processes play a fundamental role in epidemic theory, underpinning our
understanding of the threshold behaviour of epidemics and the calculation of both
probability of disease extinction and invasion, while providing a simple way for
modelling the spread of an infection at early stages of the epidemic [150, 256]. In
multi-type branching process, individuals in the population are categorised into a
finite number of types and each individual behaves independently. An individual of
given type can produce offspring of possibly all types and individuals of the same
type have the same offspring distribution [173, 174]. Given that infectious hosts and
infectious vectors are the only sources of infection, the branching process is applied
only to these infectious groups keeping the susceptibles at disease-free steady state
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[257]. Infectious vectors produce infected host when they bite a susceptible animal
as well as infected vector through vertical transmission. Infectious hosts produce
infected vectors when bitten by susceptible vector. Therefore, the number of
infectives in the host-vector system during the early stages of the epidemic process
is approximated by a two type branching process. Here infectious vectors are of
type 1 and infectious hosts are of type 2. Note that first we consider the host-vector
dynamics then later the vector-vector transmission.

D.2.2 Disease threshold conditions

Using the theory of multitype branching processes we have approximated the
nonlinear stochastic model near the disease-free equilibrium (DFE). With this
approximation we can now derive an estimate for the probability of disease extinc-
tion or a major outbreak after introduction of a single infective individual. Recall
that we have two types of infective individuals: type 1 infective vectors and type
2 infective animals. Let {Xij, i, j = 1, 2} be the number of infectives of type j
produced by an infective of type i and mij = E[Xij]. We now derive the offspring
distributions and expected numbers for the approximating branching process.
An infectious Aedes mosquito produces at most one single infectious host, but no
other offspring, hence X11 ≡ 0. While on the ground an infectious Aedes either
dies at rate µ1 before surviving the intrinsic incubation period that is exponentially
distributed with intensity γ1, thus P (X12 = 0) = µ1

γ1+µ1
. Or the infected Aedes

mosquito survives the intrinsic incubation period with probability γ1

γ1+µ1
and infects

a susceptible host according to a Poisson process with intensity α1α2β21

α1N1+α2N2
within a

period of time T1 = 1
µ1

, since a mosquito once infected remains infected throughout

its lifespan. For mathematical tractability this intermediate stage (incubation
period) is not accounted for in this study.
Here we make the simplifying assumption that the number of infectious Aedes
mosquitoes is very small, that is I1 = 1.
Conditioning on T1, the Aedes mosquito lifespan, the expected number of susceptible
hosts that are infected before this period ends is

E[X12] = E(E[X12|T1]) = E
(

α1α2β21

α1N1+α2N2
S0

2T1

)
= α1α2β21

α1N1+α2N2
S0

2E[T1]

= α1α2β21

α1N1+α2N2
S0

2
1
µ1

(D.8)

Next, an infectious host produces one infected Aedes mosquito if bitten by sus-
ceptible Aedes mosquito, hence X22 ≡ 0. A host is infectious for a time period
that is exponentially distributed with intensity ε2 + µ2 (either it dies naturally
at rate µ2 or it recovers at the rate ε2). During this period it infects susceptible
Aedes according to a Poisson process with intensity α1α2β12

α1N1+α2N2
. Here we make the

simplifying assumption that the number of infectious host is very small, that is
I2 = 1.
Thus, conditioning on T2 = ε2 + µ2, the length of infectious period of a host, the
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expected number of susceptible Aedes that are infected before this period ends is

E[X21] = E(E[X21|T2]) = E
(

α1α2β12

α1N1+α2N2
S0

1T2

)
= α1α2β12

α1N1+α2N2
S0

1E[T2]

= 1
ε2+µ2

α1α2β12

α1N1+α2N2
S0

1 .
(D.9)

Let {mij}2
ij=1 be the expected matrix of the form

M =

(
0 α1α2β21

α1N1+α2N2
S0

2
1
µ1

1
ε2+µ2

α1α2β12

α1N1+α2N2
S0

1 0

)
(D.10)

If the largest real-valued eigenvalue of M is less than or equal to unity, the epidemic
dies out fairly quickly, while if the largest real-valued eigenvalue of M is greater
than unity, there is a positive probability that the epidemic will take off [174].
The eigenvalues of M are the roots of the characteristic polynomial of matrix M .
Since M is a regular matrix, it has all positive entries, then M has a positive
eigenvalue λ that is larger than any other eigenvalue, which is given by

λ =

√
α1α2β21

α1N1 + α2N2

S0
2

1

µ1

1

ε2 + µ2

α1α2β12

α1N1 + α2N2

S0
1 (D.11)

R0,H =
√
R21R12 is the horizontal basic reproduction number, R12 = 1

ε2+µ2

α1α2β12

α1N1+α2N2
S0

1

is the number of new infections in Aedes mosquitoes generated by single infected
livestock and R21 = α1α2β21

α1N1+α2N2
S0

2
1
µ1

is the number of new infections in livestock
generated by single infected Aedes mosquito.
Since we are interested in the case where the largest eigenvalue is greater than
unity, then λ > 1 implies that λ2 > 1. This yields the following: R0,H = R21R12.
We now relax the above assumption about transovarial transmission in Aedes
mosquito species. Infectious female Aedes may infect their offspring during their
life time which is exponentially distributed with intensity d1, with the proportion
q1b1, hence the P (X11 > 1) = q1b1 and the expected number of infected Aedes
mosquitoes produced by a parent is

m11 = E[X11] =
q1b1

µ1

= q1 (D.12)

since at early stage of the epidemic the system is at equilibrium. Now, the threshold
Γ can be written as

