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Abstract

In this thesis in order to study the complex dynamics of Rift Valley fever (RVF) we
combine two modelling approaches: equation-based and simulation-based modelling.
In the first approach we first formulate a deterministic model that includes two
vector populations, Aedes and Culex mosquitoes with one host population (live-
stock), while considering both horizontal and vertical transmissions. An easy
applicable expression of the basic reproduction number, Ry is derived for both
periodic and non-periodic environment. Both time invariant and time varying
uncertainty and sensitivity analysis of the model is carried out for quantifying
the attribution of model output variations to input parameters over time and
novel relationships between Ry and vertical transmission are determined providing
important information useful for improving disease management.

Then, we analytically derive conditions for stability of both disease-free and en-
demic equilibria. Using techniques of numerical simulations we perform bifurcation
and chaos analysis of the model under periodic environment for evaluating the
effects of climatic conditions on the characteristic pattern of disease outbreaks.
Moreover, extending this model including vectors other than mosquitoes (such as
ticks) we evaluate the possible role of ticks in the spread and persistence of the
disease pointing out relevant model parameters that require further attention from
experimental ecologists to further determine the actual role of ticks and other biting
insects on the dynamics of RVF. Additionally, a novel host-vector stochastic model
with vertical transmission is used to analytically determine the dominant period
of disease outbreaks with respect to vertical transmission efficiency. Then, novel
relationships among vertical transmission, invasion and extinction probabilities
and R, are determined.

In the second approach a novel individual-based model (IBM) of complete mosquito
life cycle built under daily temperature and rainfall data sets is designed and
simulated. The model is applied for determining correlation between abundance of
mosquito populations and rainfall regimes and is then used for studying disease
inter-epidemic activities. We find that indeed rainfall is responsible for creating
intra- and inter-annual variations observed in the abundance of adult mosquitoes
and the length of gonotrophic cycle, number of eggs laid per blood meal, adults
age-dependent survival and flight behaviour are among the most important features
of the mosquito life cycle with great epidemiological impacts in the dynamics of
RVF transmission. These indicators could be of great epidemiological significance
by allowing disease control program managers to focus their efforts on specific
features of vector life cycle including vertical transmission ability and diapause.
We argue that our IBM model is an ideal extendible framework useful for further



investigations of other relevant host-vector ecological and epidemiological questions
for providing additional knowledge important for improving the length and quality
of life of humans and domestic animals.
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Chapter 1

Introduction

For many years there has been great interest in trying to understand what are the
rules that govern the spread, emergence, re-appearance and even persistence of
diseases. The emergence of infectious diseases has become a phenomenon of great
concern, especially in the case of vector-borne viral zoonoses that occasionally give
rise to human epidemics such as West Nile fever, Rift Valley fever (RVF) and
Japanese encephalitis [7]. For the past few decades the occurrence of RVF outbreaks
in endemic areas (sub-Saharan Africa) [8, 9], its emergence outside this region [10,
11] and its potential for global spread [12], has become a major concern for public
health authorities worldwide [3]. RVF occurs at irregular intervals and the disease
causes high mortality and abortion in domestic livestock, and significant morbidity
and mortality in humans [13], with devastating economic impact particularly in
vulnerable African communities with low resilience to economic and environmental
challenges [1, 11, 14]. Therefore, use of sound knowledge regarding the dynamics
of diseases and an understanding of the changing roles and relationships among
the drivers and the constraints on their spread [15] are needed for optimizing and
improving existing disease control interventions.

1.1 Background

1.1.1 Vector-borne diseases

Vector-borne diseases belong to a class of infectious diseases transmitted by the
bite of infected arthropod species, such as mosquitoes, ticks, triatomine bugs,
sandflies, and blackflies [16]. Transmission mechanisms underlying these diseases
have been well understood for more than a century. However, vector-borne diseases
continue to pose a significant burden worldwide [17]. Vector-borne diseases account
for more than 17% of all infectious diseases, causing more than 1 million deaths
annually [16]. The development of vector resistance to insecticides, changes in
public health programs, climate change, changes in agricultural practices, the
increased mobility of humans, and urban growth are all factors that contribute

1
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to the difficulty in controlling and eliminating vector-borne diseases [18]. They
have been responsible for the underdevelopment or non-development of large areas
of the tropics, especially in African countries with low resilience to economic and
environmental challenges. RVF is among the most vector-borne diseases that
disproportionately affect poor and marginalized populations in Sub-Saharan Africa.
The disease mainly affects livestock with severe socio-economic impacts in affected
countries resulting from cessation of trade in ruminants, livestock products and
livestock deaths [19]. RVF is listed as one of the neglected tropical diseases and for
many years received less attention as it was considered a disease of livestock and
wildlife only. This situation can also be reflected from the fact that there are about
1,415 known human pathogens while only about 616 pathogens of livestock are
known [20]. Similarly, very few infectious diseases of wildlife are known or studied
in any detail, and yet wildlife reservoirs may be important sources of novel emerging
human infections [21]. Further, the disease presents significant differences in the
ecology and transmission patterns of the virus in endemic regions [3]. Therefore,
understanding how to model transmission and persistence of vector-borne diseases
is of great epidemiological significance because of the different implications that
their unique transmission characteristic patterns have for veterinary and public
health worldwide.

1.1.2 RVF epidemiology and ecology

Rift Valley fever virus (RVFV), a member of the phlebovirus genus, and family
Bunyaviridae, is an enveloped virus with a segmented, RNA genome. RVF is a viral
disease that primarily affects both domestic and wild animals but is also capable of
infecting humans [22, 23]. Major host disease amplifiers are sheep, cattle and goats
but the disease also affects camels, buffaloes and other mammalian species [24],
causing high mortality, abortion and significant morbidity in domestic livestock
[13]. The disease is predominately transmitted through bite of an infected mosquito
[11, 25]. However, the majority of human infections results from direct and indirect
contact with blood or organs of infected ruminants [26]. The disease manifests itself
in humans as a fatal haemorrhagic disease syndrome, severe influenza/malaria-like
cases while in livestock it is characterized by the sudden onset of abortion in a
large proportion of the herd/flock associated with high neonatal mortality [27].

The virus has been isolated from at least 30 mosquito species in the field [27], biting
midges, blackflies and ticks [11, 28, 29], though this does not conclusively implicate
them as competent biological vectors [30]. Major vectors can be divided in two
groups: 'reservoir/maintenance’ vectors which are a certain species of mosquitoes
of the genera Aedes (mcintoshi,vexans, dentatus) associated with freshly flooded
temporary or semi-permanent fresh-water bodies [29, 31, 32| and ’epidemic/amp-
lifying’ vectors consisting of Culex (pipiens,quinquefasciatus,antennatus) species
commonly associated with permanent fresh-water bodies [11, 33].

The disease is endemic in sub-Saharan Africa and it exhibits different virus ecology
and transmission patterns in different regions of the continent [3]. In southern
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and eastern regions the disease is highly correlated to heavy rainfall and Aedes
mosquitoes are thought to be the reservoirs between epizootics [1, 14]. However,
the same cannot be said for west Africa, where no relationship between epidemics
or epizootics and heavy rainfall has been demonstrated [7, 29]. For the purpose
of model parametrization we design our models to fit disease patterns observed
in the eastern and southern regions with particular focus on East Africa. In this
region, RVF epizootics/epidemics have been largely correlated to the occurrence of
the warm phase of the El Nino/Southern Oscillation (ENSO) phenomenon [34],
associated with subsequent elevation of Indian Ocean temperatures which lead to
heavy rainfall and flooding of habitats suitable for the production of immature
Aedes and Culexr mosquitoes [35, 36]. Aedes mcintosh is thought to be the reservoir
of the virus as it has the ability to transmit the pathogen transovarially to offspring
[11, 35], leading to virus persistence during dry season/inter-epidemic periods in
the endemic cycle [35]. In periods of rainfall activities, transovarially infected
adult mosquitoes may emerge in large numbers and transmit RVFV to nearby
domestic livestock populations [13]. High viraemia in these animals may then lead
to infection of secondary arthropod vector species including various Culezr species
[37], and probably ticks species which are also capable of carrying RVFV [28, 29]
which further disperses the virus causing an outbreak.

1.1.3 Disease epidemic and inter-epidemic activities

Studies have shown that the disease has two distinct cycles: the epizootic/epidemic
and the enzootic/inter-epidemic also known as endemic. The existence of these
two cycles is intrinsically related to virus ecology and abiotic factors. The disease
epidemic activities occur at very irregular intervals of up to 15 years in the
southern and eastern regions of Africa as well as in the horn of Africa [1, 11, 14].
These activities are highly correlated to heavy rainfall and flooding that stimulate
hatching of infected Aedes mosquito eggs, resulting in a massive emergence of
adult infected Aedes mosquitoes. These infected mosquitoes then feed on nearby
vulnerable livestock, triggering virus amplification leading to an epizootic. An
epizootic/epidemic is mainly driven by the subsequent elevation of various Culex
mosquito populations, which serve as excellent secondary vectors if immature
mosquito habitats remain flooded for a long enough period [36]. Epizootics are
known to cause abortion storms with > 90% mortality in newborns and 10 — 30%
in adults [38], stimulating human exposure to viremic livestock blood and tissue
which can occur during livestock slaughtering and care triggering outbreaks in
humans. The word epidemic refers to the rapid spread of an infectious disease on
a large number of people in a given population within a relatively short period
of time. When a similar event happens in an ruminant population it is called
epizootic. However, throughout this thesis I will use the two terms interchangeably
with more frequency on the term epidemic. Disease activities are also observed in
both mammalian host and vector populations between epidemics or post epidemics.
These are hereby referred to as disease inter-epidemic activities characterized by
sporadic cases of livestock infection at low levels during periods of average rainfall.
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However, these generally pass undetected clinically, but can be revealed where
active serological surveillance is regularly carried out in livestock [39]. Such inter-
epidemic activities have been detected without noticeable outbreaks or clinical cases
in cattle in Mayotte [40, 41], in sheep and goat in Senegal [42] and Mozambique
[43], in cattle, sheep and goats in Tanzania [3, 39] and Kenya [44-46]. It is thought
that the virus is maintained in nature through transovarial transmission from the
female Aedes mosquitoes to their eggs [11, 35], and by occasional amplification
cycles in nearby livestock. Understanding mechanisms underlying both disease
epidemic and inter-epidemic activities is a prerequisite for developing appropriate
tools useful for disease management.