Γ =
q1

2
+

1

2

√
q2

1 +R2
0,H (D.13)

Γ is the threshold quantity when the system is in equilibrium at the time of disease
introduction. From equation (D.13) we notice that Γ has a monotonic dependence
on all model parameters. When Γ ≤ 1, the epidemic dies out fairly quickly since
the probability of extinction is one and when Γ > 1, the epidemic may take off
in the system and has a chance of becoming endemic since there is a positive
probability of infection survival.
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D.2.3 Probability of a major outbreak and disease extinc-
tion

With branching process theory we know that the likelihood of invasion depends
not only on the average number of secondary infections (i.e. R0), but also on
their distribution [150]. Let the probability generating function of the offspring
distribution of infectives produced by an infective of type i(i = 1, 2), be Gi(s) =

E[
∏2

j=1 s
Xij
j ], where Xij is as defined in the previous section and s = (s1, s2).

The probability that a minor outbreak of the disease occurs given that there are aj
infectives initially of each of the two types is π = πa1

1 π
a2
2 . Since M is irreducible,

we know that π1 = π2 if Γ ≤ 1 or that ϕ(π1, π2) is the unique root of s = G(s)
that satisfies π1 < 1 and π2 < 1 if Γ > 1.
Since X11 ≡ 0 in the horizontal transmission and X12 is Poisson distributed
conditioned on the infectious period T1 = t (as explained in the previous section),
the probability generating function of offspring produced by one infected Aedes
mosquito is

G1(s) = E[sX11
1 sX12

2 ] =
∑

x s
x
2P (X12 = x) =

∑
x s

x
2

∫∞
0
µ1e

−µ1t e
−g3N2t(g3N2t)x

x!
dt

= µ1

∫∞
0
e−(µ1+g3N2)t

{∑∞
x=0

(g3N2s2t)x

x!

}
dt = µ1

∫∞
0
e−(µ1+g3N2)teg3N2s2tdt

= µ1

µ1+g3N2−g3N2s2
= 1

1+R21(1−s2)

(D.14)
Now in the presence of vertical transmission, that is, X22 6= 0 and applying formula
(4.8) in [150] we obtain that

G1(s) = E[sX11
1 sX12

2 ] =
1

1 +R11(1− s1) +R21(1− s2)
. (D.15)

As X22 ≡ 0 and X2 is Poisson distributed conditioned on the infectious period
T2 = t, the probability generating function of Aedes offspring produced by one
infectious host is

G1
2(s) = E[sX21

1 ] =
∑

x s
x
1P (X21 = x)

=
∑

x s
x
1

∫∞
0

(ε2 + µ2)e−(ε2+µ2)t e
−g2N1t[g2N1t]x

x!
dt

= (ε2 +m2 + µ2)
∫∞

0
e−[ε2+µ2+g2N1]t

{∑∞
x=0

[g2N1s1t]x

x!

}
dt

= (ε2 + µ2)
∫∞

0
e−[ε2+µ2+g2N1]teg2N1s1tdt

= ε2+µ2

ε2+µ2+g2N1−g2N1s1
= 1

1+R12(1−s1)

(D.16)

In order to solve for extinction probabilities and probabilities of a major outbreak,
we need to find the solution of the following system of two equations

G1(s1, s2) = s1 and G2(s1, s2) = s2. (D.17)

Given that we have a two-step life cycle from one type to another and then back
to the original [150], the generating functions can be written as a composition
function of the two single step generating functions [258]. Therefore, instead of
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solving equations (D.17) we solve the following equations:

G1(G2(s1)) = s1 and G2(G1(s1, s2)) = s2. (D.18)

The vector (s1, s2) = (1, 1) is always a solution. If Γ ≤ 1 it is the only solution,
whereas if Γ > 1 there are another solutions with all the components of the vector
less than 1 [259], thus, the extinction probabilities are given by πi = min {1, si}
for i = 1, 2.

D.3 Analytical Analysis of the Stochastic Model

In this appendix we present an elegant mathematical formulation of the stochastic
dynamics due to van Kampen’s [157] system-size expansion method. In the first
part we present the details of the mean-field version of the stochastic model. In
the second part, the details of the calculation of the power spectral density from a
stochastic Fokker-Planck equation. Then, stability analysis of the fixed points of
the derived deterministic model.

The deterministic limit

First we write the master equation (5.4) in its generalized form Detailed expansion
about the master equation (5.4) is

dP (s2,i2,i1;t)
dt =

T (s2, i2, i1|s2 + 1, i2 − 1, i1)P (s2 + 1, i2 − 1, i1; t) + T (s2, i2, i1|s2, i2, i1 − 1)P (s2, i2, i1 − 1; t)
+T (s2, i2, i1|s2 − 1, i2, i1)P (s2 − 1, i2, i1; t) + T (s2, i2, i1|s2 + 1, i2, i1)P (s2 + 1, i2, i1; t)
+T (s2, i2, i1|s2, i2, i1 + 1)P (s2, i2, i1 + 1; t) + T (s2, i2, i1|s2, i2 + 1, i1)P (s2, i2 + 1, i1; t)
−[T (s2 − 1, i2 + 1, i1|s2, i2, i1) + T (s2, i2, i1 + 1|s2, i2, i1) + T (s2 + 1, i2, i1|s2, i2, i1)
+T (s2 − 1, i2, i1|s2, i2, i1) + T (s2, i2, i1 − 1|s2, i2, i1) + T (s2, i2 − 1, i1|s2, i2, i1)]P (s2, i2, i1; t).

(D.19)

This gives a complete description of the time evolution of the temporal model, from
which we can obtain the deterministic analogues [169]. Following the notation and
elaboration in [146], a straight forward way is to multiply (D.19) by s2, i2 and i1 in
turn and subsequently to sum over all allowed values of s2, i2 and i1, and to take
all the boundary values zero [169]. This gives equations for the mean S2 = 〈s2〉,

I2 = 〈i2〉 and I1 = 〈i1〉. For S2 = 〈s2〉 =
N2∑

s2,i2=0

N1∑
i1=0

s2P (s2, i2, i1; t), the mean-field

theory takes the form

dS2

dt
= d〈s2〉

dt
=

N2∑
s2,i2=0

N1∑
i1=0

T (s2 + 1, i2, i1|s2, i2, i1)P (s2, i2, i1; t)

−
N2∑

s2,i2=0

N1∑
i1=0

[T (s2 − 1, i2 + 1, i1|s2, i2, i1) + T (s2 − 1, i2, i1|s2, i2, i1)]P (s2, i2, i1; t)

(D.20)
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A similar way gives the equations for I2 = 〈i2〉 and I1 = 〈i1〉:

dI2

dt
=
d〈i2〉
dt

= (D.21)

N2∑
s2,i2=0

N1∑
i1=0

[T (s2 − 1, i2 + 1, i1|s2, i2, i1)− T (s2, i2 − 1, i1|s2, i2, i1)]P (s2, i2, i1; t)

(D.22)

and

dI1

dt
=
d〈i1〉
dt

= (D.23)

N2∑
s2,i2=0

N1∑
i1=0

[T (s2, i2, i1 + 1|s2, i2, i1)− T (s2, i2, i1 − 1|s2, i2, i1)]P (s2, i2, i1; t)

(D.24)

Given the derived equations (D.20)-(D.24), we now take the mean-field limits,
N1, N2 → ∞, which allows us to take the replacement 〈i1s2〉 = 〈i1〉〈s2〉 and
〈i2(N1 − i1)〉 = 〈i2〉〈N1 − i1〉 [146, 169]. When applying the following fractional
variables

φ1 = lim
N2→∞

S2

N2

, φ2 = lim
N2→∞

I2

N2

, ψ = lim
N1→∞

I1

N1

(D.25)

yield the following set of deterministic equations:

dφ1

dt
= −β21α

′m0ψφ1 + µ2(1− φ1),
dφ2

dt
= β21α

′m0ψφ1 − (ε2 + µ2)φ2,
dψ
dt

= β12α
′φ2(1− ψ) + µ1q1ψ − µ1ψ.

(D.26)

D.3.1 The system-size expansion and analysis of the fluc-
tuations

van Kampen’s system expansion method [157], is an appropriate technique for
characterizing disease fluctuations in order to investigate the effects of stochasticity
in our model and for finding stochastic corrections to the resulting deterministic
equations for large N1 and N2 [169]. To do so, we transform the stochastic discrete
variables σ = (s2, i2, i1) to depend into new stochastic variables ζ = (x1, x2, x3) as
follows:

s2 = N2φ1 +
√
N2x1,

i2 = N2φ2 +
√
N2x2,

i1 = N1ψ +
√
N1x3.
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Then, the probability distribution P (s2, i2, i1; t) is now written as a function of the
new variables x1, x2, x3 as follows:

dP

dt
=
∂Π

∂t
−
√
N2

dφ1

dt

∂Π

∂x1

−
√
N2

dφ2

dt

∂Π

∂x2

−
√
N1

dψ

dt

∂Π

∂x3

. (D.27)

Before going further, we introduce an operator in the following form

ε±1
ζ = 1± 1√

N2

∂

∂ζ
+

1

2N2

∂2

∂ζ2
,

which yield the following step operators [157, 169],

ε±1
s2
f(s2, i2, i1) = f(s2 ± 1, i2, i1),

ε±1
i2
f(s2, i2, i1) = f(s2, i2 ± 1, i1),

ε±1
i1
f(s2, i2, i1) = f(s2, i2, i1 ± 1),

which are then used to rewrite the master equation (D.19) with transition rates of
equations (5.1-5.2) as

dP (s2,i2,i1;t)
dt =

[(εs2ε
−1
i2
− 1)T (s2 − 1, i2 + 1, i1|s2, i2, i1) + (ε−1

i1
− 1)T (s2, i2, i1 + 1|s2, i2, i1)

+(ε−1
s2 − 1)T (s2 + 1, i2, i1|s2, i2, i1) + (εs2 − 1)T (s2 − 1, i2, i1|s2, i2, i1)

+(εi1 − 1)T (s2, i2, i1 − 1|s2, i2, i1) + (εi2 − 1)T (s2, i2 − 1, i1|s2, i2, i1)]P (s2, i2, i1; t)

=

{
(εs2ε

−1
i2
− 1)β21α

′m0i1s2 + (ε−1
i1
− 1)[β12α

′i2(N1 − i1) + µ1q1i1]

+(ε−1
s2 − 1)µ2N2 + (εs2 − 1)µ2s2 + (εi2 − 1)(ε2 + µ2)i2 + (εi1 − 1)µ1i1

}
P (s2, i2, i1; t).