1.1.4 Global Geographical Distribution of RVF

Although a RVF disease-like was first described between 1912 and 1913 at the
Naivasha area in Rift Valley province in Kenya [47], its aetiological agent was
first isolated and characterized in the 1930s in Kenya [47]. The disease is named
after its endemic location in Africa, the Great Rift Valley, which stretches 6,000
miles along the earth’s crust from Lebanon to Mozambique through East Africa
[48]. Since then the trend of its geographical expansion has increased significantly
due to several factors including increased irrigation and dams, climate change,
and movement of livestock between countries. Outbreaks have been reported in
sub-Saharan, North Africa and outside the Africa continent. In 1930-31 RVF was
reported in Kenya and Tanzania followed by epizootics in 1947 in Tanzania; 1950-51
in Kenya and South Africa; 1955-51 in Kenya, Namibia and Zimbabwe; 1956-57 in
Kenya, Tanzania and Zimbabwe; 1960-64 in Kenya and Tanzania; 1967-68 in Kenya
and Tanzania; 1969-70 in Mozambique and Zimbabwe; 1970-71 in Kenya; 1973-74
in Zambia and Sudan; 1974-75 in South Africa; 1974-76 in Namibia; 1977-78 in
Kenya, Tanzania, Zambia, Zimbabwe and Egypt. The 1977 outbreak in Egypt was
the first to occur out of sub-Saharan Africa and since then RVEFV has been found
in Madagascar and smaller islands of the coast of mainland Africa [49]. Then, in
1981 and 1983 in Kenya; 1985 in Zambia; 1987 in Mauritania; 1989-91 in Kenya
and Tanzania; 1990-91 in Madagascar; 1997-1998 in Kenya, Tanzania and Somali;
1998-99 in Mauritania, Gambia and South Africa; 2000-01 in Saudi Arabia and
Yemen; 2002 in Mauritania and Gambia; 2006-07 in Kenya, Tanzania and Somali;
2007-2008 in Sudan; 2008-2009 in Madagascar and South Africa; 2010 in South
Africa, Mauritania, Botswana and Namibia [1, 3, 27, 50-55]. The 2000 and 2001
RVF outbreaks in Saudi Arabia and Yemen marked the first occurrence of the
disease out of the Africa continent. This is evidence of the potential of the disease
to extend its range to other receptive regions to the north and northeast outside
Africa, such as the Tigris/Euphrates Delta zone, which would be receptive for
RVFV transmission [27]. Studies suggest that the introduction of the disease into
new virgin areas is facilitated by aerial transport of vectors and increased livestock
movements [56], which is of great epidemiological concern that the virus will emerge
further in non-endemic areas, including the United States and temperate countries

57, 58).
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1.2 State of the Art

Disease transmission interactions in a population are very complex so that it is
difficult to comprehend the large scale dynamics of a disease spread without the
formal structure of a mathematical model [59]. An epidemiological model uses a
microscopic description (the role of an infectious individual) to predict the macro-
scopic behaviour of disease spread through a population. This formalism allows us
to predict population-level epidemic dynamics from an individual-level knowledge
of epidemiological factors, long-term behaviour from early invasion dynamics, or
the impact of vaccination on the spread of infection [21].

In many sciences it is possible to conduct experiments to obtain information and
test hypotheses. Experiments with infectious disease spread in either human or
domestic livestock populations are often impossible, unethical or expensive. Data
are sometimes available from naturally occurring epidemics or from the natural
incidence of endemic diseases; however, the data are often incomplete due to under
reporting. This lack of reliable data makes accurate parameter estimation difficult
so that it may only be possible to estimate a range of values for some parameters
[59]. Therefore, mathematical models and computer simulations can be used to
perform needed theoretical experiments. Mathematical epidemiological models are
often used for prediction and understanding of processes underlying the spread of
a certain infection. In this thesis I consider both categories moving from under-
standing to predictive. Understanding models begin from building simple to more
complex models. In this way one can begin to understand all the rich complexities
and dynamics that are observed in the real world. Then the understanding gained
can help us to develop more sophisticated predictive models and help to gather
more relevant epidemiological data [21].

Epidemics/epizootics have been modelled mathematically for over a century. The
quantitative foundations of today’s development in infectious disease modelling are
traced back to early pioneers such as R. Ross 1908-1916, H. Hudson 1927, A. Lotka
1923, Kermack and Mckendrick 1927 and others (for more details see [60] and refer-
ences therein). From these early models, we obtain the standard categories used to
describe an epidemic by means of subgroups of the population known as compart-
ments. The SIS (Susceptible-Infected-Susceptible) model which describes diseases
for which there is no acquired immunity; the STR (Susceptible-Infected-Removed)
model which represents diseases with acquired immunity. Further detailed struc-
tures can be obtained such as the SEIR or SLIR (Susceptible-Exposed/Latent-
Infected-Removed) model with an intermediate step which represents the latent
period between exposure and external symptoms and thus can take into account
differing degrees of infectiousness which occur during these two stages [61]. It is
still possible to divide the Infected compartment into two or more such as infected
asymptomatic or symptomatic as well as obtaining further subgroups according to
the epidemiology of the disease.

These basic epidemiological models written in the language of classical deterministic
models assume that the population being considered is uniform and homogeneously
mixing, however, most infectious diseases actually spread in a diverse or dispersed
population. In these settings, spatial effects of spread of epidemics, interaction
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between individuals, effects of individual behaviour among others are ignored.
However, implementation of such simplifying assumptions facilitates the use of
analytic techniques to gain background understanding of disease dynamics [59], in
the case of non-complex models. On the contrary, rapid growth of the mathematical
complexity is observed when systems are used to describe various aspects of disease
phenomena in sufficient detail, which may limit their practical use in specific
cases. Alternative tools are multi-agent systems [62], that are based on cellular
automata [63] or network theory. Extensive literature on multi-agent systems
exists, especially in social sciences [64] and ecology [65]. In epidemiology, despite
some individual-based models for directly-transmitted diseases [66], multi-agent
or individual-based systems have not been used to study vector-borne disease
dynamics in spatial contexts [67].

In this thesis I build my models based on two categories: the classical equation-
based (deterministic and stochastic) models and the individual-based models (IBM).
Unlike for other vector-borne diseases such as malaria, cholera, where extensive
literature in mathematical models is available, this is not the case for RVF. Two
reasons can be pointed out: (1) RVF has for long been considered a disease of
ruminants only, thus it is has been neglected; (2) the mechanisms underlying its
spread, re-emergence and maintenance in nature have not been fully understood.
The present work builds on previous studies of RVF dynamics. Favier et al. [68]
formulated and analysed a pond-level metapopulation model to assess the possibility
of RVF endemicity without wild animals providing a permanent virus reservoir,
assuming that Aedes was the sole source of virus and abundance of mosquitoes
was triggered by rainfall. Various theoretical transmission scenarios were explored
and it was shown that without livestock migration from outside the system, virus
persistence was possible if cattle moved between ponds and if rainfall did not occur
at the same time at all ponds. A novel mathematical model in a closed system based
on ordinary differential equations, with two mosquito population species Aedes and
Culex, and one population of livestock showed that the virus could persist if there
was high contact rate between hosts and mosquito vectors [69]. Another theoretical
mathematical model on RVFV dynamic transmission was proposed by Mpeshe
et al. [48] which modified the model in [69] by adding human hosts, merging all
mosquitoes into one population, and removing mosquito egg compartment and
vertical transmission. Results showed that disease prevalence in mosquitoes is
sensitive to mosquito death rate, while disease prevalence in livestock and humans
is sensitive to livestock and human recruitment rates and that isolation of livestock
from humans is a viable preventive strategy during an outbreak [48]. Later Gaff
et al. [70] extended their previous model [69] to include several disease control
measures in order to study the efficacy of countermeasures to disease transmission
parameters. Their results revealed that livestock vaccination and culling offer the
greatest benefit in terms of reducing livestock morbidity and mortality. Niu et
al. [71] extended the model in [69] to include mitigation strategies by considering
the movement of humans, livestock, and mosquitoes between patches, which cause
the geographical transfer of the virus to new receptive locations. Their study
mainly contributed by providing a methodology for analysing the likelihood of
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pathogen establishment should an introduction occur into a new area. Chitnis
et al. [5] analysed a RVF model with vertical transmission for Aedes mosquitoes
as in [69, 70] but removed compartments representing Culez mosquitoes. Their
model included an asymptomatic class for livestock. Additionally, they extended
the model to explicitly include an aquatic juvenile stage and compared versions
of the model with and without this juvenile class. They suggested that vertical
transmission is an important factor in the size and persistence of RVF epidemics.
Xue et al.[72] proposed and analysed a network model with ODE systems at the
nodes including both Aedes and Culezr mosquitoes, humans and livestock while
focusing on the role of spatial heterogeneity in the spread of a single outbreak.
Using the model they were able to reproduce the different starting times of the
2010 outbreak in South Africa. Then, Xue et al. [73] extended their model for
much larger scale to investigate possible implication of virus introduction in the
US soil, and cattle movement between farms was found to be the major driver of
virus expansion. Recently, Mpeshe et al. [74] extended their previous study [48] to
include vertical transmission in Aedes species and climate-driven parameters.
From the above literature review it is more than obvious that little research
has been undertaken on this topic, and there is much room to further improve
the models to obtain more insights about the dynamics of the disease. So far,
few studies have focussed on exploring mechanisms of RVF virus circulation
during inter-epidemic periods if none. Further, models that take into account
other disease vector hosts are essential for improving our understanding of virus
maintenance in nature between epidemics. The present study intends to build on
from previous studies to more detailed models including individual-based models
(IBM) to better investigate disease epidemic and inter-epidemic activities. These
models include pathogen propagation via movement of livestock and mosquitoes,
taking into account individual’s variability and interaction with the environment
and synchronization of the mosquito life cycle with weather conditions.

1.3 Problem Statement

During RVF outbreaks domestic livestock loss can lead to food shortages, loss
of earnings and livelihoods with devastating economic impacts on the already
economically challenged vulnerable African communities with low resilience to eco-
nomic and environmental challenges [1, 11, 14]. The majority of these communities
are pastoralist, at least in East Africa and their livelihood mainly depends on
livestock production [45, 58]. In East Africa estimates indicate that the 2006,/07
RVF outbreak resulted in losses amounting to more than 60 million US$ due to
disruption in trade of livestock, including costs of livestock deaths [75], with an
estimate of 27,500 human cases [45] and losses amounting to > 610 million Ksh
due to domestic livestock losses in Kenya [76].

Currently, two types of vaccines are available for livestock: inactivated whole-virus
and live-attenuated Smithburn vaccines [27]. Inactivated vaccines can be applied
to ruminants of all ages without causing abortions but they are expensive and
repeated doses are required, which makes it difficult to sustain in RVF affected
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countries for economic reasons [11]. On the other hand, live-attenuated vaccines
are cheap and effective. They confer a lifelong immunity with a single dose [77].
However, they may lead to fetal abnormalities and abortions in pregnant ruminants
and there is the safety concern of reversion to virulence [78]. Therefore, alternatives
are required in order to minimize the burden posed by the disease during outbreaks.