(D.28)

Expanding the step operators ε±1
s2

and ε±1
i2

in a power series in N
−1/2
2 , ε±1

i1
in N

−1/2
1 ,

respectively,

ε±1
s2

= 1± 1√
N2

∂

∂x1

+
1

2N2

∂2

∂x2
1

,

ε±1
i2

= 1± 1√
N2

∂

∂x2

+
1

2N2

∂2

∂x2
2

,

ε±1
i1

= 1± 1√
N1

∂

∂x3

+
1

2N1

∂2

∂x2
3

,
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and then substituting these operators into equation (D.28), we get

dP
dt ={[(

1 + 1√
N2

∂
∂x1

+ 1
2N2

∂2

∂x2
1

)(
1− 1√

N2

∂
∂x2

+ 1
2N2

∂2

∂x2
2

)
− 1
]
β21α

′m0i1s2

+
(
− 1√

N1

∂
∂x3

+ 1
2N1

∂2

∂x2
3

)
[β12α

′i2(N1 − i1) + µ1q1i1] +
(
− 1√

N2

∂
∂x1

+ 1
2N2

∂2

∂x2
1

)
µ2N2

+
(

1√
N2

∂
∂x1

+ 1
2N2

∂2

∂x2
1

)
µ2s2 +

(
1√
N2

∂
∂x2

+ 1
2N2

∂2

∂x2
2

)
(ε2 + µ2)i2

+
(

1√
N1

∂
∂x3

+ 1
2N1

∂2

∂x2
3

)
µ1i1

}
Π(x1, x2, x3; t).

(D.29)

Then, expanding Eq.D.29 and ignoring higher order terms and drawing a comparison
of which with equation (D.27) order by order yields the so-called macroscopic
equations

dφ

dt
= f1(φ1, φ2, ψ),

dφ2

dt
= f2(φ1, φ2, ψ),

dψ

dt
= (φ1, φ2, ψ), (D.30)

to leading order, where

f1(φ1, φ2, ψ) = −β21α
′m0ψφ1 + µ2(1− φ1),

f2(φ1, φ2, ψ) = β21α
′m0ψφ1 − (ε2 + µ2)φ2,

f3(φ1, φ2, ψ) = β12α
′φ2(1− ψ) + µ1q1ψ − µ1ψ,

(D.31)

which are indeed the equations (D.26). The next-to-leading order gives rise to a
Fokker-Planck equation for the fluctuation variables x1, x2, x3

∂Π

∂t
= −

3∑
k,l=1

Akl
∂(xlΠ)

∂xk
+

1

2

3∑
k,l=1

Bkl
∂2Π

∂xk∂xl
. (D.32)

To obtain the coefficients Akl and Bkl we expand the equation (D.32) and draw
comparison order by order with equation (D.29). Since we are interested in
fluctuations about the endemic equilibrium point E∗ = (φ∗1, φ

∗
2, ψ

∗) defined in
equation (D.26) of the deterministic model, both matrix A = (Akl)3×3 and B =
(Bkl)3×3 are evaluated at this fixed point, whose explicit form are found to be

A =

 ∂f1
∂φ1

0
√

1/m0
∂f1
∂ψ

∂f2
∂φ1

∂f2
∂φ2

√
1/m0

∂f2
∂ψ

0
√
m0

∂f3
∂φ2

∂f3
∂ψ


φ1=φ∗1,φ2=φ∗2,ψ=ψ∗

and B =
(
B11 B12 0
B21 B22 0

0 0 B33

)
φ1=φ∗1,φ2=φ∗2,ψ=ψ∗

(D.33)
with

B11 = β21α
′m0ψφ1 + µ2(1 + φ1),

B12 = B21 = −2β21α
′m0ψφ1,

B22 = β21α
′m0ψφ1 + (ε2 + µ2)φ2,

B33 = β12α
′φ2(1− ψ) + µ1q1ψ + µ1ψ.
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D.3.2 Power spectral calculation and its peak

To calculate the power spectra of the fluctuations around the stationary state,
we have to make a Fourier analysis, so it is first essential to formulate a set of
Langevin equations of the stochastic variables xk(t), (k = 1, 2, 3). The Langevin
equations corresponding to equation (D.32) are

dxk
dt

=
3∑
l=1

Aklxl + ξk(t), (k, l = 1, 2, 3) (D.34)

which are three differential equations describing the stochastic behaviour of the
model at large but finite N . The variables xl(l = 1, 2, 3) are stochastic corrections
to the deterministic variables s2, i2, i1, and ξk(t)(k = 1, 2, 3) are Gaussian white
noises with zero mean and a correlation function given by

〈ξk(t)ξl(t′)〉 = Bklδ(t− t′).