RVF is known to occur in outbreaks that come in cycles of up to 15 years after
heavy rainfall and floods [11]. Climate variability and the occurrence of the El
Nifio/Southern Oscillation (ENSO) phenomenon lead to heavy rainfall which stimu-
lates massive emergence of disease potential vectors [34], however it remains unclear
the exact role of rainfall on the temporal characteristic pattern of disease outbreaks.
On the other hand, there is more and more evidence of RVF transmission during
the inter-epidemic period [3, 39, 44-46]. However, these generally pass undetected
clinically, but can be revealed where active serological surveillance is regularly done
in either livestock or human populations [39]. RVF maintenance in nature between
epidemics both in the mammalian host and vector populations has not been fully
explained. This is partly due to the limited evidence that has been gathered and
knowledge of the other factors driving its maintenance in a particular geographical
scale. Such factors interact in diverse ways in different geographical regions of
Africa or beyond and may play a crucial role in vector population dynamics and
disease transmission.

Understanding underlying factors leading to disease epidemic and inter-epidemic
activities is central for disease management. What could be the actual role of
intensive rainfall and flooding regimes regarding the characteristic pattern of disease
outbreaks? Could RVF outbreaks build up from disease inter-epidemic activities?
Both climatic and weather conditions increase the number of breeding sites for
mosquitoes resulting in an increase in the number of vectors and therefore more
intense virus transmission and circulation [79], enhancing risk of vector-borne
disease infection. An increase in temperature increases the development rate of
each stage of the mosquito, hence reduces time from egg to adult. Hence, rapid
emergence of young adults is triggered enhancing risk of disease transmission. What
features of the mosquito life cycle affect mosquito population dynamics? Is there
any correlation between abundance of mosquitoes and rainfall events? The virus
outlives in nature between outbreaks through infected eggs from some female Aedes
mosquitoes. Is there any correlation between abundance of mosquitoes and RVF
incidences during the inter-epidemic period (IEP)? What are the factors during
the mosquito life cycle that contribute to disease inter-epidemic activities? What
are the necessary levels of vertical transmission to maintain the disease between
outbreaks? The present research aims to test the above mentioned hypothesis by
means of mathematical models and computer simulation models. These models are
to be used to learn many characteristics of disease outbreaks such as the probability,
size, and duration time of an epidemic, or the probability for the epidemic to die
out. On the other hand understanding mechanisms of disease persistence during
inter-epidemic period may help to stop an outbreak at early stages by controlling
parameters that are key drivers of the spread of the disease. The developed models
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may also be used to explore post-epidemic activities for enhancing the utilization of
rapid response measures and observe the impact over time under varying scenarios.

1.4 Research Objectives

The goal of the study is therefore to develop models for analysing and understanding
the epidemic and inter-epidemic activities of RVF and use the outcome for improving
the disease management strategies.

1.4.1 Specific Objectives
The specific objectives are:

1. To formulate and assess model parameter sensitivity to RVF transmission
and prevalence and the impact of vertical infection for the persistence of the
disease.

2. To explore the stability of equilibrium points of the RVF model.

3. To explore means of predicting RVF outbreak periods based on the disease
inter-epidemic activities.

4. To develop an approach that provides a framework for analysing systems of
ecological and inter-epidemiological interactions of RVF drivers.

5. To explore possibilities of adjusting current RVF management strategies to
help reduce the disease impact.

1.5 Thesis Contribution

Efforts have been capitalized on formulating and analysing disease mathematical
models for both RVF epidemic and inter-epidemic activities. The models include
both mammalian and vector hosts. Further, individual-based models that incorpor-
ate effects of environment, temperature, rainfall, individual’s variability, behaviour
and mosquito life cycle have been studied to explore various hypotheses regarding
small scale movement of vectors, mosquito life cycle, and effects of climatic condi-
tions in the spread of the disease. The present thesis is a valuable contribution to
both the academic community and decision makers. Below major contributions
are outlined:

1. Vertical transmission on Aedes mosquitoes, which is central to understanding
initial disease spread and persistence has been included and thoroughly
investigated.
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10.

The livestock infected class was further divided into two compartments of
asymptomatic and symptomatic infected animals for examining their impact
in the spread of the disease in both cases of severe and non severe outbreaks.

In the deterministic model, effects of seasonality were modelled by imple-
menting an extrinsic forcing function in the oviposition rate for both Aedes
and Culexr mosquitoes for determining the actual contribution of rainfall in
the temporal characteristic patterns of RVF outbreaks.

An explicit expression of the basic reproduction number, Ry for non and
periodic environment considering both vertical and horizontal transmission
was computed and assessed for different disease control strategies.

Both time invariant and time varying uncertainty and sensitivity analysis
were performed for both the measure of the initial spread of the disease, Ry
and the measure of disease prevalence providing new light as to how each
model parameter contributes to disease dynamics at every important stage of
the epidemic which is central for designing appropriate intervention programs.

Stability analyses of the deterministic model were conducted for establishing
critical conditions of disease spread and extinction. Bifurcation and chaos
analyses were explored for determining fluctuations found in RVF empiric
outbreak data, as well as the non deterministic nature of both RVF epidemic
and inter-epidemic activities.

. A model with additional vectors other than mosquitoes was formulated and

analysed for determining the possible contribution of ticks in the spread and
persistence of RVF.

Relationships among disease invasion and extinction probabilities and the
basic reproduction numbers are analytically derived from a stochastic host-
vector model with vertical transmission. Additionally the theoretical dom-
inant period of disease outbreaks is determined and will be compared with
actual prediction when reliable data become available.

Novel relationships among temperature, rainfall and abundance of mosquitoes
are determined. Furthermore, important stages of the mosquito life cycle in
disease spread are identified allowing disease managers to focus their efforts
on specific features of the mosquito life cycle.

Correlation between abundance of mosquitoes and RVF incidence cases
during the inter-epidemic period was determined and contributions of vertical
transmission to disease inter-epidemic activities are characterized in detail.

1.6 Methodology and Thesis Outlines

In order to investigate the dynamics underlying both epidemic and inter-epidemic
activities of RVF we build models that range from classical approaches to more
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recent ones. In the first part we formulate and analyse two mathematical epi-
demiological models: one based on ordinary deterministic differential equations
(ODE) and the other on stochastic processes and simulations. In the second part
we formulate and analyse an individual-based model of the mosquito life cycle.
The first part consists of four chapters. Chapter 1 provides a general introduction
to the thesis. In Chapter 2 which corresponds to specific objective 1 we formulate
an ODE model that accounts for one population of livestock (we do not make
distinction of whether sheep, cattle or goats), one population of Aedes mosquitoes
and one population of Culex mosquitoes. For Aedes we incorporate mechanisms
of vertical transmission and for livestock we include mechanisms underlying the
development of symptoms in each individual livestock, given that even in scenarios
of severe outbreaks some infected livestock presents no symptoms. We use this
model to derive an explicit formula for the basic reproduction number, Ry then we
use Ry to study the relative importance of vertical transmission in the spread and
persistence of the disease over a long time period. Furthermore, using techniques of
uncertainty and sensitivity analysis we carry out a systematic investigation of the
relative importance of every model parameter to the initial spread and prevalence of
the disease [80]. In Chapter 3 which is related to the specific objective 2 we use the
model developed in Chapter 2 to analytically study the stability behaviour of the
steady states of the model and by means of numerical simulations we investigate
the attractors structure of the steady states under the influence of external forcing
[4]. The external forcing functions are used to mimic the effects of rainfall in
the emergence of new cohorts of mosquitoes. Optimal climatic conditions and
the presence of mosquitoes have not fully explained the dynamics of both disease
epidemic and inter-epidemic activities. Therefore, in Chapter 4 we extend the
previous model to include another vector host (a ticks species of genera Hyalomma
truncatum) that have been implicated in the transmission of the virus. This aims
to examine the possible role of additional vectors (for example ticks) in the spread
of the disease. This Chapter results from an extension of the specific objectives
1 and 2. In Chapter 5 which corresponds to specific objective 3 we formulate a
stochastic host-vector model for investigating the relationships among the invasion
probabilities, extinction and basic reproduction numbers. Further, we use the
model for predicting the temporal characteristic pattern of disease outbreaks.

In Chapter 6 we develop an individual-based model (IBM) of the mosquito life cycle
based on daily temperature and rainfall data. Then we use the model to investigate
the correlation between climatic conditions and abundance of mosquitoes, and
determine features of the mosquito life cycle that affect the mosquito population
dynamics. In Chapter 7 we extend the model developed in Chapter 6 to study
spread of the disease during the inter-epidemic period in livestock and assess the
relationship between abundance of mosquitoes and RVF incidence cases. The model
is also applied to assess different levels of vertical transmission responsible for
disease inter-epidemic activities and determine important features of the mosquito
life cycle that affect the transmission and persistence of the disease.

In Chapter 8 we conclude the thesis summarising what we have learnt about the
different models and methodologies. In addition we summarise several future
studies suggested by these investigations.



Chapter 2

Uncertainty and Sensitivity

Analysis of a Rift Valley fever
Model!

2.1 Introduction

Rift Valley fever (RVF) is a vector-borne viral disease caused by RVF virus (RVFV)
belonging to the genus Phlebovirus of the family Bunyaviridae [22]. The virus
infects primarily both wild and domestic livestock, however it is also capable of
infecting humans. In ruminants, infection can produce high rates of abortion
and significant morbidity and mortality [81]. Livestock losses can lead to food
shortages, loss of earnings and livelihoods with devastating economic impacts,
particularly in vulnerable African communities with low resilience to economic and
environmental challenges [1, 11]. The 2006-07 RVF outbreak in East Africa was
the most widespread with total number of deaths of 16,973 in cattle, 20,193 in
goats and 12,124 in sheep resulting in economic losses amounting to US$32 million
in Kenya alone [76]. The disease is endemic in much of sub-Saharan Africa [9] with
significant differences in the ecology and epidemiology of the disease. The disease
occurs in two distinct cycles: the enzootic/endemic and the epizootic/epidemic
cycles [13]. The enzootic transmission occurs at low levels in nature during periods
of average rainfall (low moisture) in which the virus is maintained through vertical
transmission from the female Aedes mosquito to eggs and through occasional
amplification cycles in susceptible livestock [11, 35]. The epizootic cycle appears at
irregular intervals, after heavy rainfall and floods (high moisture), which stimulate
the hatching of infected Aedes mosquito eggs, resulting in a massive emergence of
Aedes with subsequent elevation of various Culex species that serve as the amplifiers
of the disease [13, 36].

Vector control in either adult or mosquito larvae and livestock vaccination are

IThis chapter has been published: S.A. Pedro et al., Uncertainty and sensitivity
analysis of a Rift Valley fever model, Applied Mathematics and Computation (2016),
http://dx.doi.org/10.1016/j.amc.2016.01.003
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among the most effective disease control and public health intervention measures.
However, the effectiveness of any intervention program depends mainly in our
knowledge of disease transmission, threshold concept in the epidemiology of the
disease and disease parameters that govern its spread. The basic reproduction, Ry
is one of the foremost concepts in the epidemiology of the disease [82], which is
widely used to quantify the spread of the disease at early stage of the epidemic. This
quantity is either derived from data or from mathematical models that describe the
dynamics of the disease. Mathematical models consist of parameters and initial
conditions for independent and dependent variables. In most cases these parameters
are not known with sufficient degree of certainty due to natural variations and
error in measurements [83].

Uncertainty and sensitivity analysis of model parameters is very important for
quantifying these variations and uncertainties. For example, sensitivity analysis
enhances our understanding and guide in developing appropriate measures for
disease control. Uncertainty analysis is used to explore the uncertainty in the
model output that is generated from uncertainty in input parameters [83] while
sensitivity analysis assesses how variations in model outputs can be attributed
qualitatively and quantitatively to different input parameters [84]. Although the
field of mathematical epidemiology is well established very few models of RVF
have been developed and analysed. This is in part due to the fact that the disease
for many years was known as a disease of ruminants only. Thus, receiving little
attention from various stakeholders. In the recent past few RVF mathematical
models have been developed, see [4, 5, 48, 69, 71, 72, 74] and references therein.
However, only few studies have performed uncertainty and sensitivity analysis of
RVF epidemic models to the parameters and to the endemic equilibrium state
[5, 48, 69, 71]. These studies have determined the relative importance of various
parameters in RVF transmission and spread characterized by Ry using sampling-
based uncertainty and sensitivity analysis techniques, with exception of Mpeshe et
al.[48] who applied sensitivity indices of the endemic equilibrium point to the model
parameters. Still, two main questions remain not completely explored: (1) what is
the role and contribution of vertical transmission from Aedes mosquitoes for both
disease epidemic and endemic activities? (2) What is the time contribution of each
model parameters to model output variations during an outbreak? The former
question is central to our understanding of the relative importance of various input
parameters as the disease evolve with time. The same input model parameter may
contribute to model output variations in different ways as the model evolves with
time. That is, for instance at the beginning of an outbreak the parameter may be
positively correlated to the size of the epidemic but at the peak of the outbreak this
correlation may inverse [83]. To the best of our knowledge these types of analyses
are missing in disease models, particularly to vector-borne disease models such as
RVF models.

Therefore, in this paper we use our previous RVF model [4] to systematically study
the sensitivity of both the measure of the initial spread of the disease, Ry and the
measure of disease prevalence, represented by the endemic equilibrium state, E* to
both low and high moisture model parameters. The initial spread of the disease
depends on the competence of primary vectors, the Aedes mosquitoes through
vertical transmission [4]. Hence, we start our analysis by investigating the relative
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importance of vertical transmission in disease transmission and persistence. Then
we proceed with sensitivity analysis of the basic reproduction number, Ry using
two approaches: one based on local derivatives and the other on sampling-based
method, that is, Latin hypercube sampling (LHS) on combination with partial rank
correlation coefficient (PRCC). Furthermore, we perform uncertainty and sensitivity
analysis of some chosen model state variables (Uninfected eggs, Uy, Exposed Aedes
E1, Infected Aedes I, Infected symptomatic host As, Infected symptomatic host
I, Exposed Culez F3 and Infected Culez I3) to model input parameters at a
particular time during the course of the outbreak. In addition, we compute the
sensitivity indices of the endemic equilibrium state, E* using local derivatives in
order to assess the relative importance of different input parameters to disease
prevalence. Finally, in order to assess whether significance of each parameter
occurs over an entire time interval during model dynamics, we investigate the rank
correlation coefficient (RCCs) for multiple time points and plot them versus time.
We show that during endemic cycle (low moisture) vertical transmission drives
the persistence of the disease. In addition, a threshold of this rate is required
for virus reproduction and subsequent propagation. However, during periods of
outbreaks (high moisture) the effect of vertical transmission is significant in the
first transmission cycle and may actually reduce the time of the outbreak. Our
analysis sheds new light on the relative importance of the most significant input
parameter for both disease epidemic and endemic/inter-epidemic activities for both
single and multiple time points. Time varying sensitivity analysis provides to
our understanding deep insights about how each parameter contributes to disease
dynamics at every important stage of the epidemic which is central for designing
appropriate intervention strategies.

2.2 RVF Model

The RVF model in [4] consists of a system of nonlinear ordinary differential
equations, that describes disease transmission through interaction among Aedes,
Culer mosquitoes and livestock. The Aedes mosquito population is divided into
5 compartments: Uninfected eggs P;, Infected eggs U;, Susceptible adults Sy,
Exposed adults F; and Infected adults I; and their total population size is given by
N = S1+ E1+ 1. The Culex mosquito population is divided into 4 compartments:
Uninfected eggs P3, Susceptible adults S3, Exposed adults E3 and Infected adults
I3 and their total population size is given by N3 = S5 + E3 + I3. The livestock
population has 4 compartments: susceptible Sy, Infected asymptomatic Ay, Infected
Symptomatic I, and Recovered R;. The total population size is given by Ny =
S+ As+ Ir + Rs. The set of equations that describe the system is given below (see
systems (2.1-2.3)) and the description of parameters and their respective baseline
values and ranges are given in Appendix A.
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Note that the natural death rate d; I’ L is also denoted as yu; for i = 1,2,3. Table
2.1 gives description of the state Varlables and further details regarding the model
are given in the next chapter.
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Variable Description

P Number of uninfected Aedes mosquito eggs
Q1 Number of infected Aedes mosquito eggs
Sh Number of susceptible Aedes mosquitoes
E, Number of exposed Aedes mosquitoes

I Number of infected Aedes mosquitoes

S Number of susceptible livestock

Ey Number of exposed livestock

Ao Number of asymptomatic livestock

I Number of infected livestock

Py Number of uninfected Culex mosquito eggs
Ss3 Number of susceptible Culezr mosquitoes
Es Number of exposed Culex mosquitoes

I3 Number of infected Culexr mosquitoes

TABLE 2.1: State variables for the model system (3.1-3.3)

2.3 Model Analysis

2.3.1 Basic Reproduction Number, R

In host-vector systems Ry is described as the expected number of secondary
infections after one average, complete (host-vector-host or vector-host-vector)
transmission cycle [85]. An analytical expression of the basic reproduction, Ry has
been derived in [4] and Ry for horizontal transmission only is given by

Rog =
(1—62)(19)2 82383273 NI NY + (1—02)(19)2B21 B1271 NO N9 + 02(19)2B23B32v3 NI NY + 02(19)2B21 B12v1 NY NS
b3 (E2+4b2)(v3+b3) b1(€2+b2)(v1+b1) bz (e2+ba+m2)(y3+b3) b1(52+b2+77l2)(7(1+51))
2.4
0102 0302 .
where [ = —————— and I3 = ——~———. When strictly defined as the

UlN{]—f—UgNQO U3N§+O‘2Ng.
reproductive rate of the pathogen, Ry (obtained via the next generation-matrix)
for the overall model that accounts for both vertical infection and horizontal

transmission is given by:
\/ @ +A4ARE . (2.5)

In the absence of vertical transmission, ¢ = 0, Ry = Ry g is the geometric
mean of the number of new infections in livestock from Aedes and Culez infected
mosquitoes, and the number of new infections in both species of mosquitoes from
an infected ruminant (asymptomatic or symptomatic), in the limiting case that
both populations are fully susceptible. Thus, Ry gz can be described in four parts,
corresponding to the Aedes-asymptomatic livestock interaction, Aedes-symptomatic

N |

q
R():El‘f’
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livestock interaction, the Culer-asymptomatic livestock interaction and Cules-
symptomatic livestock interaction. On the other hand, the reproduction number
Ry i can be written as follows:

J - (19)?B237ys NI NY [ (1-02)Bs2 0232 (19)2B21m NP NP [ (1-02)B12 02812
0,H b3 (v3+b3) Ea+ba e2+ba+ma b1 (y1+b1) Eo+bo eotbatmsg |°

(2.6)

2.3.2 Vertical transmission and reproductive numbers

At early stage of an epidemic/epizootic vertical transmission from the female Aedes
mosquitoes is likely to have a significant impact. An increase in the number of
infectious Aedes mosquitoes directly affects the number of secondary infections
and indirectly increases the transmission from livestock to mosquitoes and back
to livestock. The number of secondary infections at initial spread of the disease
is usually described by Ry. The basic reproductive number, Ry is defined as the
average number of secondary infections caused by a single infected individual in
an otherwise susceptible population during his infectious life period. However,
Ry obtained through the next generation method does not produce the exact
expected number of secondary cases in a host-vector disease such as RVF, but
rather the geometric mean of the number of secondary infections per generation.
Therefore, to carefully determine the relationship between vertical transmission and
the reproduction number we apply the approach used in [85] where we define type
reproductive numbers as follows: the number of new infected hosts caused by a single
infected host, TP and the number of new infected vectors caused by a single infected
vector, TY. Since the model accounts for vertical transmission from the female
Aedes mosquito, Ry then represents the expected number of secondary infections
after a complete average (host-vector-host or vector-host-vector) transmission cycle,
but it does not correspond to a specific transmission cycle. Therefore, the type
reproductive number that describes the total average number of secondary host
infections required to account for vector-vector transmission cycles that occur
during both disease cycles is given by

Ry
11— a1
and the vector type reproductive number is given by

h
1

TY = + R . (2.8)
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FIGURE 2.1: Relationship between percentage efficiency of vertical transmission

with both complete transmission cycle R(Q) and type reproductive numbers 77 and

TJ. This relationship is depicted for both low moisture parameters ( see (a)-(c))

and high moisture parameters (see (d)-(f)) while varying the initial number of

livestock NY and keeping initial number of adult mosquitoes constant N{ and
NYJ. All other parameter values are in Table A.1.