Taking the temporal Fourier transform x̃k(ω) =
∞∫
−∞

e−iωtxk(t)dt of (D.34) gives

−iωx̃k(ω) =
3∑
l=1

Aklx̃l(ω) + ξ̃k(ω), (k, l = 1, 2, 3) (D.35)

with

〈ξ̃k(ω)ξ̃l(ω
′)〉 = Bkl(2π)δ(ω + ω′).

Actually, this Fourier transform is a system with three coupled linear algebraic
equations which can be used to obtain a closed form expression for the power
spectra. Therefore, solving equation (D.35), we obtain

x̃1(ω) = (A23A32−A22A33)ξ̃1−A13A32ξ̃2+A13A22ξ̃3+ω2ξ̃1+iω[−(A22+A33)ξ̃1+A13ξ̃3]
D(ω)

,

x̃2(ω) = A21A33ξ̃1−A11A33ξ̃2+(A11A23−A21A13)ξ̃3+ω2ξ̃2+iω[A21ξ̃1−(A11+A33)ξ̃2+A23ξ̃3]
D(ω)

,

x̃3(ω) = A21A32ξ̃1+A11A32ξ̃2−A11A22ξ̃3+ω2ξ̃3+iω[A32ξ̃2−(A11+A22)ξ̃3]
D(ω)

(D.36)
where the denominator D is given by

D(ω) = (iω)3 + trA(iω)2 + Θ(iω) + detA,

trA = A11 + A22 + A33,

Θ = A11A22 + A11A33 + A22A33 − A23A32,

detA = A11A22A33 − A11A23A32 + A21A13A32.
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Averaging the squared moduli of x̃k(k = 1, 2, 3) gives the power-spectra of variables
S2, I2 and I1:

PS2(ω) = 〈|x̃1(ω)|2〉 =
B11ω4+ΓS2

ω2+χS2

|D(ω)|2 ,

PI2(ω) = 〈|x̃2(ω)|2〉 =
B22ω4+ΓI2ω

2+χI2
|D(ω)|2 ,

PI1(ω) = 〈|x̃3(ω)|2〉 =
B33ω4+ΓI1ω

2+χI1
|D(ω)|2 ,

(D.37)

where

|D(ω)|2 = (ω3 −Θω)2 + (detA− trAω2)2,

χS2 = (A23A32 −A22A33)2B11 − 2A13A32(A23A32 −A22A33)B12 + (A13A32)2B22

+ (A13A22)2B33,

ΓS2 = 2(A23A32 −A22A33)B11 − 2A13A32B12 + (A22 +A33)2B11 +A2
13B33,

χI2 = (A21A33)2B11 + (A11A33)2B22 + (A11A23 −A21A13)2B33 − 2A11A21A
2
33B12,

ΓI2 = 2A21A33B12 − 2A11A33B22 +A2
21B11 − 2A21(A11 +A33)B12 + (A11 +A33)2B22

+A2
32B33,

χI1 = (A21A32)2B11 + (A11A32)2B22 + (A11A22)2B33 + 2A11A21A
2
32B12,

ΓI1 = A2
32B22 + (A11 +A22)2B33 − 2A11A22B33.

By using these methods, we can analytically predict the epidemic outbreaks and
fade-outs on a certain disease, as done for several childhood diseases [149].

D.4 Stability analysis of fixed points E0 and E∗

of system (D.26)

First, we give the stability analysis of the disease-free equilibria E0 = (1, 0, 0), the
Jacobian matrix of which is given by

J0 =


−µ2 0 −a

0 −g a

0 b −µ1 (1− q1)

 (D.38)

where a = β21α
′m0, b = β12α

′, g = ε2 + µ2.
From the first column of the Jacobian matrix (D.38) we observe that the matrix
has the eigenvalue λ1 = µ2, and the remaining eigenvalues will be derived from
the reduced 2 × 2 Jacobian matrix J0

1 =
[ −g a
b −µ1(1−q1)

]
, from which we obtain

the trace, tr(J0
1 ) = −g − µ1(1 − q1), which is negative and its determinant is

det(J0
1 ) = gµ1(1− q1)− ab.

Since for local stability it is sufficient to have tr(J0
1 ) < 0 and det(J0

1 ) > 0, so for
determinant to be positive, we need to show that gµ1(1 − q1) − ab > 0, that is
1− ab

gµ1(1−q1)
> 0. Thus, ab

gµ1(1−q1)
< 1, which is the condition for basic reproduction

number, i.e., R0 < 1, and R0 = 1
1−q1

β21α′m0

µ1

β12α′

ε2+µ2
.