Figure 2.1 describes the behaviour of both complete transmission cycle R3 and
type reproductive numbers 77 and T below and above unity for both low and high
moisture parameters depending on the percentage efficiency of vertical infection.
From (a)-(c) we depict this relationship for low moisture parameters given in
Appendix A Table A.1 for different values of initial number of livestock NY while
keeping constant the initial number of adult Aedes and Culer mosquitoes NY and
N? respectively. We observe that vertical infection efficiency leads to a linear
increase in the basic reproductive number and vector type reproductive number but
an exponential increase in the host type reproductive number. Aedes eggs, after
maturing hatch during the next flooding event, leading to emergence of probably
the first generation of vertically infected Aedes mosquitoes. Thus, the higher the
proportion of vertical infection the higher the quantity of Ry and 77 is, since
at the beginning of each rainy season, Aedes mosquitoes quickly grow towards
the maximum densities. As infected Aedes mosquitoes feed on nearby vulnerable
livestock, they trigger virus amplification resulting in an exponential increase of T}
in the subsequent generations or transmission cycles. This is furthermore enhanced
through subsequent elevation of secondary vectors including various Culex species
that amplify the spread of the disease. In (a) and (b) the trajectories of all
reproductive numbers are almost indistinguishable for vertical infection efficiency
of up to 20%. A clear divergence begins when vertical infection is around 40%.
This suggests that a certain level of vertical transmission efficiency should be met
for the initial spread of the disease [4]. Nevertheless, the efficiency of vertical
infection is a function of moisture since high moisture leads to massive hatching
of mature eggs. This is confirmed by Figures (d)-(f) depicting the relationship
between vertical infection efficiency and all reproductive numbers. Here the host
type reproductive number quickly accelerates even for vertical infection less than
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5%. In (c) an interesting feature is observed. All reproduction numbers lie below
unity for vertical infection efficiency below 60% with a substantial divergence when
vertical infection is above 60%. The divergence between T7 and Ry reveal the
degree to which initial spread of RVF outbreaks depends on vertical infection
efficiency. However, if the initial number of livestock, NJ is kept higher we observe
a substantial decrease in the magnitude of all reproductive numbers. This suggests
that if the ruminants stay together in large herds the effort it takes for each
domestic livestock to prevent a mosquito bite (such as switching its tail) is likely
to be more effective than if there were in small herds.

Two types of vaccines (live vaccine and inactivated vaccine) can be used to reduce
the negative impacts of RVF morbidity and mortality in livestock. However, the
current live vaccine cannot be used for prevention because it is not sustainable in
current RVF affected countries due to economic limitations [1, 74, 86]. In such
conditions, reducing vector population is the most viable disease control measure.
Ry is a quantity that is directly related to the initial spread of an epidemic,
heavily used for disease prevention. But, it is also used to guide eradication efforts
when a disease is endemic [87]. In this case we define the eradication effort as
the percentage reduction in vector population size required to prevent disease
transmission and persistence [85]. This means that either the vector or host type
reproductive numbers should be kept below the threshold. Thus, using the host
type reproductive number, the eradication effort is 100(1 — 1/7}). Therefore,
the efficiency of vertical infection is linearly related to the eradication effort, as
shown in Fig.2.2, and vertical infection at % can be responsible for at most =%
of the required eradication effort. Again, we observe that increasing the initial
number of livestock, NY the magnitude of eradication effort required to prevent
the spread of the disease reduces dramatically. Note that we have only considered
eradication effort for high moisture parameters only. This is due to the fact that
the relationship between eradication effort and percentage efficiency of vertical
infection for low parameters follows the same behaviour as for parameters for high
moisture.
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FIGURE 2.2: Percentage of mosquito population that must be removed to

reduce the host type reproductive number below unity and eradicate the virus,

depending on the efficiency of vertical infection for high moisture parameters

and for different values of initial number of livestock NY. The values of all other
parameters are given in Table A.1.
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2.3.3 Vertical transmission and persistence of RVF

The derivation of Ry via the next generation method is obtained when the disease-
free state is at equilibrium, which makes Ry very useful to describe initial spread
of the disease. Hence, R is not appropriate to describe the potential for long term
circulation of the virus, that is, during inter-epidemic periods. Persistence may be
affected by seasonal fluctuations, low mosquito-livestock transmission cycles due to
low population densities, high levels herd immunity, long viral incubation period
or many other factors [4, 5, 85]. Since the disease persists during inter-epidemic
periods through transovarial transmission from the female Aedes mosquito to eggs,
we only focus on the role of vertical transmission by considering a proportion of
infected newly born and adult Aedes mosquito populations with no transmission
between mosquitoes and livestock or vice versa. Therefore, we describe the process
through a pair of ordinary differential equations:

dU
d_tl =bg; —0,U,
(2.9)
dl,
— =0U; — 1
i 1U1 — ity
where p; = d}(—]\lh.

In the absence of mosquito-livestock transmission, one may expect long term viral
extinction. However, this is not the case for RVF disease which is mediated by
various vectors and one of them is Aedes mosquitoes whose eggs undergo diapause.
The system (2.9) can be solved subject to the initial condition of U of infected
pre-adults and I{ of infected adults. Since part of the solution is multiplied by
exp(—(u1 + 01 + ¢)) which makes it decay very rapidly and can be discarded to
give a good approximate solution for the total number of infections at time ¢,
I(t) = Uy(t) + L(t) is given by:

(¢ + p + 91)U{] + (¢ + p1 + 2b1Q1 + 61)[?6_(M1+921—¢)t

I(t) = %

(2.10)

where ¢ = \/(,Ul — 01)2 + 4b1q16s.

The quantity, () represents a decay process and can be used to determine the
half-life, ¢; o which is the amount of time required for I(¢) to fall to half its value.
Thus, the approximated time until the number of infected mosquitoes is reduced
by 50% is given by

2 ln{ (U7 + 1)
pi 401 — o (0 + p1 +61)UY + (¢ + 1 + 2b1qy + 01) I

taj2) =

] (2.11)

and the approximated time until the number of infected mosquitoes is less than
unity is:

(2.12)

e

2 2 }
4601 — ¢ [(¢+M1+91)U?+(¢+M1+261Q1+91)]?
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Both half-life and total time to extinction increase with vertical infection efficiency
see Fig.2.3. The rate at which percentage efficiency of vertical infection extends
both half-time and total time to extinction is exponential. For both Figures 2.3(a)
and (b) UY = I? = 10, but half-life does not depend on the initial conditions.
However, the approximate time until the number of infected mosquitoes is less
than unity increases substantially with increments in the values of initial conditions
UY and I? (see (b)-(d)). Tt is worth noting that we have plotted half-time and
additional time only for high moisture parameters. This is because we are interested
in quantifying these indicators in case of outbreaks activities and not inter-epidemic
activities. During inter-epidemic activities the infection may pass undetectable as
infection remains asymptomatic or dormant within livestock hosts. Nevertheless,
both half-time and additional time to extinction for low moisture parameters follow
the same trend as for high moisture parameters but with reduced time.
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F1GURE 2.3: Time taken for the density of Aedes mosquitoes to fall by half

and unity depending on the efficiency of vertical transmission if no transmission

between mosquito and livestock for high moisture parameters. (b)-(d) approxim-

ate time until the number of individuals is less than unity for different initial
conditions. All other parameters are given in Table A.1.

2.4 Sensitivity Analysis of R

In order to assess the impact of the parameters and decision rules within the
model, a sensitivity analysis is performed to determine how sensitive the model is
to changes in the parameters value as well as to determine the parameters that
have the most influence on the stability /instability of the equilibrium points and
on the reproduction number. We also assess the relative importance of different
factors responsible for transmission and prevalence of RVF to better determine
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how to reduce the livestock mortality and morbidity. Initial disease transmission
and endemicity are directly related to Ry. In the following section we compute the
sensitivity indices of Ry based on perturbation of fixed point estimation [88], also
known as normalized forward sensitivity index [89].

2.4.1 Sensitivity indices of R

Sensitivity indices for the basic reproduction number, R, change with the change
in input parameter values. Here we study these variations in parameter values in
order to explore the relative importance of different drivers responsible for disease
transmission. The sensitivity indices for Ry are given by

FRO 3R0 w

v = B X ) (2.13)

where 1 represents an arbitrary model parameter. For more details in the derivation
of the above formula see [88, 89]. The sensitivity indices of Ry with respect to all
model parameters for both low and high parameter values are shown in Table 2.2.
For both low and high parameter values, the sensitivity indices for ¢, 65, 01, 02, 03,
Bra, Bat, Bos, Bsa, B2y Baz, 11, vs, NO and NQ are positive and the remaining are neg-
ative. The sign of the sensitivity indices of R suggests a monotonic relationship
between R, and the parameters. That is, an increase/decrease on parameters
increases/decreases Ry, which agrees with the intuitive expectation from the model.
For both low and high parameter values the Aedes death rate and the number
of times an Aedes mosquito would bite a host are the most sensitive, followed by
the probability of transmission from an infected Aedes mosquito to a susceptible
host. However, for low parameter values, the initial number of livestock N2, initial
number of Aedes N?, the recovery rate of the infected symptomatic host and the
number of bites a Culer mosquito would bite a host are more sensitive than the
corresponding high parameter values. For both low and high parameter values in
order to have 10% decrease in the value of Ry it is necessary to increase the Aedes
deaths by 2.8605% and 0.1095% respectively; decrease o by 4.1952% and 1.3459%
respectively. The explanation for other sensitivity indices is similar.
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Low Parameters Ry = 0.8560 High Parameters Ry = 4.8681
Parameters Sensitivity Indices Corresponding Changes Sensitivity Indices Corresponding Changes
by —0.5718 +2.8605 —0.3750 +0.1095
by —0.0051 +6.4607 —0.0004 +1.4925
b3 —0.2668 +6.1309 —0.1719 +0.2391
7 +0.0614 —19.0398 +0.0104 —19.7946
(23 +0.1967 —35.6357 +0.1039 —11.8577
o1 +0.6962 —4.1952 +0.5037 —1.3459
09 +0.1343 —1652.2703 +0.2551 —152.9760
o3 +0.3248 —8.9916 +0.2308 —2.9370
B2 +0.2816 —29.0399 +0.2241 —6.4160
Ba1 +0.3939 —6.2285 +0.3393 —1.2713
Bas +0.18378 —9.5353 +0.1555 —1.9817
D32 +0.1437 —40.6559 +0.1143 —8.9824
Bra +0.1123 —31.2130 +0.1152 —5.3493
Bsa —+0.0401 —43.6982 +0.0411 —7.4891
Y +0.1779 —11.1646 +0.0357 —9.7770
3 +0.0830 —23.9291 +0.0164 —21.3360
€2 —0.3014 +9.6915 —0.1879 2.7328
&y —0.1507 +19.3805 —0.1562 3.2884
ma —0.1205 +9.6915 —0.1503 +2.7328
NY +0.3023 —386470.8209 +0.1644 —249965.7111
NY —0.4433 +26351.9978 —0.2397 +8570.8127
NY +0.0263 —828321.1332 +0.0753 —545493.0811

TABLE 2.2: Sensitivity indices of Ry

2.4.2 Uncertainty Analysis of R

Many of the parameters in this model, although they have biological interpretations,
are either known imprecisely or vary significantly from region to region, taking on
a range of values. Therefore, it is necessary to see how the outcome of the model
may vary over these ranges of plausible parameter values.

We employed the technique of Latin Hypercube Sampling [83], which belongs to
the Monte Carlo class of sampling methods. Latin hypercube sampling technique
is a stratified sampling without replacement, where each parameter distribution is
divided into N equal probable intervals, which are then sampled. For each input
parameter we have assumed a normal distribution across the ranges listed in the
second table in Appendix A. We then calculated R, as the model output using
n = 5000 sets of sampled parameters. Averaging Ry over all parameter sets gives a
mean of 1.19 and a median of 1.18.
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FIGURE 2.4: Significance test of model parameters and PRCC results for Ry for
5000 simulations. The (%) denotes PRCCs that have P-value < 0.01.

We used the partial rank correlation coefficient (PRCC) to assess the significance of
each parameter with respect to Ry. Partial rank correlation characterizes the non-
linear but monotonic relationship between outputs and inputs [83] and it has been
successfully used to characterize the linear relationship between rank-transformed
inputs X, qnkea(?) and output Y,qnkeq after the linear effects on the output Y,4pngeq of
the remaining inputs are discounted [70]. The results are shown in Figure 2.4. The
sign of the correlation coefficient indicates the direction of the relationship and the
value of the correlation indicates the strength of the relationship between input
parameters and model output. The more the p-value is close to zero the more the
parameter is significant. The per capita birth rate/death rate by, by and bs show
moderate influence to the model output with increasing per capita death rates de-
creasing Ry. This relationship is due to the fact that increasing these rates reduces
the species lifespan or simply mean that reducing the mosquito densities will help
to control the outbreak. Vertical infection ¢; and the probability of transmission
from Aedes mosquitoes to susceptible livestock 21 have positive PRCC values, all
above 0.5 indicating high significance to Ry with direct proportional relationship,
that is, an increase in ¢; and (51 increases Ry. This results from the fact that
vertical infection initiate the transmission with high significance during dry season
when infected eggs hatch after rainfall and the first generation of infected female
Aedes bites livestock for blood meal during their second gonotrophic cycle from
which they are able to infect the host, hence, further spreading the virus.

The parameters 1 — 6y, Bas, Bi2, B32, Bz, 1/e5 and 1/£5 appear to be significant
with PRCC positive indicating an increase in Ry with an increase in the probabil-
ity of susceptible livestock moving to asymptomatic class, probabilities of virus
transmission and the average duration of infection in livestock (symptomatic and
asymptomatic). The model output is also highly sensitive to initial total Aedes
population N, initial total livestock population NY and to the number of times
an Aedes mosquito would bite a host oy, with directly proportional increase in
Ry, that is only influenced by N{ and ;. This relationship results from the that
an outbreak at early stage may be dependent on the initial number of vectors,
number of bites to a host and initial number of available host. Since in our model
the total number of bites on livestock varies with both the livestock and mosquito
population sizes, increasing the initial size of host population does not necessarily
mean that we will observe an increase in Ry as shown by the PRCC value for NY.
This may be explained by the fact that livestock availability to mosquitoes can be
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reduced through human control interventions and by the efforts the host takes to
prevent mosquito bites (such as switching its tail) making oy possibly very small.

2.5 Sensitivity Analysis of the Endemic Equilib-
rium, E*

Sensitivity analysis of the endemic equilibrium state is used to determine the
relative importance of different parameters responsible for equilibrium disease
prevalence [88], which is related to the endemic equilibrium state
E* = (P U, ST, B I, Sy, A, I Ry, Py, S5, ESL IT). However, for our analysis
we assume that the equilibrium disease prevalence is related to the following disease
states: Uy, B, I, AS, I3, B, I;. Given the fact that £* is not expressed explicitly,
analytical derivation of the indices is not possible. Therefore, we compute the
sensitivity indices numerically using the method developed by Chitnis et al.[89], also
applied in [88]. Following the notation in [88], we have replaced the model state vari-
ables (Uy, B, 11, Ay, Iy, 3, I3) by (21, 22, 3, 24, T5, T6, T7), the model parameters
(bhdl,d2,d3,Q1,91,92,01702,03,5127521,523753275127532,71,’72,52,52) have been re-
placed by
(Y1, Y2, Y35 Y4, Ys, Y6, Y7, Yss Yo, Y105 Y11, Y125 Y13, Y145 Y15, Y16, Y17 Y18, Y19, Y20, Y21) and the
endemic equilibrium disease state (U, EY, IT, A%, Iy, B3, I5) by (af, 5, x5, xf, ok, of, a%).
The sensitivity index of the endemic equilibrium disease state, =}, to the parameter,
y; is given by

0ri Y (2.14)

8yj x¥

1

for 1 <7< 7and1<j<2l. The numerically computed endemic disease state for
low parameter values is given by

E* = (500,0.4095, 4956, 9.639, 93.5, 66.81, 0.4395, 0.351, 890.6, 500, 4974, 6.238, 53.34)
(2.15)
and for high parameter values is

E* = (500,40, 4956, 40, 40, 66.81, 0.005, 0.5, 890.6, 500, 4974, 14,24.18).  (2.16)
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2.5.1 Sensitivity Indices of E*

Parameters U7 Ey Iy Aj I3 E3 I3

by +0.0108 +40.0008 +40.0008 —25.2897 —0.7227 —0.0070  —0.0042
dy —0.1763 —0.1998 —0.1763 +6433.9936 +183.8729  4+1.7728  +1.0566
do 0.0000 0.0000 0.0000 +0.0165 —0.0001 0.0000 0.0000

ds +0.3466  +0.3367 +0.3466 +6420.7205 +9.9271 —1.2941  —0.7543
q +0.0108 +0.0008 +0.0008 —25.2897 —0.7227 —0.0070  —0.0042
0, +7.0042  +7.7755 +8.0042 —250367.8884 —7155.1013 —68.9862 —41.1172
0y +0.0001 +0.0001 +0.0001 —109.9836 +0.7489 +0.0001  +0.0001
oy —0.0635 +0.0079 —0.0635 —262.2369 —7.9111 —0.0755  —0.0450
) —0.0080 —0.0018 —0.0080 —68.8993 —0.7646 +0.0028  —0.0057
o3 —0.0291 —0.0283 —0.0291 —531.1488 —0.8931 +0.1076  —0.0207
B2 —0.0681 +0.0091 —0.0681 —293.8141 —8.3967 —0.0810  —0.0483
B —0.0006 —0.0006 —0.0006 -+10.0632 —0.1655 —0.0008  —0.0005
a3 —0.0003 —0.0003 —0.0003 +4.3452 —0.0714 —0.0003  —0.0002
32 —0.0313 —0.0304 —0.0313 —579.8804 —0.8966 +0.1169  —0.0222
‘312 —0.0003 +40.0000 —0.0003 —1.2592 —0.0360 —0.0003  —0.0002
332 —0.0001 —0.0001 —0.0001 —1.7396 —0.0027 +0.0004  —0.0001
it +7.7510 46.5581 +7.7510 —211168.8756 —6034.8582 —58.1854 —34.6796
V3 —6.5110 —6.3249 —6.5110 —120624.6443 —186.4978 +24.3123 +15.0696
€9 0.0000 0.0000 0.0000 —0.6373 +0.0051 0.0000 0.0000

I +0.0004 40.0004 +0.0004 +30.1844 —0.1344 +0.0005  +0.0003
Mo 0.0000 0.0000 0.0000 +2.4148 —0.0108 0.0000 0.0000

TABLE 2.3: Sensitivity indices of E* to the high parameters.

Intuitively, the sensitivity indices of the endemic equilibrium state indicate that
an increase/decrease in disease prevalence leads to a decrease/increase in the
equilibrium of the infected symptomatic livestock due to disease-induced death rate
ms in livestock [48]. Note that these intuitive explanations agree with the signs of
the sensitivity indices (see Tables 2.3 and 2.4). For both low and high parameter
values for A; and I the most sensitive parameters are: dy,ds, 01,02, 71,7vs. This
agreement results from the fact that the prevalence of the disease is driven mainly
by the dynamics of the vectors.
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Parameters U Ey Iy A 13 E3 13

by +7.8391  —0.0046 —0.0007 —1.4086 —4.6158 —0.0571 —0.0094
dy +32.1994 +0.6773 +0.1410 +208.0621 +681.7857 +8.4392 +1.3933
do +0.0033  +0.0001 0.0000 —0.0033 +0.0116 +0.0001  0.0000
ds +96.9302 +2.9169 +0.4245 +103.5420 +174.6454 —3.7730 —0.5748
q +7.8391  —0.0046 —0.0007 —1.4086 —4.6158 —0.0571 —0.0094
0, —1.2533  —0.0076 —0.0011 —2.3418 —7.6736 —0.0950 —0.0157
0y —0.8320 —0.0250 —0.0036 —24.0414 17.8278 —0.0221 —0.0036
o —18.3365 —0.1926 —0.0803 —8.6146 —42.1976  —0.4872 —0.0804
09 —1.3460 —0.0169 —0.0059 —0.6855 —3.0531 —0.0285 —0.0059
o3 —2.1224  —0.0639 —0.0093 —1.8055 —4.2095 +0.0533 —0.0093
B2 —8.9103 —0.0190 —0.0390 —5.8370 —19.1270 —0.2368 —0.0391
Ba1 —5.8510 —0.1761 —0.0256 —0.2120 —15.5825  —0.1555 —0.0257
Bas —0.4768 —0.0143 —0.0021 —0.0173 —1.2699 —0.0127 —0.0021
B2 —1.2595 —0.0379 —0.0055 —1.3454 —2.2693 +0.0490 —0.0055
Bia —4.7815  —0.0102 —0.0209 —3.1323 —10.2641  —0.1271 —0.0210
Bsa —0.5257  —0.0158 —0.0023 —0.5615 —0.9472 +0.0205 —0.0023
" +19.8838 —0.1100 +0.0871 —33.7844  —110.7061 —1.3703 —0.2262
Y3 —15.4500 —0.4649 —0.0677 —16.5039 —27.8372 +0.6014 +0.2162
) +0.1477  +0.0044 +0.0006 —0.6400 +0.9321 +0.0039  4-0.0006
) +0.1477  +0.0044 +0.0006 +0.3490 +0.1066 +0.0039  4-0.0006
mo +0.0118  +0.0004 +0.0001 +0.0279 —0.0085 +0.0003  4-0.0001

TABLE 2.4: Sensitivity indices of E* to the low parameters.