Second, the stability analysis of the endemic equilibria E∗ = (φ∗1, φ
∗
2, ψ

∗), with
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φ∗1 = µ2R0+a
(a+µ2)R0

, φ∗2 = µ1µ2(1−q1)(R0−1)
b(a+µ2)

, ψ∗ = µ1µ2g(1−q1)(R0−1)
a(bµ2+µ1g(1−q1))

.
The Jacobian matrix at E∗ is

J∗ =


−aµ2(R0−1)

fh
− µ2 0 −af

bl

aµ2(R0−1)
fh

−g af
bl

0 b
(

1− µ2(R0−1)
fh

)
− bµ2(R0−1)

lm
− µ1 (1− q1)


with f = bµ2 + µ1g(1− q1), m = 1

1−q1
b
µ1
, h = 1

1−q1
a
g

and l = a+ µ2.
The characteristic polynomial of Jacobian matrix J∗ is written as cubic polynomial
about λ denoted as P (λ):

P (λ) = λ3 + Aλ2 +Bλ+ C, (D.39)

all of the coefficients of which are

A =
fhbµ2(R0 − 1) + fhlmµ1(1− q1) + lmaµ2(R0 − 1) + lmgfh+ lmfhµ2

lmfh
> 0 for R0 > 1,

B =
1

lmfh
[amfµ2(R0 − 1) + bgfhµ2(R0 − 1) + abµ2

2(R2
0 − 2R0) + bfhµ2

2(R0 − 1) + abµ2
2

+ lmgfh(1− q1) + almµ1µ2(R0 − 1)(1− q1) + lmfhµ1µ2(1− q1)lmagµ2(R0 − 1)

+ glmfhµ2] > 0 for R0 > 1,

C =
µ2

lmfh
{gabµ2(R2

0 − 2R0) + bgfhµ2(R0 − 1) + glmaµ1(R0 − 1)(1− q1)

+ lmgfhµ1(1− q1) + amf [µ2(R0 − 1)− fh]}.

C > 0 if and only if R0 > 1, given that ψ∗ > 0. Here A > 0, B > 0 and C > 0 for
R0 > 1. Thus equation (D.39) has no root which is positive or zero (Descartes’ rule
of sign). The equation (D.39) will only have negative roots or complex roots with
negative real part if AB − C > 0 according to the (Routh-Hurwitz criteria). Thus
the system is stable about the interior equilibrium point E∗ whenever it exists and
AB − C > 0.



Appendix E

Host reproduction number
approximation

The well known critical epidemiological parameter in terms of disease spread and
control is the basic reproduction number, R0. This threshold condition gives the
average number of secondary cases produced by a single infective individual during
the course of his infectious period in an entirely susceptible population. The value
of this parameter results from the product of three factors: number of susceptible
individuals, transmission rate and infectious period of the infective individual.
From this definition one can easily pick up the relation between R0 and the number
of initial susceptible individuals such that R0 can be estimated from the final size
of the epidemic [248].
Since the progress of infection in livestock can be approximated by an SIR model
describing a closed system without vital dynamics, then the average dynamics of
the system can be approximated by the following equations:

dX
dt

= −βSI
N

,
dY
dt

= βSI
N
− γI,

dZ
dt

= γI,

(E.1)

where X, Y and Z correspond to S, I and R which represent the fraction of sus-
ceptible, infected and recovered respectively. The parameters β, γ represent the
transmission and recovery rates. Given that the total population of livestock is
constant, then Z can be obtained when X and Y are known. In this setting
equation (E.1) reduces to

dX
dt

= −βSI
N

,
dY
dt

= βSI
N
− γI. (E.2)

From the latter, if we divide the second equation by the first we then obtain
dY
dX

= −1 + N
R0X

, which we can integrate w.r.t X to yield

X(0)−X(∞) +
N

R0

ln
X(∞)

X(0)
= Y (∞)− Y (0) = 0. (E.3)
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If X(0) = N , the N −X(∞) is the final size of the outbreak and the fraction of

ultimately infected individuals is given by f = 1− X(∞)
N

such that

R0 = − ln(1− f)

f
. (E.4)
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Exposure of sheep to mosquito bites: Possible consequences for the transmis-
sion risk of Rift Valley Fever in Senegal. Medical and Veterinary Entomology,
18(3):247–255, 2004. ISSN 0269283X. doi: 10.1111/j.0269-283X.2004.00511.x.

[57] Thomas R Kasari, Deborah A Carr, Tracey V Lynn, and J Todd Weaver.
Evaluation of pathways for release of Rift Valley fever virus into domestic
ruminant livestock, ruminant wildlife, and human populations in the contin-
ental United States. Journal of the American Veterinary Medical Association,
232(4):514–529, 2008. ISSN 0003-1488. doi: 10.2460/javma.232.4.514.

[58] Peninah Munyua, Rees M. Murithi, Sherrilyn Wainwright, Jane Githinji,
Allen Hightower, David Mutonga, Joseph Macharia, Peter M. Ithondeka,
Joseph Musaa, Robert F. Breiman, Peter Bloland, and M. Kariuki Njenga.
Rift Valley fever outbreak in livestock in Kenya, 2006-2007. American Journal
of Tropical Medicine and Hygiene, 83(2 SUPPL.):58–64, 2010. ISSN 00029637.
doi: 10.4269/ajtmh.2010.09-0292.

[59] H W Hethcote, H W Stech, and P van den Driessche. Stability analysis for
models of diseases without immunity. Journal of Mathematical Biology, 13
(2):185–198, 1981. ISSN 0303-6812. doi: 10.1007/BF00275213.

[60] Darci R Smith, Brian H Bird, Bridget Lewis, Sara C Johnston, Sarah Mc-
Carthy, Ashley Keeney, Miriam Botto, Ginger Donnelly, Joshua Shamblin,
César G Albariño, Stuart T Nichol, and Lisa E Hensley. Development of
a novel nonhuman primate model for Rift Valley fever. Journal of Vir-
ology, 86(4):2109–20, 2012. ISSN 1098-5514. doi: 10.1128/JVI.06190-11.
URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3302397&tool=pmcentrez&rendertype=abstract.