2.6 Uncertainty and sensitivity analysis of the
model dynamics

In this section we aim to determine the uncertainty of various model output
state variables (Uy, Ey, I, As, I, E3, I3) based on the uncertainty of the input
parameters sampled using the Latin hypercube sampling technique described in
section 2.4.2. Our model (2.1-2.3) consists of more than 23 parameters, however
for this analysis we are considering only 21 parameters. Each parameter is divided
into 100 equal probable intervals, used to construct the LHS-matrix which is then
used to compute 100 model simulations. Given, this matrix of randomly selected
input parameters we can calculate the model output values providing means for
determining parameter sensitivity. Marino and colleagues [83] reports that for
nonlinear but monotonic relationship between model outputs and model input
parameters, sensitivity analysis techniques that work well include Spearman rank
correlation coefficient (RCC), partial rank correlation coefficient (PRCC), and
standardized rank regression coefficients (SRRC). Although, the PRCC is widely
used and is reported to be more powerful tool [90]. For the following sections,
instead of the PRCC we make use of the Spearman rank correlation coefficient by
assuming that model output state variables monotonically depend on input model
parameters. By this approach we may neglect possible statistical dependencies
between input variables. Note however that we keep the notation PRCC although
the RCC algorithm was used to compute the sensitivity indices. Since our model
is formulated to predict disease outbreaks we only consider high rainfall and
moderate temperature parameter values to generate the LHS-matrix (see Table
A.1 in Appendix A).
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2.6.1 Time invariant sensitivity analysis

The model is simulated for 600 days and the 12th day is selected (representing
the peak of the outbreak) and the PRCCs and their respective significances are
computed for Uy, E1, I, As, Is, E5, I3 model state variables. RVF outbreaks in a
particular location are very short and the peak of the epidemic is usually reached
between 10-20 days [4, 48]. Hence, we have selected the 12th day to assess the
variation on model output when we are at the peak zone using PRCCs. PRCC
provides answers to questions about how the output is affected if we increase (or
decrease) a specific parameter [83].

As shown in Figure 2.5 the number of infected eggs U; is highly correlated to the
Aedes death rate dy, birth rate by, infected symptomatic disease-induced death rate
mo and to the vertical transmission rate ¢;. The number of exposed Aedes E is
highly correlated to the number of bites an Aedes mosquito would bite a host oy,
the number of bites a host would sustain oy, probability of transmission from an
infected asymptomatic host to susceptible Aedes By, the probability of transmission
from an infected Aedes to a susceptible host (357 and to my. The number of infected
Aedes I is more sensitive to d; and msy followed by the probability of transmission
from an infected Culex to a susceptible host 53 and vertical transmission ¢;. In
general, we observe that reducing the prevalence of the disease in livestock reduces
the number of secondary infections in mosquitoes.
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FIGURE 2.5: Presentation of PRCC results for n = 100 simulations at time

t = 12 days. * and A denote PRCCs that are significant with p < 0.01 and

0.01 < p < 0.05 respectively, for Aedes infected eggs U, Exposed Aedes E1, and
Infected Aedes I; state variables.

In Figure 2.6 we represent the PRCCs for Ay, I5, F3, I3. The number of infected
asymptomatic livestock A, is more sensitive to 01,09 and P91 followed by ds.
However, the number of infected symptomatic livestock I, is more sensitive to
01,09, P21 and to my followed by ¢;. These results suggest that reducing oy, 02, F21
and the efficiency of vertical transmission ¢, reduces the prevalence of the disease.
This agrees with common knowledge that vector control and intervention in livestock
are effective control measures [13]. In addition, our results suggest that if ms is
taken as removal rate, then livestock isolation can be an additional control measure,
as increasing mo decreases I,. The number of exposed Culer 3 is more sensitive
to o1, 09, B21 and my followed by the probability of transmission from an infected
asymptomatic host to a susceptible Culex mosquito f32. While the number of
infected Culex I3 is highly sensitive to the Culex death rate ds.
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FIGURE 2.6: Presentation of PRCC results for n = 100 simulations at time

t = 12 days. * and A denote PRCCs that are significant with p < 0.01 and

0.01 < p < 0.05 respectively, for Asymptomatic infected host As, Symptomatic
infected host Iy, Exposed Culer E3, and Infected Culex I3 state variables.

2.6.2 Time varying sensitivity analysis

Time varying sensitivity indices are calculated over a specified time period and
plotted versus time. This is fundamental to assess the significance of model input
parameter over a specified time interval during model dynamics [83]. For our
analysis we took a time period that goes from day 1 to the 60th day of the outbreak.
RVF outbreaks in most cases take less than 60 days in a particular location. This
time interval is sufficient to capture all parameter changes due to the natural
evolution of the disease. Figure 2.7 (a)-(d) show the PRCCs for U; which is highly
sensitive to vertical transmission ¢; for the entire interval. It is worth to note that
in ¢) the relationship between U; and fa3 changes sigh between 40-50 days of the
outbreak. F4 is more sensitive to d; around the peak of the outbreak and tends to
be more sensitive to by after the peak (see Fig.2.7(e)). In (f) E; is more sensitive
to o1 before the 40th day. E; is also sensitive to f2;, however, the relationship
between E; and f5; changes sigh around the 30th day Fig.2.7(g). Here the effect
of a1 (probability of disease transmission from an infected Aedes mosquito to a
susceptible symptomatic ruminant) changes with respect to the number of exposed
Aedes mosquitoes E; over time: it is positively correlated right from the beginning
of the outbreak up to the end of its peak, then it becomes negatively correlated
as the infection progresses to the steady state. This means that transmission of
infection to susceptible livestock is responsible for updating the new generation
of infected mosquitoes until the end of the outbreak. A similar phenomenon is
also observed in Fig.2.9(c). I; is more sensitive to d; over the entire interval (see
Fig.2.7(i)), to o1 and [5; during the first 20 days of the outbreak Fig.2.7(j) and
(k). I is also sensitive to ¢; as the epidemic progresses over the time period.



Chapter 2. Uncertainty and Sensitivity Analysis 30

2

o
-4
°

°
2
o o
5

o =2
)

o
N

o
°

PRCC for state variable U,

—Prp  PoyPay Py By

PRCC for state variable U,

1)
N
C
S
Ny
. PRCC
o

=)
o

by - o, 0, oy By, e

S

40 50 6 0% 10 20 40 50 6

s
&
3|
ol
8|

0 50 50 30
Time in days

L]
o
@

°
>

°
by
o

o

S
PRCC for state variable E, @
°

PRCC for state variable U,

PRCC for state variable E,

)

)
X
3|
|
S|
L
)
)

30 40 50 0 B 10 20 30 40 50 60 10 20 30 40 50 6
Time in days Time in days Time in days

e

Z
°o
°

[~ g ey Gy

o
i

B2 Par P BBy,

o
®

>

o o o
Y
o o
2 N o

o
S
5y

PRCC for state variable E,
PRCC for state variable I,

S o

N
)
@

20 50 B0 10 20 30 40 50 60 N 10 20

30 30 40 50
Time in days Time in days Time in days

o
o

°

PP B0,

°
by

|—./‘ Tyty wyMy G
0

°
o

0.4}

o
N

0.2

PRCC for state variable I,

PRCC for state variable |,
°

2 o =

Of.

S

-

70 20 30 20 50 0 0% 0 20 30
Time in days Time in days

40 50 6 0% 10 20 40 50 6

S
&

30
Time in days

FIGURE 2.7: Description of how the sensitivity of parameters changes as the
system dynamic progress. Note that here we have considered the Aedes Infected
eggs Uy, Aedes Exposed E7 and Aedes Infected I state variables.

A, is more sensitive to o1 and B9, Fig.2.8(b) and (c) respectively. However, the
relationship between Ay and oy and (35; changes sign after the first 20 days. The
effect of parameter o; (number of bites an Aedes mosquito would bite a host)
changes with respect to the number of infected asymptomatic hosts over time: it
is positively correlated right from the beginning of the epidemic up to the end
of its peak, then it becomes negatively correlated as the infection progresses to
the steady state. This indicates that the number of times an infected Aedes mos-
quito feeds on a host is responsible for spreading the infection; however, as time
progresses these infected animals start to recover from the infection. Thus, the
number of susceptible and infected livestock reduces while the number of recovered
ones increases. This phenomenon has also been observed in Fig.2.8(f) for infected
symptomatic ruminants.

Furthermore, A, is more sensitive to the asymptomatic host recovery rate &5 and
changes sign (see Fig.2.8(d)). The effect of the rate of recovery of infected asymp-
tomatic ruminants changes with respect to the number of infected asymptomatic
ruminants over time: it is positively correlated (low) at the very beginning of
the infection, but few days before the peak it then becomes negatively correlated
(strong) until the infection dies out. The negative sign suggest that if we increase 5,
the number of infected asymptomatic ruminants increases quickly (and vice versa).
These results suggest that intervention strategies in asymptomatic ruminants even
after the initial spread of the disease are essential for stopping further spread of
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the disease.

I, is more sensitive to by over the end of the interval Fig.2.8(e). I5 is also sensitive
to o1, B2 and €9 Fig.2.8(f),(g) and (h) respectively. Note that the relationship
between I, and o, and (51 changes sign after the first 20 days.
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FIGURE 2.8: Description of how the sensitivity of parameters changes as the
system dynamic progress. Note that here we have considered the Asymptomatic
infected host Ay and the Symptomatic infected host I5 state variables.

The number of exposed Culex Es is more sensitive to oy and 59, Fig.2.9(b) and (c)
respectively. In both cases o1 and (21 change sign and E3 tends to be more sensitive
to d3 towards the end of the time interval (see Fig.2.9(a)). I3 is more sensitive to
ds at the beginning and the end of the interval Fig.2.9(e). This is an interesting
situation. As the infection progresses to the steady state the parameter birth rate
by enhances its correlation (positively) with the number of infected symptomatic
livestock I5. This improvement of the correlation indicates that new born ruminants
may be responsible of a second wave for the epidemic if these ruminants are not
vaccinated. These insights are fundamental for guiding intervention programs both
at the beginning of the infection and after the peak. I3 is also more sensitive to o3
over the entire interval Fig.2.9(f) and more sensitive to B2 over the first 30 days.
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FIGURE 2.9: Description of how the sensitivity of parameters changes as the
system dynamic progress. Note that here we have considered the Culer Exposed
E5 and Culex Infected I3 state variables.

2.7 Vector abundance during an outbreak

Using model system (2.1-2.3) we investigate the effects of vertical transmission on
the abundance of adult mosquitoes in an epidemic situation. Fig.2.10 depicts the
time evolution of the number of infected adult Aedes mosquitoes for different values
of initial number of infected eggs U?. In a) we observe that for UY = 999 the number
of infectious adult Aedes reaches its maximum around 25 days, while for UY = 100
the number of infectious adult Aedes reaches its maximum at around 40 days see
Fig.2.10(b). This suggests that: depending on the efficiency of transovarial /vertical
transmission RVF outbreak at a particular site is very brief, and the peak is likely to
be reached in a span of 30 days; depending on the efficiency of vertical transmission
the duration of the outbreak is likely to either be reduced or increased.
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FIGURE 2.10: Simulation of infectious Aedes populations with varying initial

number of infected eggs. (a) With 999 initial infected eggs and (b) with 100 initial

infected eggs. The remaining initial conditions are: S; = 5000, P; = 1000, E; =

0,]1 = 1,52 = 1000,A2 = 12 = RQ = 0, 53 = 5000,P3 = 1000,E3 =0 and 13 =1.
All model parameters (high moisture) are given in Table A.1.

2.8 Conclusions

Using a RVF model developed by Pedro et al.[4] and its analytical expression of the
basic reproduction, Ry we studied the relative importance of vertical transmission
to disease spread governed by Ry. Reducing the model system to a system of two
ordinary differential equations (Uy, I;) we investigated the importance of vertical
transmission to disease persistence and its relation with the basic reproductive
number and type reproductive numbers. Furthermore, by employing techniques
based on perturbation of fixed points estimations we determined sensitivity indices
of various model outputs to the input parameters. Based on Latin hypercube
sampling (LHS) and Partial rank correlation coefficients (PRCCs) and rank correl-
ation coefficients (RCCs) we systematically determined the relative importance
of model parameters to the basic reproduction number Ry and to model state
variables for single time and multiple time points. Sampling-based procedures
provided a range of values of both Ry and model state variables in an interval
while methods based on perturbation of fixed points estimations or computation
of local derivatives provided only a single value of the model output [88]. Thus
sampling-based procedures (both time varying and time invariant) provide more
information as compared to local derivative techniques.

Using the basic reproductive number, R, to assess the importance of vertical infec-
tion efficiency, we characterized the relationship predicted by the model output:
for low moisture parameters the response was initially very small but strengthened
rapidly when the vertical infection efficiency exceeded 20%, highlighting the im-
portance of vertical transmission for initial spread and persistence of the disease
during endemic activities. Applying vector type reproductive number, 77 we
showed that vertical infection of 20% can be responsible for more than 80% of the
required effort to eradicate the epidemic. This suggests that reducing the size of
mosquito population and mosquito biting rates will help control both the initial
spread of the disease and ongoing disease activities during an outbreak. Previous
studies have also shown that, if policy-makers wish to decrease the transmission
of RVF, keeping the vector populations at the lowest levels is required [4, 5, 48].
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In addition, two important features were observed: (1) during epidemic activities
vertical transmission accelerated the course of the outbreak as it increased the size
of infected vectors and reduced the duration of the outbreak while during endemic
activities heavily contributed to disease persistence; (2) an increase in the initial
number of livestock N substantially reduced the magnitude of all reproductive
numbers.

We then used global sensitivity analysis to determine which parameters are most
important to disease persistence and epidemicity. The basic reproductive number,
Ry was most sensitive to probability of vertical transmission ¢;, probability of
transmission from an Aedes mosquito to livestock (351, initial density population of
Aedes mosquitoes Ny and livestock NY and to the Aedes biting rate o;. Vertical
transmission has potential for initiating virus circulation [26], mosquito biting to
spread the infection to nearby susceptible livestock [36]. Thus, understanding the
role of each of the above five parameters (q;, 821, Ny, NY and o) is central for
designing effective RVF control strategies.

The sensitivity indices of the endemic equilibrium state variables showed that for
both low and high parameter values for A and I; the most sensitive parameters are:
Aedes death rate, Culexr death rate, the number of bites an Aedes mosquito would
bite a host, the progression rates from exposed to infectious stage for both Aedes
and Culex. This agrees with the fact that the prevalence of the disease is driven
mainly by the dynamics of the vectors. Nevertheless, reducing the prevalence of
the disease in livestock reduces the number of secondary infections in mosquitoes.
On the other hand the RCCs calculated between the values of each of the 21 model
parameters and model state variables which was derived from the uncertainty
analysis strongly supported previous results obtained through perturbation of fixed
point estimations method. Furthermore, time varying sensitivity analysis of model
state variables showed an extra potential for exploring parameter space variations
and their contribution to model variations during disease evolution. The effect
of model input parameters to model output variations does not remain static
over time. There are changes that occur as the disease evolve. One of the main
objectives of this study was to quantify the attribution of model output variations
to input parameters over time. Through this analysis we have identified four key
parameters (f91, 01, by and £3) which effect change over time. The results of this
analysis are of higher epidemiological significance as they provide experimental
epidemiologists and health policy-makers with time specific information on major
disease factors. In addition, this opens a new direction into future research [8§]
which should exhaustively investigate the effects of these parameters both at the
initial phase of the epidemic and during the transient phase when the effect of
initial conditions have been discarded.



Chapter 3

Stability, bifurcation and chaos
analysis of vector-borne disease
model with application to Rift

Valley fever!

3.1 Introduction

Rift Valley fever virus (RVFV), a member of the phlebovirus genus, and family
Bunyaviridae which has been isolated from at least 30 mosquito species in the
field [27] infects both wild and domestic livestock and humans. The RVF epizo-
otics/epidemics are closely linked to the occurrence of the warm phase of the El
Nino/Southern Oscillation (ENSO) phenomenon [34]. In addition, elevated Indian
Ocean temperatures lead to heavy rainfall and flooding of habitats suitable for the
production of immature Aedes mosquitoes that serve as the primary RVF virus
(RVFV) vectors in East Africa [35, 36]. Studies have shown that the life cycle of
RVF'V has distinct endemic and epidemic cycles. During the endemic cycle the virus
persists during dry season/inter-epizootic periods through vertical transmission in
Aedes mosquito eggs [35]. Aedes eggs need to be dry for several days before they can
mature. After maturing, they hatch during the next flooding event large enough to
cover them with water [11, 91]. The eggs have high desiccation resistance and can
survive dry conditions in a dormant form for months to years. At the beginning of
the rainy season, Aedes mosquitoes quickly grow to large numbers before declining
due to the need for dry conditions for egg maturation. There can be a second peak
in mosquito densities at the end of the rainy season if there is a gap in rainfall for
several days [91]. When these mosquitoes lay their eggs in flooded areas (including
dambos), transovarially infected adults may emerge and transmit RVFV to nearby
domestic livestock, including sheep, goats, cattle, and camels. High viremias in

! This chapter has been published: Pedro SA, Abelman S, Ndjomatchoua FT, Sang R, Tonnang
HEZ (2014) Stability, Bifurcation and Chaos Analysis of Vector-Borne Disease Model with
Application to Rift Valley Fever. PLoS ONE 9(10): €108172. doi:10.1371/journal.pone.0108172

35



Chapter 3. Stability, bifurcation and chaos analysis 36

these ruminants may then lead to the infection of secondary arthropod vector
species including various Culex species [37]. Epizootic/epidemic cycles are driven
by the subsequent elevation of various Culex mosquito populations, which serve as
excellent secondary vectors if immature mosquito habitats remain flooded for a
long enough period [36]. Their eggs require water to mature and hatch and the
mosquitoes survive the dry season in adult form and during the rainy season, the
population of Culex mosquitoes reaches a maximum towards the end of the season
[5]. The disease is known to occur in outbreaks that come in cycles of up to 15
years in the Eastern Africa region and the Horn of Africa [39].

These variations in climatic factors induce seasonal fluctuations in mosquito pop-
ulation densities. Hence the complexity observed on the dynamics of RVF virus
transmission and maintenance. The interplay between the internal nonlinear dy-
namic of ecological systems and various external factors that affect them, makes
understanding of population fluctuation a unique problem [92]. Mathematical
models have been developed in order to provide a better understanding of the
nature and dynamics of the transmission and persistence of the disease, as well
as predict outbreaks and simulate the impact of control strategies [5, 48, 69, 70].
Most of these models considered constant mosquito oviposition rates, ignoring
effects of seasonal fluctuations in the mosquito population size. Furthermore, some
have ignored the effects of vertical transmission and secondary vectors [48] and
some only considered Aedes species only [5]. Temperature, rainfall and humidity
have great influence in all stages of mosquito development from the emergence
and viability of eggs, to the size and longevity of adults [6, 93]. Recently, Mpeshe
et al. [74] modified their previous study [48] to include vertical transmission in
Aedes species and climate-driven parameters. These models provide important
insights but do not investigate the stability dynamics and attractors structures of
the model when there are external forces in the density of vector populations.
The most common manifestation of external forcing is through seasonality including
both naturally (e.g. the occurrence of the warm phase of the El Nino/Southern
oscillation phenomenon) and induced (e.g human deforestation or human pollu-
tion). Studies for understanding dynamical consequences of regular and stochastic
external forcing are still ongoing but poorly understood [94-97]. To the best of
our knowledge, no systematic investigation of stability and attractor structures
of a realistic RVF model comprising two populations of mosquitoes (Aedes and
Culez) and one livestock host population with two infected classes (asymptomatic
and symptomatic) and seasonal variation on mosquito oviposition rates has been
carried out.

Based on the model proposed by Gaff et al. [69], we investigate a two vector
and one host epidemic model, to capture the dynamical behaviour of both the
disease free and endemic equilibria, the effects of seasonality on mosquito ovi-
position rates (b, b3), parametrized by 01,03 and effects of asymptomatic class
in livestock (parametrized by 1 — 6y). We prove existence and global stability
of both the disease-free and the endemic equilibria in the absence of secondary
vectors (I3 = 0), as well as the existence and local stability of both disease free
and endemic equilibrium points of the overall model. We then investigate the
structures of model attractors through bifurcation analysis, taking as bifurcation
parameters 9; and d3 the strengths of seasonality of mosquito oviposition rates.
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The bifurcation diagrams with simultaneous variation of seasonal forcing on the
oviposition rates of the two mosquito species reveal the complexity induced by
their interactions. The understanding of possible state space scenarios through
bifurcation analysis is helpful for understanding RVF epidemiological data with
its seasonality aspects. To obtain robust analysis we then compute the largest
Lyapunov exponents, Poincaré maps and maxima return maps.

The section methods gives a detailed description of the model and its paramet-
ers. In results the model is used to study the dynamic behaviour of the disease
stability and bifurcation analysis. Simulations are performed to investigate model
dependence on initial condition and attractors structures of the model applying an
ext