[61] JAP Heesterbeek. Mathematical Epidemiology of Infectious Diseases: Model
Building, Analysis and Interpretation, volume 26 Suppl 4. 2000. URL http:

//books.google.com/books?hl=en&lr=&id=5VjSaAf35pMC&oi=fnd&

pg=PR11&dq=Mathematical+Epidemiology+of+Infectious+Diseases:

+Model+Building,+Analysis,+and+Interpretation&ots=c0Va_SdseJ&

sig=Nmbccgwx6CEAJ-obdy99k5NXw3w$\delimiter"026E30F$nhttp:

//books.google.com/books?hl=en&lr.

http://www.oie.int/wahis/public.php?page=singlereport$pop=1$ reported=9947
http://www.oie.int/wahis/public.php?page=singlereport$pop=1$ reported=9947
http://web.oie.int/wahis/public.php?page=single-reportpop=1reported=925811
http://web.oie.int/wahis/public.php?page=single-reportpop=1reported=925811
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3302397&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3302397&tool=pmcentrez&rendertype=abstract
http://books.google.com/books?hl=en&lr=&id=5VjSaAf35pMC&oi=fnd&pg=PR11&dq=Mathematical+Epidemiology+of+Infectious+Diseases:+Model+Building,+Analysis,+and+Interpretation&ots=c0Va_SdseJ&sig=Nmbccgwx6CEAJ-obdy99k5NXw3w$\delimiter "026E30F $nhttp://books.google.com/books?hl=en&lr
http://books.google.com/books?hl=en&lr=&id=5VjSaAf35pMC&oi=fnd&pg=PR11&dq=Mathematical+Epidemiology+of+Infectious+Diseases:+Model+Building,+Analysis,+and+Interpretation&ots=c0Va_SdseJ&sig=Nmbccgwx6CEAJ-obdy99k5NXw3w$\delimiter "026E30F $nhttp://books.google.com/books?hl=en&lr
http://books.google.com/books?hl=en&lr=&id=5VjSaAf35pMC&oi=fnd&pg=PR11&dq=Mathematical+Epidemiology+of+Infectious+Diseases:+Model+Building,+Analysis,+and+Interpretation&ots=c0Va_SdseJ&sig=Nmbccgwx6CEAJ-obdy99k5NXw3w$\delimiter "026E30F $nhttp://books.google.com/books?hl=en&lr
http://books.google.com/books?hl=en&lr=&id=5VjSaAf35pMC&oi=fnd&pg=PR11&dq=Mathematical+Epidemiology+of+Infectious+Diseases:+Model+Building,+Analysis,+and+Interpretation&ots=c0Va_SdseJ&sig=Nmbccgwx6CEAJ-obdy99k5NXw3w$\delimiter "026E30F $nhttp://books.google.com/books?hl=en&lr
http://books.google.com/books?hl=en&lr=&id=5VjSaAf35pMC&oi=fnd&pg=PR11&dq=Mathematical+Epidemiology+of+Infectious+Diseases:+Model+Building,+Analysis,+and+Interpretation&ots=c0Va_SdseJ&sig=Nmbccgwx6CEAJ-obdy99k5NXw3w$\delimiter "026E30F $nhttp://books.google.com/books?hl=en&lr
http://books.google.com/books?hl=en&lr=&id=5VjSaAf35pMC&oi=fnd&pg=PR11&dq=Mathematical+Epidemiology+of+Infectious+Diseases:+Model+Building,+Analysis,+and+Interpretation&ots=c0Va_SdseJ&sig=Nmbccgwx6CEAJ-obdy99k5NXw3w$\delimiter "026E30F $nhttp://books.google.com/books?hl=en&lr


Bibliography 199

[62] R Axelrod and W D Hamilton. The evolution of cooperation. Science (New
York, N.Y.), 211(4489):1390–1396, 1981. ISSN 0036-8075. doi: 10.1126/
science.7466396.

[63] Christopher W. Woods, Adam M. Karpati, Thomas Grein, Noel McCarthy,
Peter Gaturuku, Eric Muchiri, Lee Dunster, Alden Henderson, Ali S. Khan,
Robert Swanepoel, Isabelle Bonmarin, Louise Martin, Philip Mann, Bonnie L.
Smoak, Michael Ryan, Thomas G. Ksiazek, Ray R. Arthur, Andre Ndikuyeze,
Naphtali N. Agata, and Clarence J. Peters. An outbreak of Rift Valley fever
in Northeastern Kenya, 1997-98. Emerging Infectious Diseases, 8(2):138–144,
2002. ISSN 10806040. doi: 10.3201/eid0802.010023.

[64] Jacques Ferber. Multi-Agent Systems: An Introduction to Distributed Ar-
tificial Intelligence, volume 222. 1999. ISBN 0201360489. URL http:

//jasss.soc.surrey.ac.uk/4/2/reviews/rouchier.html.

[65] V Grimm and Sf Railsback. Individual-based Modeling and Ecology. 2005.
ISBN 069109666X. doi: 10.1111/j.1467-2979.2008.00286.x.

[66] Stephen Eubank, Hasan Guclu, V S Anil Kumar, Madhav V Marathe, Aravind
Srinivasan, Zoltán Toroczkai, and Nan Wang. Modelling disease outbreaks
in realistic urban social networks. Nature, 429(6988):180–184, 2004. ISSN
0028-0836. doi: 10.1038/nature02541.
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Francois Guégan, and Simon Hales. Time-dependent spectral analysis of
epidemiological time-series with wavelets. Journal of the Royal Society,
Interface / the Royal Society, 4(15):625–636, 2007. ISSN 1742-5689. doi:
10.1098/rsif.2007.0212.

http://books.google.com/books?hl=en{&}lr={&}id=3e7XbMoJzmoC{&}pgis=1
http://books.google.com/books?hl=en{&}lr={&}id=3e7XbMoJzmoC{&}pgis=1
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=N&PAGE=fulltext&AN=19832702527&D=cagh0
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=N&PAGE=fulltext&AN=19832702527&D=cagh0
http://www.jstor.org/stable/2985217
doi:10.2307/3212637
http://www.sciencedirect.com/science/article/pii/0021999176900413
http://www.sciencedirect.com/science/article/pii/0021999176900413


Bibliography 210

[178] J. Morvan, P. E. Rollin, S. Laventure, and J. Roux. Duration of immuno-
globulin M antibodies against rift valley fever virus in cattle after natural
infection. Transactions of the Royal Society of Tropical Medicine and Hy-
giene, 86(6), 1992. ISSN 0035-9203. URL http://cat.inist.fr/?aModele=

afficheN{&}cpsidt=4473821.

[179] C.J. Peters, J.A. Reynolds, T.W. Slone, D.E. Jones, and E.L. Stephen.
Prophylaxis of rift valley fever with antiviral drugs, immune serum, an in-
terferon inducer, and a macrophage activator. Antiviral Research, 6(5):285 –
297, 1986. ISSN 0166-3542. doi: http://dx.doi.org/10.1016/0166-3542(86)
90024-0. URL http://www.sciencedirect.com/science/article/pii/

0166354286900240.

[180] O Tomori. Clinical, virological and serological response of the West African
dwarf sheep to experimental infection with different strains of Rift Valley
fever virus. Res Vet Sci, 26(2):152–159, 1979.

[181] M. I. Moussa, K. S E Abdel-Wahab, and O. L. Wood. Experimental infection
and protection of lambs with a minute plaque variant of Rift Valley fever
virus. American Journal of Tropical Medicine and Hygiene, 35(3):660–662,
1986. ISSN 00029637.

[182] B R Miller, M S Godsey, M B Crabtree, H M Savage, Y Al-Mazrao, M H
Al-Jeffri, A M Abdoon, S M Al-Seghayer, A M Al-Shahrani, and T G
Ksiazek. Isolation and genetic characterization of Rift Valley fever virus from
Aedes vexans arabiensis, Kingdom of Saudi Arabia. Emerg Infect Dis, 8(12):
1492–1494, 2002.

[183] D J D Earn, P Rohani, B M Bolker, and B T Grenfell. A simple model
for complex dynamical transitions in epidemics. Science, 287(5453):667–
670, 2000. ISSN 0036-8075. doi: 10.1126/science.287.5453.667. URL http:

//www.ncbi.nlm.nih.gov/pubmed/10650003.

[184] Antoinette A. Grobbelaar, Jacqueline Weyer, Patricia A. Leman, Alan Kemp,
Janusz T. Paweska, and Robert Swanepoel. Molecular epidemiology of rift
valley fever virus. Emerging Infectious Diseases, 17(12):2270–2276, 2011.
ISSN 10806040. doi: http://dx.doi.org/10.3201/eid1712.111035.

[185] A Anyamba, K J Linthicum, and C J Tucker. Climate-disease connections:
Rift Valley Fever in Kenya. Cadernos de Saude Publica / Ministerio da
Saude, Fundacao Oswaldo Cruz, Escola Nacional de Saude Publica, 17 Suppl:
133–140, 2001. ISSN 0102-311X. doi: 10.1590/S0102-311X2001000700022.

[186] D. Fontenille, M. Traore-Lamizana, J. Trouillet, A. Leclerc, M. Mondo,
Y. Ba, J. P. Digoutte, and H. G. Zeller. First isolations of arboviruses
from phlebotomine sand flies in West Africa. American Journal of Tropical
Medicine and Hygiene, 50(5):570–574, 1994. ISSN 00029637.

[187] WR Horsfall, HW Fowler, Moretti LJ, and Larsen JR. Bionomics and
embryology of the inland flood water mosquito aedes vexans. University of
Illinois Press, Urbana, page 211.

http://cat.inist.fr/?aModele=afficheN{&}cpsidt=4473821
http://cat.inist.fr/?aModele=afficheN{&}cpsidt=4473821
http://www.sciencedirect.com/science/article/pii/0166354286900240
http://www.sciencedirect.com/science/article/pii/0166354286900240
http://www.ncbi.nlm.nih.gov/pubmed/10650003
http://www.ncbi.nlm.nih.gov/pubmed/10650003


Bibliography 211

[188] Francisco F. Ludueña Almeida and David E. Gorla. The biology of Aedes
(Ochlerotatus) albifasciatus Macquart, 1838 (Diptera: Culicidae) in Central
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